Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 86948bb1

History | View | Annotate | Download (24.6 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "pc.h"
27
#include "net.h"
28

    
29
/* debug NE2000 card */
30
//#define DEBUG_NE2000
31

    
32
#define MAX_ETH_FRAME_SIZE 1514
33

    
34
#define E8390_CMD        0x00  /* The command register (for all pages) */
35
/* Page 0 register offsets. */
36
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
37
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
38
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
39
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
40
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
41
#define EN0_TSR                0x04        /* Transmit status reg RD */
42
#define EN0_TPSR        0x04        /* Transmit starting page WR */
43
#define EN0_NCR                0x05        /* Number of collision reg RD */
44
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
45
#define EN0_FIFO        0x06        /* FIFO RD */
46
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
47
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
48
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
49
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
50
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
51
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
52
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
53
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
54
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
55
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
56
#define EN0_RSR                0x0c        /* rx status reg RD */
57
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
58
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
59
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
60
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
61
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
62
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
63
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
64

    
65
#define EN1_PHYS        0x11
66
#define EN1_CURPAG      0x17
67
#define EN1_MULT        0x18
68

    
69
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
70
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
71

    
72
#define EN3_CONFIG0        0x33
73
#define EN3_CONFIG1        0x34
74
#define EN3_CONFIG2        0x35
75
#define EN3_CONFIG3        0x36
76

    
77
/*  Register accessed at EN_CMD, the 8390 base addr.  */
78
#define E8390_STOP        0x01        /* Stop and reset the chip */
79
#define E8390_START        0x02        /* Start the chip, clear reset */
80
#define E8390_TRANS        0x04        /* Transmit a frame */
81
#define E8390_RREAD        0x08        /* Remote read */
82
#define E8390_RWRITE        0x10        /* Remote write  */
83
#define E8390_NODMA        0x20        /* Remote DMA */
84
#define E8390_PAGE0        0x00        /* Select page chip registers */
85
#define E8390_PAGE1        0x40        /* using the two high-order bits */
86
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
87

    
88
/* Bits in EN0_ISR - Interrupt status register */
89
#define ENISR_RX        0x01        /* Receiver, no error */
90
#define ENISR_TX        0x02        /* Transmitter, no error */
91
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
92
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
93
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
94
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
95
#define ENISR_RDC        0x40        /* remote dma complete */
96
#define ENISR_RESET        0x80        /* Reset completed */
97
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
98

    
99
/* Bits in received packet status byte and EN0_RSR*/
100
#define ENRSR_RXOK        0x01        /* Received a good packet */
101
#define ENRSR_CRC        0x02        /* CRC error */
102
#define ENRSR_FAE        0x04        /* frame alignment error */
103
#define ENRSR_FO        0x08        /* FIFO overrun */
104
#define ENRSR_MPA        0x10        /* missed pkt */
105
#define ENRSR_PHY        0x20        /* physical/multicast address */
106
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
107
#define ENRSR_DEF        0x80        /* deferring */
108

    
109
/* Transmitted packet status, EN0_TSR. */
110
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
111
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
112
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
113
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
114
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
115
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
116
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
117
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
118

    
119
#define NE2000_PMEM_SIZE    (32*1024)
120
#define NE2000_PMEM_START   (16*1024)
121
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122
#define NE2000_MEM_SIZE     NE2000_PMEM_END
123

    
124
typedef struct NE2000State {
125
    uint8_t cmd;
126
    uint32_t start;
127
    uint32_t stop;
128
    uint8_t boundary;
129
    uint8_t tsr;
130
    uint8_t tpsr;
131
    uint16_t tcnt;
132
    uint16_t rcnt;
133
    uint32_t rsar;
134
    uint8_t rsr;
135
    uint8_t rxcr;
136
    uint8_t isr;
137
    uint8_t dcfg;
138
    uint8_t imr;
139
    uint8_t phys[6]; /* mac address */
140
    uint8_t curpag;
141
    uint8_t mult[8]; /* multicast mask array */
142
    qemu_irq irq;
143
    int isa_io_base;
144
    VLANClientState *vc;
145
    uint8_t macaddr[6];
146
    uint8_t mem[NE2000_MEM_SIZE];
147
} NE2000State;
148

    
149
typedef struct PCINE2000State {
150
    PCIDevice dev;
151
    NE2000State ne2000;
152
} PCINE2000State;
153

    
154
static void ne2000_reset(NE2000State *s)
155
{
156
    int i;
157

    
158
    s->isr = ENISR_RESET;
159
    memcpy(s->mem, s->macaddr, 6);
160
    s->mem[14] = 0x57;
161
    s->mem[15] = 0x57;
162

    
163
    /* duplicate prom data */
164
    for(i = 15;i >= 0; i--) {
165
        s->mem[2 * i] = s->mem[i];
166
        s->mem[2 * i + 1] = s->mem[i];
167
    }
168
}
169

    
170
static void ne2000_update_irq(NE2000State *s)
171
{
172
    int isr;
173
    isr = (s->isr & s->imr) & 0x7f;
174
#if defined(DEBUG_NE2000)
175
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
176
           isr ? 1 : 0, s->isr, s->imr);
177
#endif
178
    qemu_set_irq(s->irq, (isr != 0));
179
}
180

    
181
#define POLYNOMIAL 0x04c11db6
182

    
183
/* From FreeBSD */
184
/* XXX: optimize */
185
static int compute_mcast_idx(const uint8_t *ep)
186
{
187
    uint32_t crc;
188
    int carry, i, j;
189
    uint8_t b;
190

    
191
    crc = 0xffffffff;
192
    for (i = 0; i < 6; i++) {
193
        b = *ep++;
194
        for (j = 0; j < 8; j++) {
195
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
196
            crc <<= 1;
197
            b >>= 1;
198
            if (carry)
199
                crc = ((crc ^ POLYNOMIAL) | carry);
200
        }
201
    }
202
    return (crc >> 26);
203
}
204

    
205
static int ne2000_buffer_full(NE2000State *s)
206
{
207
    int avail, index, boundary;
208

    
209
    index = s->curpag << 8;
210
    boundary = s->boundary << 8;
211
    if (index < boundary)
212
        avail = boundary - index;
213
    else
214
        avail = (s->stop - s->start) - (index - boundary);
215
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
216
        return 1;
217
    return 0;
218
}
219

    
220
static int ne2000_can_receive(VLANClientState *vc)
221
{
222
    NE2000State *s = vc->opaque;
223

    
224
    if (s->cmd & E8390_STOP)
225
        return 1;
226
    return !ne2000_buffer_full(s);
227
}
228

    
229
#define MIN_BUF_SIZE 60
230

    
231
static ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
232
{
233
    NE2000State *s = vc->opaque;
234
    int size = size_;
235
    uint8_t *p;
236
    unsigned int total_len, next, avail, len, index, mcast_idx;
237
    uint8_t buf1[60];
238
    static const uint8_t broadcast_macaddr[6] =
239
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
240

    
241
#if defined(DEBUG_NE2000)
242
    printf("NE2000: received len=%d\n", size);
243
#endif
244

    
245
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
246
        return -1;
247

    
248
    /* XXX: check this */
249
    if (s->rxcr & 0x10) {
250
        /* promiscuous: receive all */
251
    } else {
252
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
253
            /* broadcast address */
254
            if (!(s->rxcr & 0x04))
255
                return size;
256
        } else if (buf[0] & 0x01) {
257
            /* multicast */
258
            if (!(s->rxcr & 0x08))
259
                return size;
260
            mcast_idx = compute_mcast_idx(buf);
261
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
262
                return size;
263
        } else if (s->mem[0] == buf[0] &&
264
                   s->mem[2] == buf[1] &&
265
                   s->mem[4] == buf[2] &&
266
                   s->mem[6] == buf[3] &&
267
                   s->mem[8] == buf[4] &&
268
                   s->mem[10] == buf[5]) {
269
            /* match */
270
        } else {
271
            return size;
272
        }
273
    }
274

    
275

    
276
    /* if too small buffer, then expand it */
277
    if (size < MIN_BUF_SIZE) {
278
        memcpy(buf1, buf, size);
279
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
280
        buf = buf1;
281
        size = MIN_BUF_SIZE;
282
    }
283

    
284
    index = s->curpag << 8;
285
    /* 4 bytes for header */
286
    total_len = size + 4;
287
    /* address for next packet (4 bytes for CRC) */
288
    next = index + ((total_len + 4 + 255) & ~0xff);
289
    if (next >= s->stop)
290
        next -= (s->stop - s->start);
291
    /* prepare packet header */
292
    p = s->mem + index;
293
    s->rsr = ENRSR_RXOK; /* receive status */
294
    /* XXX: check this */
295
    if (buf[0] & 0x01)
296
        s->rsr |= ENRSR_PHY;
297
    p[0] = s->rsr;
298
    p[1] = next >> 8;
299
    p[2] = total_len;
300
    p[3] = total_len >> 8;
301
    index += 4;
302

    
303
    /* write packet data */
304
    while (size > 0) {
305
        if (index <= s->stop)
306
            avail = s->stop - index;
307
        else
308
            avail = 0;
309
        len = size;
310
        if (len > avail)
311
            len = avail;
312
        memcpy(s->mem + index, buf, len);
313
        buf += len;
314
        index += len;
315
        if (index == s->stop)
316
            index = s->start;
317
        size -= len;
318
    }
319
    s->curpag = next >> 8;
320

    
321
    /* now we can signal we have received something */
322
    s->isr |= ENISR_RX;
323
    ne2000_update_irq(s);
324

    
325
    return size_;
326
}
327

    
328
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
329
{
330
    NE2000State *s = opaque;
331
    int offset, page, index;
332

    
333
    addr &= 0xf;
334
#ifdef DEBUG_NE2000
335
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
336
#endif
337
    if (addr == E8390_CMD) {
338
        /* control register */
339
        s->cmd = val;
340
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
341
            s->isr &= ~ENISR_RESET;
342
            /* test specific case: zero length transfer */
343
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
344
                s->rcnt == 0) {
345
                s->isr |= ENISR_RDC;
346
                ne2000_update_irq(s);
347
            }
348
            if (val & E8390_TRANS) {
349
                index = (s->tpsr << 8);
350
                /* XXX: next 2 lines are a hack to make netware 3.11 work */
351
                if (index >= NE2000_PMEM_END)
352
                    index -= NE2000_PMEM_SIZE;
353
                /* fail safe: check range on the transmitted length  */
354
                if (index + s->tcnt <= NE2000_PMEM_END) {
355
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
356
                }
357
                /* signal end of transfer */
358
                s->tsr = ENTSR_PTX;
359
                s->isr |= ENISR_TX;
360
                s->cmd &= ~E8390_TRANS;
361
                ne2000_update_irq(s);
362
            }
363
        }
364
    } else {
365
        page = s->cmd >> 6;
366
        offset = addr | (page << 4);
367
        switch(offset) {
368
        case EN0_STARTPG:
369
            s->start = val << 8;
370
            break;
371
        case EN0_STOPPG:
372
            s->stop = val << 8;
373
            break;
374
        case EN0_BOUNDARY:
375
            s->boundary = val;
376
            break;
377
        case EN0_IMR:
378
            s->imr = val;
379
            ne2000_update_irq(s);
380
            break;
381
        case EN0_TPSR:
382
            s->tpsr = val;
383
            break;
384
        case EN0_TCNTLO:
385
            s->tcnt = (s->tcnt & 0xff00) | val;
386
            break;
387
        case EN0_TCNTHI:
388
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
389
            break;
390
        case EN0_RSARLO:
391
            s->rsar = (s->rsar & 0xff00) | val;
392
            break;
393
        case EN0_RSARHI:
394
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
395
            break;
396
        case EN0_RCNTLO:
397
            s->rcnt = (s->rcnt & 0xff00) | val;
398
            break;
399
        case EN0_RCNTHI:
400
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
401
            break;
402
        case EN0_RXCR:
403
            s->rxcr = val;
404
            break;
405
        case EN0_DCFG:
406
            s->dcfg = val;
407
            break;
408
        case EN0_ISR:
409
            s->isr &= ~(val & 0x7f);
410
            ne2000_update_irq(s);
411
            break;
412
        case EN1_PHYS ... EN1_PHYS + 5:
413
            s->phys[offset - EN1_PHYS] = val;
414
            break;
415
        case EN1_CURPAG:
416
            s->curpag = val;
417
            break;
418
        case EN1_MULT ... EN1_MULT + 7:
419
            s->mult[offset - EN1_MULT] = val;
420
            break;
421
        }
422
    }
423
}
424

    
425
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
426
{
427
    NE2000State *s = opaque;
428
    int offset, page, ret;
429

    
430
    addr &= 0xf;
431
    if (addr == E8390_CMD) {
432
        ret = s->cmd;
433
    } else {
434
        page = s->cmd >> 6;
435
        offset = addr | (page << 4);
436
        switch(offset) {
437
        case EN0_TSR:
438
            ret = s->tsr;
439
            break;
440
        case EN0_BOUNDARY:
441
            ret = s->boundary;
442
            break;
443
        case EN0_ISR:
444
            ret = s->isr;
445
            break;
446
        case EN0_RSARLO:
447
            ret = s->rsar & 0x00ff;
448
            break;
449
        case EN0_RSARHI:
450
            ret = s->rsar >> 8;
451
            break;
452
        case EN1_PHYS ... EN1_PHYS + 5:
453
            ret = s->phys[offset - EN1_PHYS];
454
            break;
455
        case EN1_CURPAG:
456
            ret = s->curpag;
457
            break;
458
        case EN1_MULT ... EN1_MULT + 7:
459
            ret = s->mult[offset - EN1_MULT];
460
            break;
461
        case EN0_RSR:
462
            ret = s->rsr;
463
            break;
464
        case EN2_STARTPG:
465
            ret = s->start >> 8;
466
            break;
467
        case EN2_STOPPG:
468
            ret = s->stop >> 8;
469
            break;
470
        case EN0_RTL8029ID0:
471
            ret = 0x50;
472
            break;
473
        case EN0_RTL8029ID1:
474
            ret = 0x43;
475
            break;
476
        case EN3_CONFIG0:
477
            ret = 0;                /* 10baseT media */
478
            break;
479
        case EN3_CONFIG2:
480
            ret = 0x40;                /* 10baseT active */
481
            break;
482
        case EN3_CONFIG3:
483
            ret = 0x40;                /* Full duplex */
484
            break;
485
        default:
486
            ret = 0x00;
487
            break;
488
        }
489
    }
490
#ifdef DEBUG_NE2000
491
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
492
#endif
493
    return ret;
494
}
495

    
496
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
497
                                     uint32_t val)
498
{
499
    if (addr < 32 ||
500
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
501
        s->mem[addr] = val;
502
    }
503
}
504

    
505
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
506
                                     uint32_t val)
507
{
508
    addr &= ~1; /* XXX: check exact behaviour if not even */
509
    if (addr < 32 ||
510
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
511
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
512
    }
513
}
514

    
515
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
516
                                     uint32_t val)
517
{
518
    addr &= ~1; /* XXX: check exact behaviour if not even */
519
    if (addr < 32 ||
520
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
522
    }
523
}
524

    
525
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
526
{
527
    if (addr < 32 ||
528
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
529
        return s->mem[addr];
530
    } else {
531
        return 0xff;
532
    }
533
}
534

    
535
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
536
{
537
    addr &= ~1; /* XXX: check exact behaviour if not even */
538
    if (addr < 32 ||
539
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
540
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
541
    } else {
542
        return 0xffff;
543
    }
544
}
545

    
546
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
547
{
548
    addr &= ~1; /* XXX: check exact behaviour if not even */
549
    if (addr < 32 ||
550
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
551
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
552
    } else {
553
        return 0xffffffff;
554
    }
555
}
556

    
557
static inline void ne2000_dma_update(NE2000State *s, int len)
558
{
559
    s->rsar += len;
560
    /* wrap */
561
    /* XXX: check what to do if rsar > stop */
562
    if (s->rsar == s->stop)
563
        s->rsar = s->start;
564

    
565
    if (s->rcnt <= len) {
566
        s->rcnt = 0;
567
        /* signal end of transfer */
568
        s->isr |= ENISR_RDC;
569
        ne2000_update_irq(s);
570
    } else {
571
        s->rcnt -= len;
572
    }
573
}
574

    
575
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
576
{
577
    NE2000State *s = opaque;
578

    
579
#ifdef DEBUG_NE2000
580
    printf("NE2000: asic write val=0x%04x\n", val);
581
#endif
582
    if (s->rcnt == 0)
583
        return;
584
    if (s->dcfg & 0x01) {
585
        /* 16 bit access */
586
        ne2000_mem_writew(s, s->rsar, val);
587
        ne2000_dma_update(s, 2);
588
    } else {
589
        /* 8 bit access */
590
        ne2000_mem_writeb(s, s->rsar, val);
591
        ne2000_dma_update(s, 1);
592
    }
593
}
594

    
595
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
596
{
597
    NE2000State *s = opaque;
598
    int ret;
599

    
600
    if (s->dcfg & 0x01) {
601
        /* 16 bit access */
602
        ret = ne2000_mem_readw(s, s->rsar);
603
        ne2000_dma_update(s, 2);
604
    } else {
605
        /* 8 bit access */
606
        ret = ne2000_mem_readb(s, s->rsar);
607
        ne2000_dma_update(s, 1);
608
    }
609
#ifdef DEBUG_NE2000
610
    printf("NE2000: asic read val=0x%04x\n", ret);
611
#endif
612
    return ret;
613
}
614

    
615
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
616
{
617
    NE2000State *s = opaque;
618

    
619
#ifdef DEBUG_NE2000
620
    printf("NE2000: asic writel val=0x%04x\n", val);
621
#endif
622
    if (s->rcnt == 0)
623
        return;
624
    /* 32 bit access */
625
    ne2000_mem_writel(s, s->rsar, val);
626
    ne2000_dma_update(s, 4);
627
}
628

    
629
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
630
{
631
    NE2000State *s = opaque;
632
    int ret;
633

    
634
    /* 32 bit access */
635
    ret = ne2000_mem_readl(s, s->rsar);
636
    ne2000_dma_update(s, 4);
637
#ifdef DEBUG_NE2000
638
    printf("NE2000: asic readl val=0x%04x\n", ret);
639
#endif
640
    return ret;
641
}
642

    
643
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
644
{
645
    /* nothing to do (end of reset pulse) */
646
}
647

    
648
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
649
{
650
    NE2000State *s = opaque;
651
    ne2000_reset(s);
652
    return 0;
653
}
654

    
655
static void ne2000_save(QEMUFile* f, void* opaque)
656
{
657
        NE2000State* s = opaque;
658
        uint32_t tmp;
659

    
660
        qemu_put_8s(f, &s->rxcr);
661

    
662
        qemu_put_8s(f, &s->cmd);
663
        qemu_put_be32s(f, &s->start);
664
        qemu_put_be32s(f, &s->stop);
665
        qemu_put_8s(f, &s->boundary);
666
        qemu_put_8s(f, &s->tsr);
667
        qemu_put_8s(f, &s->tpsr);
668
        qemu_put_be16s(f, &s->tcnt);
669
        qemu_put_be16s(f, &s->rcnt);
670
        qemu_put_be32s(f, &s->rsar);
671
        qemu_put_8s(f, &s->rsr);
672
        qemu_put_8s(f, &s->isr);
673
        qemu_put_8s(f, &s->dcfg);
674
        qemu_put_8s(f, &s->imr);
675
        qemu_put_buffer(f, s->phys, 6);
676
        qemu_put_8s(f, &s->curpag);
677
        qemu_put_buffer(f, s->mult, 8);
678
        tmp = 0;
679
        qemu_put_be32s(f, &tmp); /* ignored, was irq */
680
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
681
}
682

    
683
static int ne2000_load(QEMUFile* f, void* opaque, int version_id)
684
{
685
        NE2000State* s = opaque;
686
        uint32_t tmp;
687

    
688
        if (version_id > 3)
689
            return -EINVAL;
690

    
691
        if (version_id >= 2) {
692
            qemu_get_8s(f, &s->rxcr);
693
        } else {
694
            s->rxcr = 0x0c;
695
        }
696

    
697
        qemu_get_8s(f, &s->cmd);
698
        qemu_get_be32s(f, &s->start);
699
        qemu_get_be32s(f, &s->stop);
700
        qemu_get_8s(f, &s->boundary);
701
        qemu_get_8s(f, &s->tsr);
702
        qemu_get_8s(f, &s->tpsr);
703
        qemu_get_be16s(f, &s->tcnt);
704
        qemu_get_be16s(f, &s->rcnt);
705
        qemu_get_be32s(f, &s->rsar);
706
        qemu_get_8s(f, &s->rsr);
707
        qemu_get_8s(f, &s->isr);
708
        qemu_get_8s(f, &s->dcfg);
709
        qemu_get_8s(f, &s->imr);
710
        qemu_get_buffer(f, s->phys, 6);
711
        qemu_get_8s(f, &s->curpag);
712
        qemu_get_buffer(f, s->mult, 8);
713
        qemu_get_be32s(f, &tmp); /* ignored */
714
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
715

    
716
        return 0;
717
}
718

    
719
static void pci_ne2000_save(QEMUFile* f, void* opaque)
720
{
721
        PCINE2000State* s = opaque;
722

    
723
        pci_device_save(&s->dev, f);
724
        ne2000_save(f, &s->ne2000);
725
}
726

    
727
static int pci_ne2000_load(QEMUFile* f, void* opaque, int version_id)
728
{
729
        PCINE2000State* s = opaque;
730
        int ret;
731

    
732
        if (version_id > 3)
733
            return -EINVAL;
734

    
735
        if (version_id >= 3) {
736
            ret = pci_device_load(&s->dev, f);
737
            if (ret < 0)
738
                return ret;
739
        }
740

    
741
        return ne2000_load(f, &s->ne2000, version_id);
742
}
743

    
744
static void isa_ne2000_cleanup(VLANClientState *vc)
745
{
746
    NE2000State *s = vc->opaque;
747

    
748
    unregister_savevm("ne2000", s);
749

    
750
    isa_unassign_ioport(s->isa_io_base, 16);
751
    isa_unassign_ioport(s->isa_io_base + 0x10, 2);
752
    isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
753

    
754
    qemu_free(s);
755
}
756

    
757
void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
758
{
759
    NE2000State *s;
760

    
761
    qemu_check_nic_model(nd, "ne2k_isa");
762

    
763
    s = qemu_mallocz(sizeof(NE2000State));
764

    
765
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
766
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
767

    
768
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
769
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
770
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
771
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
772

    
773
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
774
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
775
    s->isa_io_base = base;
776
    s->irq = irq;
777
    memcpy(s->macaddr, nd->macaddr, 6);
778

    
779
    ne2000_reset(s);
780

    
781
    s->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
782
                                          ne2000_can_receive, ne2000_receive,
783
                                          NULL, isa_ne2000_cleanup, s);
784

    
785
    qemu_format_nic_info_str(s->vc, s->macaddr);
786

    
787
    register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
788
}
789

    
790
/***********************************************************/
791
/* PCI NE2000 definitions */
792

    
793
static void ne2000_map(PCIDevice *pci_dev, int region_num,
794
                       uint32_t addr, uint32_t size, int type)
795
{
796
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
797
    NE2000State *s = &d->ne2000;
798

    
799
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
800
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
801

    
802
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
803
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
804
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
805
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
806
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
807
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
808

    
809
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
810
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
811
}
812

    
813
static void ne2000_cleanup(VLANClientState *vc)
814
{
815
    NE2000State *s = vc->opaque;
816

    
817
    unregister_savevm("ne2000", s);
818
}
819

    
820
static int pci_ne2000_init(PCIDevice *pci_dev)
821
{
822
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
823
    NE2000State *s;
824
    uint8_t *pci_conf;
825

    
826
    pci_conf = d->dev.config;
827
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
828
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
829
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
830
    pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
831
    pci_conf[0x3d] = 1; // interrupt pin 0
832

    
833
    pci_register_bar(&d->dev, 0, 0x100,
834
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
835
    s = &d->ne2000;
836
    s->irq = d->dev.irq[0];
837
    qdev_get_macaddr(&d->dev.qdev, s->macaddr);
838
    ne2000_reset(s);
839
    s->vc = qdev_get_vlan_client(&d->dev.qdev,
840
                                 ne2000_can_receive, ne2000_receive, NULL,
841
                                 ne2000_cleanup, s);
842

    
843
    qemu_format_nic_info_str(s->vc, s->macaddr);
844

    
845
    register_savevm("ne2000", -1, 3, pci_ne2000_save, pci_ne2000_load, d);
846
    return 0;
847
}
848

    
849
static PCIDeviceInfo ne2000_info = {
850
    .qdev.name = "ne2k_pci",
851
    .qdev.size = sizeof(PCINE2000State),
852
    .init      = pci_ne2000_init,
853
};
854

    
855
static void ne2000_register_devices(void)
856
{
857
    pci_qdev_register(&ne2000_info);
858
}
859

    
860
device_init(ne2000_register_devices)