Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ 86cc1ce0

History | View | Annotate | Download (56.7 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21

    
22
#include "op_helper.h"
23

    
24
#define MEMSUFFIX _raw
25
#include "op_helper.h"
26
#include "op_helper_mem.h"
27
#if !defined(CONFIG_USER_ONLY)
28
#define MEMSUFFIX _user
29
#include "op_helper.h"
30
#include "op_helper_mem.h"
31
#define MEMSUFFIX _kernel
32
#include "op_helper.h"
33
#include "op_helper_mem.h"
34
#endif
35

    
36
//#define DEBUG_OP
37
//#define DEBUG_EXCEPTIONS
38
//#define DEBUG_SOFTWARE_TLB
39
//#define FLUSH_ALL_TLBS
40

    
41
/*****************************************************************************/
42
/* Exceptions processing helpers */
43
void cpu_loop_exit (void)
44
{
45
    longjmp(env->jmp_env, 1);
46
}
47

    
48
void do_raise_exception_err (uint32_t exception, int error_code)
49
{
50
#if 0
51
    printf("Raise exception %3x code : %d\n", exception, error_code);
52
#endif
53
    switch (exception) {
54
    case EXCP_PROGRAM:
55
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
56
            return;
57
        break;
58
    default:
59
        break;
60
    }
61
    env->exception_index = exception;
62
    env->error_code = error_code;
63
    cpu_loop_exit();
64
}
65

    
66
void do_raise_exception (uint32_t exception)
67
{
68
    do_raise_exception_err(exception, 0);
69
}
70

    
71
/*****************************************************************************/
72
/* Registers load and stores */
73
void do_load_cr (void)
74
{
75
    T0 = (env->crf[0] << 28) |
76
        (env->crf[1] << 24) |
77
        (env->crf[2] << 20) |
78
        (env->crf[3] << 16) |
79
        (env->crf[4] << 12) |
80
        (env->crf[5] << 8) |
81
        (env->crf[6] << 4) |
82
        (env->crf[7] << 0);
83
}
84

    
85
void do_store_cr (uint32_t mask)
86
{
87
    int i, sh;
88

    
89
    for (i = 0, sh = 7; i < 8; i++, sh --) {
90
        if (mask & (1 << sh))
91
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
92
    }
93
}
94

    
95
void do_load_xer (void)
96
{
97
    T0 = (xer_so << XER_SO) |
98
        (xer_ov << XER_OV) |
99
        (xer_ca << XER_CA) |
100
        (xer_bc << XER_BC) |
101
        (xer_cmp << XER_CMP);
102
}
103

    
104
void do_store_xer (void)
105
{
106
    xer_so = (T0 >> XER_SO) & 0x01;
107
    xer_ov = (T0 >> XER_OV) & 0x01;
108
    xer_ca = (T0 >> XER_CA) & 0x01;
109
    xer_cmp = (T0 >> XER_CMP) & 0xFF;
110
    xer_bc = (T0 >> XER_BC) & 0x7F;
111
}
112

    
113
void do_load_fpscr (void)
114
{
115
    /* The 32 MSB of the target fpr are undefined.
116
     * They'll be zero...
117
     */
118
    union {
119
        float64 d;
120
        struct {
121
            uint32_t u[2];
122
        } s;
123
    } u;
124
    int i;
125

    
126
#if defined(WORDS_BIGENDIAN)
127
#define WORD0 0
128
#define WORD1 1
129
#else
130
#define WORD0 1
131
#define WORD1 0
132
#endif
133
    u.s.u[WORD0] = 0;
134
    u.s.u[WORD1] = 0;
135
    for (i = 0; i < 8; i++)
136
        u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
137
    FT0 = u.d;
138
}
139

    
140
void do_store_fpscr (uint32_t mask)
141
{
142
    /*
143
     * We use only the 32 LSB of the incoming fpr
144
     */
145
    union {
146
        double d;
147
        struct {
148
            uint32_t u[2];
149
        } s;
150
    } u;
151
    int i, rnd_type;
152

    
153
    u.d = FT0;
154
    if (mask & 0x80)
155
        env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
156
    for (i = 1; i < 7; i++) {
157
        if (mask & (1 << (7 - i)))
158
            env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
159
    }
160
    /* TODO: update FEX & VX */
161
    /* Set rounding mode */
162
    switch (env->fpscr[0] & 0x3) {
163
    case 0:
164
        /* Best approximation (round to nearest) */
165
        rnd_type = float_round_nearest_even;
166
        break;
167
    case 1:
168
        /* Smaller magnitude (round toward zero) */
169
        rnd_type = float_round_to_zero;
170
        break;
171
    case 2:
172
        /* Round toward +infinite */
173
        rnd_type = float_round_up;
174
        break;
175
    default:
176
    case 3:
177
        /* Round toward -infinite */
178
        rnd_type = float_round_down;
179
        break;
180
    }
181
    set_float_rounding_mode(rnd_type, &env->fp_status);
182
}
183

    
184
/*****************************************************************************/
185
/* Fixed point operations helpers */
186
#if defined(TARGET_PPC64)
187
static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
188
{
189
    *plow += a;
190
    /* carry test */
191
    if (*plow < a)
192
        (*phigh)++;
193
    *phigh += b;
194
}
195

    
196
static void neg128 (uint64_t *plow, uint64_t *phigh)
197
{
198
    *plow = ~ *plow;
199
    *phigh = ~ *phigh;
200
    add128(plow, phigh, 1, 0);
201
}
202

    
203
static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
204
{
205
    uint32_t a0, a1, b0, b1;
206
    uint64_t v;
207

    
208
    a0 = a;
209
    a1 = a >> 32;
210

    
211
    b0 = b;
212
    b1 = b >> 32;
213
    
214
    v = (uint64_t)a0 * (uint64_t)b0;
215
    *plow = v;
216
    *phigh = 0;
217

    
218
    v = (uint64_t)a0 * (uint64_t)b1;
219
    add128(plow, phigh, v << 32, v >> 32);
220

    
221
    v = (uint64_t)a1 * (uint64_t)b0;
222
    add128(plow, phigh, v << 32, v >> 32);
223

    
224
    v = (uint64_t)a1 * (uint64_t)b1;
225
    *phigh += v;
226
#if defined(DEBUG_MULDIV)
227
    printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
228
           a, b, *phigh, *plow);
229
#endif
230
}
231

    
232
void do_mul64 (uint64_t *plow, uint64_t *phigh)
233
{
234
    mul64(plow, phigh, T0, T1);
235
}
236

    
237
static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
238
{
239
    int sa, sb;
240
    sa = (a < 0);
241
    if (sa)
242
        a = -a;
243
    sb = (b < 0);
244
    if (sb)
245
        b = -b;
246
    mul64(plow, phigh, a, b);
247
    if (sa ^ sb) {
248
        neg128(plow, phigh);
249
    }
250
}
251

    
252
void do_imul64 (uint64_t *plow, uint64_t *phigh)
253
{
254
    imul64(plow, phigh, T0, T1);
255
}
256
#endif
257

    
258
void do_adde (void)
259
{
260
    T2 = T0;
261
    T0 += T1 + xer_ca;
262
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
263
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
264
        xer_ca = 0;
265
    } else {
266
        xer_ca = 1;
267
    }
268
}
269

    
270
#if defined(TARGET_PPC64)
271
void do_adde_64 (void)
272
{
273
    T2 = T0;
274
    T0 += T1 + xer_ca;
275
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
276
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
277
        xer_ca = 0;
278
    } else {
279
        xer_ca = 1;
280
    }
281
}
282
#endif
283

    
284
void do_addmeo (void)
285
{
286
    T1 = T0;
287
    T0 += xer_ca + (-1);
288
    if (likely(!((uint32_t)T1 &
289
                 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
290
        xer_ov = 0;
291
    } else {
292
        xer_so = 1;
293
        xer_ov = 1;
294
    }
295
    if (likely(T1 != 0))
296
        xer_ca = 1;
297
}
298

    
299
#if defined(TARGET_PPC64)
300
void do_addmeo_64 (void)
301
{
302
    T1 = T0;
303
    T0 += xer_ca + (-1);
304
    if (likely(!((uint64_t)T1 &
305
                 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
306
        xer_ov = 0;
307
    } else {
308
        xer_so = 1;
309
        xer_ov = 1;
310
    }
311
    if (likely(T1 != 0))
312
        xer_ca = 1;
313
}
314
#endif
315

    
316
void do_divwo (void)
317
{
318
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
319
                 (int32_t)T1 == 0))) {
320
        xer_ov = 0;
321
        T0 = (int32_t)T0 / (int32_t)T1;
322
    } else {
323
        xer_so = 1;
324
        xer_ov = 1;
325
        T0 = (-1) * ((uint32_t)T0 >> 31);
326
    }
327
}
328

    
329
#if defined(TARGET_PPC64)
330
void do_divdo (void)
331
{
332
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
333
                 (int64_t)T1 == 0))) {
334
        xer_ov = 0;
335
        T0 = (int64_t)T0 / (int64_t)T1;
336
    } else {
337
        xer_so = 1;
338
        xer_ov = 1;
339
        T0 = (-1ULL) * ((uint64_t)T0 >> 63);
340
    }
341
}
342
#endif
343

    
344
void do_divwuo (void)
345
{
346
    if (likely((uint32_t)T1 != 0)) {
347
        xer_ov = 0;
348
        T0 = (uint32_t)T0 / (uint32_t)T1;
349
    } else {
350
        xer_so = 1;
351
        xer_ov = 1;
352
        T0 = 0;
353
    }
354
}
355

    
356
#if defined(TARGET_PPC64)
357
void do_divduo (void)
358
{
359
    if (likely((uint64_t)T1 != 0)) {
360
        xer_ov = 0;
361
        T0 = (uint64_t)T0 / (uint64_t)T1;
362
    } else {
363
        xer_so = 1;
364
        xer_ov = 1;
365
        T0 = 0;
366
    }
367
}
368
#endif
369

    
370
void do_mullwo (void)
371
{
372
    int64_t res = (int64_t)T0 * (int64_t)T1;
373

    
374
    if (likely((int32_t)res == res)) {
375
        xer_ov = 0;
376
    } else {
377
        xer_ov = 1;
378
        xer_so = 1;
379
    }
380
    T0 = (int32_t)res;
381
}
382

    
383
#if defined(TARGET_PPC64)
384
void do_mulldo (void)
385
{
386
    int64_t th;
387
    uint64_t tl;
388

    
389
    do_imul64(&tl, &th);
390
    if (likely(th == 0)) {
391
        xer_ov = 0;
392
    } else {
393
        xer_ov = 1;
394
        xer_so = 1;
395
    }
396
    T0 = (int64_t)tl;
397
}
398
#endif
399

    
400
void do_nego (void)
401
{
402
    if (likely((int32_t)T0 != INT32_MIN)) {
403
        xer_ov = 0;
404
        T0 = -(int32_t)T0;
405
    } else {
406
        xer_ov = 1;
407
        xer_so = 1;
408
    }
409
}
410

    
411
#if defined(TARGET_PPC64)
412
void do_nego_64 (void)
413
{
414
    if (likely((int64_t)T0 != INT64_MIN)) {
415
        xer_ov = 0;
416
        T0 = -(int64_t)T0;
417
    } else {
418
        xer_ov = 1;
419
        xer_so = 1;
420
    }
421
}
422
#endif
423

    
424
void do_subfe (void)
425
{
426
    T0 = T1 + ~T0 + xer_ca;
427
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
428
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
429
        xer_ca = 0;
430
    } else {
431
        xer_ca = 1;
432
    }
433
}
434

    
435
#if defined(TARGET_PPC64)
436
void do_subfe_64 (void)
437
{
438
    T0 = T1 + ~T0 + xer_ca;
439
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
440
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
441
        xer_ca = 0;
442
    } else {
443
        xer_ca = 1;
444
    }
445
}
446
#endif
447

    
448
void do_subfmeo (void)
449
{
450
    T1 = T0;
451
    T0 = ~T0 + xer_ca - 1;
452
    if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
453
                 (1UL << 31)))) {
454
        xer_ov = 0;
455
    } else {
456
        xer_so = 1;
457
        xer_ov = 1;
458
    }
459
    if (likely((uint32_t)T1 != UINT32_MAX))
460
        xer_ca = 1;
461
}
462

    
463
#if defined(TARGET_PPC64)
464
void do_subfmeo_64 (void)
465
{
466
    T1 = T0;
467
    T0 = ~T0 + xer_ca - 1;
468
    if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
469
                 (1ULL << 63)))) {
470
        xer_ov = 0;
471
    } else {
472
        xer_so = 1;
473
        xer_ov = 1;
474
    }
475
    if (likely((uint64_t)T1 != UINT64_MAX))
476
        xer_ca = 1;
477
}
478
#endif
479

    
480
void do_subfzeo (void)
481
{
482
    T1 = T0;
483
    T0 = ~T0 + xer_ca;
484
    if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
485
                 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
486
        xer_ov = 0;
487
    } else {
488
        xer_ov = 1;
489
        xer_so = 1;
490
    }
491
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
492
        xer_ca = 0;
493
    } else {
494
        xer_ca = 1;
495
    }
496
}
497

    
498
#if defined(TARGET_PPC64)
499
void do_subfzeo_64 (void)
500
{
501
    T1 = T0;
502
    T0 = ~T0 + xer_ca;
503
    if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
504
                 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
505
        xer_ov = 0;
506
    } else {
507
        xer_ov = 1;
508
        xer_so = 1;
509
    }
510
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
511
        xer_ca = 0;
512
    } else {
513
        xer_ca = 1;
514
    }
515
}
516
#endif
517

    
518
/* shift right arithmetic helper */
519
void do_sraw (void)
520
{
521
    int32_t ret;
522

    
523
    if (likely(!(T1 & 0x20UL))) {
524
        if (likely((uint32_t)T1 != 0)) {
525
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
526
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
527
                xer_ca = 0;
528
            } else {
529
                xer_ca = 1;
530
            }
531
        } else {
532
            ret = T0;
533
            xer_ca = 0;
534
        }
535
    } else {
536
        ret = (-1) * ((uint32_t)T0 >> 31);
537
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
538
            xer_ca = 0;
539
        } else {
540
            xer_ca = 1;
541
        }
542
    }
543
    T0 = ret;
544
}
545

    
546
#if defined(TARGET_PPC64)
547
void do_srad (void)
548
{
549
    int64_t ret;
550

    
551
    if (likely(!(T1 & 0x40UL))) {
552
        if (likely((uint64_t)T1 != 0)) {
553
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
554
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
555
                xer_ca = 0;
556
            } else {
557
                xer_ca = 1;
558
            }
559
        } else {
560
            ret = T0;
561
            xer_ca = 0;
562
        }
563
    } else {
564
        ret = (-1) * ((uint64_t)T0 >> 63);
565
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
566
            xer_ca = 0;
567
        } else {
568
            xer_ca = 1;
569
        }
570
    }
571
    T0 = ret;
572
}
573
#endif
574

    
575
static inline int popcnt (uint32_t val)
576
{
577
    int i;
578

    
579
    for (i = 0; val != 0;)
580
        val = val ^ (val - 1);
581

    
582
    return i;
583
}
584

    
585
void do_popcntb (void)
586
{
587
    uint32_t ret;
588
    int i;
589

    
590
    ret = 0;
591
    for (i = 0; i < 32; i += 8)
592
        ret |= popcnt((T0 >> i) & 0xFF) << i;
593
    T0 = ret;
594
}
595

    
596
#if defined(TARGET_PPC64)
597
void do_popcntb_64 (void)
598
{
599
    uint64_t ret;
600
    int i;
601

    
602
    ret = 0;
603
    for (i = 0; i < 64; i += 8)
604
        ret |= popcnt((T0 >> i) & 0xFF) << i;
605
    T0 = ret;
606
}
607
#endif
608

    
609
/*****************************************************************************/
610
/* Floating point operations helpers */
611
void do_fctiw (void)
612
{
613
    union {
614
        double d;
615
        uint64_t i;
616
    } p;
617

    
618
    p.i = float64_to_int32(FT0, &env->fp_status);
619
#if USE_PRECISE_EMULATION
620
    /* XXX: higher bits are not supposed to be significant.
621
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
622
     */
623
    p.i |= 0xFFF80000ULL << 32;
624
#endif
625
    FT0 = p.d;
626
}
627

    
628
void do_fctiwz (void)
629
{
630
    union {
631
        double d;
632
        uint64_t i;
633
    } p;
634

    
635
    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
636
#if USE_PRECISE_EMULATION
637
    /* XXX: higher bits are not supposed to be significant.
638
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
639
     */
640
    p.i |= 0xFFF80000ULL << 32;
641
#endif
642
    FT0 = p.d;
643
}
644

    
645
#if defined(TARGET_PPC64)
646
void do_fcfid (void)
647
{
648
    union {
649
        double d;
650
        uint64_t i;
651
    } p;
652

    
653
    p.d = FT0;
654
    FT0 = int64_to_float64(p.i, &env->fp_status);
655
}
656

    
657
void do_fctid (void)
658
{
659
    union {
660
        double d;
661
        uint64_t i;
662
    } p;
663

    
664
    p.i = float64_to_int64(FT0, &env->fp_status);
665
    FT0 = p.d;
666
}
667

    
668
void do_fctidz (void)
669
{
670
    union {
671
        double d;
672
        uint64_t i;
673
    } p;
674

    
675
    p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
676
    FT0 = p.d;
677
}
678

    
679
#endif
680

    
681
#if USE_PRECISE_EMULATION
682
void do_fmadd (void)
683
{
684
#ifdef FLOAT128
685
    float128 ft0_128, ft1_128;
686

    
687
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
688
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
689
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
690
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
691
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
692
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
693
#else
694
    /* This is OK on x86 hosts */
695
    FT0 = (FT0 * FT1) + FT2;
696
#endif
697
}
698

    
699
void do_fmsub (void)
700
{
701
#ifdef FLOAT128
702
    float128 ft0_128, ft1_128;
703

    
704
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
705
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
706
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
707
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
708
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
709
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
710
#else
711
    /* This is OK on x86 hosts */
712
    FT0 = (FT0 * FT1) - FT2;
713
#endif
714
}
715
#endif /* USE_PRECISE_EMULATION */
716

    
717
void do_fnmadd (void)
718
{
719
#if USE_PRECISE_EMULATION
720
#ifdef FLOAT128
721
    float128 ft0_128, ft1_128;
722

    
723
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
724
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
725
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
726
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
727
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
728
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
729
#else
730
    /* This is OK on x86 hosts */
731
    FT0 = (FT0 * FT1) + FT2;
732
#endif
733
#else
734
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
735
    FT0 = float64_add(FT0, FT2, &env->fp_status);
736
#endif
737
    if (likely(!isnan(FT0)))
738
        FT0 = float64_chs(FT0);
739
}
740

    
741
void do_fnmsub (void)
742
{
743
#if USE_PRECISE_EMULATION
744
#ifdef FLOAT128
745
    float128 ft0_128, ft1_128;
746

    
747
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
748
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
749
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
750
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
751
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
752
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
753
#else
754
    /* This is OK on x86 hosts */
755
    FT0 = (FT0 * FT1) - FT2;
756
#endif
757
#else
758
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
759
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
760
#endif
761
    if (likely(!isnan(FT0)))
762
        FT0 = float64_chs(FT0);
763
}
764

    
765
void do_fsqrt (void)
766
{
767
    FT0 = float64_sqrt(FT0, &env->fp_status);
768
}
769

    
770
void do_fres (void)
771
{
772
    union {
773
        double d;
774
        uint64_t i;
775
    } p;
776

    
777
    if (likely(isnormal(FT0))) {
778
#if USE_PRECISE_EMULATION
779
        FT0 = float64_div(1.0, FT0, &env->fp_status);
780
        FT0 = float64_to_float32(FT0, &env->fp_status);
781
#else
782
        FT0 = float32_div(1.0, FT0, &env->fp_status);
783
#endif
784
    } else {
785
        p.d = FT0;
786
        if (p.i == 0x8000000000000000ULL) {
787
            p.i = 0xFFF0000000000000ULL;
788
        } else if (p.i == 0x0000000000000000ULL) {
789
            p.i = 0x7FF0000000000000ULL;
790
        } else if (isnan(FT0)) {
791
            p.i = 0x7FF8000000000000ULL;
792
        } else if (FT0 < 0.0) {
793
            p.i = 0x8000000000000000ULL;
794
        } else {
795
            p.i = 0x0000000000000000ULL;
796
        }
797
        FT0 = p.d;
798
    }
799
}
800

    
801
void do_frsqrte (void)
802
{
803
    union {
804
        double d;
805
        uint64_t i;
806
    } p;
807

    
808
    if (likely(isnormal(FT0) && FT0 > 0.0)) {
809
        FT0 = float64_sqrt(FT0, &env->fp_status);
810
        FT0 = float32_div(1.0, FT0, &env->fp_status);
811
    } else {
812
        p.d = FT0;
813
        if (p.i == 0x8000000000000000ULL) {
814
            p.i = 0xFFF0000000000000ULL;
815
        } else if (p.i == 0x0000000000000000ULL) {
816
            p.i = 0x7FF0000000000000ULL;
817
        } else if (isnan(FT0)) {
818
            if (!(p.i & 0x0008000000000000ULL))
819
                p.i |= 0x000FFFFFFFFFFFFFULL;
820
        } else if (FT0 < 0) {
821
            p.i = 0x7FF8000000000000ULL;
822
        } else {
823
            p.i = 0x0000000000000000ULL;
824
        }
825
        FT0 = p.d;
826
    }
827
}
828

    
829
void do_fsel (void)
830
{
831
    if (FT0 >= 0)
832
        FT0 = FT1;
833
    else
834
        FT0 = FT2;
835
}
836

    
837
void do_fcmpu (void)
838
{
839
    if (likely(!isnan(FT0) && !isnan(FT1))) {
840
        if (float64_lt(FT0, FT1, &env->fp_status)) {
841
            T0 = 0x08UL;
842
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
843
            T0 = 0x04UL;
844
        } else {
845
            T0 = 0x02UL;
846
        }
847
    } else {
848
        T0 = 0x01UL;
849
        env->fpscr[4] |= 0x1;
850
        env->fpscr[6] |= 0x1;
851
    }
852
    env->fpscr[3] = T0;
853
}
854

    
855
void do_fcmpo (void)
856
{
857
    env->fpscr[4] &= ~0x1;
858
    if (likely(!isnan(FT0) && !isnan(FT1))) {
859
        if (float64_lt(FT0, FT1, &env->fp_status)) {
860
            T0 = 0x08UL;
861
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
862
            T0 = 0x04UL;
863
        } else {
864
            T0 = 0x02UL;
865
        }
866
    } else {
867
        T0 = 0x01UL;
868
        env->fpscr[4] |= 0x1;
869
        if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
870
            /* Quiet NaN case */
871
            env->fpscr[6] |= 0x1;
872
            if (!(env->fpscr[1] & 0x8))
873
                env->fpscr[4] |= 0x8;
874
        } else {
875
            env->fpscr[4] |= 0x8;
876
        }
877
    }
878
    env->fpscr[3] = T0;
879
}
880

    
881
#if !defined (CONFIG_USER_ONLY)
882
void do_rfi (void)
883
{
884
#if defined(TARGET_PPC64)
885
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
886
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
887
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
888
    } else {
889
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
890
        ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
891
    }
892
#else
893
    env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
894
    do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
895
#endif
896
#if defined (DEBUG_OP)
897
    dump_rfi();
898
#endif
899
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
900
}
901

    
902
#if defined(TARGET_PPC64)
903
void do_rfid (void)
904
{
905
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
906
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
907
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
908
    } else {
909
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
910
        do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
911
    }
912
#if defined (DEBUG_OP)
913
    dump_rfi();
914
#endif
915
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
916
}
917
#endif
918
#endif
919

    
920
void do_tw (int flags)
921
{
922
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
923
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
924
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
925
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
926
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
927
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
928
    }
929
}
930

    
931
#if defined(TARGET_PPC64)
932
void do_td (int flags)
933
{
934
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
935
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
936
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
937
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
938
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
939
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
940
}
941
#endif
942

    
943
/*****************************************************************************/
944
/* PowerPC 601 specific instructions (POWER bridge) */
945
void do_POWER_abso (void)
946
{
947
    if ((uint32_t)T0 == INT32_MIN) {
948
        T0 = INT32_MAX;
949
        xer_ov = 1;
950
        xer_so = 1;
951
    } else {
952
        T0 = -T0;
953
        xer_ov = 0;
954
    }
955
}
956

    
957
void do_POWER_clcs (void)
958
{
959
    switch (T0) {
960
    case 0x0CUL:
961
        /* Instruction cache line size */
962
        T0 = ICACHE_LINE_SIZE;
963
        break;
964
    case 0x0DUL:
965
        /* Data cache line size */
966
        T0 = DCACHE_LINE_SIZE;
967
        break;
968
    case 0x0EUL:
969
        /* Minimum cache line size */
970
        T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
971
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
972
        break;
973
    case 0x0FUL:
974
        /* Maximum cache line size */
975
        T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
976
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
977
        break;
978
    default:
979
        /* Undefined */
980
        break;
981
    }
982
}
983

    
984
void do_POWER_div (void)
985
{
986
    uint64_t tmp;
987

    
988
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
989
        T0 = (long)((-1) * (T0 >> 31));
990
        env->spr[SPR_MQ] = 0;
991
    } else {
992
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
993
        env->spr[SPR_MQ] = tmp % T1;
994
        T0 = tmp / (int32_t)T1;
995
    }
996
}
997

    
998
void do_POWER_divo (void)
999
{
1000
    int64_t tmp;
1001

    
1002
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1003
        T0 = (long)((-1) * (T0 >> 31));
1004
        env->spr[SPR_MQ] = 0;
1005
        xer_ov = 1;
1006
        xer_so = 1;
1007
    } else {
1008
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1009
        env->spr[SPR_MQ] = tmp % T1;
1010
        tmp /= (int32_t)T1;
1011
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1012
            xer_ov = 1;
1013
            xer_so = 1;
1014
        } else {
1015
            xer_ov = 0;
1016
        }
1017
        T0 = tmp;
1018
    }
1019
}
1020

    
1021
void do_POWER_divs (void)
1022
{
1023
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1024
        T0 = (long)((-1) * (T0 >> 31));
1025
        env->spr[SPR_MQ] = 0;
1026
    } else {
1027
        env->spr[SPR_MQ] = T0 % T1;
1028
        T0 = (int32_t)T0 / (int32_t)T1;
1029
    }
1030
}
1031

    
1032
void do_POWER_divso (void)
1033
{
1034
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1035
        T0 = (long)((-1) * (T0 >> 31));
1036
        env->spr[SPR_MQ] = 0;
1037
        xer_ov = 1;
1038
        xer_so = 1;
1039
    } else {
1040
        T0 = (int32_t)T0 / (int32_t)T1;
1041
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1042
        xer_ov = 0;
1043
    }
1044
}
1045

    
1046
void do_POWER_dozo (void)
1047
{
1048
    if ((int32_t)T1 > (int32_t)T0) {
1049
        T2 = T0;
1050
        T0 = T1 - T0;
1051
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1052
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1053
            xer_so = 1;
1054
            xer_ov = 1;
1055
        } else {
1056
            xer_ov = 0;
1057
        }
1058
    } else {
1059
        T0 = 0;
1060
        xer_ov = 0;
1061
    }
1062
}
1063

    
1064
void do_POWER_maskg (void)
1065
{
1066
    uint32_t ret;
1067

    
1068
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1069
        ret = -1;
1070
    } else {
1071
        ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1072
            (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1073
        if ((uint32_t)T0 > (uint32_t)T1)
1074
            ret = ~ret;
1075
    }
1076
    T0 = ret;
1077
}
1078

    
1079
void do_POWER_mulo (void)
1080
{
1081
    uint64_t tmp;
1082

    
1083
    tmp = (uint64_t)T0 * (uint64_t)T1;
1084
    env->spr[SPR_MQ] = tmp >> 32;
1085
    T0 = tmp;
1086
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1087
        xer_ov = 1;
1088
        xer_so = 1;
1089
    } else {
1090
        xer_ov = 0;
1091
    }
1092
}
1093

    
1094
#if !defined (CONFIG_USER_ONLY)
1095
void do_POWER_rac (void)
1096
{
1097
#if 0
1098
    mmu_ctx_t ctx;
1099

1100
    /* We don't have to generate many instances of this instruction,
1101
     * as rac is supervisor only.
1102
     */
1103
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1104
        T0 = ctx.raddr;
1105
#endif
1106
}
1107

    
1108
void do_POWER_rfsvc (void)
1109
{
1110
    env->nip = env->lr & ~0x00000003UL;
1111
    T0 = env->ctr & 0x0000FFFFUL;
1112
    do_store_msr(env, T0);
1113
#if defined (DEBUG_OP)
1114
    dump_rfi();
1115
#endif
1116
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1117
}
1118

    
1119
/* PowerPC 601 BAT management helper */
1120
void do_store_601_batu (int nr)
1121
{
1122
    do_store_ibatu(env, nr, (uint32_t)T0);
1123
    env->DBAT[0][nr] = env->IBAT[0][nr];
1124
    env->DBAT[1][nr] = env->IBAT[1][nr];
1125
}
1126
#endif
1127

    
1128
/*****************************************************************************/
1129
/* 602 specific instructions */
1130
/* mfrom is the most crazy instruction ever seen, imho ! */
1131
/* Real implementation uses a ROM table. Do the same */
1132
#define USE_MFROM_ROM_TABLE
1133
void do_op_602_mfrom (void)
1134
{
1135
    if (likely(T0 < 602)) {
1136
#if defined(USE_MFROM_ROM_TABLE)
1137
#include "mfrom_table.c"
1138
        T0 = mfrom_ROM_table[T0];
1139
#else
1140
        double d;
1141
        /* Extremly decomposed:
1142
         *                    -T0 / 256
1143
         * T0 = 256 * log10(10          + 1.0) + 0.5
1144
         */
1145
        d = T0;
1146
        d = float64_div(d, 256, &env->fp_status);
1147
        d = float64_chs(d);
1148
        d = exp10(d); // XXX: use float emulation function
1149
        d = float64_add(d, 1.0, &env->fp_status);
1150
        d = log10(d); // XXX: use float emulation function
1151
        d = float64_mul(d, 256, &env->fp_status);
1152
        d = float64_add(d, 0.5, &env->fp_status);
1153
        T0 = float64_round_to_int(d, &env->fp_status);
1154
#endif
1155
    } else {
1156
        T0 = 0;
1157
    }
1158
}
1159

    
1160
/*****************************************************************************/
1161
/* Embedded PowerPC specific helpers */
1162
void do_405_check_ov (void)
1163
{
1164
    if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1165
               !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1166
        xer_ov = 0;
1167
    } else {
1168
        xer_ov = 1;
1169
        xer_so = 1;
1170
    }
1171
}
1172

    
1173
void do_405_check_sat (void)
1174
{
1175
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1176
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1177
        /* Saturate result */
1178
        if (T2 >> 31) {
1179
            T0 = INT32_MIN;
1180
        } else {
1181
            T0 = INT32_MAX;
1182
        }
1183
    }
1184
}
1185

    
1186
#if !defined(CONFIG_USER_ONLY)
1187
void do_40x_rfci (void)
1188
{
1189
    env->nip = env->spr[SPR_40x_SRR2];
1190
    do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
1191
#if defined (DEBUG_OP)
1192
    dump_rfi();
1193
#endif
1194
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1195
}
1196

    
1197
void do_rfci (void)
1198
{
1199
#if defined(TARGET_PPC64)
1200
    if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
1201
        env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
1202
    } else
1203
#endif
1204
    {
1205
        env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
1206
    }
1207
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
1208
#if defined (DEBUG_OP)
1209
    dump_rfi();
1210
#endif
1211
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1212
}
1213

    
1214
void do_rfdi (void)
1215
{
1216
#if defined(TARGET_PPC64)
1217
    if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
1218
        env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
1219
    } else
1220
#endif
1221
    {
1222
        env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
1223
    }
1224
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
1225
#if defined (DEBUG_OP)
1226
    dump_rfi();
1227
#endif
1228
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1229
}
1230

    
1231
void do_rfmci (void)
1232
{
1233
#if defined(TARGET_PPC64)
1234
    if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
1235
        env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
1236
    } else
1237
#endif
1238
    {
1239
        env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
1240
    }
1241
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
1242
#if defined (DEBUG_OP)
1243
    dump_rfi();
1244
#endif
1245
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1246
}
1247

    
1248
void do_load_dcr (void)
1249
{
1250
    target_ulong val;
1251
    
1252
    if (unlikely(env->dcr_read == NULL))
1253
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1254
    else if (unlikely((*env->dcr_read)(env->dcr_env, T0, &val) != 0))
1255
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1256
    else
1257
        T0 = val;
1258
}
1259

    
1260
void do_store_dcr (void)
1261
{
1262
    if (unlikely(env->dcr_write == NULL))
1263
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1264
    else if (unlikely((*env->dcr_write)(env->dcr_env, T0, T1) != 0))
1265
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1266
}
1267

    
1268
void do_load_403_pb (int num)
1269
{
1270
    T0 = env->pb[num];
1271
}
1272

    
1273
void do_store_403_pb (int num)
1274
{
1275
    if (likely(env->pb[num] != T0)) {
1276
        env->pb[num] = T0;
1277
        /* Should be optimized */
1278
        tlb_flush(env, 1);
1279
    }
1280
}
1281
#endif
1282

    
1283
/* 440 specific */
1284
void do_440_dlmzb (void)
1285
{
1286
    target_ulong mask;
1287
    int i;
1288

    
1289
    i = 1;
1290
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1291
        if ((T0 & mask) == 0)
1292
            goto done;
1293
        i++;
1294
    }
1295
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1296
        if ((T1 & mask) == 0)
1297
            break;
1298
        i++;
1299
    }
1300
 done:
1301
    T0 = i;
1302
}
1303

    
1304
#if defined(TARGET_PPCSPE)
1305
/* SPE extension helpers */
1306
/* Use a table to make this quicker */
1307
static uint8_t hbrev[16] = {
1308
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1309
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1310
};
1311

    
1312
static inline uint8_t byte_reverse (uint8_t val)
1313
{
1314
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1315
}
1316

    
1317
static inline uint32_t word_reverse (uint32_t val)
1318
{
1319
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1320
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1321
}
1322

    
1323
#define MASKBITS 16 // Random value - to be fixed
1324
void do_brinc (void)
1325
{
1326
    uint32_t a, b, d, mask;
1327

    
1328
    mask = (uint32_t)(-1UL) >> MASKBITS;
1329
    b = T1_64 & mask;
1330
    a = T0_64 & mask;
1331
    d = word_reverse(1 + word_reverse(a | ~mask));
1332
    T0_64 = (T0_64 & ~mask) | (d & mask);
1333
}
1334

    
1335
#define DO_SPE_OP2(name)                                                      \
1336
void do_ev##name (void)                                                       \
1337
{                                                                             \
1338
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1339
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1340
}
1341

    
1342
#define DO_SPE_OP1(name)                                                      \
1343
void do_ev##name (void)                                                       \
1344
{                                                                             \
1345
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1346
        (uint64_t)_do_e##name(T0_64);                                         \
1347
}
1348

    
1349
/* Fixed-point vector arithmetic */
1350
static inline uint32_t _do_eabs (uint32_t val)
1351
{
1352
    if (val != 0x80000000)
1353
        val &= ~0x80000000;
1354

    
1355
    return val;
1356
}
1357

    
1358
static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1359
{
1360
    return op1 + op2;
1361
}
1362

    
1363
static inline int _do_ecntlsw (uint32_t val)
1364
{
1365
    if (val & 0x80000000)
1366
        return _do_cntlzw(~val);
1367
    else
1368
        return _do_cntlzw(val);
1369
}
1370

    
1371
static inline int _do_ecntlzw (uint32_t val)
1372
{
1373
    return _do_cntlzw(val);
1374
}
1375

    
1376
static inline uint32_t _do_eneg (uint32_t val)
1377
{
1378
    if (val != 0x80000000)
1379
        val ^= 0x80000000;
1380

    
1381
    return val;
1382
}
1383

    
1384
static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1385
{
1386
    return rotl32(op1, op2);
1387
}
1388

    
1389
static inline uint32_t _do_erndw (uint32_t val)
1390
{
1391
    return (val + 0x000080000000) & 0xFFFF0000;
1392
}
1393

    
1394
static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1395
{
1396
    /* No error here: 6 bits are used */
1397
    return op1 << (op2 & 0x3F);
1398
}
1399

    
1400
static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1401
{
1402
    /* No error here: 6 bits are used */
1403
    return op1 >> (op2 & 0x3F);
1404
}
1405

    
1406
static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1407
{
1408
    /* No error here: 6 bits are used */
1409
    return op1 >> (op2 & 0x3F);
1410
}
1411

    
1412
static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1413
{
1414
    return op2 - op1;
1415
}
1416

    
1417
/* evabs */
1418
DO_SPE_OP1(abs);
1419
/* evaddw */
1420
DO_SPE_OP2(addw);
1421
/* evcntlsw */
1422
DO_SPE_OP1(cntlsw);
1423
/* evcntlzw */
1424
DO_SPE_OP1(cntlzw);
1425
/* evneg */
1426
DO_SPE_OP1(neg);
1427
/* evrlw */
1428
DO_SPE_OP2(rlw);
1429
/* evrnd */
1430
DO_SPE_OP1(rndw);
1431
/* evslw */
1432
DO_SPE_OP2(slw);
1433
/* evsrws */
1434
DO_SPE_OP2(srws);
1435
/* evsrwu */
1436
DO_SPE_OP2(srwu);
1437
/* evsubfw */
1438
DO_SPE_OP2(subfw);
1439

    
1440
/* evsel is a little bit more complicated... */
1441
static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1442
{
1443
    if (n)
1444
        return op1;
1445
    else
1446
        return op2;
1447
}
1448

    
1449
void do_evsel (void)
1450
{
1451
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1452
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1453
}
1454

    
1455
/* Fixed-point vector comparisons */
1456
#define DO_SPE_CMP(name)                                                      \
1457
void do_ev##name (void)                                                       \
1458
{                                                                             \
1459
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
1460
                                               T1_64 >> 32) << 32,            \
1461
                         _do_e##name(T0_64, T1_64));                          \
1462
}
1463

    
1464
static inline uint32_t _do_evcmp_merge (int t0, int t1)
1465
{
1466
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1467
}
1468
static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1469
{
1470
    return op1 == op2 ? 1 : 0;
1471
}
1472

    
1473
static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1474
{
1475
    return op1 > op2 ? 1 : 0;
1476
}
1477

    
1478
static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1479
{
1480
    return op1 > op2 ? 1 : 0;
1481
}
1482

    
1483
static inline int _do_ecmplts (int32_t op1, int32_t op2)
1484
{
1485
    return op1 < op2 ? 1 : 0;
1486
}
1487

    
1488
static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1489
{
1490
    return op1 < op2 ? 1 : 0;
1491
}
1492

    
1493
/* evcmpeq */
1494
DO_SPE_CMP(cmpeq);
1495
/* evcmpgts */
1496
DO_SPE_CMP(cmpgts);
1497
/* evcmpgtu */
1498
DO_SPE_CMP(cmpgtu);
1499
/* evcmplts */
1500
DO_SPE_CMP(cmplts);
1501
/* evcmpltu */
1502
DO_SPE_CMP(cmpltu);
1503

    
1504
/* Single precision floating-point conversions from/to integer */
1505
static inline uint32_t _do_efscfsi (int32_t val)
1506
{
1507
    union {
1508
        uint32_t u;
1509
        float32 f;
1510
    } u;
1511

    
1512
    u.f = int32_to_float32(val, &env->spe_status);
1513

    
1514
    return u.u;
1515
}
1516

    
1517
static inline uint32_t _do_efscfui (uint32_t val)
1518
{
1519
    union {
1520
        uint32_t u;
1521
        float32 f;
1522
    } u;
1523

    
1524
    u.f = uint32_to_float32(val, &env->spe_status);
1525

    
1526
    return u.u;
1527
}
1528

    
1529
static inline int32_t _do_efsctsi (uint32_t val)
1530
{
1531
    union {
1532
        int32_t u;
1533
        float32 f;
1534
    } u;
1535

    
1536
    u.u = val;
1537
    /* NaN are not treated the same way IEEE 754 does */
1538
    if (unlikely(isnan(u.f)))
1539
        return 0;
1540

    
1541
    return float32_to_int32(u.f, &env->spe_status);
1542
}
1543

    
1544
static inline uint32_t _do_efsctui (uint32_t val)
1545
{
1546
    union {
1547
        int32_t u;
1548
        float32 f;
1549
    } u;
1550

    
1551
    u.u = val;
1552
    /* NaN are not treated the same way IEEE 754 does */
1553
    if (unlikely(isnan(u.f)))
1554
        return 0;
1555

    
1556
    return float32_to_uint32(u.f, &env->spe_status);
1557
}
1558

    
1559
static inline int32_t _do_efsctsiz (uint32_t val)
1560
{
1561
    union {
1562
        int32_t u;
1563
        float32 f;
1564
    } u;
1565

    
1566
    u.u = val;
1567
    /* NaN are not treated the same way IEEE 754 does */
1568
    if (unlikely(isnan(u.f)))
1569
        return 0;
1570

    
1571
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1572
}
1573

    
1574
static inline uint32_t _do_efsctuiz (uint32_t val)
1575
{
1576
    union {
1577
        int32_t u;
1578
        float32 f;
1579
    } u;
1580

    
1581
    u.u = val;
1582
    /* NaN are not treated the same way IEEE 754 does */
1583
    if (unlikely(isnan(u.f)))
1584
        return 0;
1585

    
1586
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1587
}
1588

    
1589
void do_efscfsi (void)
1590
{
1591
    T0_64 = _do_efscfsi(T0_64);
1592
}
1593

    
1594
void do_efscfui (void)
1595
{
1596
    T0_64 = _do_efscfui(T0_64);
1597
}
1598

    
1599
void do_efsctsi (void)
1600
{
1601
    T0_64 = _do_efsctsi(T0_64);
1602
}
1603

    
1604
void do_efsctui (void)
1605
{
1606
    T0_64 = _do_efsctui(T0_64);
1607
}
1608

    
1609
void do_efsctsiz (void)
1610
{
1611
    T0_64 = _do_efsctsiz(T0_64);
1612
}
1613

    
1614
void do_efsctuiz (void)
1615
{
1616
    T0_64 = _do_efsctuiz(T0_64);
1617
}
1618

    
1619
/* Single precision floating-point conversion to/from fractional */
1620
static inline uint32_t _do_efscfsf (uint32_t val)
1621
{
1622
    union {
1623
        uint32_t u;
1624
        float32 f;
1625
    } u;
1626
    float32 tmp;
1627

    
1628
    u.f = int32_to_float32(val, &env->spe_status);
1629
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1630
    u.f = float32_div(u.f, tmp, &env->spe_status);
1631

    
1632
    return u.u;
1633
}
1634

    
1635
static inline uint32_t _do_efscfuf (uint32_t val)
1636
{
1637
    union {
1638
        uint32_t u;
1639
        float32 f;
1640
    } u;
1641
    float32 tmp;
1642

    
1643
    u.f = uint32_to_float32(val, &env->spe_status);
1644
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1645
    u.f = float32_div(u.f, tmp, &env->spe_status);
1646

    
1647
    return u.u;
1648
}
1649

    
1650
static inline int32_t _do_efsctsf (uint32_t val)
1651
{
1652
    union {
1653
        int32_t u;
1654
        float32 f;
1655
    } u;
1656
    float32 tmp;
1657

    
1658
    u.u = val;
1659
    /* NaN are not treated the same way IEEE 754 does */
1660
    if (unlikely(isnan(u.f)))
1661
        return 0;
1662
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1663
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1664

    
1665
    return float32_to_int32(u.f, &env->spe_status);
1666
}
1667

    
1668
static inline uint32_t _do_efsctuf (uint32_t val)
1669
{
1670
    union {
1671
        int32_t u;
1672
        float32 f;
1673
    } u;
1674
    float32 tmp;
1675

    
1676
    u.u = val;
1677
    /* NaN are not treated the same way IEEE 754 does */
1678
    if (unlikely(isnan(u.f)))
1679
        return 0;
1680
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1681
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1682

    
1683
    return float32_to_uint32(u.f, &env->spe_status);
1684
}
1685

    
1686
static inline int32_t _do_efsctsfz (uint32_t val)
1687
{
1688
    union {
1689
        int32_t u;
1690
        float32 f;
1691
    } u;
1692
    float32 tmp;
1693

    
1694
    u.u = val;
1695
    /* NaN are not treated the same way IEEE 754 does */
1696
    if (unlikely(isnan(u.f)))
1697
        return 0;
1698
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1699
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1700

    
1701
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1702
}
1703

    
1704
static inline uint32_t _do_efsctufz (uint32_t val)
1705
{
1706
    union {
1707
        int32_t u;
1708
        float32 f;
1709
    } u;
1710
    float32 tmp;
1711

    
1712
    u.u = val;
1713
    /* NaN are not treated the same way IEEE 754 does */
1714
    if (unlikely(isnan(u.f)))
1715
        return 0;
1716
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1717
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1718

    
1719
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1720
}
1721

    
1722
void do_efscfsf (void)
1723
{
1724
    T0_64 = _do_efscfsf(T0_64);
1725
}
1726

    
1727
void do_efscfuf (void)
1728
{
1729
    T0_64 = _do_efscfuf(T0_64);
1730
}
1731

    
1732
void do_efsctsf (void)
1733
{
1734
    T0_64 = _do_efsctsf(T0_64);
1735
}
1736

    
1737
void do_efsctuf (void)
1738
{
1739
    T0_64 = _do_efsctuf(T0_64);
1740
}
1741

    
1742
void do_efsctsfz (void)
1743
{
1744
    T0_64 = _do_efsctsfz(T0_64);
1745
}
1746

    
1747
void do_efsctufz (void)
1748
{
1749
    T0_64 = _do_efsctufz(T0_64);
1750
}
1751

    
1752
/* Double precision floating point helpers */
1753
static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1754
{
1755
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1756
    return _do_efdtstlt(op1, op2);
1757
}
1758

    
1759
static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1760
{
1761
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1762
    return _do_efdtstgt(op1, op2);
1763
}
1764

    
1765
static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1766
{
1767
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1768
    return _do_efdtsteq(op1, op2);
1769
}
1770

    
1771
void do_efdcmplt (void)
1772
{
1773
    T0 = _do_efdcmplt(T0_64, T1_64);
1774
}
1775

    
1776
void do_efdcmpgt (void)
1777
{
1778
    T0 = _do_efdcmpgt(T0_64, T1_64);
1779
}
1780

    
1781
void do_efdcmpeq (void)
1782
{
1783
    T0 = _do_efdcmpeq(T0_64, T1_64);
1784
}
1785

    
1786
/* Double precision floating-point conversion to/from integer */
1787
static inline uint64_t _do_efdcfsi (int64_t val)
1788
{
1789
    union {
1790
        uint64_t u;
1791
        float64 f;
1792
    } u;
1793

    
1794
    u.f = int64_to_float64(val, &env->spe_status);
1795

    
1796
    return u.u;
1797
}
1798

    
1799
static inline uint64_t _do_efdcfui (uint64_t val)
1800
{
1801
    union {
1802
        uint64_t u;
1803
        float64 f;
1804
    } u;
1805

    
1806
    u.f = uint64_to_float64(val, &env->spe_status);
1807

    
1808
    return u.u;
1809
}
1810

    
1811
static inline int64_t _do_efdctsi (uint64_t val)
1812
{
1813
    union {
1814
        int64_t u;
1815
        float64 f;
1816
    } u;
1817

    
1818
    u.u = val;
1819
    /* NaN are not treated the same way IEEE 754 does */
1820
    if (unlikely(isnan(u.f)))
1821
        return 0;
1822

    
1823
    return float64_to_int64(u.f, &env->spe_status);
1824
}
1825

    
1826
static inline uint64_t _do_efdctui (uint64_t val)
1827
{
1828
    union {
1829
        int64_t u;
1830
        float64 f;
1831
    } u;
1832

    
1833
    u.u = val;
1834
    /* NaN are not treated the same way IEEE 754 does */
1835
    if (unlikely(isnan(u.f)))
1836
        return 0;
1837

    
1838
    return float64_to_uint64(u.f, &env->spe_status);
1839
}
1840

    
1841
static inline int64_t _do_efdctsiz (uint64_t val)
1842
{
1843
    union {
1844
        int64_t u;
1845
        float64 f;
1846
    } u;
1847

    
1848
    u.u = val;
1849
    /* NaN are not treated the same way IEEE 754 does */
1850
    if (unlikely(isnan(u.f)))
1851
        return 0;
1852

    
1853
    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1854
}
1855

    
1856
static inline uint64_t _do_efdctuiz (uint64_t val)
1857
{
1858
    union {
1859
        int64_t u;
1860
        float64 f;
1861
    } u;
1862

    
1863
    u.u = val;
1864
    /* NaN are not treated the same way IEEE 754 does */
1865
    if (unlikely(isnan(u.f)))
1866
        return 0;
1867

    
1868
    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1869
}
1870

    
1871
void do_efdcfsi (void)
1872
{
1873
    T0_64 = _do_efdcfsi(T0_64);
1874
}
1875

    
1876
void do_efdcfui (void)
1877
{
1878
    T0_64 = _do_efdcfui(T0_64);
1879
}
1880

    
1881
void do_efdctsi (void)
1882
{
1883
    T0_64 = _do_efdctsi(T0_64);
1884
}
1885

    
1886
void do_efdctui (void)
1887
{
1888
    T0_64 = _do_efdctui(T0_64);
1889
}
1890

    
1891
void do_efdctsiz (void)
1892
{
1893
    T0_64 = _do_efdctsiz(T0_64);
1894
}
1895

    
1896
void do_efdctuiz (void)
1897
{
1898
    T0_64 = _do_efdctuiz(T0_64);
1899
}
1900

    
1901
/* Double precision floating-point conversion to/from fractional */
1902
static inline uint64_t _do_efdcfsf (int64_t val)
1903
{
1904
    union {
1905
        uint64_t u;
1906
        float64 f;
1907
    } u;
1908
    float64 tmp;
1909

    
1910
    u.f = int32_to_float64(val, &env->spe_status);
1911
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1912
    u.f = float64_div(u.f, tmp, &env->spe_status);
1913

    
1914
    return u.u;
1915
}
1916

    
1917
static inline uint64_t _do_efdcfuf (uint64_t val)
1918
{
1919
    union {
1920
        uint64_t u;
1921
        float64 f;
1922
    } u;
1923
    float64 tmp;
1924

    
1925
    u.f = uint32_to_float64(val, &env->spe_status);
1926
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1927
    u.f = float64_div(u.f, tmp, &env->spe_status);
1928

    
1929
    return u.u;
1930
}
1931

    
1932
static inline int64_t _do_efdctsf (uint64_t val)
1933
{
1934
    union {
1935
        int64_t u;
1936
        float64 f;
1937
    } u;
1938
    float64 tmp;
1939

    
1940
    u.u = val;
1941
    /* NaN are not treated the same way IEEE 754 does */
1942
    if (unlikely(isnan(u.f)))
1943
        return 0;
1944
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1945
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1946

    
1947
    return float64_to_int32(u.f, &env->spe_status);
1948
}
1949

    
1950
static inline uint64_t _do_efdctuf (uint64_t val)
1951
{
1952
    union {
1953
        int64_t u;
1954
        float64 f;
1955
    } u;
1956
    float64 tmp;
1957

    
1958
    u.u = val;
1959
    /* NaN are not treated the same way IEEE 754 does */
1960
    if (unlikely(isnan(u.f)))
1961
        return 0;
1962
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1963
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1964

    
1965
    return float64_to_uint32(u.f, &env->spe_status);
1966
}
1967

    
1968
static inline int64_t _do_efdctsfz (uint64_t val)
1969
{
1970
    union {
1971
        int64_t u;
1972
        float64 f;
1973
    } u;
1974
    float64 tmp;
1975

    
1976
    u.u = val;
1977
    /* NaN are not treated the same way IEEE 754 does */
1978
    if (unlikely(isnan(u.f)))
1979
        return 0;
1980
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1981
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1982

    
1983
    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
1984
}
1985

    
1986
static inline uint64_t _do_efdctufz (uint64_t val)
1987
{
1988
    union {
1989
        int64_t u;
1990
        float64 f;
1991
    } u;
1992
    float64 tmp;
1993

    
1994
    u.u = val;
1995
    /* NaN are not treated the same way IEEE 754 does */
1996
    if (unlikely(isnan(u.f)))
1997
        return 0;
1998
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1999
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2000

    
2001
    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2002
}
2003

    
2004
void do_efdcfsf (void)
2005
{
2006
    T0_64 = _do_efdcfsf(T0_64);
2007
}
2008

    
2009
void do_efdcfuf (void)
2010
{
2011
    T0_64 = _do_efdcfuf(T0_64);
2012
}
2013

    
2014
void do_efdctsf (void)
2015
{
2016
    T0_64 = _do_efdctsf(T0_64);
2017
}
2018

    
2019
void do_efdctuf (void)
2020
{
2021
    T0_64 = _do_efdctuf(T0_64);
2022
}
2023

    
2024
void do_efdctsfz (void)
2025
{
2026
    T0_64 = _do_efdctsfz(T0_64);
2027
}
2028

    
2029
void do_efdctufz (void)
2030
{
2031
    T0_64 = _do_efdctufz(T0_64);
2032
}
2033

    
2034
/* Floating point conversion between single and double precision */
2035
static inline uint32_t _do_efscfd (uint64_t val)
2036
{
2037
    union {
2038
        uint64_t u;
2039
        float64 f;
2040
    } u1;
2041
    union {
2042
        uint32_t u;
2043
        float32 f;
2044
    } u2;
2045

    
2046
    u1.u = val;
2047
    u2.f = float64_to_float32(u1.f, &env->spe_status);
2048

    
2049
    return u2.u;
2050
}
2051

    
2052
static inline uint64_t _do_efdcfs (uint32_t val)
2053
{
2054
    union {
2055
        uint64_t u;
2056
        float64 f;
2057
    } u2;
2058
    union {
2059
        uint32_t u;
2060
        float32 f;
2061
    } u1;
2062

    
2063
    u1.u = val;
2064
    u2.f = float32_to_float64(u1.f, &env->spe_status);
2065

    
2066
    return u2.u;
2067
}
2068

    
2069
void do_efscfd (void)
2070
{
2071
    T0_64 = _do_efscfd(T0_64);
2072
}
2073

    
2074
void do_efdcfs (void)
2075
{
2076
    T0_64 = _do_efdcfs(T0_64);
2077
}
2078

    
2079
/* Single precision fixed-point vector arithmetic */
2080
/* evfsabs */
2081
DO_SPE_OP1(fsabs);
2082
/* evfsnabs */
2083
DO_SPE_OP1(fsnabs);
2084
/* evfsneg */
2085
DO_SPE_OP1(fsneg);
2086
/* evfsadd */
2087
DO_SPE_OP2(fsadd);
2088
/* evfssub */
2089
DO_SPE_OP2(fssub);
2090
/* evfsmul */
2091
DO_SPE_OP2(fsmul);
2092
/* evfsdiv */
2093
DO_SPE_OP2(fsdiv);
2094

    
2095
/* Single-precision floating-point comparisons */
2096
static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2097
{
2098
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2099
    return _do_efststlt(op1, op2);
2100
}
2101

    
2102
static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2103
{
2104
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2105
    return _do_efststgt(op1, op2);
2106
}
2107

    
2108
static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2109
{
2110
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2111
    return _do_efststeq(op1, op2);
2112
}
2113

    
2114
void do_efscmplt (void)
2115
{
2116
    T0 = _do_efscmplt(T0_64, T1_64);
2117
}
2118

    
2119
void do_efscmpgt (void)
2120
{
2121
    T0 = _do_efscmpgt(T0_64, T1_64);
2122
}
2123

    
2124
void do_efscmpeq (void)
2125
{
2126
    T0 = _do_efscmpeq(T0_64, T1_64);
2127
}
2128

    
2129
/* Single-precision floating-point vector comparisons */
2130
/* evfscmplt */
2131
DO_SPE_CMP(fscmplt);
2132
/* evfscmpgt */
2133
DO_SPE_CMP(fscmpgt);
2134
/* evfscmpeq */
2135
DO_SPE_CMP(fscmpeq);
2136
/* evfststlt */
2137
DO_SPE_CMP(fststlt);
2138
/* evfststgt */
2139
DO_SPE_CMP(fststgt);
2140
/* evfststeq */
2141
DO_SPE_CMP(fststeq);
2142

    
2143
/* Single-precision floating-point vector conversions */
2144
/* evfscfsi */
2145
DO_SPE_OP1(fscfsi);
2146
/* evfscfui */
2147
DO_SPE_OP1(fscfui);
2148
/* evfscfuf */
2149
DO_SPE_OP1(fscfuf);
2150
/* evfscfsf */
2151
DO_SPE_OP1(fscfsf);
2152
/* evfsctsi */
2153
DO_SPE_OP1(fsctsi);
2154
/* evfsctui */
2155
DO_SPE_OP1(fsctui);
2156
/* evfsctsiz */
2157
DO_SPE_OP1(fsctsiz);
2158
/* evfsctuiz */
2159
DO_SPE_OP1(fsctuiz);
2160
/* evfsctsf */
2161
DO_SPE_OP1(fsctsf);
2162
/* evfsctuf */
2163
DO_SPE_OP1(fsctuf);
2164
#endif /* defined(TARGET_PPCSPE) */
2165

    
2166
/*****************************************************************************/
2167
/* Softmmu support */
2168
#if !defined (CONFIG_USER_ONLY)
2169

    
2170
#define MMUSUFFIX _mmu
2171
#define GETPC() (__builtin_return_address(0))
2172

    
2173
#define SHIFT 0
2174
#include "softmmu_template.h"
2175

    
2176
#define SHIFT 1
2177
#include "softmmu_template.h"
2178

    
2179
#define SHIFT 2
2180
#include "softmmu_template.h"
2181

    
2182
#define SHIFT 3
2183
#include "softmmu_template.h"
2184

    
2185
/* try to fill the TLB and return an exception if error. If retaddr is
2186
   NULL, it means that the function was called in C code (i.e. not
2187
   from generated code or from helper.c) */
2188
/* XXX: fix it to restore all registers */
2189
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2190
{
2191
    TranslationBlock *tb;
2192
    CPUState *saved_env;
2193
    target_phys_addr_t pc;
2194
    int ret;
2195

    
2196
    /* XXX: hack to restore env in all cases, even if not called from
2197
       generated code */
2198
    saved_env = env;
2199
    env = cpu_single_env;
2200
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2201
    if (unlikely(ret != 0)) {
2202
        if (likely(retaddr)) {
2203
            /* now we have a real cpu fault */
2204
            pc = (target_phys_addr_t)retaddr;
2205
            tb = tb_find_pc(pc);
2206
            if (likely(tb)) {
2207
                /* the PC is inside the translated code. It means that we have
2208
                   a virtual CPU fault */
2209
                cpu_restore_state(tb, env, pc, NULL);
2210
            }
2211
        }
2212
        do_raise_exception_err(env->exception_index, env->error_code);
2213
    }
2214
    env = saved_env;
2215
}
2216

    
2217
/* TLB invalidation helpers */
2218
void do_tlbia (void)
2219
{
2220
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2221
        ppc6xx_tlb_invalidate_all(env);
2222
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2223
        /* XXX: TODO */
2224
#if 0
2225
        ppcbooke_tlb_invalidate_all(env);
2226
#endif
2227
    } else {
2228
        tlb_flush(env, 1);
2229
    }
2230
}
2231

    
2232
void do_tlbie (void)
2233
{
2234
    T0 = (uint32_t)T0;
2235
#if !defined(FLUSH_ALL_TLBS)
2236
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2237
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2238
        if (env->id_tlbs == 1)
2239
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2240
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2241
        /* XXX: TODO */
2242
#if 0
2243
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2244
                                     env->spr[SPR_BOOKE_PID]);
2245
#endif
2246
    } else {
2247
        /* tlbie invalidate TLBs for all segments */
2248
        T0 &= TARGET_PAGE_MASK;
2249
        T0 &= ~((target_ulong)-1 << 28);
2250
        /* XXX: this case should be optimized,
2251
         * giving a mask to tlb_flush_page
2252
         */
2253
        tlb_flush_page(env, T0 | (0x0 << 28));
2254
        tlb_flush_page(env, T0 | (0x1 << 28));
2255
        tlb_flush_page(env, T0 | (0x2 << 28));
2256
        tlb_flush_page(env, T0 | (0x3 << 28));
2257
        tlb_flush_page(env, T0 | (0x4 << 28));
2258
        tlb_flush_page(env, T0 | (0x5 << 28));
2259
        tlb_flush_page(env, T0 | (0x6 << 28));
2260
        tlb_flush_page(env, T0 | (0x7 << 28));
2261
        tlb_flush_page(env, T0 | (0x8 << 28));
2262
        tlb_flush_page(env, T0 | (0x9 << 28));
2263
        tlb_flush_page(env, T0 | (0xA << 28));
2264
        tlb_flush_page(env, T0 | (0xB << 28));
2265
        tlb_flush_page(env, T0 | (0xC << 28));
2266
        tlb_flush_page(env, T0 | (0xD << 28));
2267
        tlb_flush_page(env, T0 | (0xE << 28));
2268
        tlb_flush_page(env, T0 | (0xF << 28));
2269
    }
2270
#else
2271
    do_tlbia();
2272
#endif
2273
}
2274

    
2275
#if defined(TARGET_PPC64)
2276
void do_tlbie_64 (void)
2277
{
2278
    T0 = (uint64_t)T0;
2279
#if !defined(FLUSH_ALL_TLBS)
2280
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2281
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2282
        if (env->id_tlbs == 1)
2283
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2284
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2285
        /* XXX: TODO */
2286
#if 0
2287
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2288
                                     env->spr[SPR_BOOKE_PID]);
2289
#endif
2290
    } else {
2291
        /* tlbie invalidate TLBs for all segments
2292
         * As we have 2^36 segments, invalidate all qemu TLBs
2293
         */
2294
#if 0
2295
        T0 &= TARGET_PAGE_MASK;
2296
        T0 &= ~((target_ulong)-1 << 28);
2297
        /* XXX: this case should be optimized,
2298
         * giving a mask to tlb_flush_page
2299
         */
2300
        tlb_flush_page(env, T0 | (0x0 << 28));
2301
        tlb_flush_page(env, T0 | (0x1 << 28));
2302
        tlb_flush_page(env, T0 | (0x2 << 28));
2303
        tlb_flush_page(env, T0 | (0x3 << 28));
2304
        tlb_flush_page(env, T0 | (0x4 << 28));
2305
        tlb_flush_page(env, T0 | (0x5 << 28));
2306
        tlb_flush_page(env, T0 | (0x6 << 28));
2307
        tlb_flush_page(env, T0 | (0x7 << 28));
2308
        tlb_flush_page(env, T0 | (0x8 << 28));
2309
        tlb_flush_page(env, T0 | (0x9 << 28));
2310
        tlb_flush_page(env, T0 | (0xA << 28));
2311
        tlb_flush_page(env, T0 | (0xB << 28));
2312
        tlb_flush_page(env, T0 | (0xC << 28));
2313
        tlb_flush_page(env, T0 | (0xD << 28));
2314
        tlb_flush_page(env, T0 | (0xE << 28));
2315
        tlb_flush_page(env, T0 | (0xF << 28));
2316
#else
2317
        tlb_flush(env, 1);
2318
#endif
2319
    }
2320
#else
2321
    do_tlbia();
2322
#endif
2323
}
2324
#endif
2325

    
2326
#if defined(TARGET_PPC64)
2327
void do_slbia (void)
2328
{
2329
    /* XXX: TODO */
2330
    tlb_flush(env, 1);
2331
}
2332

    
2333
void do_slbie (void)
2334
{
2335
    /* XXX: TODO */
2336
    tlb_flush(env, 1);
2337
}
2338
#endif
2339

    
2340
/* Software driven TLBs management */
2341
/* PowerPC 602/603 software TLB load instructions helpers */
2342
void do_load_6xx_tlb (int is_code)
2343
{
2344
    target_ulong RPN, CMP, EPN;
2345
    int way;
2346

    
2347
    RPN = env->spr[SPR_RPA];
2348
    if (is_code) {
2349
        CMP = env->spr[SPR_ICMP];
2350
        EPN = env->spr[SPR_IMISS];
2351
    } else {
2352
        CMP = env->spr[SPR_DCMP];
2353
        EPN = env->spr[SPR_DMISS];
2354
    }
2355
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2356
#if defined (DEBUG_SOFTWARE_TLB)
2357
    if (loglevel != 0) {
2358
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2359
                __func__, (unsigned long)T0, (unsigned long)EPN,
2360
                (unsigned long)CMP, (unsigned long)RPN, way);
2361
    }
2362
#endif
2363
    /* Store this TLB */
2364
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2365
                     way, is_code, CMP, RPN);
2366
}
2367

    
2368
static target_ulong booke_tlb_to_page_size (int size)
2369
{
2370
    return 1024 << (2 * size);
2371
}
2372

    
2373
static int booke_page_size_to_tlb (target_ulong page_size)
2374
{
2375
    int size;
2376

    
2377
    switch (page_size) {
2378
    case 0x00000400UL:
2379
        size = 0x0;
2380
        break;
2381
    case 0x00001000UL:
2382
        size = 0x1;
2383
        break;
2384
    case 0x00004000UL:
2385
        size = 0x2;
2386
        break;
2387
    case 0x00010000UL:
2388
        size = 0x3;
2389
        break;
2390
    case 0x00040000UL:
2391
        size = 0x4;
2392
        break;
2393
    case 0x00100000UL:
2394
        size = 0x5;
2395
        break;
2396
    case 0x00400000UL:
2397
        size = 0x6;
2398
        break;
2399
    case 0x01000000UL:
2400
        size = 0x7;
2401
        break;
2402
    case 0x04000000UL:
2403
        size = 0x8;
2404
        break;
2405
    case 0x10000000UL:
2406
        size = 0x9;
2407
        break;
2408
    case 0x40000000UL:
2409
        size = 0xA;
2410
        break;
2411
#if defined (TARGET_PPC64)
2412
    case 0x000100000000ULL:
2413
        size = 0xB;
2414
        break;
2415
    case 0x000400000000ULL:
2416
        size = 0xC;
2417
        break;
2418
    case 0x001000000000ULL:
2419
        size = 0xD;
2420
        break;
2421
    case 0x004000000000ULL:
2422
        size = 0xE;
2423
        break;
2424
    case 0x010000000000ULL:
2425
        size = 0xF;
2426
        break;
2427
#endif
2428
    default:
2429
        size = -1;
2430
        break;
2431
    }
2432

    
2433
    return size;
2434
}
2435

    
2436
/* Helpers for 4xx TLB management */
2437
void do_4xx_tlbia (void)
2438
{
2439
    ppcemb_tlb_t *tlb;
2440
    int i;
2441

    
2442
    for (i = 0; i < 64; i++) {
2443
        tlb = &env->tlb[i].tlbe;
2444
        if (tlb->prot & PAGE_VALID) {
2445
#if 0
2446
            end = tlb->EPN + tlb->size;
2447
            for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2448
                tlb_flush_page(env, page);
2449
#endif
2450
            tlb->prot &= ~PAGE_VALID;
2451
        }
2452
    }
2453
    tlb_flush(env, 1);
2454
}
2455

    
2456
void do_4xx_tlbre_lo (void)
2457
{
2458
    ppcemb_tlb_t *tlb;
2459
    int size;
2460

    
2461
    T0 &= 0x3F;
2462
    tlb = &env->tlb[T0].tlbe;
2463
    T0 = tlb->EPN;
2464
    if (tlb->prot & PAGE_VALID)
2465
        T0 |= 0x400;
2466
    size = booke_page_size_to_tlb(tlb->size);
2467
    if (size < 0 || size > 0x7)
2468
        size = 1;
2469
    T0 |= size << 7;
2470
    env->spr[SPR_40x_PID] = tlb->PID;
2471
}
2472

    
2473
void do_4xx_tlbre_hi (void)
2474
{
2475
    ppcemb_tlb_t *tlb;
2476

    
2477
    T0 &= 0x3F;
2478
    tlb = &env->tlb[T0].tlbe;
2479
    T0 = tlb->RPN;
2480
    if (tlb->prot & PAGE_EXEC)
2481
        T0 |= 0x200;
2482
    if (tlb->prot & PAGE_WRITE)
2483
        T0 |= 0x100;
2484
}
2485

    
2486
static int tlb_4xx_search (target_ulong virtual)
2487
{
2488
    ppcemb_tlb_t *tlb;
2489
    target_ulong base, mask;
2490
    int i, ret;
2491

    
2492
    /* Default return value is no match */
2493
    ret = -1;
2494
    for (i = 0; i < 64; i++) {
2495
        tlb = &env->tlb[i].tlbe;
2496
        /* Check TLB validity */
2497
        if (!(tlb->prot & PAGE_VALID))
2498
            continue;
2499
        /* Check TLB PID vs current PID */
2500
        if (tlb->PID != 0 && tlb->PID != env->spr[SPR_40x_PID])
2501
            continue;
2502
        /* Check TLB address vs virtual address */
2503
        base = tlb->EPN;
2504
        mask = ~(tlb->size - 1);
2505
        if ((base & mask) != (virtual & mask))
2506
            continue;
2507
        ret = i;
2508
        break;
2509
    }
2510

    
2511
    return ret;
2512
}
2513

    
2514
void do_4xx_tlbsx (void)
2515
{
2516
    T0 = tlb_4xx_search(T0);
2517
}
2518

    
2519
void do_4xx_tlbsx_ (void)
2520
{
2521
    int tmp = xer_ov;
2522

    
2523
    T0 = tlb_4xx_search(T0);
2524
    if (T0 != -1)
2525
        tmp |= 0x02;
2526
    env->crf[0] = tmp;
2527
}
2528

    
2529
void do_4xx_tlbwe_lo (void)
2530
{
2531
    ppcemb_tlb_t *tlb;
2532
    target_ulong page, end;
2533

    
2534
    T0 &= 0x3F;
2535
    tlb = &env->tlb[T0].tlbe;
2536
    /* Invalidate previous TLB (if it's valid) */
2537
    if (tlb->prot & PAGE_VALID) {
2538
        end = tlb->EPN + tlb->size;
2539
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2540
            tlb_flush_page(env, page);
2541
    }
2542
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2543
    tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
2544
    if (T1 & 0x400)
2545
        tlb->prot |= PAGE_VALID;
2546
    else
2547
        tlb->prot &= ~PAGE_VALID;
2548
    tlb->PID = env->spr[SPR_BOOKE_PID]; /* PID */
2549
    tlb->attr = T1 & 0xFF;
2550
    /* Invalidate new TLB (if valid) */
2551
    if (tlb->prot & PAGE_VALID) {
2552
        end = tlb->EPN + tlb->size;
2553
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2554
            tlb_flush_page(env, page);
2555
    }
2556
}
2557

    
2558
void do_4xx_tlbwe_hi (void)
2559
{
2560
    ppcemb_tlb_t *tlb;
2561

    
2562
    T0 &= 0x3F;
2563
    tlb = &env->tlb[T0].tlbe;
2564
    tlb->RPN = T1 & 0xFFFFFC00;
2565
    tlb->prot = PAGE_READ;
2566
    if (T1 & 0x200)
2567
        tlb->prot |= PAGE_EXEC;
2568
    if (T1 & 0x100)
2569
        tlb->prot |= PAGE_WRITE;
2570
}
2571
#endif /* !CONFIG_USER_ONLY */