Statistics
| Branch: | Revision:

root / cpu-exec.c @ 86cc1ce0

History | View | Annotate | Download (48.2 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_M68K)
198
    flags = env->fpcr & M68K_FPCR_PREC;
199
    cs_base = 0;
200
    pc = env->pc;
201
#elif defined(TARGET_SH4)
202
    flags = env->sr & (SR_MD | SR_RB);
203
    cs_base = 0;         /* XXXXX */
204
    pc = env->pc;
205
#else
206
#error unsupported CPU
207
#endif
208
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210
                         tb->flags != flags, 0)) {
211
        tb = tb_find_slow(pc, cs_base, flags);
212
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
213
           doing it in tb_find_slow */
214
        if (tb_invalidated_flag) {
215
            /* as some TB could have been invalidated because
216
               of memory exceptions while generating the code, we
217
               must recompute the hash index here */
218
            T0 = 0;
219
        }
220
    }
221
    return tb;
222
}
223

    
224

    
225
/* main execution loop */
226

    
227
int cpu_exec(CPUState *env1)
228
{
229
#define DECLARE_HOST_REGS 1
230
#include "hostregs_helper.h"
231
#if defined(TARGET_SPARC)
232
#if defined(reg_REGWPTR)
233
    uint32_t *saved_regwptr;
234
#endif
235
#endif
236
#if defined(__sparc__) && !defined(HOST_SOLARIS)
237
    int saved_i7;
238
    target_ulong tmp_T0;
239
#endif
240
    int ret, interrupt_request;
241
    void (*gen_func)(void);
242
    TranslationBlock *tb;
243
    uint8_t *tc_ptr;
244

    
245
#if defined(TARGET_I386)
246
    /* handle exit of HALTED state */
247
    if (env1->hflags & HF_HALTED_MASK) {
248
        /* disable halt condition */
249
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250
            (env1->eflags & IF_MASK)) {
251
            env1->hflags &= ~HF_HALTED_MASK;
252
        } else {
253
            return EXCP_HALTED;
254
        }
255
    }
256
#elif defined(TARGET_PPC)
257
    if (env1->halted) {
258
        if (env1->msr[MSR_EE] && 
259
            (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
260
            env1->halted = 0;
261
        } else {
262
            return EXCP_HALTED;
263
        }
264
    }
265
#elif defined(TARGET_SPARC)
266
    if (env1->halted) {
267
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
268
            (env1->psret != 0)) {
269
            env1->halted = 0;
270
        } else {
271
            return EXCP_HALTED;
272
        }
273
    }
274
#elif defined(TARGET_ARM)
275
    if (env1->halted) {
276
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
277
           set.  */
278
        if (env1->interrupt_request
279
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
280
            env1->halted = 0;
281
        } else {
282
            return EXCP_HALTED;
283
        }
284
    }
285
#elif defined(TARGET_MIPS)
286
    if (env1->halted) {
287
        if (env1->interrupt_request &
288
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
289
            env1->halted = 0;
290
        } else {
291
            return EXCP_HALTED;
292
        }
293
    }
294
#endif
295

    
296
    cpu_single_env = env1; 
297

    
298
    /* first we save global registers */
299
#define SAVE_HOST_REGS 1
300
#include "hostregs_helper.h"
301
    env = env1;
302
#if defined(__sparc__) && !defined(HOST_SOLARIS)
303
    /* we also save i7 because longjmp may not restore it */
304
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
305
#endif
306

    
307
#if defined(TARGET_I386)
308
    env_to_regs();
309
    /* put eflags in CPU temporary format */
310
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
311
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
312
    CC_OP = CC_OP_EFLAGS;
313
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
314
#elif defined(TARGET_ARM)
315
#elif defined(TARGET_SPARC)
316
#if defined(reg_REGWPTR)
317
    saved_regwptr = REGWPTR;
318
#endif
319
#elif defined(TARGET_PPC)
320
#elif defined(TARGET_M68K)
321
    env->cc_op = CC_OP_FLAGS;
322
    env->cc_dest = env->sr & 0xf;
323
    env->cc_x = (env->sr >> 4) & 1;
324
#elif defined(TARGET_MIPS)
325
#elif defined(TARGET_SH4)
326
    /* XXXXX */
327
#else
328
#error unsupported target CPU
329
#endif
330
    env->exception_index = -1;
331

    
332
    /* prepare setjmp context for exception handling */
333
    for(;;) {
334
        if (setjmp(env->jmp_env) == 0) {
335
            env->current_tb = NULL;
336
            /* if an exception is pending, we execute it here */
337
            if (env->exception_index >= 0) {
338
                if (env->exception_index >= EXCP_INTERRUPT) {
339
                    /* exit request from the cpu execution loop */
340
                    ret = env->exception_index;
341
                    break;
342
                } else if (env->user_mode_only) {
343
                    /* if user mode only, we simulate a fake exception
344
                       which will be handled outside the cpu execution
345
                       loop */
346
#if defined(TARGET_I386)
347
                    do_interrupt_user(env->exception_index, 
348
                                      env->exception_is_int, 
349
                                      env->error_code, 
350
                                      env->exception_next_eip);
351
#endif
352
                    ret = env->exception_index;
353
                    break;
354
                } else {
355
#if defined(TARGET_I386)
356
                    /* simulate a real cpu exception. On i386, it can
357
                       trigger new exceptions, but we do not handle
358
                       double or triple faults yet. */
359
                    do_interrupt(env->exception_index, 
360
                                 env->exception_is_int, 
361
                                 env->error_code, 
362
                                 env->exception_next_eip, 0);
363
                    /* successfully delivered */
364
                    env->old_exception = -1;
365
#elif defined(TARGET_PPC)
366
                    do_interrupt(env);
367
#elif defined(TARGET_MIPS)
368
                    do_interrupt(env);
369
#elif defined(TARGET_SPARC)
370
                    do_interrupt(env->exception_index);
371
#elif defined(TARGET_ARM)
372
                    do_interrupt(env);
373
#elif defined(TARGET_SH4)
374
                    do_interrupt(env);
375
#endif
376
                }
377
                env->exception_index = -1;
378
            } 
379
#ifdef USE_KQEMU
380
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
381
                int ret;
382
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
383
                ret = kqemu_cpu_exec(env);
384
                /* put eflags in CPU temporary format */
385
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
386
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
387
                CC_OP = CC_OP_EFLAGS;
388
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
389
                if (ret == 1) {
390
                    /* exception */
391
                    longjmp(env->jmp_env, 1);
392
                } else if (ret == 2) {
393
                    /* softmmu execution needed */
394
                } else {
395
                    if (env->interrupt_request != 0) {
396
                        /* hardware interrupt will be executed just after */
397
                    } else {
398
                        /* otherwise, we restart */
399
                        longjmp(env->jmp_env, 1);
400
                    }
401
                }
402
            }
403
#endif
404

    
405
            T0 = 0; /* force lookup of first TB */
406
            for(;;) {
407
#if defined(__sparc__) && !defined(HOST_SOLARIS)
408
                /* g1 can be modified by some libc? functions */ 
409
                tmp_T0 = T0;
410
#endif            
411
                interrupt_request = env->interrupt_request;
412
                if (__builtin_expect(interrupt_request, 0)) {
413
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
414
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
415
                        env->exception_index = EXCP_DEBUG;
416
                        cpu_loop_exit();
417
                    }
418
#if defined(TARGET_I386)
419
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
420
                        !(env->hflags & HF_SMM_MASK)) {
421
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
422
                        do_smm_enter();
423
#if defined(__sparc__) && !defined(HOST_SOLARIS)
424
                        tmp_T0 = 0;
425
#else
426
                        T0 = 0;
427
#endif
428
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
429
                        (env->eflags & IF_MASK) && 
430
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
431
                        int intno;
432
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
433
                        intno = cpu_get_pic_interrupt(env);
434
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
435
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
436
                        }
437
                        do_interrupt(intno, 0, 0, 0, 1);
438
                        /* ensure that no TB jump will be modified as
439
                           the program flow was changed */
440
#if defined(__sparc__) && !defined(HOST_SOLARIS)
441
                        tmp_T0 = 0;
442
#else
443
                        T0 = 0;
444
#endif
445
                    }
446
#elif defined(TARGET_PPC)
447
#if 0
448
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
449
                        cpu_ppc_reset(env);
450
                    }
451
#endif
452
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
453
                        if (ppc_hw_interrupt(env) == 1) {
454
                            /* Some exception was raised */
455
                            if (env->pending_interrupts == 0)
456
                                env->interrupt_request &= ~CPU_INTERRUPT_HARD;
457
#if defined(__sparc__) && !defined(HOST_SOLARIS)
458
                            tmp_T0 = 0;
459
#else
460
                            T0 = 0;
461
#endif
462
                        }
463
                    }
464
#elif defined(TARGET_MIPS)
465
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
466
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
467
                        (env->CP0_Status & (1 << CP0St_IE)) &&
468
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
469
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
470
                        !(env->hflags & MIPS_HFLAG_DM)) {
471
                        /* Raise it */
472
                        env->exception_index = EXCP_EXT_INTERRUPT;
473
                        env->error_code = 0;
474
                        do_interrupt(env);
475
#if defined(__sparc__) && !defined(HOST_SOLARIS)
476
                        tmp_T0 = 0;
477
#else
478
                        T0 = 0;
479
#endif
480
                    }
481
#elif defined(TARGET_SPARC)
482
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
483
                        (env->psret != 0)) {
484
                        int pil = env->interrupt_index & 15;
485
                        int type = env->interrupt_index & 0xf0;
486

    
487
                        if (((type == TT_EXTINT) &&
488
                             (pil == 15 || pil > env->psrpil)) ||
489
                            type != TT_EXTINT) {
490
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
491
                            do_interrupt(env->interrupt_index);
492
                            env->interrupt_index = 0;
493
#if defined(__sparc__) && !defined(HOST_SOLARIS)
494
                            tmp_T0 = 0;
495
#else
496
                            T0 = 0;
497
#endif
498
                        }
499
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
500
                        //do_interrupt(0, 0, 0, 0, 0);
501
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
502
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
503
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
504
                        env->halted = 1;
505
                        env->exception_index = EXCP_HLT;
506
                        cpu_loop_exit();
507
                    }
508
#elif defined(TARGET_ARM)
509
                    if (interrupt_request & CPU_INTERRUPT_FIQ
510
                        && !(env->uncached_cpsr & CPSR_F)) {
511
                        env->exception_index = EXCP_FIQ;
512
                        do_interrupt(env);
513
                    }
514
                    if (interrupt_request & CPU_INTERRUPT_HARD
515
                        && !(env->uncached_cpsr & CPSR_I)) {
516
                        env->exception_index = EXCP_IRQ;
517
                        do_interrupt(env);
518
                    }
519
#elif defined(TARGET_SH4)
520
                    /* XXXXX */
521
#endif
522
                   /* Don't use the cached interupt_request value,
523
                      do_interrupt may have updated the EXITTB flag. */
524
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
525
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
526
                        /* ensure that no TB jump will be modified as
527
                           the program flow was changed */
528
#if defined(__sparc__) && !defined(HOST_SOLARIS)
529
                        tmp_T0 = 0;
530
#else
531
                        T0 = 0;
532
#endif
533
                    }
534
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
535
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
536
                        env->exception_index = EXCP_INTERRUPT;
537
                        cpu_loop_exit();
538
                    }
539
                }
540
#ifdef DEBUG_EXEC
541
                if ((loglevel & CPU_LOG_TB_CPU)) {
542
#if defined(TARGET_I386)
543
                    /* restore flags in standard format */
544
#ifdef reg_EAX
545
                    env->regs[R_EAX] = EAX;
546
#endif
547
#ifdef reg_EBX
548
                    env->regs[R_EBX] = EBX;
549
#endif
550
#ifdef reg_ECX
551
                    env->regs[R_ECX] = ECX;
552
#endif
553
#ifdef reg_EDX
554
                    env->regs[R_EDX] = EDX;
555
#endif
556
#ifdef reg_ESI
557
                    env->regs[R_ESI] = ESI;
558
#endif
559
#ifdef reg_EDI
560
                    env->regs[R_EDI] = EDI;
561
#endif
562
#ifdef reg_EBP
563
                    env->regs[R_EBP] = EBP;
564
#endif
565
#ifdef reg_ESP
566
                    env->regs[R_ESP] = ESP;
567
#endif
568
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
569
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
570
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
571
#elif defined(TARGET_ARM)
572
                    cpu_dump_state(env, logfile, fprintf, 0);
573
#elif defined(TARGET_SPARC)
574
                    REGWPTR = env->regbase + (env->cwp * 16);
575
                    env->regwptr = REGWPTR;
576
                    cpu_dump_state(env, logfile, fprintf, 0);
577
#elif defined(TARGET_PPC)
578
                    cpu_dump_state(env, logfile, fprintf, 0);
579
#elif defined(TARGET_M68K)
580
                    cpu_m68k_flush_flags(env, env->cc_op);
581
                    env->cc_op = CC_OP_FLAGS;
582
                    env->sr = (env->sr & 0xffe0)
583
                              | env->cc_dest | (env->cc_x << 4);
584
                    cpu_dump_state(env, logfile, fprintf, 0);
585
#elif defined(TARGET_MIPS)
586
                    cpu_dump_state(env, logfile, fprintf, 0);
587
#elif defined(TARGET_SH4)
588
                    cpu_dump_state(env, logfile, fprintf, 0);
589
#else
590
#error unsupported target CPU 
591
#endif
592
                }
593
#endif
594
                tb = tb_find_fast();
595
#ifdef DEBUG_EXEC
596
                if ((loglevel & CPU_LOG_EXEC)) {
597
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
598
                            (long)tb->tc_ptr, tb->pc,
599
                            lookup_symbol(tb->pc));
600
                }
601
#endif
602
#if defined(__sparc__) && !defined(HOST_SOLARIS)
603
                T0 = tmp_T0;
604
#endif            
605
                /* see if we can patch the calling TB. When the TB
606
                   spans two pages, we cannot safely do a direct
607
                   jump. */
608
                {
609
                    if (T0 != 0 &&
610
#if USE_KQEMU
611
                        (env->kqemu_enabled != 2) &&
612
#endif
613
                        tb->page_addr[1] == -1
614
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
615
                    && (tb->cflags & CF_CODE_COPY) == 
616
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
617
#endif
618
                    ) {
619
                    spin_lock(&tb_lock);
620
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
621
#if defined(USE_CODE_COPY)
622
                    /* propagates the FP use info */
623
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
624
                        (tb->cflags & CF_FP_USED);
625
#endif
626
                    spin_unlock(&tb_lock);
627
                }
628
                }
629
                tc_ptr = tb->tc_ptr;
630
                env->current_tb = tb;
631
                /* execute the generated code */
632
                gen_func = (void *)tc_ptr;
633
#if defined(__sparc__)
634
                __asm__ __volatile__("call        %0\n\t"
635
                                     "mov        %%o7,%%i0"
636
                                     : /* no outputs */
637
                                     : "r" (gen_func) 
638
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
639
                                       "o0", "o1", "o2", "o3", "o4", "o5",
640
                                       "l0", "l1", "l2", "l3", "l4", "l5",
641
                                       "l6", "l7");
642
#elif defined(__arm__)
643
                asm volatile ("mov pc, %0\n\t"
644
                              ".global exec_loop\n\t"
645
                              "exec_loop:\n\t"
646
                              : /* no outputs */
647
                              : "r" (gen_func)
648
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
649
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
650
{
651
    if (!(tb->cflags & CF_CODE_COPY)) {
652
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
653
            save_native_fp_state(env);
654
        }
655
        gen_func();
656
    } else {
657
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
658
            restore_native_fp_state(env);
659
        }
660
        /* we work with native eflags */
661
        CC_SRC = cc_table[CC_OP].compute_all();
662
        CC_OP = CC_OP_EFLAGS;
663
        asm(".globl exec_loop\n"
664
            "\n"
665
            "debug1:\n"
666
            "    pushl %%ebp\n"
667
            "    fs movl %10, %9\n"
668
            "    fs movl %11, %%eax\n"
669
            "    andl $0x400, %%eax\n"
670
            "    fs orl %8, %%eax\n"
671
            "    pushl %%eax\n"
672
            "    popf\n"
673
            "    fs movl %%esp, %12\n"
674
            "    fs movl %0, %%eax\n"
675
            "    fs movl %1, %%ecx\n"
676
            "    fs movl %2, %%edx\n"
677
            "    fs movl %3, %%ebx\n"
678
            "    fs movl %4, %%esp\n"
679
            "    fs movl %5, %%ebp\n"
680
            "    fs movl %6, %%esi\n"
681
            "    fs movl %7, %%edi\n"
682
            "    fs jmp *%9\n"
683
            "exec_loop:\n"
684
            "    fs movl %%esp, %4\n"
685
            "    fs movl %12, %%esp\n"
686
            "    fs movl %%eax, %0\n"
687
            "    fs movl %%ecx, %1\n"
688
            "    fs movl %%edx, %2\n"
689
            "    fs movl %%ebx, %3\n"
690
            "    fs movl %%ebp, %5\n"
691
            "    fs movl %%esi, %6\n"
692
            "    fs movl %%edi, %7\n"
693
            "    pushf\n"
694
            "    popl %%eax\n"
695
            "    movl %%eax, %%ecx\n"
696
            "    andl $0x400, %%ecx\n"
697
            "    shrl $9, %%ecx\n"
698
            "    andl $0x8d5, %%eax\n"
699
            "    fs movl %%eax, %8\n"
700
            "    movl $1, %%eax\n"
701
            "    subl %%ecx, %%eax\n"
702
            "    fs movl %%eax, %11\n"
703
            "    fs movl %9, %%ebx\n" /* get T0 value */
704
            "    popl %%ebp\n"
705
            :
706
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
707
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
708
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
709
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
710
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
711
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
712
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
713
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
714
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
715
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
716
            "a" (gen_func),
717
            "m" (*(uint8_t *)offsetof(CPUState, df)),
718
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
719
            : "%ecx", "%edx"
720
            );
721
    }
722
}
723
#elif defined(__ia64)
724
                struct fptr {
725
                        void *ip;
726
                        void *gp;
727
                } fp;
728

    
729
                fp.ip = tc_ptr;
730
                fp.gp = code_gen_buffer + 2 * (1 << 20);
731
                (*(void (*)(void)) &fp)();
732
#else
733
                gen_func();
734
#endif
735
                env->current_tb = NULL;
736
                /* reset soft MMU for next block (it can currently
737
                   only be set by a memory fault) */
738
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
739
                if (env->hflags & HF_SOFTMMU_MASK) {
740
                    env->hflags &= ~HF_SOFTMMU_MASK;
741
                    /* do not allow linking to another block */
742
                    T0 = 0;
743
                }
744
#endif
745
#if defined(USE_KQEMU)
746
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
747
                if (kqemu_is_ok(env) &&
748
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
749
                    cpu_loop_exit();
750
                }
751
#endif
752
            }
753
        } else {
754
            env_to_regs();
755
        }
756
    } /* for(;;) */
757

    
758

    
759
#if defined(TARGET_I386)
760
#if defined(USE_CODE_COPY)
761
    if (env->native_fp_regs) {
762
        save_native_fp_state(env);
763
    }
764
#endif
765
    /* restore flags in standard format */
766
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
767
#elif defined(TARGET_ARM)
768
    /* XXX: Save/restore host fpu exception state?.  */
769
#elif defined(TARGET_SPARC)
770
#if defined(reg_REGWPTR)
771
    REGWPTR = saved_regwptr;
772
#endif
773
#elif defined(TARGET_PPC)
774
#elif defined(TARGET_M68K)
775
    cpu_m68k_flush_flags(env, env->cc_op);
776
    env->cc_op = CC_OP_FLAGS;
777
    env->sr = (env->sr & 0xffe0)
778
              | env->cc_dest | (env->cc_x << 4);
779
#elif defined(TARGET_MIPS)
780
#elif defined(TARGET_SH4)
781
    /* XXXXX */
782
#else
783
#error unsupported target CPU
784
#endif
785

    
786
    /* restore global registers */
787
#if defined(__sparc__) && !defined(HOST_SOLARIS)
788
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
789
#endif
790
#include "hostregs_helper.h"
791

    
792
    /* fail safe : never use cpu_single_env outside cpu_exec() */
793
    cpu_single_env = NULL; 
794
    return ret;
795
}
796

    
797
/* must only be called from the generated code as an exception can be
798
   generated */
799
void tb_invalidate_page_range(target_ulong start, target_ulong end)
800
{
801
    /* XXX: cannot enable it yet because it yields to MMU exception
802
       where NIP != read address on PowerPC */
803
#if 0
804
    target_ulong phys_addr;
805
    phys_addr = get_phys_addr_code(env, start);
806
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
807
#endif
808
}
809

    
810
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
811

    
812
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
813
{
814
    CPUX86State *saved_env;
815

    
816
    saved_env = env;
817
    env = s;
818
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
819
        selector &= 0xffff;
820
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
821
                               (selector << 4), 0xffff, 0);
822
    } else {
823
        load_seg(seg_reg, selector);
824
    }
825
    env = saved_env;
826
}
827

    
828
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
829
{
830
    CPUX86State *saved_env;
831

    
832
    saved_env = env;
833
    env = s;
834
    
835
    helper_fsave((target_ulong)ptr, data32);
836

    
837
    env = saved_env;
838
}
839

    
840
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
841
{
842
    CPUX86State *saved_env;
843

    
844
    saved_env = env;
845
    env = s;
846
    
847
    helper_frstor((target_ulong)ptr, data32);
848

    
849
    env = saved_env;
850
}
851

    
852
#endif /* TARGET_I386 */
853

    
854
#if !defined(CONFIG_SOFTMMU)
855

    
856
#if defined(TARGET_I386)
857

    
858
/* 'pc' is the host PC at which the exception was raised. 'address' is
859
   the effective address of the memory exception. 'is_write' is 1 if a
860
   write caused the exception and otherwise 0'. 'old_set' is the
861
   signal set which should be restored */
862
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
863
                                    int is_write, sigset_t *old_set, 
864
                                    void *puc)
865
{
866
    TranslationBlock *tb;
867
    int ret;
868

    
869
    if (cpu_single_env)
870
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
871
#if defined(DEBUG_SIGNAL)
872
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
873
                pc, address, is_write, *(unsigned long *)old_set);
874
#endif
875
    /* XXX: locking issue */
876
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
877
        return 1;
878
    }
879

    
880
    /* see if it is an MMU fault */
881
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
882
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
883
    if (ret < 0)
884
        return 0; /* not an MMU fault */
885
    if (ret == 0)
886
        return 1; /* the MMU fault was handled without causing real CPU fault */
887
    /* now we have a real cpu fault */
888
    tb = tb_find_pc(pc);
889
    if (tb) {
890
        /* the PC is inside the translated code. It means that we have
891
           a virtual CPU fault */
892
        cpu_restore_state(tb, env, pc, puc);
893
    }
894
    if (ret == 1) {
895
#if 0
896
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
897
               env->eip, env->cr[2], env->error_code);
898
#endif
899
        /* we restore the process signal mask as the sigreturn should
900
           do it (XXX: use sigsetjmp) */
901
        sigprocmask(SIG_SETMASK, old_set, NULL);
902
        raise_exception_err(env->exception_index, env->error_code);
903
    } else {
904
        /* activate soft MMU for this block */
905
        env->hflags |= HF_SOFTMMU_MASK;
906
        cpu_resume_from_signal(env, puc);
907
    }
908
    /* never comes here */
909
    return 1;
910
}
911

    
912
#elif defined(TARGET_ARM)
913
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
914
                                    int is_write, sigset_t *old_set,
915
                                    void *puc)
916
{
917
    TranslationBlock *tb;
918
    int ret;
919

    
920
    if (cpu_single_env)
921
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
922
#if defined(DEBUG_SIGNAL)
923
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
924
           pc, address, is_write, *(unsigned long *)old_set);
925
#endif
926
    /* XXX: locking issue */
927
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
928
        return 1;
929
    }
930
    /* see if it is an MMU fault */
931
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
932
    if (ret < 0)
933
        return 0; /* not an MMU fault */
934
    if (ret == 0)
935
        return 1; /* the MMU fault was handled without causing real CPU fault */
936
    /* now we have a real cpu fault */
937
    tb = tb_find_pc(pc);
938
    if (tb) {
939
        /* the PC is inside the translated code. It means that we have
940
           a virtual CPU fault */
941
        cpu_restore_state(tb, env, pc, puc);
942
    }
943
    /* we restore the process signal mask as the sigreturn should
944
       do it (XXX: use sigsetjmp) */
945
    sigprocmask(SIG_SETMASK, old_set, NULL);
946
    cpu_loop_exit();
947
}
948
#elif defined(TARGET_SPARC)
949
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
950
                                    int is_write, sigset_t *old_set,
951
                                    void *puc)
952
{
953
    TranslationBlock *tb;
954
    int ret;
955

    
956
    if (cpu_single_env)
957
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
958
#if defined(DEBUG_SIGNAL)
959
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
960
           pc, address, is_write, *(unsigned long *)old_set);
961
#endif
962
    /* XXX: locking issue */
963
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
964
        return 1;
965
    }
966
    /* see if it is an MMU fault */
967
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
968
    if (ret < 0)
969
        return 0; /* not an MMU fault */
970
    if (ret == 0)
971
        return 1; /* the MMU fault was handled without causing real CPU fault */
972
    /* now we have a real cpu fault */
973
    tb = tb_find_pc(pc);
974
    if (tb) {
975
        /* the PC is inside the translated code. It means that we have
976
           a virtual CPU fault */
977
        cpu_restore_state(tb, env, pc, puc);
978
    }
979
    /* we restore the process signal mask as the sigreturn should
980
       do it (XXX: use sigsetjmp) */
981
    sigprocmask(SIG_SETMASK, old_set, NULL);
982
    cpu_loop_exit();
983
}
984
#elif defined (TARGET_PPC)
985
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
986
                                    int is_write, sigset_t *old_set,
987
                                    void *puc)
988
{
989
    TranslationBlock *tb;
990
    int ret;
991
    
992
    if (cpu_single_env)
993
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
994
#if defined(DEBUG_SIGNAL)
995
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
996
           pc, address, is_write, *(unsigned long *)old_set);
997
#endif
998
    /* XXX: locking issue */
999
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1000
        return 1;
1001
    }
1002

    
1003
    /* see if it is an MMU fault */
1004
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1005
    if (ret < 0)
1006
        return 0; /* not an MMU fault */
1007
    if (ret == 0)
1008
        return 1; /* the MMU fault was handled without causing real CPU fault */
1009

    
1010
    /* now we have a real cpu fault */
1011
    tb = tb_find_pc(pc);
1012
    if (tb) {
1013
        /* the PC is inside the translated code. It means that we have
1014
           a virtual CPU fault */
1015
        cpu_restore_state(tb, env, pc, puc);
1016
    }
1017
    if (ret == 1) {
1018
#if 0
1019
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1020
               env->nip, env->error_code, tb);
1021
#endif
1022
    /* we restore the process signal mask as the sigreturn should
1023
       do it (XXX: use sigsetjmp) */
1024
        sigprocmask(SIG_SETMASK, old_set, NULL);
1025
        do_raise_exception_err(env->exception_index, env->error_code);
1026
    } else {
1027
        /* activate soft MMU for this block */
1028
        cpu_resume_from_signal(env, puc);
1029
    }
1030
    /* never comes here */
1031
    return 1;
1032
}
1033

    
1034
#elif defined(TARGET_M68K)
1035
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1036
                                    int is_write, sigset_t *old_set,
1037
                                    void *puc)
1038
{
1039
    TranslationBlock *tb;
1040
    int ret;
1041

    
1042
    if (cpu_single_env)
1043
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1044
#if defined(DEBUG_SIGNAL)
1045
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1046
           pc, address, is_write, *(unsigned long *)old_set);
1047
#endif
1048
    /* XXX: locking issue */
1049
    if (is_write && page_unprotect(address, pc, puc)) {
1050
        return 1;
1051
    }
1052
    /* see if it is an MMU fault */
1053
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1054
    if (ret < 0)
1055
        return 0; /* not an MMU fault */
1056
    if (ret == 0)
1057
        return 1; /* the MMU fault was handled without causing real CPU fault */
1058
    /* now we have a real cpu fault */
1059
    tb = tb_find_pc(pc);
1060
    if (tb) {
1061
        /* the PC is inside the translated code. It means that we have
1062
           a virtual CPU fault */
1063
        cpu_restore_state(tb, env, pc, puc);
1064
    }
1065
    /* we restore the process signal mask as the sigreturn should
1066
       do it (XXX: use sigsetjmp) */
1067
    sigprocmask(SIG_SETMASK, old_set, NULL);
1068
    cpu_loop_exit();
1069
    /* never comes here */
1070
    return 1;
1071
}
1072

    
1073
#elif defined (TARGET_MIPS)
1074
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1075
                                    int is_write, sigset_t *old_set,
1076
                                    void *puc)
1077
{
1078
    TranslationBlock *tb;
1079
    int ret;
1080
    
1081
    if (cpu_single_env)
1082
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1083
#if defined(DEBUG_SIGNAL)
1084
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1085
           pc, address, is_write, *(unsigned long *)old_set);
1086
#endif
1087
    /* XXX: locking issue */
1088
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1089
        return 1;
1090
    }
1091

    
1092
    /* see if it is an MMU fault */
1093
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1094
    if (ret < 0)
1095
        return 0; /* not an MMU fault */
1096
    if (ret == 0)
1097
        return 1; /* the MMU fault was handled without causing real CPU fault */
1098

    
1099
    /* now we have a real cpu fault */
1100
    tb = tb_find_pc(pc);
1101
    if (tb) {
1102
        /* the PC is inside the translated code. It means that we have
1103
           a virtual CPU fault */
1104
        cpu_restore_state(tb, env, pc, puc);
1105
    }
1106
    if (ret == 1) {
1107
#if 0
1108
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1109
               env->nip, env->error_code, tb);
1110
#endif
1111
    /* we restore the process signal mask as the sigreturn should
1112
       do it (XXX: use sigsetjmp) */
1113
        sigprocmask(SIG_SETMASK, old_set, NULL);
1114
        do_raise_exception_err(env->exception_index, env->error_code);
1115
    } else {
1116
        /* activate soft MMU for this block */
1117
        cpu_resume_from_signal(env, puc);
1118
    }
1119
    /* never comes here */
1120
    return 1;
1121
}
1122

    
1123
#elif defined (TARGET_SH4)
1124
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1125
                                    int is_write, sigset_t *old_set,
1126
                                    void *puc)
1127
{
1128
    TranslationBlock *tb;
1129
    int ret;
1130
    
1131
    if (cpu_single_env)
1132
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1133
#if defined(DEBUG_SIGNAL)
1134
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1135
           pc, address, is_write, *(unsigned long *)old_set);
1136
#endif
1137
    /* XXX: locking issue */
1138
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1139
        return 1;
1140
    }
1141

    
1142
    /* see if it is an MMU fault */
1143
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1144
    if (ret < 0)
1145
        return 0; /* not an MMU fault */
1146
    if (ret == 0)
1147
        return 1; /* the MMU fault was handled without causing real CPU fault */
1148

    
1149
    /* now we have a real cpu fault */
1150
    tb = tb_find_pc(pc);
1151
    if (tb) {
1152
        /* the PC is inside the translated code. It means that we have
1153
           a virtual CPU fault */
1154
        cpu_restore_state(tb, env, pc, puc);
1155
    }
1156
#if 0
1157
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1158
               env->nip, env->error_code, tb);
1159
#endif
1160
    /* we restore the process signal mask as the sigreturn should
1161
       do it (XXX: use sigsetjmp) */
1162
    sigprocmask(SIG_SETMASK, old_set, NULL);
1163
    cpu_loop_exit();
1164
    /* never comes here */
1165
    return 1;
1166
}
1167
#else
1168
#error unsupported target CPU
1169
#endif
1170

    
1171
#if defined(__i386__)
1172

    
1173
#if defined(__APPLE__)
1174
# include <sys/ucontext.h>
1175

    
1176
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1177
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1178
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1179
#else
1180
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1181
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1182
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1183
#endif
1184

    
1185
#if defined(USE_CODE_COPY)
1186
static void cpu_send_trap(unsigned long pc, int trap, 
1187
                          struct ucontext *uc)
1188
{
1189
    TranslationBlock *tb;
1190

    
1191
    if (cpu_single_env)
1192
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1193
    /* now we have a real cpu fault */
1194
    tb = tb_find_pc(pc);
1195
    if (tb) {
1196
        /* the PC is inside the translated code. It means that we have
1197
           a virtual CPU fault */
1198
        cpu_restore_state(tb, env, pc, uc);
1199
    }
1200
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1201
    raise_exception_err(trap, env->error_code);
1202
}
1203
#endif
1204

    
1205
int cpu_signal_handler(int host_signum, void *pinfo, 
1206
                       void *puc)
1207
{
1208
    siginfo_t *info = pinfo;
1209
    struct ucontext *uc = puc;
1210
    unsigned long pc;
1211
    int trapno;
1212

    
1213
#ifndef REG_EIP
1214
/* for glibc 2.1 */
1215
#define REG_EIP    EIP
1216
#define REG_ERR    ERR
1217
#define REG_TRAPNO TRAPNO
1218
#endif
1219
    pc = EIP_sig(uc);
1220
    trapno = TRAP_sig(uc);
1221
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1222
    if (trapno == 0x00 || trapno == 0x05) {
1223
        /* send division by zero or bound exception */
1224
        cpu_send_trap(pc, trapno, uc);
1225
        return 1;
1226
    } else
1227
#endif
1228
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1229
                                 trapno == 0xe ? 
1230
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1231
                                 &uc->uc_sigmask, puc);
1232
}
1233

    
1234
#elif defined(__x86_64__)
1235

    
1236
int cpu_signal_handler(int host_signum, void *pinfo,
1237
                       void *puc)
1238
{
1239
    siginfo_t *info = pinfo;
1240
    struct ucontext *uc = puc;
1241
    unsigned long pc;
1242

    
1243
    pc = uc->uc_mcontext.gregs[REG_RIP];
1244
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1245
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1246
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1247
                             &uc->uc_sigmask, puc);
1248
}
1249

    
1250
#elif defined(__powerpc__)
1251

    
1252
/***********************************************************************
1253
 * signal context platform-specific definitions
1254
 * From Wine
1255
 */
1256
#ifdef linux
1257
/* All Registers access - only for local access */
1258
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1259
/* Gpr Registers access  */
1260
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1261
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1262
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1263
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1264
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1265
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1266
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1267
/* Float Registers access  */
1268
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1269
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1270
/* Exception Registers access */
1271
# define DAR_sig(context)                        REG_sig(dar, context)
1272
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1273
# define TRAP_sig(context)                        REG_sig(trap, context)
1274
#endif /* linux */
1275

    
1276
#ifdef __APPLE__
1277
# include <sys/ucontext.h>
1278
typedef struct ucontext SIGCONTEXT;
1279
/* All Registers access - only for local access */
1280
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1281
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1282
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1283
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1284
/* Gpr Registers access */
1285
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1286
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1287
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1288
# define CTR_sig(context)                        REG_sig(ctr, context)
1289
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1290
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1291
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1292
/* Float Registers access */
1293
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1294
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1295
/* Exception Registers access */
1296
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1297
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1298
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1299
#endif /* __APPLE__ */
1300

    
1301
int cpu_signal_handler(int host_signum, void *pinfo, 
1302
                       void *puc)
1303
{
1304
    siginfo_t *info = pinfo;
1305
    struct ucontext *uc = puc;
1306
    unsigned long pc;
1307
    int is_write;
1308

    
1309
    pc = IAR_sig(uc);
1310
    is_write = 0;
1311
#if 0
1312
    /* ppc 4xx case */
1313
    if (DSISR_sig(uc) & 0x00800000)
1314
        is_write = 1;
1315
#else
1316
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1317
        is_write = 1;
1318
#endif
1319
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1320
                             is_write, &uc->uc_sigmask, puc);
1321
}
1322

    
1323
#elif defined(__alpha__)
1324

    
1325
int cpu_signal_handler(int host_signum, void *pinfo, 
1326
                           void *puc)
1327
{
1328
    siginfo_t *info = pinfo;
1329
    struct ucontext *uc = puc;
1330
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1331
    uint32_t insn = *pc;
1332
    int is_write = 0;
1333

    
1334
    /* XXX: need kernel patch to get write flag faster */
1335
    switch (insn >> 26) {
1336
    case 0x0d: // stw
1337
    case 0x0e: // stb
1338
    case 0x0f: // stq_u
1339
    case 0x24: // stf
1340
    case 0x25: // stg
1341
    case 0x26: // sts
1342
    case 0x27: // stt
1343
    case 0x2c: // stl
1344
    case 0x2d: // stq
1345
    case 0x2e: // stl_c
1346
    case 0x2f: // stq_c
1347
        is_write = 1;
1348
    }
1349

    
1350
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1351
                             is_write, &uc->uc_sigmask, puc);
1352
}
1353
#elif defined(__sparc__)
1354

    
1355
int cpu_signal_handler(int host_signum, void *pinfo, 
1356
                       void *puc)
1357
{
1358
    siginfo_t *info = pinfo;
1359
    uint32_t *regs = (uint32_t *)(info + 1);
1360
    void *sigmask = (regs + 20);
1361
    unsigned long pc;
1362
    int is_write;
1363
    uint32_t insn;
1364
    
1365
    /* XXX: is there a standard glibc define ? */
1366
    pc = regs[1];
1367
    /* XXX: need kernel patch to get write flag faster */
1368
    is_write = 0;
1369
    insn = *(uint32_t *)pc;
1370
    if ((insn >> 30) == 3) {
1371
      switch((insn >> 19) & 0x3f) {
1372
      case 0x05: // stb
1373
      case 0x06: // sth
1374
      case 0x04: // st
1375
      case 0x07: // std
1376
      case 0x24: // stf
1377
      case 0x27: // stdf
1378
      case 0x25: // stfsr
1379
        is_write = 1;
1380
        break;
1381
      }
1382
    }
1383
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1384
                             is_write, sigmask, NULL);
1385
}
1386

    
1387
#elif defined(__arm__)
1388

    
1389
int cpu_signal_handler(int host_signum, void *pinfo, 
1390
                       void *puc)
1391
{
1392
    siginfo_t *info = pinfo;
1393
    struct ucontext *uc = puc;
1394
    unsigned long pc;
1395
    int is_write;
1396
    
1397
    pc = uc->uc_mcontext.gregs[R15];
1398
    /* XXX: compute is_write */
1399
    is_write = 0;
1400
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1401
                             is_write,
1402
                             &uc->uc_sigmask, puc);
1403
}
1404

    
1405
#elif defined(__mc68000)
1406

    
1407
int cpu_signal_handler(int host_signum, void *pinfo, 
1408
                       void *puc)
1409
{
1410
    siginfo_t *info = pinfo;
1411
    struct ucontext *uc = puc;
1412
    unsigned long pc;
1413
    int is_write;
1414
    
1415
    pc = uc->uc_mcontext.gregs[16];
1416
    /* XXX: compute is_write */
1417
    is_write = 0;
1418
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1419
                             is_write,
1420
                             &uc->uc_sigmask, puc);
1421
}
1422

    
1423
#elif defined(__ia64)
1424

    
1425
#ifndef __ISR_VALID
1426
  /* This ought to be in <bits/siginfo.h>... */
1427
# define __ISR_VALID        1
1428
#endif
1429

    
1430
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1431
{
1432
    siginfo_t *info = pinfo;
1433
    struct ucontext *uc = puc;
1434
    unsigned long ip;
1435
    int is_write = 0;
1436

    
1437
    ip = uc->uc_mcontext.sc_ip;
1438
    switch (host_signum) {
1439
      case SIGILL:
1440
      case SIGFPE:
1441
      case SIGSEGV:
1442
      case SIGBUS:
1443
      case SIGTRAP:
1444
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1445
              /* ISR.W (write-access) is bit 33:  */
1446
              is_write = (info->si_isr >> 33) & 1;
1447
          break;
1448

    
1449
      default:
1450
          break;
1451
    }
1452
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1453
                             is_write,
1454
                             &uc->uc_sigmask, puc);
1455
}
1456

    
1457
#elif defined(__s390__)
1458

    
1459
int cpu_signal_handler(int host_signum, void *pinfo, 
1460
                       void *puc)
1461
{
1462
    siginfo_t *info = pinfo;
1463
    struct ucontext *uc = puc;
1464
    unsigned long pc;
1465
    int is_write;
1466
    
1467
    pc = uc->uc_mcontext.psw.addr;
1468
    /* XXX: compute is_write */
1469
    is_write = 0;
1470
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1471
                             is_write,
1472
                             &uc->uc_sigmask, puc);
1473
}
1474

    
1475
#else
1476

    
1477
#error host CPU specific signal handler needed
1478

    
1479
#endif
1480

    
1481
#endif /* !defined(CONFIG_SOFTMMU) */