Statistics
| Branch: | Revision:

root / hw / ppc / spapr_pci.c @ 84af6d9f

History | View | Annotate | Download (27.2 kB)

1
/*
2
 * QEMU sPAPR PCI host originated from Uninorth PCI host
3
 *
4
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5
 * Copyright (C) 2011 David Gibson, IBM Corporation.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw/hw.h"
26
#include "hw/pci/pci.h"
27
#include "hw/pci/msi.h"
28
#include "hw/pci/msix.h"
29
#include "hw/pci/pci_host.h"
30
#include "hw/ppc/spapr.h"
31
#include "hw/pci-host/spapr.h"
32
#include "exec/address-spaces.h"
33
#include <libfdt.h>
34
#include "trace.h"
35

    
36
#include "hw/pci/pci_bus.h"
37

    
38
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39
#define RTAS_QUERY_FN           0
40
#define RTAS_CHANGE_FN          1
41
#define RTAS_RESET_FN           2
42
#define RTAS_CHANGE_MSI_FN      3
43
#define RTAS_CHANGE_MSIX_FN     4
44

    
45
/* Interrupt types to return on RTAS_CHANGE_* */
46
#define RTAS_TYPE_MSI           1
47
#define RTAS_TYPE_MSIX          2
48

    
49
static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50
{
51
    sPAPRPHBState *sphb;
52

    
53
    QLIST_FOREACH(sphb, &spapr->phbs, list) {
54
        if (sphb->buid != buid) {
55
            continue;
56
        }
57
        return sphb;
58
    }
59

    
60
    return NULL;
61
}
62

    
63
static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64
                           uint32_t config_addr)
65
{
66
    sPAPRPHBState *sphb = find_phb(spapr, buid);
67
    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68
    BusState *bus = BUS(phb->bus);
69
    BusChild *kid;
70
    int devfn = (config_addr >> 8) & 0xFF;
71

    
72
    if (!phb) {
73
        return NULL;
74
    }
75

    
76
    QTAILQ_FOREACH(kid, &bus->children, sibling) {
77
        PCIDevice *dev = (PCIDevice *)kid->child;
78
        if (dev->devfn == devfn) {
79
            return dev;
80
        }
81
    }
82

    
83
    return NULL;
84
}
85

    
86
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
87
{
88
    /* This handles the encoding of extended config space addresses */
89
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
90
}
91

    
92
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
93
                                   uint32_t addr, uint32_t size,
94
                                   target_ulong rets)
95
{
96
    PCIDevice *pci_dev;
97
    uint32_t val;
98

    
99
    if ((size != 1) && (size != 2) && (size != 4)) {
100
        /* access must be 1, 2 or 4 bytes */
101
        rtas_st(rets, 0, -1);
102
        return;
103
    }
104

    
105
    pci_dev = find_dev(spapr, buid, addr);
106
    addr = rtas_pci_cfgaddr(addr);
107

    
108
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
109
        /* Access must be to a valid device, within bounds and
110
         * naturally aligned */
111
        rtas_st(rets, 0, -1);
112
        return;
113
    }
114

    
115
    val = pci_host_config_read_common(pci_dev, addr,
116
                                      pci_config_size(pci_dev), size);
117

    
118
    rtas_st(rets, 0, 0);
119
    rtas_st(rets, 1, val);
120
}
121

    
122
static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
123
                                     uint32_t token, uint32_t nargs,
124
                                     target_ulong args,
125
                                     uint32_t nret, target_ulong rets)
126
{
127
    uint64_t buid;
128
    uint32_t size, addr;
129

    
130
    if ((nargs != 4) || (nret != 2)) {
131
        rtas_st(rets, 0, -1);
132
        return;
133
    }
134

    
135
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
136
    size = rtas_ld(args, 3);
137
    addr = rtas_ld(args, 0);
138

    
139
    finish_read_pci_config(spapr, buid, addr, size, rets);
140
}
141

    
142
static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
143
                                 uint32_t token, uint32_t nargs,
144
                                 target_ulong args,
145
                                 uint32_t nret, target_ulong rets)
146
{
147
    uint32_t size, addr;
148

    
149
    if ((nargs != 2) || (nret != 2)) {
150
        rtas_st(rets, 0, -1);
151
        return;
152
    }
153

    
154
    size = rtas_ld(args, 1);
155
    addr = rtas_ld(args, 0);
156

    
157
    finish_read_pci_config(spapr, 0, addr, size, rets);
158
}
159

    
160
static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
161
                                    uint32_t addr, uint32_t size,
162
                                    uint32_t val, target_ulong rets)
163
{
164
    PCIDevice *pci_dev;
165

    
166
    if ((size != 1) && (size != 2) && (size != 4)) {
167
        /* access must be 1, 2 or 4 bytes */
168
        rtas_st(rets, 0, -1);
169
        return;
170
    }
171

    
172
    pci_dev = find_dev(spapr, buid, addr);
173
    addr = rtas_pci_cfgaddr(addr);
174

    
175
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
176
        /* Access must be to a valid device, within bounds and
177
         * naturally aligned */
178
        rtas_st(rets, 0, -1);
179
        return;
180
    }
181

    
182
    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
183
                                 val, size);
184

    
185
    rtas_st(rets, 0, 0);
186
}
187

    
188
static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
189
                                      uint32_t token, uint32_t nargs,
190
                                      target_ulong args,
191
                                      uint32_t nret, target_ulong rets)
192
{
193
    uint64_t buid;
194
    uint32_t val, size, addr;
195

    
196
    if ((nargs != 5) || (nret != 1)) {
197
        rtas_st(rets, 0, -1);
198
        return;
199
    }
200

    
201
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
202
    val = rtas_ld(args, 4);
203
    size = rtas_ld(args, 3);
204
    addr = rtas_ld(args, 0);
205

    
206
    finish_write_pci_config(spapr, buid, addr, size, val, rets);
207
}
208

    
209
static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
210
                                  uint32_t token, uint32_t nargs,
211
                                  target_ulong args,
212
                                  uint32_t nret, target_ulong rets)
213
{
214
    uint32_t val, size, addr;
215

    
216
    if ((nargs != 3) || (nret != 1)) {
217
        rtas_st(rets, 0, -1);
218
        return;
219
    }
220

    
221

    
222
    val = rtas_ld(args, 2);
223
    size = rtas_ld(args, 1);
224
    addr = rtas_ld(args, 0);
225

    
226
    finish_write_pci_config(spapr, 0, addr, size, val, rets);
227
}
228

    
229
/*
230
 * Find an entry with config_addr or returns the empty one if not found AND
231
 * alloc_new is set.
232
 * At the moment the msi_table entries are never released so there is
233
 * no point to look till the end of the list if we need to find the free entry.
234
 */
235
static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
236
                             bool alloc_new)
237
{
238
    int i;
239

    
240
    for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
241
        if (!phb->msi_table[i].nvec) {
242
            break;
243
        }
244
        if (phb->msi_table[i].config_addr == config_addr) {
245
            return i;
246
        }
247
    }
248
    if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
249
        trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
250
        return i;
251
    }
252

    
253
    return -1;
254
}
255

    
256
/*
257
 * Set MSI/MSIX message data.
258
 * This is required for msi_notify()/msix_notify() which
259
 * will write at the addresses via spapr_msi_write().
260
 */
261
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr,
262
                             bool msix, unsigned req_num)
263
{
264
    unsigned i;
265
    MSIMessage msg = { .address = addr, .data = 0 };
266

    
267
    if (!msix) {
268
        msi_set_message(pdev, msg);
269
        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
270
        return;
271
    }
272

    
273
    for (i = 0; i < req_num; ++i) {
274
        msg.address = addr | (i << 2);
275
        msix_set_message(pdev, i, msg);
276
        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
277
    }
278
}
279

    
280
static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
281
                                uint32_t token, uint32_t nargs,
282
                                target_ulong args, uint32_t nret,
283
                                target_ulong rets)
284
{
285
    uint32_t config_addr = rtas_ld(args, 0);
286
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
287
    unsigned int func = rtas_ld(args, 3);
288
    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
289
    unsigned int seq_num = rtas_ld(args, 5);
290
    unsigned int ret_intr_type;
291
    int ndev, irq;
292
    sPAPRPHBState *phb = NULL;
293
    PCIDevice *pdev = NULL;
294

    
295
    switch (func) {
296
    case RTAS_CHANGE_MSI_FN:
297
    case RTAS_CHANGE_FN:
298
        ret_intr_type = RTAS_TYPE_MSI;
299
        break;
300
    case RTAS_CHANGE_MSIX_FN:
301
        ret_intr_type = RTAS_TYPE_MSIX;
302
        break;
303
    default:
304
        fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
305
        rtas_st(rets, 0, -3); /* Parameter error */
306
        return;
307
    }
308

    
309
    /* Fins sPAPRPHBState */
310
    phb = find_phb(spapr, buid);
311
    if (phb) {
312
        pdev = find_dev(spapr, buid, config_addr);
313
    }
314
    if (!phb || !pdev) {
315
        rtas_st(rets, 0, -3); /* Parameter error */
316
        return;
317
    }
318

    
319
    /* Releasing MSIs */
320
    if (!req_num) {
321
        ndev = spapr_msicfg_find(phb, config_addr, false);
322
        if (ndev < 0) {
323
            trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
324
            rtas_st(rets, 0, -1); /* Hardware error */
325
            return;
326
        }
327
        trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
328
        rtas_st(rets, 0, 0);
329
        rtas_st(rets, 1, 0);
330
        return;
331
    }
332

    
333
    /* Enabling MSI */
334

    
335
    /* Find a device number in the map to add or reuse the existing one */
336
    ndev = spapr_msicfg_find(phb, config_addr, true);
337
    if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
338
        fprintf(stderr, "No free entry for a new MSI device\n");
339
        rtas_st(rets, 0, -1); /* Hardware error */
340
        return;
341
    }
342
    trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
343

    
344
    /* Check if there is an old config and MSI number has not changed */
345
    if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
346
        /* Unexpected behaviour */
347
        fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
348
        rtas_st(rets, 0, -1); /* Hardware error */
349
        return;
350
    }
351

    
352
    /* There is no cached config, allocate MSIs */
353
    if (!phb->msi_table[ndev].nvec) {
354
        irq = spapr_allocate_irq_block(req_num, false);
355
        if (irq < 0) {
356
            fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
357
            rtas_st(rets, 0, -1); /* Hardware error */
358
            return;
359
        }
360
        phb->msi_table[ndev].irq = irq;
361
        phb->msi_table[ndev].nvec = req_num;
362
        phb->msi_table[ndev].config_addr = config_addr;
363
    }
364

    
365
    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
366
    spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
367
                     ret_intr_type == RTAS_TYPE_MSIX, req_num);
368

    
369
    rtas_st(rets, 0, 0);
370
    rtas_st(rets, 1, req_num);
371
    rtas_st(rets, 2, ++seq_num);
372
    rtas_st(rets, 3, ret_intr_type);
373

    
374
    trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
375
}
376

    
377
static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
378
                                                   sPAPREnvironment *spapr,
379
                                                   uint32_t token,
380
                                                   uint32_t nargs,
381
                                                   target_ulong args,
382
                                                   uint32_t nret,
383
                                                   target_ulong rets)
384
{
385
    uint32_t config_addr = rtas_ld(args, 0);
386
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
387
    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
388
    int ndev;
389
    sPAPRPHBState *phb = NULL;
390

    
391
    /* Fins sPAPRPHBState */
392
    phb = find_phb(spapr, buid);
393
    if (!phb) {
394
        rtas_st(rets, 0, -3); /* Parameter error */
395
        return;
396
    }
397

    
398
    /* Find device descriptor and start IRQ */
399
    ndev = spapr_msicfg_find(phb, config_addr, false);
400
    if (ndev < 0) {
401
        trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
402
        rtas_st(rets, 0, -1); /* Hardware error */
403
        return;
404
    }
405

    
406
    intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
407
    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
408
                                                           intr_src_num);
409

    
410
    rtas_st(rets, 0, 0);
411
    rtas_st(rets, 1, intr_src_num);
412
    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
413
}
414

    
415
static int pci_spapr_swizzle(int slot, int pin)
416
{
417
    return (slot + pin) % PCI_NUM_PINS;
418
}
419

    
420
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
421
{
422
    /*
423
     * Here we need to convert pci_dev + irq_num to some unique value
424
     * which is less than number of IRQs on the specific bus (4).  We
425
     * use standard PCI swizzling, that is (slot number + pin number)
426
     * % 4.
427
     */
428
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
429
}
430

    
431
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
432
{
433
    /*
434
     * Here we use the number returned by pci_spapr_map_irq to find a
435
     * corresponding qemu_irq.
436
     */
437
    sPAPRPHBState *phb = opaque;
438

    
439
    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
440
    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
441
}
442

    
443
static uint64_t spapr_io_read(void *opaque, hwaddr addr,
444
                              unsigned size)
445
{
446
    switch (size) {
447
    case 1:
448
        return cpu_inb(addr);
449
    case 2:
450
        return cpu_inw(addr);
451
    case 4:
452
        return cpu_inl(addr);
453
    }
454
    assert(0);
455
}
456

    
457
static void spapr_io_write(void *opaque, hwaddr addr,
458
                           uint64_t data, unsigned size)
459
{
460
    switch (size) {
461
    case 1:
462
        cpu_outb(addr, data);
463
        return;
464
    case 2:
465
        cpu_outw(addr, data);
466
        return;
467
    case 4:
468
        cpu_outl(addr, data);
469
        return;
470
    }
471
    assert(0);
472
}
473

    
474
static const MemoryRegionOps spapr_io_ops = {
475
    .endianness = DEVICE_LITTLE_ENDIAN,
476
    .read = spapr_io_read,
477
    .write = spapr_io_write
478
};
479

    
480
/*
481
 * MSI/MSIX memory region implementation.
482
 * The handler handles both MSI and MSIX.
483
 * For MSI-X, the vector number is encoded as a part of the address,
484
 * data is set to 0.
485
 * For MSI, the vector number is encoded in least bits in data.
486
 */
487
static void spapr_msi_write(void *opaque, hwaddr addr,
488
                            uint64_t data, unsigned size)
489
{
490
    sPAPRPHBState *phb = opaque;
491
    int ndev = addr >> 16;
492
    int vec = ((addr & 0xFFFF) >> 2) | data;
493
    uint32_t irq = phb->msi_table[ndev].irq + vec;
494

    
495
    trace_spapr_pci_msi_write(addr, data, irq);
496

    
497
    qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
498
}
499

    
500
static const MemoryRegionOps spapr_msi_ops = {
501
    /* There is no .read as the read result is undefined by PCI spec */
502
    .read = NULL,
503
    .write = spapr_msi_write,
504
    .endianness = DEVICE_LITTLE_ENDIAN
505
};
506

    
507
/*
508
 * PHB PCI device
509
 */
510
static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
511
{
512
    sPAPRPHBState *phb = opaque;
513

    
514
    return &phb->iommu_as;
515
}
516

    
517
static int spapr_phb_init(SysBusDevice *s)
518
{
519
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
520
    PCIHostState *phb = PCI_HOST_BRIDGE(s);
521
    const char *busname;
522
    char *namebuf;
523
    int i;
524
    PCIBus *bus;
525

    
526
    if (sphb->index != -1) {
527
        hwaddr windows_base;
528

    
529
        if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
530
            || (sphb->mem_win_addr != -1)
531
            || (sphb->io_win_addr != -1)
532
            || (sphb->msi_win_addr != -1)) {
533
            fprintf(stderr, "Either \"index\" or other parameters must"
534
                    " be specified for PAPR PHB, not both\n");
535
            return -1;
536
        }
537

    
538
        sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
539
        sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
540

    
541
        windows_base = SPAPR_PCI_WINDOW_BASE
542
            + sphb->index * SPAPR_PCI_WINDOW_SPACING;
543
        sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
544
        sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
545
        sphb->msi_win_addr = windows_base + SPAPR_PCI_MSI_WIN_OFF;
546
    }
547

    
548
    if (sphb->buid == -1) {
549
        fprintf(stderr, "BUID not specified for PHB\n");
550
        return -1;
551
    }
552

    
553
    if (sphb->dma_liobn == -1) {
554
        fprintf(stderr, "LIOBN not specified for PHB\n");
555
        return -1;
556
    }
557

    
558
    if (sphb->mem_win_addr == -1) {
559
        fprintf(stderr, "Memory window address not specified for PHB\n");
560
        return -1;
561
    }
562

    
563
    if (sphb->io_win_addr == -1) {
564
        fprintf(stderr, "IO window address not specified for PHB\n");
565
        return -1;
566
    }
567

    
568
    if (sphb->msi_win_addr == -1) {
569
        fprintf(stderr, "MSI window address not specified for PHB\n");
570
        return -1;
571
    }
572

    
573
    if (find_phb(spapr, sphb->buid)) {
574
        fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
575
        return -1;
576
    }
577

    
578
    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
579

    
580
    namebuf = alloca(strlen(sphb->dtbusname) + 32);
581

    
582
    /* Initialize memory regions */
583
    sprintf(namebuf, "%s.mmio", sphb->dtbusname);
584
    memory_region_init(&sphb->memspace, NULL, namebuf, INT64_MAX);
585

    
586
    sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
587
    memory_region_init_alias(&sphb->memwindow, NULL, namebuf, &sphb->memspace,
588
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
589
    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
590
                                &sphb->memwindow);
591

    
592
    /* On ppc, we only have MMIO no specific IO space from the CPU
593
     * perspective.  In theory we ought to be able to embed the PCI IO
594
     * memory region direction in the system memory space.  However,
595
     * if any of the IO BAR subregions use the old_portio mechanism,
596
     * that won't be processed properly unless accessed from the
597
     * system io address space.  This hack to bounce things via
598
     * system_io works around the problem until all the users of
599
     * old_portion are updated */
600
    sprintf(namebuf, "%s.io", sphb->dtbusname);
601
    memory_region_init(&sphb->iospace, NULL, namebuf, SPAPR_PCI_IO_WIN_SIZE);
602
    /* FIXME: fix to support multiple PHBs */
603
    memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
604

    
605
    sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
606
    memory_region_init_io(&sphb->iowindow, NULL, &spapr_io_ops, sphb,
607
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
608
    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
609
                                &sphb->iowindow);
610

    
611
    /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
612
     * we need to allocate some memory to catch those writes coming
613
     * from msi_notify()/msix_notify() */
614
    if (msi_supported) {
615
        sprintf(namebuf, "%s.msi", sphb->dtbusname);
616
        memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, sphb,
617
                              namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
618
        memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
619
                                    &sphb->msiwindow);
620
    }
621

    
622
    /*
623
     * Selecting a busname is more complex than you'd think, due to
624
     * interacting constraints.  If the user has specified an id
625
     * explicitly for the phb , then we want to use the qdev default
626
     * of naming the bus based on the bridge device (so the user can
627
     * then assign devices to it in the way they expect).  For the
628
     * first / default PCI bus (index=0) we want to use just "pci"
629
     * because libvirt expects there to be a bus called, simply,
630
     * "pci".  Otherwise, we use the same name as in the device tree,
631
     * since it's unique by construction, and makes the guest visible
632
     * BUID clear.
633
     */
634
    if (s->qdev.id) {
635
        busname = NULL;
636
    } else if (sphb->index == 0) {
637
        busname = "pci";
638
    } else {
639
        busname = sphb->dtbusname;
640
    }
641
    bus = pci_register_bus(DEVICE(s), busname,
642
                           pci_spapr_set_irq, pci_spapr_map_irq, sphb,
643
                           &sphb->memspace, &sphb->iospace,
644
                           PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
645
    phb->bus = bus;
646

    
647
    sphb->dma_window_start = 0;
648
    sphb->dma_window_size = 0x40000000;
649
    sphb->tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
650
                                     sphb->dma_window_size);
651
    if (!sphb->tcet) {
652
        fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
653
        return -1;
654
    }
655
    address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet),
656
                       sphb->dtbusname);
657

    
658
    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
659

    
660
    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
661

    
662
    /* Initialize the LSI table */
663
    for (i = 0; i < PCI_NUM_PINS; i++) {
664
        uint32_t irq;
665

    
666
        irq = spapr_allocate_lsi(0);
667
        if (!irq) {
668
            return -1;
669
        }
670

    
671
        sphb->lsi_table[i].irq = irq;
672
    }
673

    
674
    return 0;
675
}
676

    
677
static void spapr_phb_reset(DeviceState *qdev)
678
{
679
    SysBusDevice *s = SYS_BUS_DEVICE(qdev);
680
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
681

    
682
    /* Reset the IOMMU state */
683
    spapr_tce_reset(sphb->tcet);
684
}
685

    
686
static Property spapr_phb_properties[] = {
687
    DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
688
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
689
    DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
690
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
691
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
692
                      SPAPR_PCI_MMIO_WIN_SIZE),
693
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
694
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
695
                      SPAPR_PCI_IO_WIN_SIZE),
696
    DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, -1),
697
    DEFINE_PROP_END_OF_LIST(),
698
};
699

    
700
static void spapr_phb_class_init(ObjectClass *klass, void *data)
701
{
702
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
703
    DeviceClass *dc = DEVICE_CLASS(klass);
704

    
705
    sdc->init = spapr_phb_init;
706
    dc->props = spapr_phb_properties;
707
    dc->reset = spapr_phb_reset;
708
}
709

    
710
static const TypeInfo spapr_phb_info = {
711
    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
712
    .parent        = TYPE_PCI_HOST_BRIDGE,
713
    .instance_size = sizeof(sPAPRPHBState),
714
    .class_init    = spapr_phb_class_init,
715
};
716

    
717
PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
718
{
719
    DeviceState *dev;
720

    
721
    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
722
    qdev_prop_set_uint32(dev, "index", index);
723
    qdev_init_nofail(dev);
724

    
725
    return PCI_HOST_BRIDGE(dev);
726
}
727

    
728
/* Macros to operate with address in OF binding to PCI */
729
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
730
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
731
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
732
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
733
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
734
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
735
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
736
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
737
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
738

    
739
int spapr_populate_pci_dt(sPAPRPHBState *phb,
740
                          uint32_t xics_phandle,
741
                          void *fdt)
742
{
743
    int bus_off, i, j;
744
    char nodename[256];
745
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
746
    struct {
747
        uint32_t hi;
748
        uint64_t child;
749
        uint64_t parent;
750
        uint64_t size;
751
    } QEMU_PACKED ranges[] = {
752
        {
753
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
754
            cpu_to_be64(phb->io_win_addr),
755
            cpu_to_be64(memory_region_size(&phb->iospace)),
756
        },
757
        {
758
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
759
            cpu_to_be64(phb->mem_win_addr),
760
            cpu_to_be64(memory_region_size(&phb->memwindow)),
761
        },
762
    };
763
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
764
    uint32_t interrupt_map_mask[] = {
765
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
766
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
767

    
768
    /* Start populating the FDT */
769
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
770
    bus_off = fdt_add_subnode(fdt, 0, nodename);
771
    if (bus_off < 0) {
772
        return bus_off;
773
    }
774

    
775
#define _FDT(exp) \
776
    do { \
777
        int ret = (exp);                                           \
778
        if (ret < 0) {                                             \
779
            return ret;                                            \
780
        }                                                          \
781
    } while (0)
782

    
783
    /* Write PHB properties */
784
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
785
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
786
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
787
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
788
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
789
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
790
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
791
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
792
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
793
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
794

    
795
    /* Build the interrupt-map, this must matches what is done
796
     * in pci_spapr_map_irq
797
     */
798
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
799
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
800
    for (i = 0; i < PCI_SLOT_MAX; i++) {
801
        for (j = 0; j < PCI_NUM_PINS; j++) {
802
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
803
            int lsi_num = pci_spapr_swizzle(i, j);
804

    
805
            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
806
            irqmap[1] = 0;
807
            irqmap[2] = 0;
808
            irqmap[3] = cpu_to_be32(j+1);
809
            irqmap[4] = cpu_to_be32(xics_phandle);
810
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
811
            irqmap[6] = cpu_to_be32(0x8);
812
        }
813
    }
814
    /* Write interrupt map */
815
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
816
                     sizeof(interrupt_map)));
817

    
818
    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
819
                 phb->dma_liobn, phb->dma_window_start,
820
                 phb->dma_window_size);
821

    
822
    return 0;
823
}
824

    
825
void spapr_pci_rtas_init(void)
826
{
827
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
828
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
829
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
830
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
831
    if (msi_supported) {
832
        spapr_rtas_register("ibm,query-interrupt-source-number",
833
                            rtas_ibm_query_interrupt_source_number);
834
        spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
835
    }
836
}
837

    
838
static void spapr_pci_register_types(void)
839
{
840
    type_register_static(&spapr_phb_info);
841
}
842

    
843
type_init(spapr_pci_register_types)