Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 8686c490

History | View | Annotate | Download (87.2 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 3475187d bellard
@item Sun4u (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
91 52c00a5f bellard
@end itemize
92 386405f7 bellard
93 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
94 0806e3f6 bellard
95 debc7065 bellard
@node Installation
96 5b9f457a bellard
@chapter Installation
97 5b9f457a bellard
98 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
99 15a34c63 bellard
100 debc7065 bellard
@menu
101 debc7065 bellard
* install_linux::   Linux
102 debc7065 bellard
* install_windows:: Windows
103 debc7065 bellard
* install_mac::     Macintosh
104 debc7065 bellard
@end menu
105 debc7065 bellard
106 debc7065 bellard
@node install_linux
107 1f673135 bellard
@section Linux
108 1f673135 bellard
109 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
110 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
111 5b9f457a bellard
112 debc7065 bellard
@node install_windows
113 1f673135 bellard
@section Windows
114 8cd0ac2f bellard
115 15a34c63 bellard
Download the experimental binary installer at
116 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
117 d691f669 bellard
118 debc7065 bellard
@node install_mac
119 1f673135 bellard
@section Mac OS X
120 d691f669 bellard
121 15a34c63 bellard
Download the experimental binary installer at
122 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
123 df0f11a0 bellard
124 debc7065 bellard
@node QEMU PC System emulator
125 3f9f3aa1 bellard
@chapter QEMU PC System emulator
126 1eb20527 bellard
127 debc7065 bellard
@menu
128 debc7065 bellard
* pcsys_introduction:: Introduction
129 debc7065 bellard
* pcsys_quickstart::   Quick Start
130 debc7065 bellard
* sec_invocation::     Invocation
131 debc7065 bellard
* pcsys_keys::         Keys
132 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
133 debc7065 bellard
* disk_images::        Disk Images
134 debc7065 bellard
* pcsys_network::      Network emulation
135 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
136 debc7065 bellard
* pcsys_usb::          USB emulation
137 f858dcae ths
* vnc_security::       VNC security
138 debc7065 bellard
* gdb_usage::          GDB usage
139 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
140 debc7065 bellard
@end menu
141 debc7065 bellard
142 debc7065 bellard
@node pcsys_introduction
143 0806e3f6 bellard
@section Introduction
144 0806e3f6 bellard
145 0806e3f6 bellard
@c man begin DESCRIPTION
146 0806e3f6 bellard
147 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
148 3f9f3aa1 bellard
following peripherals:
149 0806e3f6 bellard
150 0806e3f6 bellard
@itemize @minus
151 5fafdf24 ths
@item
152 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
153 0806e3f6 bellard
@item
154 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
155 15a34c63 bellard
extensions (hardware level, including all non standard modes).
156 0806e3f6 bellard
@item
157 0806e3f6 bellard
PS/2 mouse and keyboard
158 5fafdf24 ths
@item
159 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
160 1f673135 bellard
@item
161 1f673135 bellard
Floppy disk
162 5fafdf24 ths
@item
163 c4a7060c blueswir1
PCI/ISA PCI network adapters
164 0806e3f6 bellard
@item
165 05d5818c bellard
Serial ports
166 05d5818c bellard
@item
167 c0fe3827 bellard
Creative SoundBlaster 16 sound card
168 c0fe3827 bellard
@item
169 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
170 c0fe3827 bellard
@item
171 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
172 e5c9a13e balrog
@item
173 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
174 b389dbfb bellard
@item
175 26463dbc balrog
Gravis Ultrasound GF1 sound card
176 26463dbc balrog
@item
177 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
178 0806e3f6 bellard
@end itemize
179 0806e3f6 bellard
180 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
181 3f9f3aa1 bellard
182 423d65f4 balrog
Note that adlib, ac97 and gus are only available when QEMU was configured
183 423d65f4 balrog
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
184 c0fe3827 bellard
185 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
186 15a34c63 bellard
VGA BIOS.
187 15a34c63 bellard
188 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
189 c0fe3827 bellard
190 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
191 26463dbc balrog
by Tibor "TS" Sch?tz.
192 423d65f4 balrog
193 0806e3f6 bellard
@c man end
194 0806e3f6 bellard
195 debc7065 bellard
@node pcsys_quickstart
196 1eb20527 bellard
@section Quick Start
197 1eb20527 bellard
198 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
199 0806e3f6 bellard
200 0806e3f6 bellard
@example
201 285dc330 bellard
qemu linux.img
202 0806e3f6 bellard
@end example
203 0806e3f6 bellard
204 0806e3f6 bellard
Linux should boot and give you a prompt.
205 0806e3f6 bellard
206 6cc721cf bellard
@node sec_invocation
207 ec410fc9 bellard
@section Invocation
208 ec410fc9 bellard
209 ec410fc9 bellard
@example
210 0806e3f6 bellard
@c man begin SYNOPSIS
211 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
212 0806e3f6 bellard
@c man end
213 ec410fc9 bellard
@end example
214 ec410fc9 bellard
215 0806e3f6 bellard
@c man begin OPTIONS
216 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
217 ec410fc9 bellard
218 ec410fc9 bellard
General options:
219 ec410fc9 bellard
@table @option
220 89dfe898 ths
@item -M @var{machine}
221 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
222 3dbbdc25 bellard
223 89dfe898 ths
@item -fda @var{file}
224 89dfe898 ths
@item -fdb @var{file}
225 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
226 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
227 2be3bc02 bellard
228 89dfe898 ths
@item -hda @var{file}
229 89dfe898 ths
@item -hdb @var{file}
230 89dfe898 ths
@item -hdc @var{file}
231 89dfe898 ths
@item -hdd @var{file}
232 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
233 1f47a922 bellard
234 89dfe898 ths
@item -cdrom @var{file}
235 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
236 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
237 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
238 181f1558 bellard
239 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
240 e0e7ada1 balrog
241 e0e7ada1 balrog
Define a new drive. Valid options are:
242 e0e7ada1 balrog
243 e0e7ada1 balrog
@table @code
244 e0e7ada1 balrog
@item file=@var{file}
245 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
246 609497ab balrog
this drive. If the filename contains comma, you must double it
247 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
248 e0e7ada1 balrog
@item if=@var{interface}
249 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
250 e0e7ada1 balrog
Available types are: ide, scsi, sd, mtd, floppy, pflash.
251 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
252 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
253 e0e7ada1 balrog
the unit id.
254 e0e7ada1 balrog
@item index=@var{index}
255 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
256 e0e7ada1 balrog
of available connectors of a given interface type.
257 e0e7ada1 balrog
@item media=@var{media}
258 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
259 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
260 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
261 e0e7ada1 balrog
@item snapshot=@var{snapshot}
262 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
263 33f00271 balrog
@item cache=@var{cache}
264 33f00271 balrog
@var{cache} is "on" or "off" and allows to disable host cache to access data.
265 1e72d3b7 aurel32
@item format=@var{format}
266 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
267 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
268 1e72d3b7 aurel32
an untrusted format header.
269 e0e7ada1 balrog
@end table
270 e0e7ada1 balrog
271 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
272 e0e7ada1 balrog
@example
273 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
274 e0e7ada1 balrog
@end example
275 e0e7ada1 balrog
276 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
277 e0e7ada1 balrog
use:
278 e0e7ada1 balrog
@example
279 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
280 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
281 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
282 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
283 e0e7ada1 balrog
@end example
284 e0e7ada1 balrog
285 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
286 e0e7ada1 balrog
@example
287 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
288 e0e7ada1 balrog
@end example
289 e0e7ada1 balrog
290 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
291 e0e7ada1 balrog
@example
292 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
293 e0e7ada1 balrog
@end example
294 e0e7ada1 balrog
295 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
296 e0e7ada1 balrog
@example
297 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
298 e0e7ada1 balrog
@end example
299 e0e7ada1 balrog
300 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
301 e0e7ada1 balrog
@example
302 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
303 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
304 e0e7ada1 balrog
@end example
305 e0e7ada1 balrog
306 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
307 e0e7ada1 balrog
incremented:
308 e0e7ada1 balrog
@example
309 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
310 e0e7ada1 balrog
@end example
311 e0e7ada1 balrog
is interpreted like:
312 e0e7ada1 balrog
@example
313 e0e7ada1 balrog
qemu -hda a -hdb b
314 e0e7ada1 balrog
@end example
315 e0e7ada1 balrog
316 eec85c2a ths
@item -boot [a|c|d|n]
317 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
318 eec85c2a ths
is the default.
319 1f47a922 bellard
320 181f1558 bellard
@item -snapshot
321 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
322 1f47a922 bellard
the raw disk image you use is not written back. You can however force
323 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
324 ec410fc9 bellard
325 52ca8d6a bellard
@item -no-fd-bootchk
326 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
327 52ca8d6a bellard
be needed to boot from old floppy disks.
328 52ca8d6a bellard
329 89dfe898 ths
@item -m @var{megs}
330 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
331 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
332 00f82b8a aurel32
gigabytes respectively.
333 ec410fc9 bellard
334 89dfe898 ths
@item -smp @var{n}
335 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
336 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
337 a785e42e blueswir1
to 4.
338 3f9f3aa1 bellard
339 1d14ffa9 bellard
@item -audio-help
340 1d14ffa9 bellard
341 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
342 1d14ffa9 bellard
parameters.
343 1d14ffa9 bellard
344 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
345 1d14ffa9 bellard
346 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
347 1d14ffa9 bellard
available sound hardware.
348 1d14ffa9 bellard
349 1d14ffa9 bellard
@example
350 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
351 1d14ffa9 bellard
qemu -soundhw es1370 hda
352 e5c9a13e balrog
qemu -soundhw ac97 hda
353 6a36d84e bellard
qemu -soundhw all hda
354 1d14ffa9 bellard
qemu -soundhw ?
355 1d14ffa9 bellard
@end example
356 a8c490cd bellard
357 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
358 e5c9a13e balrog
require manually specifying clocking.
359 e5c9a13e balrog
360 e5c9a13e balrog
@example
361 e5c9a13e balrog
modprobe i810_audio clocking=48000
362 e5c9a13e balrog
@end example
363 e5c9a13e balrog
364 15a34c63 bellard
@item -localtime
365 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
366 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
367 15a34c63 bellard
Windows.
368 15a34c63 bellard
369 89dfe898 ths
@item -startdate @var{date}
370 7e0af5d0 bellard
Set the initial date of the real time clock. Valid format for
371 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
372 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
373 7e0af5d0 bellard
374 89dfe898 ths
@item -pidfile @var{file}
375 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
376 f7cce898 bellard
from a script.
377 f7cce898 bellard
378 71e3ceb8 ths
@item -daemonize
379 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
380 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
381 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
382 71e3ceb8 ths
to cope with initialization race conditions.
383 71e3ceb8 ths
384 9d0a8e6f bellard
@item -win2k-hack
385 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
386 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
387 9d0a8e6f bellard
slows down the IDE transfers).
388 9d0a8e6f bellard
389 89dfe898 ths
@item -option-rom @var{file}
390 89dfe898 ths
Load the contents of @var{file} as an option ROM.
391 89dfe898 ths
This option is useful to load things like EtherBoot.
392 9ae02555 ths
393 89dfe898 ths
@item -name @var{name}
394 89dfe898 ths
Sets the @var{name} of the guest.
395 89dfe898 ths
This name will be display in the SDL window caption.
396 89dfe898 ths
The @var{name} will also be used for the VNC server.
397 c35734b2 ths
398 0806e3f6 bellard
@end table
399 0806e3f6 bellard
400 f858dcae ths
Display options:
401 f858dcae ths
@table @option
402 f858dcae ths
403 f858dcae ths
@item -nographic
404 f858dcae ths
405 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
406 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
407 f858dcae ths
command line application. The emulated serial port is redirected on
408 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
409 f858dcae ths
with a serial console.
410 f858dcae ths
411 052caf70 aurel32
@item -curses
412 052caf70 aurel32
413 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
414 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
415 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
416 052caf70 aurel32
417 f858dcae ths
@item -no-frame
418 f858dcae ths
419 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
420 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
421 f858dcae ths
workspace more convenient.
422 f858dcae ths
423 99aa9e4c aurel32
@item -no-quit
424 99aa9e4c aurel32
425 99aa9e4c aurel32
Disable SDL window close capability.
426 99aa9e4c aurel32
427 f858dcae ths
@item -full-screen
428 f858dcae ths
Start in full screen.
429 f858dcae ths
430 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
431 f858dcae ths
432 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
433 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
434 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
435 f858dcae ths
tablet device when using this option (option @option{-usbdevice
436 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
437 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
438 f858dcae ths
syntax for the @var{display} is
439 f858dcae ths
440 f858dcae ths
@table @code
441 f858dcae ths
442 3aa3eea3 balrog
@item @var{host}:@var{d}
443 f858dcae ths
444 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
445 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
446 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
447 f858dcae ths
448 3aa3eea3 balrog
@item @code{unix}:@var{path}
449 f858dcae ths
450 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
451 f858dcae ths
location of a unix socket to listen for connections on.
452 f858dcae ths
453 89dfe898 ths
@item none
454 f858dcae ths
455 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
456 3aa3eea3 balrog
can be used to later start the VNC server.
457 f858dcae ths
458 f858dcae ths
@end table
459 f858dcae ths
460 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
461 f858dcae ths
separated by commas. Valid options are
462 f858dcae ths
463 f858dcae ths
@table @code
464 f858dcae ths
465 3aa3eea3 balrog
@item reverse
466 3aa3eea3 balrog
467 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
468 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
469 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
470 3aa3eea3 balrog
is a TCP port number, not a display number.
471 3aa3eea3 balrog
472 89dfe898 ths
@item password
473 f858dcae ths
474 f858dcae ths
Require that password based authentication is used for client connections.
475 f858dcae ths
The password must be set separately using the @code{change} command in the
476 f858dcae ths
@ref{pcsys_monitor}
477 f858dcae ths
478 89dfe898 ths
@item tls
479 f858dcae ths
480 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
481 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
482 f858dcae ths
attack. It is recommended that this option be combined with either the
483 f858dcae ths
@var{x509} or @var{x509verify} options.
484 f858dcae ths
485 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
486 f858dcae ths
487 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
488 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
489 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
490 f858dcae ths
to provide authentication of the client when this is used. The path following
491 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
492 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
493 f858dcae ths
494 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
495 f858dcae ths
496 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
497 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
498 f858dcae ths
to the client, and request that the client send its own x509 certificate.
499 f858dcae ths
The server will validate the client's certificate against the CA certificate,
500 f858dcae ths
and reject clients when validation fails. If the certificate authority is
501 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
502 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
503 f858dcae ths
path following this option specifies where the x509 certificates are to
504 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
505 f858dcae ths
certificates.
506 f858dcae ths
507 f858dcae ths
@end table
508 f858dcae ths
509 89dfe898 ths
@item -k @var{language}
510 f858dcae ths
511 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
512 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
513 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
514 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
515 f858dcae ths
hosts.
516 f858dcae ths
517 f858dcae ths
The available layouts are:
518 f858dcae ths
@example
519 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
520 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
521 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
522 f858dcae ths
@end example
523 f858dcae ths
524 f858dcae ths
The default is @code{en-us}.
525 f858dcae ths
526 f858dcae ths
@end table
527 f858dcae ths
528 b389dbfb bellard
USB options:
529 b389dbfb bellard
@table @option
530 b389dbfb bellard
531 b389dbfb bellard
@item -usb
532 b389dbfb bellard
Enable the USB driver (will be the default soon)
533 b389dbfb bellard
534 89dfe898 ths
@item -usbdevice @var{devname}
535 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
536 8fccda83 ths
537 8fccda83 ths
@table @code
538 8fccda83 ths
539 8fccda83 ths
@item mouse
540 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
541 8fccda83 ths
542 8fccda83 ths
@item tablet
543 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
544 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
545 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
546 8fccda83 ths
547 8fccda83 ths
@item disk:file
548 8fccda83 ths
Mass storage device based on file
549 8fccda83 ths
550 8fccda83 ths
@item host:bus.addr
551 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
552 8fccda83 ths
553 8fccda83 ths
@item host:vendor_id:product_id
554 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
555 8fccda83 ths
556 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
557 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
558 db380c06 balrog
available devices.
559 db380c06 balrog
560 2e4d9fb1 aurel32
@item braille
561 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
562 2e4d9fb1 aurel32
or fake device.
563 2e4d9fb1 aurel32
564 8fccda83 ths
@end table
565 8fccda83 ths
566 b389dbfb bellard
@end table
567 b389dbfb bellard
568 1f673135 bellard
Network options:
569 1f673135 bellard
570 1f673135 bellard
@table @option
571 1f673135 bellard
572 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
573 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
574 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
575 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
576 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
577 549444e1 balrog
Qemu can emulate several different models of network card.
578 549444e1 balrog
Valid values for @var{type} are
579 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
580 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
581 7c23b892 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
582 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
583 c4a7060c blueswir1
for a list of available devices for your target.
584 41d03949 bellard
585 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
586 7e89463d bellard
Use the user mode network stack which requires no administrator
587 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
588 115defd1 pbrook
hostname reported by the builtin DHCP server.
589 41d03949 bellard
590 89dfe898 ths
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
591 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
592 41d03949 bellard
use the network script @var{file} to configure it. The default
593 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
594 6a1cbf68 ths
disable script execution. If @var{name} is not
595 89dfe898 ths
provided, the OS automatically provides one. @option{fd}=@var{h} can be
596 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
597 1f673135 bellard
598 41d03949 bellard
@example
599 41d03949 bellard
qemu linux.img -net nic -net tap
600 41d03949 bellard
@end example
601 41d03949 bellard
602 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
603 41d03949 bellard
@example
604 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
605 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
606 41d03949 bellard
@end example
607 3f1a88f4 bellard
608 3f1a88f4 bellard
609 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
610 1f673135 bellard
611 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
612 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
613 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
614 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
615 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
616 3d830459 bellard
specifies an already opened TCP socket.
617 1f673135 bellard
618 41d03949 bellard
Example:
619 41d03949 bellard
@example
620 41d03949 bellard
# launch a first QEMU instance
621 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
622 debc7065 bellard
               -net socket,listen=:1234
623 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
624 debc7065 bellard
# of the first instance
625 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
626 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
627 41d03949 bellard
@end example
628 52c00a5f bellard
629 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
630 3d830459 bellard
631 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
632 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
633 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
634 3d830459 bellard
NOTES:
635 3d830459 bellard
@enumerate
636 5fafdf24 ths
@item
637 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
638 3d830459 bellard
correct multicast setup for these hosts).
639 3d830459 bellard
@item
640 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
641 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
642 4be456f1 ths
@item
643 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
644 3d830459 bellard
@end enumerate
645 3d830459 bellard
646 3d830459 bellard
Example:
647 3d830459 bellard
@example
648 3d830459 bellard
# launch one QEMU instance
649 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
650 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
651 3d830459 bellard
# launch another QEMU instance on same "bus"
652 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
653 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
654 3d830459 bellard
# launch yet another QEMU instance on same "bus"
655 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
656 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
657 3d830459 bellard
@end example
658 3d830459 bellard
659 3d830459 bellard
Example (User Mode Linux compat.):
660 3d830459 bellard
@example
661 debc7065 bellard
# launch QEMU instance (note mcast address selected
662 debc7065 bellard
# is UML's default)
663 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
664 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
665 3d830459 bellard
# launch UML
666 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
667 3d830459 bellard
@end example
668 3d830459 bellard
669 41d03949 bellard
@item -net none
670 41d03949 bellard
Indicate that no network devices should be configured. It is used to
671 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
672 039af320 bellard
is activated if no @option{-net} options are provided.
673 52c00a5f bellard
674 89dfe898 ths
@item -tftp @var{dir}
675 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
676 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
677 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
678 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
679 0db1137d ths
usual 10.0.2.2.
680 9bf05444 bellard
681 89dfe898 ths
@item -bootp @var{file}
682 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
683 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
684 47d5d01a ths
a guest from a local directory.
685 47d5d01a ths
686 47d5d01a ths
Example (using pxelinux):
687 47d5d01a ths
@example
688 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
689 47d5d01a ths
@end example
690 47d5d01a ths
691 89dfe898 ths
@item -smb @var{dir}
692 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
693 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
694 2518bd0d bellard
transparently.
695 2518bd0d bellard
696 2518bd0d bellard
In the guest Windows OS, the line:
697 2518bd0d bellard
@example
698 2518bd0d bellard
10.0.2.4 smbserver
699 2518bd0d bellard
@end example
700 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
701 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
702 2518bd0d bellard
703 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
704 2518bd0d bellard
705 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
706 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
707 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
708 2518bd0d bellard
709 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
710 9bf05444 bellard
711 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
712 9bf05444 bellard
connections to the host port @var{host-port} to the guest
713 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
714 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
715 9bf05444 bellard
built-in DHCP server).
716 9bf05444 bellard
717 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
718 9bf05444 bellard
screen 0, use the following:
719 9bf05444 bellard
720 9bf05444 bellard
@example
721 9bf05444 bellard
# on the host
722 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
723 9bf05444 bellard
# this host xterm should open in the guest X11 server
724 9bf05444 bellard
xterm -display :1
725 9bf05444 bellard
@end example
726 9bf05444 bellard
727 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
728 9bf05444 bellard
the guest, use the following:
729 9bf05444 bellard
730 9bf05444 bellard
@example
731 9bf05444 bellard
# on the host
732 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
733 9bf05444 bellard
telnet localhost 5555
734 9bf05444 bellard
@end example
735 9bf05444 bellard
736 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
737 9bf05444 bellard
connect to the guest telnet server.
738 9bf05444 bellard
739 1f673135 bellard
@end table
740 1f673135 bellard
741 41d03949 bellard
Linux boot specific: When using these options, you can use a given
742 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
743 1f673135 bellard
for easier testing of various kernels.
744 1f673135 bellard
745 0806e3f6 bellard
@table @option
746 0806e3f6 bellard
747 89dfe898 ths
@item -kernel @var{bzImage}
748 0806e3f6 bellard
Use @var{bzImage} as kernel image.
749 0806e3f6 bellard
750 89dfe898 ths
@item -append @var{cmdline}
751 0806e3f6 bellard
Use @var{cmdline} as kernel command line
752 0806e3f6 bellard
753 89dfe898 ths
@item -initrd @var{file}
754 0806e3f6 bellard
Use @var{file} as initial ram disk.
755 0806e3f6 bellard
756 ec410fc9 bellard
@end table
757 ec410fc9 bellard
758 15a34c63 bellard
Debug/Expert options:
759 ec410fc9 bellard
@table @option
760 a0a821a4 bellard
761 89dfe898 ths
@item -serial @var{dev}
762 0bab00f3 bellard
Redirect the virtual serial port to host character device
763 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
764 0bab00f3 bellard
@code{stdio} in non graphical mode.
765 0bab00f3 bellard
766 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
767 0bab00f3 bellard
ports.
768 0bab00f3 bellard
769 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
770 c03b0f0f bellard
771 0bab00f3 bellard
Available character devices are:
772 a0a821a4 bellard
@table @code
773 af3a9031 ths
@item vc[:WxH]
774 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
775 af3a9031 ths
@example
776 af3a9031 ths
vc:800x600
777 af3a9031 ths
@end example
778 af3a9031 ths
It is also possible to specify width or height in characters:
779 af3a9031 ths
@example
780 af3a9031 ths
vc:80Cx24C
781 af3a9031 ths
@end example
782 a0a821a4 bellard
@item pty
783 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
784 c03b0f0f bellard
@item none
785 c03b0f0f bellard
No device is allocated.
786 a0a821a4 bellard
@item null
787 a0a821a4 bellard
void device
788 f8d179e3 bellard
@item /dev/XXX
789 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
790 f8d179e3 bellard
parameters are set according to the emulated ones.
791 89dfe898 ths
@item /dev/parport@var{N}
792 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
793 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
794 89dfe898 ths
@item file:@var{filename}
795 89dfe898 ths
Write output to @var{filename}. No character can be read.
796 a0a821a4 bellard
@item stdio
797 a0a821a4 bellard
[Unix only] standard input/output
798 89dfe898 ths
@item pipe:@var{filename}
799 0bab00f3 bellard
name pipe @var{filename}
800 89dfe898 ths
@item COM@var{n}
801 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
802 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
803 89dfe898 ths
This implements UDP Net Console.
804 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
805 89dfe898 ths
they default to @code{0.0.0.0}.
806 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
807 951f1351 bellard
808 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
809 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
810 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
811 951f1351 bellard
will appear in the netconsole session.
812 0bab00f3 bellard
813 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
814 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
815 0bab00f3 bellard
source port each time by using something like @code{-serial
816 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
817 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
818 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
819 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
820 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
821 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
822 0bab00f3 bellard
@table @code
823 951f1351 bellard
@item Qemu Options:
824 951f1351 bellard
-serial udp::4555@@:4556
825 951f1351 bellard
@item netcat options:
826 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
827 951f1351 bellard
@item telnet options:
828 951f1351 bellard
localhost 5555
829 951f1351 bellard
@end table
830 951f1351 bellard
831 951f1351 bellard
832 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
833 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
834 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
835 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
836 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
837 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
838 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
839 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
840 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
841 951f1351 bellard
connect to the corresponding character device.
842 951f1351 bellard
@table @code
843 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
844 951f1351 bellard
-serial tcp:192.168.0.2:4444
845 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
846 951f1351 bellard
-serial tcp::4444,server
847 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
848 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
849 a0a821a4 bellard
@end table
850 a0a821a4 bellard
851 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
852 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
853 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
854 951f1351 bellard
difference is that the port acts like a telnet server or client using
855 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
856 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
857 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
858 951f1351 bellard
type "send break" followed by pressing the enter key.
859 0bab00f3 bellard
860 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
861 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
862 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
863 ffd843bc ths
@var{path} is used for connections.
864 ffd843bc ths
865 89dfe898 ths
@item mon:@var{dev_string}
866 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
867 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
868 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
869 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
870 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
871 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
872 20d8a3ed ths
listening on port 4444 would be:
873 20d8a3ed ths
@table @code
874 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
875 20d8a3ed ths
@end table
876 20d8a3ed ths
877 2e4d9fb1 aurel32
@item braille
878 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
879 2e4d9fb1 aurel32
or fake device.
880 2e4d9fb1 aurel32
881 0bab00f3 bellard
@end table
882 05d5818c bellard
883 89dfe898 ths
@item -parallel @var{dev}
884 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
885 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
886 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
887 e57a8c0e bellard
parallel port.
888 e57a8c0e bellard
889 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
890 e57a8c0e bellard
ports.
891 e57a8c0e bellard
892 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
893 c03b0f0f bellard
894 89dfe898 ths
@item -monitor @var{dev}
895 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
896 a0a821a4 bellard
serial port).
897 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
898 a0a821a4 bellard
non graphical mode.
899 a0a821a4 bellard
900 20d8a3ed ths
@item -echr numeric_ascii_value
901 20d8a3ed ths
Change the escape character used for switching to the monitor when using
902 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
903 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
904 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
905 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
906 20d8a3ed ths
instance you could use the either of the following to change the escape
907 20d8a3ed ths
character to Control-t.
908 20d8a3ed ths
@table @code
909 20d8a3ed ths
@item -echr 0x14
910 20d8a3ed ths
@item -echr 20
911 20d8a3ed ths
@end table
912 20d8a3ed ths
913 ec410fc9 bellard
@item -s
914 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
915 89dfe898 ths
@item -p @var{port}
916 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
917 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
918 52c00a5f bellard
@item -S
919 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
920 3b46e624 ths
@item -d
921 9d4520d0 bellard
Output log in /tmp/qemu.log
922 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
923 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
924 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
925 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
926 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
927 46d4767d bellard
images.
928 7c3fc84d bellard
929 87b47350 bellard
@item -L path
930 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
931 87b47350 bellard
932 15a34c63 bellard
@item -std-vga
933 15a34c63 bellard
Simulate a standard VGA card with Bochs VBE extensions (default is
934 3cb0853a bellard
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
935 3cb0853a bellard
VBE extensions (e.g. Windows XP) and if you want to use high
936 3cb0853a bellard
resolution modes (>= 1280x1024x16) then you should use this option.
937 3cb0853a bellard
938 3c656346 bellard
@item -no-acpi
939 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
940 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
941 3c656346 bellard
only).
942 3c656346 bellard
943 d1beab82 bellard
@item -no-reboot
944 d1beab82 bellard
Exit instead of rebooting.
945 d1beab82 bellard
946 99aa9e4c aurel32
@item -no-shutdown
947 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
948 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
949 99aa9e4c aurel32
disk image.
950 99aa9e4c aurel32
951 d63d307f bellard
@item -loadvm file
952 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
953 8e71621f pbrook
954 8e71621f pbrook
@item -semihosting
955 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
956 a87295e8 pbrook
957 a87295e8 pbrook
On ARM this implements the "Angel" interface.
958 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
959 a87295e8 pbrook
960 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
961 8e71621f pbrook
so should only be used with trusted guest OS.
962 ec410fc9 bellard
@end table
963 ec410fc9 bellard
964 3e11db9a bellard
@c man end
965 3e11db9a bellard
966 debc7065 bellard
@node pcsys_keys
967 3e11db9a bellard
@section Keys
968 3e11db9a bellard
969 3e11db9a bellard
@c man begin OPTIONS
970 3e11db9a bellard
971 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
972 a1b74fe8 bellard
@table @key
973 f9859310 bellard
@item Ctrl-Alt-f
974 a1b74fe8 bellard
Toggle full screen
975 a0a821a4 bellard
976 f9859310 bellard
@item Ctrl-Alt-n
977 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
978 a0a821a4 bellard
@table @emph
979 a0a821a4 bellard
@item 1
980 a0a821a4 bellard
Target system display
981 a0a821a4 bellard
@item 2
982 a0a821a4 bellard
Monitor
983 a0a821a4 bellard
@item 3
984 a0a821a4 bellard
Serial port
985 a1b74fe8 bellard
@end table
986 a1b74fe8 bellard
987 f9859310 bellard
@item Ctrl-Alt
988 a0a821a4 bellard
Toggle mouse and keyboard grab.
989 a0a821a4 bellard
@end table
990 a0a821a4 bellard
991 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
992 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
993 3e11db9a bellard
994 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
995 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
996 ec410fc9 bellard
997 ec410fc9 bellard
@table @key
998 a1b74fe8 bellard
@item Ctrl-a h
999 ec410fc9 bellard
Print this help
1000 3b46e624 ths
@item Ctrl-a x
1001 366dfc52 ths
Exit emulator
1002 3b46e624 ths
@item Ctrl-a s
1003 1f47a922 bellard
Save disk data back to file (if -snapshot)
1004 20d8a3ed ths
@item Ctrl-a t
1005 20d8a3ed ths
toggle console timestamps
1006 a1b74fe8 bellard
@item Ctrl-a b
1007 1f673135 bellard
Send break (magic sysrq in Linux)
1008 a1b74fe8 bellard
@item Ctrl-a c
1009 1f673135 bellard
Switch between console and monitor
1010 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1011 a1b74fe8 bellard
Send Ctrl-a
1012 ec410fc9 bellard
@end table
1013 0806e3f6 bellard
@c man end
1014 0806e3f6 bellard
1015 0806e3f6 bellard
@ignore
1016 0806e3f6 bellard
1017 1f673135 bellard
@c man begin SEEALSO
1018 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1019 1f673135 bellard
user mode emulator invocation.
1020 1f673135 bellard
@c man end
1021 1f673135 bellard
1022 1f673135 bellard
@c man begin AUTHOR
1023 1f673135 bellard
Fabrice Bellard
1024 1f673135 bellard
@c man end
1025 1f673135 bellard
1026 1f673135 bellard
@end ignore
1027 1f673135 bellard
1028 debc7065 bellard
@node pcsys_monitor
1029 1f673135 bellard
@section QEMU Monitor
1030 1f673135 bellard
1031 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1032 1f673135 bellard
emulator. You can use it to:
1033 1f673135 bellard
1034 1f673135 bellard
@itemize @minus
1035 1f673135 bellard
1036 1f673135 bellard
@item
1037 e598752a ths
Remove or insert removable media images
1038 89dfe898 ths
(such as CD-ROM or floppies).
1039 1f673135 bellard
1040 5fafdf24 ths
@item
1041 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1042 1f673135 bellard
from a disk file.
1043 1f673135 bellard
1044 1f673135 bellard
@item Inspect the VM state without an external debugger.
1045 1f673135 bellard
1046 1f673135 bellard
@end itemize
1047 1f673135 bellard
1048 1f673135 bellard
@subsection Commands
1049 1f673135 bellard
1050 1f673135 bellard
The following commands are available:
1051 1f673135 bellard
1052 1f673135 bellard
@table @option
1053 1f673135 bellard
1054 89dfe898 ths
@item help or ? [@var{cmd}]
1055 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1056 1f673135 bellard
1057 3b46e624 ths
@item commit
1058 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1059 1f673135 bellard
1060 89dfe898 ths
@item info @var{subcommand}
1061 89dfe898 ths
Show various information about the system state.
1062 1f673135 bellard
1063 1f673135 bellard
@table @option
1064 1f673135 bellard
@item info network
1065 41d03949 bellard
show the various VLANs and the associated devices
1066 1f673135 bellard
@item info block
1067 1f673135 bellard
show the block devices
1068 1f673135 bellard
@item info registers
1069 1f673135 bellard
show the cpu registers
1070 1f673135 bellard
@item info history
1071 1f673135 bellard
show the command line history
1072 b389dbfb bellard
@item info pci
1073 b389dbfb bellard
show emulated PCI device
1074 b389dbfb bellard
@item info usb
1075 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1076 b389dbfb bellard
@item info usbhost
1077 b389dbfb bellard
show all USB host devices
1078 a3c25997 bellard
@item info capture
1079 a3c25997 bellard
show information about active capturing
1080 13a2e80f bellard
@item info snapshots
1081 13a2e80f bellard
show list of VM snapshots
1082 455204eb ths
@item info mice
1083 455204eb ths
show which guest mouse is receiving events
1084 1f673135 bellard
@end table
1085 1f673135 bellard
1086 1f673135 bellard
@item q or quit
1087 1f673135 bellard
Quit the emulator.
1088 1f673135 bellard
1089 89dfe898 ths
@item eject [-f] @var{device}
1090 e598752a ths
Eject a removable medium (use -f to force it).
1091 1f673135 bellard
1092 89dfe898 ths
@item change @var{device} @var{setting}
1093 f858dcae ths
1094 89dfe898 ths
Change the configuration of a device.
1095 f858dcae ths
1096 f858dcae ths
@table @option
1097 f858dcae ths
@item change @var{diskdevice} @var{filename}
1098 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1099 f858dcae ths
1100 f858dcae ths
@example
1101 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1102 f858dcae ths
@end example
1103 f858dcae ths
1104 89dfe898 ths
@item change vnc @var{display},@var{options}
1105 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1106 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1107 f858dcae ths
1108 f858dcae ths
@example
1109 f858dcae ths
(qemu) change vnc localhost:1
1110 f858dcae ths
@end example
1111 f858dcae ths
1112 f858dcae ths
@item change vnc password
1113 f858dcae ths
1114 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
1115 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
1116 f858dcae ths
eg.
1117 f858dcae ths
1118 f858dcae ths
@example
1119 f858dcae ths
(qemu) change vnc password
1120 f858dcae ths
Password: ********
1121 f858dcae ths
@end example
1122 f858dcae ths
1123 f858dcae ths
@end table
1124 1f673135 bellard
1125 89dfe898 ths
@item screendump @var{filename}
1126 1f673135 bellard
Save screen into PPM image @var{filename}.
1127 1f673135 bellard
1128 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1129 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1130 455204eb ths
with optional scroll axis @var{dz}.
1131 455204eb ths
1132 89dfe898 ths
@item mouse_button @var{val}
1133 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1134 455204eb ths
1135 89dfe898 ths
@item mouse_set @var{index}
1136 455204eb ths
Set which mouse device receives events at given @var{index}, index
1137 455204eb ths
can be obtained with
1138 455204eb ths
@example
1139 455204eb ths
info mice
1140 455204eb ths
@end example
1141 455204eb ths
1142 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1143 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1144 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1145 a3c25997 bellard
1146 a3c25997 bellard
Defaults:
1147 a3c25997 bellard
@itemize @minus
1148 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1149 a3c25997 bellard
@item Bits = 16
1150 a3c25997 bellard
@item Number of channels = 2 - Stereo
1151 a3c25997 bellard
@end itemize
1152 a3c25997 bellard
1153 89dfe898 ths
@item stopcapture @var{index}
1154 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1155 a3c25997 bellard
@example
1156 a3c25997 bellard
info capture
1157 a3c25997 bellard
@end example
1158 a3c25997 bellard
1159 89dfe898 ths
@item log @var{item1}[,...]
1160 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1161 1f673135 bellard
1162 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1163 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1164 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1165 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1166 13a2e80f bellard
@ref{vm_snapshots}.
1167 1f673135 bellard
1168 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1169 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1170 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1171 13a2e80f bellard
1172 89dfe898 ths
@item delvm @var{tag}|@var{id}
1173 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1174 1f673135 bellard
1175 1f673135 bellard
@item stop
1176 1f673135 bellard
Stop emulation.
1177 1f673135 bellard
1178 1f673135 bellard
@item c or cont
1179 1f673135 bellard
Resume emulation.
1180 1f673135 bellard
1181 89dfe898 ths
@item gdbserver [@var{port}]
1182 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1183 1f673135 bellard
1184 89dfe898 ths
@item x/fmt @var{addr}
1185 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1186 1f673135 bellard
1187 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1188 1f673135 bellard
Physical memory dump starting at @var{addr}.
1189 1f673135 bellard
1190 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1191 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1192 1f673135 bellard
1193 1f673135 bellard
@table @var
1194 5fafdf24 ths
@item count
1195 1f673135 bellard
is the number of items to be dumped.
1196 1f673135 bellard
1197 1f673135 bellard
@item format
1198 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1199 1f673135 bellard
c (char) or i (asm instruction).
1200 1f673135 bellard
1201 1f673135 bellard
@item size
1202 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1203 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1204 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1205 1f673135 bellard
1206 1f673135 bellard
@end table
1207 1f673135 bellard
1208 5fafdf24 ths
Examples:
1209 1f673135 bellard
@itemize
1210 1f673135 bellard
@item
1211 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1212 5fafdf24 ths
@example
1213 1f673135 bellard
(qemu) x/10i $eip
1214 1f673135 bellard
0x90107063:  ret
1215 1f673135 bellard
0x90107064:  sti
1216 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1217 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1218 1f673135 bellard
0x90107070:  ret
1219 1f673135 bellard
0x90107071:  jmp    0x90107080
1220 1f673135 bellard
0x90107073:  nop
1221 1f673135 bellard
0x90107074:  nop
1222 1f673135 bellard
0x90107075:  nop
1223 1f673135 bellard
0x90107076:  nop
1224 1f673135 bellard
@end example
1225 1f673135 bellard
1226 1f673135 bellard
@item
1227 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1228 5fafdf24 ths
@smallexample
1229 1f673135 bellard
(qemu) xp/80hx 0xb8000
1230 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1231 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1232 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1233 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1234 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1235 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1236 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1237 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1238 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1239 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1240 debc7065 bellard
@end smallexample
1241 1f673135 bellard
@end itemize
1242 1f673135 bellard
1243 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1244 1f673135 bellard
1245 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1246 1f673135 bellard
used.
1247 0806e3f6 bellard
1248 89dfe898 ths
@item sendkey @var{keys}
1249 a3a91a35 bellard
1250 a3a91a35 bellard
Send @var{keys} to the emulator. Use @code{-} to press several keys
1251 a3a91a35 bellard
simultaneously. Example:
1252 a3a91a35 bellard
@example
1253 a3a91a35 bellard
sendkey ctrl-alt-f1
1254 a3a91a35 bellard
@end example
1255 a3a91a35 bellard
1256 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1257 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1258 a3a91a35 bellard
1259 15a34c63 bellard
@item system_reset
1260 15a34c63 bellard
1261 15a34c63 bellard
Reset the system.
1262 15a34c63 bellard
1263 0ecdffbb aurel32
@item boot_set @var{bootdevicelist}
1264 0ecdffbb aurel32
1265 0ecdffbb aurel32
Define new values for the boot device list. Those values will override
1266 0ecdffbb aurel32
the values specified on the command line through the @code{-boot} option.
1267 0ecdffbb aurel32
1268 0ecdffbb aurel32
The values that can be specified here depend on the machine type, but are
1269 0ecdffbb aurel32
the same that can be specified in the @code{-boot} command line option.
1270 0ecdffbb aurel32
1271 89dfe898 ths
@item usb_add @var{devname}
1272 b389dbfb bellard
1273 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1274 0aff66b5 pbrook
@ref{usb_devices}
1275 b389dbfb bellard
1276 89dfe898 ths
@item usb_del @var{devname}
1277 b389dbfb bellard
1278 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1279 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1280 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1281 b389dbfb bellard
1282 1f673135 bellard
@end table
1283 0806e3f6 bellard
1284 1f673135 bellard
@subsection Integer expressions
1285 1f673135 bellard
1286 1f673135 bellard
The monitor understands integers expressions for every integer
1287 1f673135 bellard
argument. You can use register names to get the value of specifics
1288 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1289 ec410fc9 bellard
1290 1f47a922 bellard
@node disk_images
1291 1f47a922 bellard
@section Disk Images
1292 1f47a922 bellard
1293 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1294 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1295 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1296 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1297 13a2e80f bellard
snapshots.
1298 1f47a922 bellard
1299 debc7065 bellard
@menu
1300 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1301 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1302 13a2e80f bellard
* vm_snapshots::              VM snapshots
1303 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1304 19cb3738 bellard
* host_drives::               Using host drives
1305 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1306 debc7065 bellard
@end menu
1307 debc7065 bellard
1308 debc7065 bellard
@node disk_images_quickstart
1309 acd935ef bellard
@subsection Quick start for disk image creation
1310 acd935ef bellard
1311 acd935ef bellard
You can create a disk image with the command:
1312 1f47a922 bellard
@example
1313 acd935ef bellard
qemu-img create myimage.img mysize
1314 1f47a922 bellard
@end example
1315 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1316 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1317 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1318 acd935ef bellard
1319 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1320 1f47a922 bellard
1321 debc7065 bellard
@node disk_images_snapshot_mode
1322 1f47a922 bellard
@subsection Snapshot mode
1323 1f47a922 bellard
1324 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1325 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1326 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1327 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1328 acd935ef bellard
command (or @key{C-a s} in the serial console).
1329 1f47a922 bellard
1330 13a2e80f bellard
@node vm_snapshots
1331 13a2e80f bellard
@subsection VM snapshots
1332 13a2e80f bellard
1333 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1334 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1335 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1336 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1337 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1338 13a2e80f bellard
1339 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1340 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1341 19d36792 bellard
snapshot in addition to its numerical ID.
1342 13a2e80f bellard
1343 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1344 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1345 13a2e80f bellard
with their associated information:
1346 13a2e80f bellard
1347 13a2e80f bellard
@example
1348 13a2e80f bellard
(qemu) info snapshots
1349 13a2e80f bellard
Snapshot devices: hda
1350 13a2e80f bellard
Snapshot list (from hda):
1351 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1352 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1353 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1354 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1355 13a2e80f bellard
@end example
1356 13a2e80f bellard
1357 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1358 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1359 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1360 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1361 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1362 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1363 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1364 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1365 19d36792 bellard
disk images).
1366 13a2e80f bellard
1367 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1368 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1369 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1370 13a2e80f bellard
1371 13a2e80f bellard
VM snapshots currently have the following known limitations:
1372 13a2e80f bellard
@itemize
1373 5fafdf24 ths
@item
1374 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1375 13a2e80f bellard
inserted after a snapshot is done.
1376 5fafdf24 ths
@item
1377 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1378 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1379 13a2e80f bellard
@end itemize
1380 13a2e80f bellard
1381 acd935ef bellard
@node qemu_img_invocation
1382 acd935ef bellard
@subsection @code{qemu-img} Invocation
1383 1f47a922 bellard
1384 acd935ef bellard
@include qemu-img.texi
1385 05efe46e bellard
1386 19cb3738 bellard
@node host_drives
1387 19cb3738 bellard
@subsection Using host drives
1388 19cb3738 bellard
1389 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1390 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1391 19cb3738 bellard
1392 19cb3738 bellard
@subsubsection Linux
1393 19cb3738 bellard
1394 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1395 4be456f1 ths
disk image filename provided you have enough privileges to access
1396 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1397 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1398 19cb3738 bellard
1399 f542086d bellard
@table @code
1400 19cb3738 bellard
@item CD
1401 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1402 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1403 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1404 19cb3738 bellard
@item Floppy
1405 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1406 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1407 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1408 19cb3738 bellard
OS will think that the same floppy is loaded).
1409 19cb3738 bellard
@item Hard disks
1410 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1411 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1412 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1413 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1414 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1415 19cb3738 bellard
line option or modify the device permissions accordingly).
1416 19cb3738 bellard
@end table
1417 19cb3738 bellard
1418 19cb3738 bellard
@subsubsection Windows
1419 19cb3738 bellard
1420 01781963 bellard
@table @code
1421 01781963 bellard
@item CD
1422 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1423 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1424 01781963 bellard
supported as an alias to the first CDROM drive.
1425 19cb3738 bellard
1426 e598752a ths
Currently there is no specific code to handle removable media, so it
1427 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1428 19cb3738 bellard
change or eject media.
1429 01781963 bellard
@item Hard disks
1430 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1431 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1432 01781963 bellard
1433 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1434 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1435 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1436 01781963 bellard
modifications are written in a temporary file).
1437 01781963 bellard
@end table
1438 01781963 bellard
1439 19cb3738 bellard
1440 19cb3738 bellard
@subsubsection Mac OS X
1441 19cb3738 bellard
1442 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1443 19cb3738 bellard
1444 e598752a ths
Currently there is no specific code to handle removable media, so it
1445 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1446 19cb3738 bellard
change or eject media.
1447 19cb3738 bellard
1448 debc7065 bellard
@node disk_images_fat_images
1449 2c6cadd4 bellard
@subsection Virtual FAT disk images
1450 2c6cadd4 bellard
1451 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1452 2c6cadd4 bellard
directory tree. In order to use it, just type:
1453 2c6cadd4 bellard
1454 5fafdf24 ths
@example
1455 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1456 2c6cadd4 bellard
@end example
1457 2c6cadd4 bellard
1458 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1459 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1460 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1461 2c6cadd4 bellard
1462 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1463 2c6cadd4 bellard
1464 5fafdf24 ths
@example
1465 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1466 2c6cadd4 bellard
@end example
1467 2c6cadd4 bellard
1468 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1469 2c6cadd4 bellard
@code{:rw:} option:
1470 2c6cadd4 bellard
1471 5fafdf24 ths
@example
1472 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1473 2c6cadd4 bellard
@end example
1474 2c6cadd4 bellard
1475 2c6cadd4 bellard
What you should @emph{never} do:
1476 2c6cadd4 bellard
@itemize
1477 2c6cadd4 bellard
@item use non-ASCII filenames ;
1478 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1479 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1480 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1481 2c6cadd4 bellard
@end itemize
1482 2c6cadd4 bellard
1483 debc7065 bellard
@node pcsys_network
1484 9d4fb82e bellard
@section Network emulation
1485 9d4fb82e bellard
1486 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1487 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1488 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1489 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1490 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1491 41d03949 bellard
network stack can replace the TAP device to have a basic network
1492 41d03949 bellard
connection.
1493 41d03949 bellard
1494 41d03949 bellard
@subsection VLANs
1495 9d4fb82e bellard
1496 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1497 41d03949 bellard
connection between several network devices. These devices can be for
1498 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1499 41d03949 bellard
(TAP devices).
1500 9d4fb82e bellard
1501 41d03949 bellard
@subsection Using TAP network interfaces
1502 41d03949 bellard
1503 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1504 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1505 41d03949 bellard
can then configure it as if it was a real ethernet card.
1506 9d4fb82e bellard
1507 8f40c388 bellard
@subsubsection Linux host
1508 8f40c388 bellard
1509 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1510 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1511 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1512 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1513 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1514 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1515 9d4fb82e bellard
1516 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1517 ee0f4751 bellard
TAP network interfaces.
1518 9d4fb82e bellard
1519 8f40c388 bellard
@subsubsection Windows host
1520 8f40c388 bellard
1521 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1522 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1523 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1524 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1525 8f40c388 bellard
1526 9d4fb82e bellard
@subsection Using the user mode network stack
1527 9d4fb82e bellard
1528 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1529 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1530 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1531 41d03949 bellard
network). The virtual network configuration is the following:
1532 9d4fb82e bellard
1533 9d4fb82e bellard
@example
1534 9d4fb82e bellard
1535 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1536 41d03949 bellard
                           |          (10.0.2.2)
1537 9d4fb82e bellard
                           |
1538 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1539 3b46e624 ths
                           |
1540 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1541 9d4fb82e bellard
@end example
1542 9d4fb82e bellard
1543 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1544 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1545 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1546 41d03949 bellard
to the hosts starting from 10.0.2.15.
1547 9d4fb82e bellard
1548 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1549 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1550 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1551 9d4fb82e bellard
1552 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1553 4be456f1 ths
would require root privileges. It means you can only ping the local
1554 b415a407 bellard
router (10.0.2.2).
1555 b415a407 bellard
1556 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1557 9bf05444 bellard
server.
1558 9bf05444 bellard
1559 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1560 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1561 9bf05444 bellard
redirect X11, telnet or SSH connections.
1562 443f1376 bellard
1563 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1564 41d03949 bellard
1565 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1566 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1567 41d03949 bellard
basic example.
1568 41d03949 bellard
1569 9d4fb82e bellard
@node direct_linux_boot
1570 9d4fb82e bellard
@section Direct Linux Boot
1571 1f673135 bellard
1572 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1573 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1574 ee0f4751 bellard
kernel testing.
1575 1f673135 bellard
1576 ee0f4751 bellard
The syntax is:
1577 1f673135 bellard
@example
1578 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1579 1f673135 bellard
@end example
1580 1f673135 bellard
1581 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1582 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1583 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1584 1f673135 bellard
1585 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1586 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1587 ee0f4751 bellard
Linux kernel.
1588 1f673135 bellard
1589 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1590 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1591 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1592 1f673135 bellard
@example
1593 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1594 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1595 1f673135 bellard
@end example
1596 1f673135 bellard
1597 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1598 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1599 1f673135 bellard
1600 debc7065 bellard
@node pcsys_usb
1601 b389dbfb bellard
@section USB emulation
1602 b389dbfb bellard
1603 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1604 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1605 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1606 f542086d bellard
as necessary to connect multiple USB devices.
1607 b389dbfb bellard
1608 0aff66b5 pbrook
@menu
1609 0aff66b5 pbrook
* usb_devices::
1610 0aff66b5 pbrook
* host_usb_devices::
1611 0aff66b5 pbrook
@end menu
1612 0aff66b5 pbrook
@node usb_devices
1613 0aff66b5 pbrook
@subsection Connecting USB devices
1614 b389dbfb bellard
1615 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1616 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1617 b389dbfb bellard
1618 db380c06 balrog
@table @code
1619 db380c06 balrog
@item mouse
1620 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1621 db380c06 balrog
@item tablet
1622 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1623 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1624 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1625 db380c06 balrog
@item disk:@var{file}
1626 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1627 db380c06 balrog
@item host:@var{bus.addr}
1628 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1629 0aff66b5 pbrook
(Linux only)
1630 db380c06 balrog
@item host:@var{vendor_id:product_id}
1631 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1632 0aff66b5 pbrook
(Linux only)
1633 db380c06 balrog
@item wacom-tablet
1634 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1635 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1636 f6d2a316 balrog
coordinates it reports touch pressure.
1637 db380c06 balrog
@item keyboard
1638 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1639 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1640 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1641 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1642 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1643 a11d070e balrog
used to override the default 0403:6001. For instance, 
1644 db380c06 balrog
@example
1645 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1646 db380c06 balrog
@end example
1647 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1648 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1649 2e4d9fb1 aurel32
@item braille
1650 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1651 2e4d9fb1 aurel32
or fake device.
1652 0aff66b5 pbrook
@end table
1653 b389dbfb bellard
1654 0aff66b5 pbrook
@node host_usb_devices
1655 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1656 b389dbfb bellard
1657 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1658 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1659 b389dbfb bellard
Cameras) are not supported yet.
1660 b389dbfb bellard
1661 b389dbfb bellard
@enumerate
1662 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1663 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1664 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1665 b389dbfb bellard
to @file{mydriver.o.disabled}.
1666 b389dbfb bellard
1667 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1668 b389dbfb bellard
@example
1669 b389dbfb bellard
ls /proc/bus/usb
1670 b389dbfb bellard
001  devices  drivers
1671 b389dbfb bellard
@end example
1672 b389dbfb bellard
1673 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1674 b389dbfb bellard
@example
1675 b389dbfb bellard
chown -R myuid /proc/bus/usb
1676 b389dbfb bellard
@end example
1677 b389dbfb bellard
1678 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1679 5fafdf24 ths
@example
1680 b389dbfb bellard
info usbhost
1681 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1682 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1683 b389dbfb bellard
@end example
1684 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1685 b389dbfb bellard
hubs, it won't work).
1686 b389dbfb bellard
1687 b389dbfb bellard
@item Add the device in QEMU by using:
1688 5fafdf24 ths
@example
1689 b389dbfb bellard
usb_add host:1234:5678
1690 b389dbfb bellard
@end example
1691 b389dbfb bellard
1692 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1693 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1694 b389dbfb bellard
1695 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1696 b389dbfb bellard
1697 b389dbfb bellard
@end enumerate
1698 b389dbfb bellard
1699 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1700 b389dbfb bellard
device to make it work again (this is a bug).
1701 b389dbfb bellard
1702 f858dcae ths
@node vnc_security
1703 f858dcae ths
@section VNC security
1704 f858dcae ths
1705 f858dcae ths
The VNC server capability provides access to the graphical console
1706 f858dcae ths
of the guest VM across the network. This has a number of security
1707 f858dcae ths
considerations depending on the deployment scenarios.
1708 f858dcae ths
1709 f858dcae ths
@menu
1710 f858dcae ths
* vnc_sec_none::
1711 f858dcae ths
* vnc_sec_password::
1712 f858dcae ths
* vnc_sec_certificate::
1713 f858dcae ths
* vnc_sec_certificate_verify::
1714 f858dcae ths
* vnc_sec_certificate_pw::
1715 f858dcae ths
* vnc_generate_cert::
1716 f858dcae ths
@end menu
1717 f858dcae ths
@node vnc_sec_none
1718 f858dcae ths
@subsection Without passwords
1719 f858dcae ths
1720 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1721 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1722 f858dcae ths
socket only. For example
1723 f858dcae ths
1724 f858dcae ths
@example
1725 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1726 f858dcae ths
@end example
1727 f858dcae ths
1728 f858dcae ths
This ensures that only users on local box with read/write access to that
1729 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1730 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1731 f858dcae ths
tunnel.
1732 f858dcae ths
1733 f858dcae ths
@node vnc_sec_password
1734 f858dcae ths
@subsection With passwords
1735 f858dcae ths
1736 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1737 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1738 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1739 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1740 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1741 f858dcae ths
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1742 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1743 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1744 f858dcae ths
1745 f858dcae ths
@example
1746 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1747 f858dcae ths
(qemu) change vnc password
1748 f858dcae ths
Password: ********
1749 f858dcae ths
(qemu)
1750 f858dcae ths
@end example
1751 f858dcae ths
1752 f858dcae ths
@node vnc_sec_certificate
1753 f858dcae ths
@subsection With x509 certificates
1754 f858dcae ths
1755 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1756 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1757 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1758 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1759 f858dcae ths
support provides a secure session, but no authentication. This allows any
1760 f858dcae ths
client to connect, and provides an encrypted session.
1761 f858dcae ths
1762 f858dcae ths
@example
1763 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1764 f858dcae ths
@end example
1765 f858dcae ths
1766 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1767 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1768 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1769 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1770 f858dcae ths
only be readable by the user owning it.
1771 f858dcae ths
1772 f858dcae ths
@node vnc_sec_certificate_verify
1773 f858dcae ths
@subsection With x509 certificates and client verification
1774 f858dcae ths
1775 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1776 f858dcae ths
The server will request that the client provide a certificate, which it will
1777 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1778 f858dcae ths
in an environment with a private internal certificate authority.
1779 f858dcae ths
1780 f858dcae ths
@example
1781 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1782 f858dcae ths
@end example
1783 f858dcae ths
1784 f858dcae ths
1785 f858dcae ths
@node vnc_sec_certificate_pw
1786 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1787 f858dcae ths
1788 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1789 f858dcae ths
to provide two layers of authentication for clients.
1790 f858dcae ths
1791 f858dcae ths
@example
1792 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1793 f858dcae ths
(qemu) change vnc password
1794 f858dcae ths
Password: ********
1795 f858dcae ths
(qemu)
1796 f858dcae ths
@end example
1797 f858dcae ths
1798 f858dcae ths
@node vnc_generate_cert
1799 f858dcae ths
@subsection Generating certificates for VNC
1800 f858dcae ths
1801 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1802 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1803 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1804 f858dcae ths
each server. If using certificates for authentication, then each client
1805 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1806 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1807 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1808 f858dcae ths
1809 f858dcae ths
@menu
1810 f858dcae ths
* vnc_generate_ca::
1811 f858dcae ths
* vnc_generate_server::
1812 f858dcae ths
* vnc_generate_client::
1813 f858dcae ths
@end menu
1814 f858dcae ths
@node vnc_generate_ca
1815 f858dcae ths
@subsubsection Setup the Certificate Authority
1816 f858dcae ths
1817 f858dcae ths
This step only needs to be performed once per organization / organizational
1818 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1819 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1820 f858dcae ths
issued with it is lost.
1821 f858dcae ths
1822 f858dcae ths
@example
1823 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1824 f858dcae ths
@end example
1825 f858dcae ths
1826 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1827 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1828 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1829 f858dcae ths
name of the organization.
1830 f858dcae ths
1831 f858dcae ths
@example
1832 f858dcae ths
# cat > ca.info <<EOF
1833 f858dcae ths
cn = Name of your organization
1834 f858dcae ths
ca
1835 f858dcae ths
cert_signing_key
1836 f858dcae ths
EOF
1837 f858dcae ths
# certtool --generate-self-signed \
1838 f858dcae ths
           --load-privkey ca-key.pem
1839 f858dcae ths
           --template ca.info \
1840 f858dcae ths
           --outfile ca-cert.pem
1841 f858dcae ths
@end example
1842 f858dcae ths
1843 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1844 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1845 f858dcae ths
1846 f858dcae ths
@node vnc_generate_server
1847 f858dcae ths
@subsubsection Issuing server certificates
1848 f858dcae ths
1849 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1850 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1851 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1852 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1853 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1854 f858dcae ths
secure CA private key:
1855 f858dcae ths
1856 f858dcae ths
@example
1857 f858dcae ths
# cat > server.info <<EOF
1858 f858dcae ths
organization = Name  of your organization
1859 f858dcae ths
cn = server.foo.example.com
1860 f858dcae ths
tls_www_server
1861 f858dcae ths
encryption_key
1862 f858dcae ths
signing_key
1863 f858dcae ths
EOF
1864 f858dcae ths
# certtool --generate-privkey > server-key.pem
1865 f858dcae ths
# certtool --generate-certificate \
1866 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1867 f858dcae ths
           --load-ca-privkey ca-key.pem \
1868 f858dcae ths
           --load-privkey server server-key.pem \
1869 f858dcae ths
           --template server.info \
1870 f858dcae ths
           --outfile server-cert.pem
1871 f858dcae ths
@end example
1872 f858dcae ths
1873 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1874 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1875 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1876 f858dcae ths
1877 f858dcae ths
@node vnc_generate_client
1878 f858dcae ths
@subsubsection Issuing client certificates
1879 f858dcae ths
1880 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1881 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1882 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1883 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1884 f858dcae ths
the secure CA private key:
1885 f858dcae ths
1886 f858dcae ths
@example
1887 f858dcae ths
# cat > client.info <<EOF
1888 f858dcae ths
country = GB
1889 f858dcae ths
state = London
1890 f858dcae ths
locality = London
1891 f858dcae ths
organiazation = Name of your organization
1892 f858dcae ths
cn = client.foo.example.com
1893 f858dcae ths
tls_www_client
1894 f858dcae ths
encryption_key
1895 f858dcae ths
signing_key
1896 f858dcae ths
EOF
1897 f858dcae ths
# certtool --generate-privkey > client-key.pem
1898 f858dcae ths
# certtool --generate-certificate \
1899 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1900 f858dcae ths
           --load-ca-privkey ca-key.pem \
1901 f858dcae ths
           --load-privkey client-key.pem \
1902 f858dcae ths
           --template client.info \
1903 f858dcae ths
           --outfile client-cert.pem
1904 f858dcae ths
@end example
1905 f858dcae ths
1906 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1907 f858dcae ths
copied to the client for which they were generated.
1908 f858dcae ths
1909 0806e3f6 bellard
@node gdb_usage
1910 da415d54 bellard
@section GDB usage
1911 da415d54 bellard
1912 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1913 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1914 da415d54 bellard
1915 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1916 da415d54 bellard
gdb connection:
1917 da415d54 bellard
@example
1918 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1919 debc7065 bellard
       -append "root=/dev/hda"
1920 da415d54 bellard
Connected to host network interface: tun0
1921 da415d54 bellard
Waiting gdb connection on port 1234
1922 da415d54 bellard
@end example
1923 da415d54 bellard
1924 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1925 da415d54 bellard
@example
1926 da415d54 bellard
> gdb vmlinux
1927 da415d54 bellard
@end example
1928 da415d54 bellard
1929 da415d54 bellard
In gdb, connect to QEMU:
1930 da415d54 bellard
@example
1931 6c9bf893 bellard
(gdb) target remote localhost:1234
1932 da415d54 bellard
@end example
1933 da415d54 bellard
1934 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1935 da415d54 bellard
@example
1936 da415d54 bellard
(gdb) c
1937 da415d54 bellard
@end example
1938 da415d54 bellard
1939 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1940 0806e3f6 bellard
1941 0806e3f6 bellard
@enumerate
1942 0806e3f6 bellard
@item
1943 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1944 0806e3f6 bellard
@item
1945 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1946 0806e3f6 bellard
@item
1947 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1948 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1949 0806e3f6 bellard
@end enumerate
1950 0806e3f6 bellard
1951 60897d36 edgar_igl
Advanced debugging options:
1952 60897d36 edgar_igl
1953 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1954 94d45e44 edgar_igl
@table @code
1955 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1956 60897d36 edgar_igl
1957 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1958 60897d36 edgar_igl
@example
1959 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1960 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1961 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1962 60897d36 edgar_igl
@end example
1963 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1964 60897d36 edgar_igl
1965 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1966 60897d36 edgar_igl
@example
1967 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1968 60897d36 edgar_igl
sending: "qqemu.sstep"
1969 60897d36 edgar_igl
received: "0x7"
1970 60897d36 edgar_igl
@end example
1971 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1972 60897d36 edgar_igl
1973 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1974 60897d36 edgar_igl
@example
1975 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1976 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1977 60897d36 edgar_igl
received: "OK"
1978 60897d36 edgar_igl
@end example
1979 94d45e44 edgar_igl
@end table
1980 60897d36 edgar_igl
1981 debc7065 bellard
@node pcsys_os_specific
1982 1a084f3d bellard
@section Target OS specific information
1983 1a084f3d bellard
1984 1a084f3d bellard
@subsection Linux
1985 1a084f3d bellard
1986 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1987 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1988 15a34c63 bellard
color depth in the guest and the host OS.
1989 1a084f3d bellard
1990 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1991 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1992 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1993 e3371e62 bellard
cannot simulate exactly.
1994 e3371e62 bellard
1995 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1996 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1997 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1998 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1999 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2000 7c3fc84d bellard
2001 1a084f3d bellard
@subsection Windows
2002 1a084f3d bellard
2003 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2004 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2005 1a084f3d bellard
2006 e3371e62 bellard
@subsubsection SVGA graphic modes support
2007 e3371e62 bellard
2008 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2009 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2010 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2011 15a34c63 bellard
depth in the guest and the host OS.
2012 1a084f3d bellard
2013 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2014 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2015 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2016 3cb0853a bellard
(option @option{-std-vga}).
2017 3cb0853a bellard
2018 e3371e62 bellard
@subsubsection CPU usage reduction
2019 e3371e62 bellard
2020 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2021 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2022 15a34c63 bellard
idle. You can install the utility from
2023 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2024 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2025 1a084f3d bellard
2026 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2027 e3371e62 bellard
2028 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2029 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2030 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2031 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2032 9d0a8e6f bellard
IDE transfers).
2033 e3371e62 bellard
2034 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2035 6cc721cf bellard
2036 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2037 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2038 6cc721cf bellard
use the APM driver provided by the BIOS.
2039 6cc721cf bellard
2040 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2041 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2042 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2043 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2044 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2045 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2046 6cc721cf bellard
2047 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2048 6cc721cf bellard
2049 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2050 6cc721cf bellard
2051 2192c332 bellard
@subsubsection Windows XP security problem
2052 e3371e62 bellard
2053 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2054 e3371e62 bellard
error when booting:
2055 e3371e62 bellard
@example
2056 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2057 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2058 e3371e62 bellard
@end example
2059 e3371e62 bellard
2060 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2061 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2062 2192c332 bellard
network while in safe mode, its recommended to download the full
2063 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2064 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2065 e3371e62 bellard
2066 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2067 a0a821a4 bellard
2068 a0a821a4 bellard
@subsubsection CPU usage reduction
2069 a0a821a4 bellard
2070 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2071 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2072 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2073 a0a821a4 bellard
problem.
2074 a0a821a4 bellard
2075 debc7065 bellard
@node QEMU System emulator for non PC targets
2076 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2077 3f9f3aa1 bellard
2078 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2079 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2080 4be456f1 ths
differences are mentioned in the following sections.
2081 3f9f3aa1 bellard
2082 debc7065 bellard
@menu
2083 debc7065 bellard
* QEMU PowerPC System emulator::
2084 24d4de45 ths
* Sparc32 System emulator::
2085 24d4de45 ths
* Sparc64 System emulator::
2086 24d4de45 ths
* MIPS System emulator::
2087 24d4de45 ths
* ARM System emulator::
2088 24d4de45 ths
* ColdFire System emulator::
2089 debc7065 bellard
@end menu
2090 debc7065 bellard
2091 debc7065 bellard
@node QEMU PowerPC System emulator
2092 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2093 1a084f3d bellard
2094 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2095 15a34c63 bellard
or PowerMac PowerPC system.
2096 1a084f3d bellard
2097 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2098 1a084f3d bellard
2099 15a34c63 bellard
@itemize @minus
2100 5fafdf24 ths
@item
2101 5fafdf24 ths
UniNorth PCI Bridge
2102 15a34c63 bellard
@item
2103 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2104 5fafdf24 ths
@item
2105 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2106 5fafdf24 ths
@item
2107 15a34c63 bellard
NE2000 PCI adapters
2108 15a34c63 bellard
@item
2109 15a34c63 bellard
Non Volatile RAM
2110 15a34c63 bellard
@item
2111 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2112 1a084f3d bellard
@end itemize
2113 1a084f3d bellard
2114 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2115 52c00a5f bellard
2116 52c00a5f bellard
@itemize @minus
2117 5fafdf24 ths
@item
2118 15a34c63 bellard
PCI Bridge
2119 15a34c63 bellard
@item
2120 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2121 5fafdf24 ths
@item
2122 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2123 52c00a5f bellard
@item
2124 52c00a5f bellard
Floppy disk
2125 5fafdf24 ths
@item
2126 15a34c63 bellard
NE2000 network adapters
2127 52c00a5f bellard
@item
2128 52c00a5f bellard
Serial port
2129 52c00a5f bellard
@item
2130 52c00a5f bellard
PREP Non Volatile RAM
2131 15a34c63 bellard
@item
2132 15a34c63 bellard
PC compatible keyboard and mouse.
2133 52c00a5f bellard
@end itemize
2134 52c00a5f bellard
2135 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2136 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2137 52c00a5f bellard
2138 15a34c63 bellard
@c man begin OPTIONS
2139 15a34c63 bellard
2140 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2141 15a34c63 bellard
2142 15a34c63 bellard
@table @option
2143 15a34c63 bellard
2144 3b46e624 ths
@item -g WxH[xDEPTH]
2145 15a34c63 bellard
2146 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2147 15a34c63 bellard
2148 15a34c63 bellard
@end table
2149 15a34c63 bellard
2150 5fafdf24 ths
@c man end
2151 15a34c63 bellard
2152 15a34c63 bellard
2153 52c00a5f bellard
More information is available at
2154 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2155 52c00a5f bellard
2156 24d4de45 ths
@node Sparc32 System emulator
2157 24d4de45 ths
@section Sparc32 System emulator
2158 e80cfcfc bellard
2159 6a3b9cc9 blueswir1
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2160 ee76f82e blueswir1
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2161 ee76f82e blueswir1
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2162 ee76f82e blueswir1
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2163 ee76f82e blueswir1
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2164 ee76f82e blueswir1
of usable CPUs to 4.
2165 e80cfcfc bellard
2166 7d85892b blueswir1
QEMU emulates the following sun4m/sun4d peripherals:
2167 e80cfcfc bellard
2168 e80cfcfc bellard
@itemize @minus
2169 3475187d bellard
@item
2170 7d85892b blueswir1
IOMMU or IO-UNITs
2171 e80cfcfc bellard
@item
2172 e80cfcfc bellard
TCX Frame buffer
2173 5fafdf24 ths
@item
2174 e80cfcfc bellard
Lance (Am7990) Ethernet
2175 e80cfcfc bellard
@item
2176 e80cfcfc bellard
Non Volatile RAM M48T08
2177 e80cfcfc bellard
@item
2178 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2179 3475187d bellard
and power/reset logic
2180 3475187d bellard
@item
2181 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2182 3475187d bellard
@item
2183 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2184 a2502b58 blueswir1
@item
2185 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2186 e80cfcfc bellard
@end itemize
2187 e80cfcfc bellard
2188 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2189 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2190 7d85892b blueswir1
others 2047MB.
2191 3475187d bellard
2192 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2193 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2194 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2195 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2196 3475187d bellard
2197 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2198 0986ac3b bellard
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2199 0986ac3b bellard
Solaris kernels don't work.
2200 3475187d bellard
2201 3475187d bellard
@c man begin OPTIONS
2202 3475187d bellard
2203 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2204 3475187d bellard
2205 3475187d bellard
@table @option
2206 3475187d bellard
2207 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2208 3475187d bellard
2209 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2210 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2211 3475187d bellard
2212 66508601 blueswir1
@item -prom-env string
2213 66508601 blueswir1
2214 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2215 66508601 blueswir1
2216 66508601 blueswir1
@example
2217 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2218 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2219 66508601 blueswir1
@end example
2220 66508601 blueswir1
2221 ee76f82e blueswir1
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2222 a2502b58 blueswir1
2223 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2224 a2502b58 blueswir1
2225 3475187d bellard
@end table
2226 3475187d bellard
2227 5fafdf24 ths
@c man end
2228 3475187d bellard
2229 24d4de45 ths
@node Sparc64 System emulator
2230 24d4de45 ths
@section Sparc64 System emulator
2231 e80cfcfc bellard
2232 3475187d bellard
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2233 3475187d bellard
The emulator is not usable for anything yet.
2234 b756921a bellard
2235 83469015 bellard
QEMU emulates the following sun4u peripherals:
2236 83469015 bellard
2237 83469015 bellard
@itemize @minus
2238 83469015 bellard
@item
2239 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2240 83469015 bellard
@item
2241 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2242 83469015 bellard
@item
2243 83469015 bellard
Non Volatile RAM M48T59
2244 83469015 bellard
@item
2245 83469015 bellard
PC-compatible serial ports
2246 83469015 bellard
@end itemize
2247 83469015 bellard
2248 24d4de45 ths
@node MIPS System emulator
2249 24d4de45 ths
@section MIPS System emulator
2250 9d0a8e6f bellard
2251 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2252 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2253 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2254 88cb0a02 aurel32
Five different machine types are emulated:
2255 24d4de45 ths
2256 24d4de45 ths
@itemize @minus
2257 24d4de45 ths
@item
2258 24d4de45 ths
A generic ISA PC-like machine "mips"
2259 24d4de45 ths
@item
2260 24d4de45 ths
The MIPS Malta prototype board "malta"
2261 24d4de45 ths
@item
2262 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2263 6bf5b4e8 ths
@item
2264 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2265 88cb0a02 aurel32
@item
2266 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2267 24d4de45 ths
@end itemize
2268 24d4de45 ths
2269 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2270 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2271 24d4de45 ths
emulated:
2272 3f9f3aa1 bellard
2273 3f9f3aa1 bellard
@itemize @minus
2274 5fafdf24 ths
@item
2275 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2276 3f9f3aa1 bellard
@item
2277 3f9f3aa1 bellard
PC style serial port
2278 3f9f3aa1 bellard
@item
2279 24d4de45 ths
PC style IDE disk
2280 24d4de45 ths
@item
2281 3f9f3aa1 bellard
NE2000 network card
2282 3f9f3aa1 bellard
@end itemize
2283 3f9f3aa1 bellard
2284 24d4de45 ths
The Malta emulation supports the following devices:
2285 24d4de45 ths
2286 24d4de45 ths
@itemize @minus
2287 24d4de45 ths
@item
2288 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2289 24d4de45 ths
@item
2290 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2291 24d4de45 ths
@item
2292 24d4de45 ths
The Multi-I/O chip's serial device
2293 24d4de45 ths
@item
2294 24d4de45 ths
PCnet32 PCI network card
2295 24d4de45 ths
@item
2296 24d4de45 ths
Malta FPGA serial device
2297 24d4de45 ths
@item
2298 24d4de45 ths
Cirrus VGA graphics card
2299 24d4de45 ths
@end itemize
2300 24d4de45 ths
2301 24d4de45 ths
The ACER Pica emulation supports:
2302 24d4de45 ths
2303 24d4de45 ths
@itemize @minus
2304 24d4de45 ths
@item
2305 24d4de45 ths
MIPS R4000 CPU
2306 24d4de45 ths
@item
2307 24d4de45 ths
PC-style IRQ and DMA controllers
2308 24d4de45 ths
@item
2309 24d4de45 ths
PC Keyboard
2310 24d4de45 ths
@item
2311 24d4de45 ths
IDE controller
2312 24d4de45 ths
@end itemize
2313 3f9f3aa1 bellard
2314 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2315 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2316 f0fc6f8f ths
It supports:
2317 6bf5b4e8 ths
2318 6bf5b4e8 ths
@itemize @minus
2319 6bf5b4e8 ths
@item
2320 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2321 6bf5b4e8 ths
@item
2322 6bf5b4e8 ths
PC style serial port
2323 6bf5b4e8 ths
@item
2324 6bf5b4e8 ths
MIPSnet network emulation
2325 6bf5b4e8 ths
@end itemize
2326 6bf5b4e8 ths
2327 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2328 88cb0a02 aurel32
2329 88cb0a02 aurel32
@itemize @minus
2330 88cb0a02 aurel32
@item
2331 88cb0a02 aurel32
MIPS R4000 CPU
2332 88cb0a02 aurel32
@item
2333 88cb0a02 aurel32
PC-style IRQ controller
2334 88cb0a02 aurel32
@item
2335 88cb0a02 aurel32
PC Keyboard
2336 88cb0a02 aurel32
@item
2337 88cb0a02 aurel32
SCSI controller
2338 88cb0a02 aurel32
@item
2339 88cb0a02 aurel32
G364 framebuffer
2340 88cb0a02 aurel32
@end itemize
2341 88cb0a02 aurel32
2342 88cb0a02 aurel32
2343 24d4de45 ths
@node ARM System emulator
2344 24d4de45 ths
@section ARM System emulator
2345 3f9f3aa1 bellard
2346 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2347 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2348 3f9f3aa1 bellard
devices:
2349 3f9f3aa1 bellard
2350 3f9f3aa1 bellard
@itemize @minus
2351 3f9f3aa1 bellard
@item
2352 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2353 3f9f3aa1 bellard
@item
2354 3f9f3aa1 bellard
Two PL011 UARTs
2355 5fafdf24 ths
@item
2356 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2357 00a9bf19 pbrook
@item
2358 00a9bf19 pbrook
PL110 LCD controller
2359 00a9bf19 pbrook
@item
2360 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2361 a1bb27b1 pbrook
@item
2362 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2363 00a9bf19 pbrook
@end itemize
2364 00a9bf19 pbrook
2365 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2366 00a9bf19 pbrook
2367 00a9bf19 pbrook
@itemize @minus
2368 00a9bf19 pbrook
@item
2369 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2370 00a9bf19 pbrook
@item
2371 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2372 00a9bf19 pbrook
@item
2373 00a9bf19 pbrook
Four PL011 UARTs
2374 5fafdf24 ths
@item
2375 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2376 00a9bf19 pbrook
@item
2377 00a9bf19 pbrook
PL110 LCD controller
2378 00a9bf19 pbrook
@item
2379 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2380 00a9bf19 pbrook
@item
2381 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2382 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2383 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2384 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2385 00a9bf19 pbrook
mapped control registers.
2386 e6de1bad pbrook
@item
2387 e6de1bad pbrook
PCI OHCI USB controller.
2388 e6de1bad pbrook
@item
2389 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2390 a1bb27b1 pbrook
@item
2391 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2392 3f9f3aa1 bellard
@end itemize
2393 3f9f3aa1 bellard
2394 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2395 d7739d75 pbrook
2396 d7739d75 pbrook
@itemize @minus
2397 d7739d75 pbrook
@item
2398 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2399 d7739d75 pbrook
@item
2400 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2401 d7739d75 pbrook
@item
2402 d7739d75 pbrook
Four PL011 UARTs
2403 5fafdf24 ths
@item
2404 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2405 d7739d75 pbrook
@item
2406 d7739d75 pbrook
PL110 LCD controller
2407 d7739d75 pbrook
@item
2408 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2409 d7739d75 pbrook
@item
2410 d7739d75 pbrook
PCI host bridge
2411 d7739d75 pbrook
@item
2412 d7739d75 pbrook
PCI OHCI USB controller
2413 d7739d75 pbrook
@item
2414 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2415 a1bb27b1 pbrook
@item
2416 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2417 d7739d75 pbrook
@end itemize
2418 d7739d75 pbrook
2419 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2420 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2421 b00052e4 balrog
2422 b00052e4 balrog
@itemize @minus
2423 b00052e4 balrog
@item
2424 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2425 b00052e4 balrog
@item
2426 b00052e4 balrog
NAND Flash memory
2427 b00052e4 balrog
@item
2428 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2429 b00052e4 balrog
@item
2430 b00052e4 balrog
On-chip OHCI USB controller
2431 b00052e4 balrog
@item
2432 b00052e4 balrog
On-chip LCD controller
2433 b00052e4 balrog
@item
2434 b00052e4 balrog
On-chip Real Time Clock
2435 b00052e4 balrog
@item
2436 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2437 b00052e4 balrog
@item
2438 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2439 b00052e4 balrog
@item
2440 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2441 b00052e4 balrog
@item
2442 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2443 b00052e4 balrog
@item
2444 b00052e4 balrog
Three on-chip UARTs
2445 b00052e4 balrog
@item
2446 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2447 b00052e4 balrog
@end itemize
2448 b00052e4 balrog
2449 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2450 02645926 balrog
following elements:
2451 02645926 balrog
2452 02645926 balrog
@itemize @minus
2453 02645926 balrog
@item
2454 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2455 02645926 balrog
@item
2456 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2457 02645926 balrog
@item
2458 02645926 balrog
On-chip LCD controller
2459 02645926 balrog
@item
2460 02645926 balrog
On-chip Real Time Clock
2461 02645926 balrog
@item
2462 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2463 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2464 02645926 balrog
@item
2465 02645926 balrog
GPIO-connected matrix keypad
2466 02645926 balrog
@item
2467 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2468 02645926 balrog
@item
2469 02645926 balrog
Three on-chip UARTs
2470 02645926 balrog
@end itemize
2471 02645926 balrog
2472 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2473 9ee6e8bb pbrook
devices:
2474 9ee6e8bb pbrook
2475 9ee6e8bb pbrook
@itemize @minus
2476 9ee6e8bb pbrook
@item
2477 9ee6e8bb pbrook
Cortex-M3 CPU core.
2478 9ee6e8bb pbrook
@item
2479 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2480 9ee6e8bb pbrook
@item
2481 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2482 9ee6e8bb pbrook
@item
2483 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2484 9ee6e8bb pbrook
@end itemize
2485 9ee6e8bb pbrook
2486 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2487 9ee6e8bb pbrook
devices:
2488 9ee6e8bb pbrook
2489 9ee6e8bb pbrook
@itemize @minus
2490 9ee6e8bb pbrook
@item
2491 9ee6e8bb pbrook
Cortex-M3 CPU core.
2492 9ee6e8bb pbrook
@item
2493 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2494 9ee6e8bb pbrook
@item
2495 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2496 9ee6e8bb pbrook
@item
2497 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2498 9ee6e8bb pbrook
@end itemize
2499 9ee6e8bb pbrook
2500 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2501 57cd6e97 balrog
elements:
2502 57cd6e97 balrog
2503 57cd6e97 balrog
@itemize @minus
2504 57cd6e97 balrog
@item
2505 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2506 57cd6e97 balrog
@item
2507 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2508 57cd6e97 balrog
@item
2509 57cd6e97 balrog
Up to 2 16550 UARTs
2510 57cd6e97 balrog
@item
2511 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2512 57cd6e97 balrog
@item
2513 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2514 57cd6e97 balrog
@item
2515 57cd6e97 balrog
128?64 display with brightness control
2516 57cd6e97 balrog
@item
2517 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2518 57cd6e97 balrog
@end itemize
2519 57cd6e97 balrog
2520 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2521 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2522 9d0a8e6f bellard
2523 24d4de45 ths
@node ColdFire System emulator
2524 24d4de45 ths
@section ColdFire System emulator
2525 209a4e69 pbrook
2526 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2527 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2528 707e011b pbrook
2529 707e011b pbrook
The M5208EVB emulation includes the following devices:
2530 707e011b pbrook
2531 707e011b pbrook
@itemize @minus
2532 5fafdf24 ths
@item
2533 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2534 707e011b pbrook
@item
2535 707e011b pbrook
Three Two on-chip UARTs.
2536 707e011b pbrook
@item
2537 707e011b pbrook
Fast Ethernet Controller (FEC)
2538 707e011b pbrook
@end itemize
2539 707e011b pbrook
2540 707e011b pbrook
The AN5206 emulation includes the following devices:
2541 209a4e69 pbrook
2542 209a4e69 pbrook
@itemize @minus
2543 5fafdf24 ths
@item
2544 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2545 209a4e69 pbrook
@item
2546 209a4e69 pbrook
Two on-chip UARTs.
2547 209a4e69 pbrook
@end itemize
2548 209a4e69 pbrook
2549 5fafdf24 ths
@node QEMU User space emulator
2550 5fafdf24 ths
@chapter QEMU User space emulator
2551 83195237 bellard
2552 83195237 bellard
@menu
2553 83195237 bellard
* Supported Operating Systems ::
2554 83195237 bellard
* Linux User space emulator::
2555 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2556 83195237 bellard
@end menu
2557 83195237 bellard
2558 83195237 bellard
@node Supported Operating Systems
2559 83195237 bellard
@section Supported Operating Systems
2560 83195237 bellard
2561 83195237 bellard
The following OS are supported in user space emulation:
2562 83195237 bellard
2563 83195237 bellard
@itemize @minus
2564 83195237 bellard
@item
2565 4be456f1 ths
Linux (referred as qemu-linux-user)
2566 83195237 bellard
@item
2567 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2568 83195237 bellard
@end itemize
2569 83195237 bellard
2570 83195237 bellard
@node Linux User space emulator
2571 83195237 bellard
@section Linux User space emulator
2572 386405f7 bellard
2573 debc7065 bellard
@menu
2574 debc7065 bellard
* Quick Start::
2575 debc7065 bellard
* Wine launch::
2576 debc7065 bellard
* Command line options::
2577 79737e4a pbrook
* Other binaries::
2578 debc7065 bellard
@end menu
2579 debc7065 bellard
2580 debc7065 bellard
@node Quick Start
2581 83195237 bellard
@subsection Quick Start
2582 df0f11a0 bellard
2583 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2584 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2585 386405f7 bellard
2586 1f673135 bellard
@itemize
2587 386405f7 bellard
2588 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2589 1f673135 bellard
libraries:
2590 386405f7 bellard
2591 5fafdf24 ths
@example
2592 1f673135 bellard
qemu-i386 -L / /bin/ls
2593 1f673135 bellard
@end example
2594 386405f7 bellard
2595 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2596 1f673135 bellard
@file{/} prefix.
2597 386405f7 bellard
2598 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2599 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2600 386405f7 bellard
2601 5fafdf24 ths
@example
2602 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2603 1f673135 bellard
@end example
2604 386405f7 bellard
2605 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2606 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2607 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2608 df0f11a0 bellard
2609 1f673135 bellard
@example
2610 5fafdf24 ths
unset LD_LIBRARY_PATH
2611 1f673135 bellard
@end example
2612 1eb87257 bellard
2613 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2614 1eb87257 bellard
2615 1f673135 bellard
@example
2616 1f673135 bellard
qemu-i386 tests/i386/ls
2617 1f673135 bellard
@end example
2618 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2619 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2620 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2621 1f673135 bellard
Linux kernel.
2622 1eb87257 bellard
2623 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2624 1f673135 bellard
@example
2625 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2626 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2627 1f673135 bellard
@end example
2628 1eb20527 bellard
2629 1f673135 bellard
@end itemize
2630 1eb20527 bellard
2631 debc7065 bellard
@node Wine launch
2632 83195237 bellard
@subsection Wine launch
2633 1eb20527 bellard
2634 1f673135 bellard
@itemize
2635 386405f7 bellard
2636 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2637 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2638 1f673135 bellard
able to do:
2639 386405f7 bellard
2640 1f673135 bellard
@example
2641 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2642 1f673135 bellard
@end example
2643 386405f7 bellard
2644 1f673135 bellard
@item Download the binary x86 Wine install
2645 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2646 386405f7 bellard
2647 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2648 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2649 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2650 386405f7 bellard
2651 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2652 386405f7 bellard
2653 1f673135 bellard
@example
2654 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2655 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2656 1f673135 bellard
@end example
2657 386405f7 bellard
2658 1f673135 bellard
@end itemize
2659 fd429f2f bellard
2660 debc7065 bellard
@node Command line options
2661 83195237 bellard
@subsection Command line options
2662 1eb20527 bellard
2663 1f673135 bellard
@example
2664 1f673135 bellard
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2665 1f673135 bellard
@end example
2666 1eb20527 bellard
2667 1f673135 bellard
@table @option
2668 1f673135 bellard
@item -h
2669 1f673135 bellard
Print the help
2670 3b46e624 ths
@item -L path
2671 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2672 1f673135 bellard
@item -s size
2673 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2674 386405f7 bellard
@end table
2675 386405f7 bellard
2676 1f673135 bellard
Debug options:
2677 386405f7 bellard
2678 1f673135 bellard
@table @option
2679 1f673135 bellard
@item -d
2680 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2681 1f673135 bellard
@item -p pagesize
2682 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2683 1f673135 bellard
@end table
2684 386405f7 bellard
2685 b01bcae6 balrog
Environment variables:
2686 b01bcae6 balrog
2687 b01bcae6 balrog
@table @env
2688 b01bcae6 balrog
@item QEMU_STRACE
2689 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2690 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2691 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2692 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2693 b01bcae6 balrog
format are printed with information for six arguments.  Many
2694 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2695 5cfdf930 ths
@end table
2696 b01bcae6 balrog
2697 79737e4a pbrook
@node Other binaries
2698 83195237 bellard
@subsection Other binaries
2699 79737e4a pbrook
2700 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2701 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2702 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2703 79737e4a pbrook
2704 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2705 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2706 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2707 e6e5906b pbrook
2708 79737e4a pbrook
The binary format is detected automatically.
2709 79737e4a pbrook
2710 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2711 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2712 a785e42e blueswir1
2713 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2714 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2715 a785e42e blueswir1
2716 83195237 bellard
@node Mac OS X/Darwin User space emulator
2717 83195237 bellard
@section Mac OS X/Darwin User space emulator
2718 83195237 bellard
2719 83195237 bellard
@menu
2720 83195237 bellard
* Mac OS X/Darwin Status::
2721 83195237 bellard
* Mac OS X/Darwin Quick Start::
2722 83195237 bellard
* Mac OS X/Darwin Command line options::
2723 83195237 bellard
@end menu
2724 83195237 bellard
2725 83195237 bellard
@node Mac OS X/Darwin Status
2726 83195237 bellard
@subsection Mac OS X/Darwin Status
2727 83195237 bellard
2728 83195237 bellard
@itemize @minus
2729 83195237 bellard
@item
2730 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2731 83195237 bellard
@item
2732 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2733 83195237 bellard
@item
2734 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2735 83195237 bellard
@item
2736 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2737 83195237 bellard
@end itemize
2738 83195237 bellard
2739 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2740 83195237 bellard
2741 83195237 bellard
@node Mac OS X/Darwin Quick Start
2742 83195237 bellard
@subsection Quick Start
2743 83195237 bellard
2744 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2745 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2746 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2747 83195237 bellard
CD or compile them by hand.
2748 83195237 bellard
2749 83195237 bellard
@itemize
2750 83195237 bellard
2751 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2752 83195237 bellard
libraries:
2753 83195237 bellard
2754 5fafdf24 ths
@example
2755 dbcf5e82 ths
qemu-i386 /bin/ls
2756 83195237 bellard
@end example
2757 83195237 bellard
2758 83195237 bellard
or to run the ppc version of the executable:
2759 83195237 bellard
2760 5fafdf24 ths
@example
2761 dbcf5e82 ths
qemu-ppc /bin/ls
2762 83195237 bellard
@end example
2763 83195237 bellard
2764 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2765 83195237 bellard
are installed:
2766 83195237 bellard
2767 5fafdf24 ths
@example
2768 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2769 83195237 bellard
@end example
2770 83195237 bellard
2771 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2772 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2773 83195237 bellard
2774 83195237 bellard
@end itemize
2775 83195237 bellard
2776 83195237 bellard
@node Mac OS X/Darwin Command line options
2777 83195237 bellard
@subsection Command line options
2778 83195237 bellard
2779 83195237 bellard
@example
2780 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2781 83195237 bellard
@end example
2782 83195237 bellard
2783 83195237 bellard
@table @option
2784 83195237 bellard
@item -h
2785 83195237 bellard
Print the help
2786 3b46e624 ths
@item -L path
2787 83195237 bellard
Set the library root path (default=/)
2788 83195237 bellard
@item -s size
2789 83195237 bellard
Set the stack size in bytes (default=524288)
2790 83195237 bellard
@end table
2791 83195237 bellard
2792 83195237 bellard
Debug options:
2793 83195237 bellard
2794 83195237 bellard
@table @option
2795 83195237 bellard
@item -d
2796 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2797 83195237 bellard
@item -p pagesize
2798 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2799 83195237 bellard
@end table
2800 83195237 bellard
2801 15a34c63 bellard
@node compilation
2802 15a34c63 bellard
@chapter Compilation from the sources
2803 15a34c63 bellard
2804 debc7065 bellard
@menu
2805 debc7065 bellard
* Linux/Unix::
2806 debc7065 bellard
* Windows::
2807 debc7065 bellard
* Cross compilation for Windows with Linux::
2808 debc7065 bellard
* Mac OS X::
2809 debc7065 bellard
@end menu
2810 debc7065 bellard
2811 debc7065 bellard
@node Linux/Unix
2812 7c3fc84d bellard
@section Linux/Unix
2813 7c3fc84d bellard
2814 7c3fc84d bellard
@subsection Compilation
2815 7c3fc84d bellard
2816 7c3fc84d bellard
First you must decompress the sources:
2817 7c3fc84d bellard
@example
2818 7c3fc84d bellard
cd /tmp
2819 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2820 7c3fc84d bellard
cd qemu-x.y.z
2821 7c3fc84d bellard
@end example
2822 7c3fc84d bellard
2823 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2824 7c3fc84d bellard
@example
2825 7c3fc84d bellard
./configure
2826 7c3fc84d bellard
make
2827 7c3fc84d bellard
@end example
2828 7c3fc84d bellard
2829 7c3fc84d bellard
Then type as root user:
2830 7c3fc84d bellard
@example
2831 7c3fc84d bellard
make install
2832 7c3fc84d bellard
@end example
2833 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2834 7c3fc84d bellard
2835 4fe8b87a bellard
@subsection GCC version
2836 7c3fc84d bellard
2837 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2838 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2839 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2840 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2841 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2842 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2843 4be456f1 ths
these older versions so that usually you don't have to do anything.
2844 15a34c63 bellard
2845 debc7065 bellard
@node Windows
2846 15a34c63 bellard
@section Windows
2847 15a34c63 bellard
2848 15a34c63 bellard
@itemize
2849 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2850 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2851 15a34c63 bellard
instructions in the download section and the FAQ.
2852 15a34c63 bellard
2853 5fafdf24 ths
@item Download
2854 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2855 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2856 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2857 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2858 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2859 15a34c63 bellard
correct SDL directory when invoked.
2860 15a34c63 bellard
2861 15a34c63 bellard
@item Extract the current version of QEMU.
2862 5fafdf24 ths
2863 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2864 15a34c63 bellard
2865 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2866 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2867 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2868 15a34c63 bellard
2869 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2870 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2871 15a34c63 bellard
@file{Program Files/Qemu}.
2872 15a34c63 bellard
2873 15a34c63 bellard
@end itemize
2874 15a34c63 bellard
2875 debc7065 bellard
@node Cross compilation for Windows with Linux
2876 15a34c63 bellard
@section Cross compilation for Windows with Linux
2877 15a34c63 bellard
2878 15a34c63 bellard
@itemize
2879 15a34c63 bellard
@item
2880 15a34c63 bellard
Install the MinGW cross compilation tools available at
2881 15a34c63 bellard
@url{http://www.mingw.org/}.
2882 15a34c63 bellard
2883 5fafdf24 ths
@item
2884 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2885 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2886 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2887 15a34c63 bellard
the QEMU configuration script.
2888 15a34c63 bellard
2889 5fafdf24 ths
@item
2890 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2891 15a34c63 bellard
@example
2892 15a34c63 bellard
./configure --enable-mingw32
2893 15a34c63 bellard
@end example
2894 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2895 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2896 15a34c63 bellard
--prefix to set the Win32 install path.
2897 15a34c63 bellard
2898 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2899 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2900 5fafdf24 ths
installation directory.
2901 15a34c63 bellard
2902 15a34c63 bellard
@end itemize
2903 15a34c63 bellard
2904 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2905 15a34c63 bellard
QEMU for Win32.
2906 15a34c63 bellard
2907 debc7065 bellard
@node Mac OS X
2908 15a34c63 bellard
@section Mac OS X
2909 15a34c63 bellard
2910 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2911 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2912 15a34c63 bellard
information.
2913 15a34c63 bellard
2914 debc7065 bellard
@node Index
2915 debc7065 bellard
@chapter Index
2916 debc7065 bellard
@printindex cp
2917 debc7065 bellard
2918 debc7065 bellard
@bye