Statistics
| Branch: | Revision:

root / cpus.c @ 878096ee

History | View | Annotate | Download (33.7 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor/monitor.h"
29
#include "sysemu/sysemu.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/dma.h"
32
#include "sysemu/kvm.h"
33
#include "qmp-commands.h"
34

    
35
#include "qemu/thread.h"
36
#include "sysemu/cpus.h"
37
#include "sysemu/qtest.h"
38
#include "qemu/main-loop.h"
39
#include "qemu/bitmap.h"
40

    
41
#ifndef _WIN32
42
#include "qemu/compatfd.h"
43
#endif
44

    
45
#ifdef CONFIG_LINUX
46

    
47
#include <sys/prctl.h>
48

    
49
#ifndef PR_MCE_KILL
50
#define PR_MCE_KILL 33
51
#endif
52

    
53
#ifndef PR_MCE_KILL_SET
54
#define PR_MCE_KILL_SET 1
55
#endif
56

    
57
#ifndef PR_MCE_KILL_EARLY
58
#define PR_MCE_KILL_EARLY 1
59
#endif
60

    
61
#endif /* CONFIG_LINUX */
62

    
63
static CPUArchState *next_cpu;
64

    
65
static bool cpu_thread_is_idle(CPUState *cpu)
66
{
67
    if (cpu->stop || cpu->queued_work_first) {
68
        return false;
69
    }
70
    if (cpu->stopped || !runstate_is_running()) {
71
        return true;
72
    }
73
    if (!cpu->halted || qemu_cpu_has_work(cpu) ||
74
        kvm_async_interrupts_enabled()) {
75
        return false;
76
    }
77
    return true;
78
}
79

    
80
static bool all_cpu_threads_idle(void)
81
{
82
    CPUArchState *env;
83

    
84
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
85
        if (!cpu_thread_is_idle(ENV_GET_CPU(env))) {
86
            return false;
87
        }
88
    }
89
    return true;
90
}
91

    
92
/***********************************************************/
93
/* guest cycle counter */
94

    
95
/* Conversion factor from emulated instructions to virtual clock ticks.  */
96
static int icount_time_shift;
97
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
98
#define MAX_ICOUNT_SHIFT 10
99
/* Compensate for varying guest execution speed.  */
100
static int64_t qemu_icount_bias;
101
static QEMUTimer *icount_rt_timer;
102
static QEMUTimer *icount_vm_timer;
103
static QEMUTimer *icount_warp_timer;
104
static int64_t vm_clock_warp_start;
105
static int64_t qemu_icount;
106

    
107
typedef struct TimersState {
108
    int64_t cpu_ticks_prev;
109
    int64_t cpu_ticks_offset;
110
    int64_t cpu_clock_offset;
111
    int32_t cpu_ticks_enabled;
112
    int64_t dummy;
113
} TimersState;
114

    
115
TimersState timers_state;
116

    
117
/* Return the virtual CPU time, based on the instruction counter.  */
118
int64_t cpu_get_icount(void)
119
{
120
    int64_t icount;
121
    CPUArchState *env = cpu_single_env;
122

    
123
    icount = qemu_icount;
124
    if (env) {
125
        if (!can_do_io(env)) {
126
            fprintf(stderr, "Bad clock read\n");
127
        }
128
        icount -= (env->icount_decr.u16.low + env->icount_extra);
129
    }
130
    return qemu_icount_bias + (icount << icount_time_shift);
131
}
132

    
133
/* return the host CPU cycle counter and handle stop/restart */
134
int64_t cpu_get_ticks(void)
135
{
136
    if (use_icount) {
137
        return cpu_get_icount();
138
    }
139
    if (!timers_state.cpu_ticks_enabled) {
140
        return timers_state.cpu_ticks_offset;
141
    } else {
142
        int64_t ticks;
143
        ticks = cpu_get_real_ticks();
144
        if (timers_state.cpu_ticks_prev > ticks) {
145
            /* Note: non increasing ticks may happen if the host uses
146
               software suspend */
147
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
148
        }
149
        timers_state.cpu_ticks_prev = ticks;
150
        return ticks + timers_state.cpu_ticks_offset;
151
    }
152
}
153

    
154
/* return the host CPU monotonic timer and handle stop/restart */
155
int64_t cpu_get_clock(void)
156
{
157
    int64_t ti;
158
    if (!timers_state.cpu_ticks_enabled) {
159
        return timers_state.cpu_clock_offset;
160
    } else {
161
        ti = get_clock();
162
        return ti + timers_state.cpu_clock_offset;
163
    }
164
}
165

    
166
/* enable cpu_get_ticks() */
167
void cpu_enable_ticks(void)
168
{
169
    if (!timers_state.cpu_ticks_enabled) {
170
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
171
        timers_state.cpu_clock_offset -= get_clock();
172
        timers_state.cpu_ticks_enabled = 1;
173
    }
174
}
175

    
176
/* disable cpu_get_ticks() : the clock is stopped. You must not call
177
   cpu_get_ticks() after that.  */
178
void cpu_disable_ticks(void)
179
{
180
    if (timers_state.cpu_ticks_enabled) {
181
        timers_state.cpu_ticks_offset = cpu_get_ticks();
182
        timers_state.cpu_clock_offset = cpu_get_clock();
183
        timers_state.cpu_ticks_enabled = 0;
184
    }
185
}
186

    
187
/* Correlation between real and virtual time is always going to be
188
   fairly approximate, so ignore small variation.
189
   When the guest is idle real and virtual time will be aligned in
190
   the IO wait loop.  */
191
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
192

    
193
static void icount_adjust(void)
194
{
195
    int64_t cur_time;
196
    int64_t cur_icount;
197
    int64_t delta;
198
    static int64_t last_delta;
199
    /* If the VM is not running, then do nothing.  */
200
    if (!runstate_is_running()) {
201
        return;
202
    }
203
    cur_time = cpu_get_clock();
204
    cur_icount = qemu_get_clock_ns(vm_clock);
205
    delta = cur_icount - cur_time;
206
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
207
    if (delta > 0
208
        && last_delta + ICOUNT_WOBBLE < delta * 2
209
        && icount_time_shift > 0) {
210
        /* The guest is getting too far ahead.  Slow time down.  */
211
        icount_time_shift--;
212
    }
213
    if (delta < 0
214
        && last_delta - ICOUNT_WOBBLE > delta * 2
215
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
216
        /* The guest is getting too far behind.  Speed time up.  */
217
        icount_time_shift++;
218
    }
219
    last_delta = delta;
220
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
221
}
222

    
223
static void icount_adjust_rt(void *opaque)
224
{
225
    qemu_mod_timer(icount_rt_timer,
226
                   qemu_get_clock_ms(rt_clock) + 1000);
227
    icount_adjust();
228
}
229

    
230
static void icount_adjust_vm(void *opaque)
231
{
232
    qemu_mod_timer(icount_vm_timer,
233
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
234
    icount_adjust();
235
}
236

    
237
static int64_t qemu_icount_round(int64_t count)
238
{
239
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
240
}
241

    
242
static void icount_warp_rt(void *opaque)
243
{
244
    if (vm_clock_warp_start == -1) {
245
        return;
246
    }
247

    
248
    if (runstate_is_running()) {
249
        int64_t clock = qemu_get_clock_ns(rt_clock);
250
        int64_t warp_delta = clock - vm_clock_warp_start;
251
        if (use_icount == 1) {
252
            qemu_icount_bias += warp_delta;
253
        } else {
254
            /*
255
             * In adaptive mode, do not let the vm_clock run too
256
             * far ahead of real time.
257
             */
258
            int64_t cur_time = cpu_get_clock();
259
            int64_t cur_icount = qemu_get_clock_ns(vm_clock);
260
            int64_t delta = cur_time - cur_icount;
261
            qemu_icount_bias += MIN(warp_delta, delta);
262
        }
263
        if (qemu_clock_expired(vm_clock)) {
264
            qemu_notify_event();
265
        }
266
    }
267
    vm_clock_warp_start = -1;
268
}
269

    
270
void qtest_clock_warp(int64_t dest)
271
{
272
    int64_t clock = qemu_get_clock_ns(vm_clock);
273
    assert(qtest_enabled());
274
    while (clock < dest) {
275
        int64_t deadline = qemu_clock_deadline(vm_clock);
276
        int64_t warp = MIN(dest - clock, deadline);
277
        qemu_icount_bias += warp;
278
        qemu_run_timers(vm_clock);
279
        clock = qemu_get_clock_ns(vm_clock);
280
    }
281
    qemu_notify_event();
282
}
283

    
284
void qemu_clock_warp(QEMUClock *clock)
285
{
286
    int64_t deadline;
287

    
288
    /*
289
     * There are too many global variables to make the "warp" behavior
290
     * applicable to other clocks.  But a clock argument removes the
291
     * need for if statements all over the place.
292
     */
293
    if (clock != vm_clock || !use_icount) {
294
        return;
295
    }
296

    
297
    /*
298
     * If the CPUs have been sleeping, advance the vm_clock timer now.  This
299
     * ensures that the deadline for the timer is computed correctly below.
300
     * This also makes sure that the insn counter is synchronized before the
301
     * CPU starts running, in case the CPU is woken by an event other than
302
     * the earliest vm_clock timer.
303
     */
304
    icount_warp_rt(NULL);
305
    if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
306
        qemu_del_timer(icount_warp_timer);
307
        return;
308
    }
309

    
310
    if (qtest_enabled()) {
311
        /* When testing, qtest commands advance icount.  */
312
        return;
313
    }
314

    
315
    vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
316
    deadline = qemu_clock_deadline(vm_clock);
317
    if (deadline > 0) {
318
        /*
319
         * Ensure the vm_clock proceeds even when the virtual CPU goes to
320
         * sleep.  Otherwise, the CPU might be waiting for a future timer
321
         * interrupt to wake it up, but the interrupt never comes because
322
         * the vCPU isn't running any insns and thus doesn't advance the
323
         * vm_clock.
324
         *
325
         * An extreme solution for this problem would be to never let VCPUs
326
         * sleep in icount mode if there is a pending vm_clock timer; rather
327
         * time could just advance to the next vm_clock event.  Instead, we
328
         * do stop VCPUs and only advance vm_clock after some "real" time,
329
         * (related to the time left until the next event) has passed.  This
330
         * rt_clock timer will do this.  This avoids that the warps are too
331
         * visible externally---for example, you will not be sending network
332
         * packets continuously instead of every 100ms.
333
         */
334
        qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
335
    } else {
336
        qemu_notify_event();
337
    }
338
}
339

    
340
static const VMStateDescription vmstate_timers = {
341
    .name = "timer",
342
    .version_id = 2,
343
    .minimum_version_id = 1,
344
    .minimum_version_id_old = 1,
345
    .fields      = (VMStateField[]) {
346
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
347
        VMSTATE_INT64(dummy, TimersState),
348
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
349
        VMSTATE_END_OF_LIST()
350
    }
351
};
352

    
353
void configure_icount(const char *option)
354
{
355
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
356
    if (!option) {
357
        return;
358
    }
359

    
360
    icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
361
    if (strcmp(option, "auto") != 0) {
362
        icount_time_shift = strtol(option, NULL, 0);
363
        use_icount = 1;
364
        return;
365
    }
366

    
367
    use_icount = 2;
368

    
369
    /* 125MIPS seems a reasonable initial guess at the guest speed.
370
       It will be corrected fairly quickly anyway.  */
371
    icount_time_shift = 3;
372

    
373
    /* Have both realtime and virtual time triggers for speed adjustment.
374
       The realtime trigger catches emulated time passing too slowly,
375
       the virtual time trigger catches emulated time passing too fast.
376
       Realtime triggers occur even when idle, so use them less frequently
377
       than VM triggers.  */
378
    icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
379
    qemu_mod_timer(icount_rt_timer,
380
                   qemu_get_clock_ms(rt_clock) + 1000);
381
    icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
382
    qemu_mod_timer(icount_vm_timer,
383
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
384
}
385

    
386
/***********************************************************/
387
void hw_error(const char *fmt, ...)
388
{
389
    va_list ap;
390
    CPUArchState *env;
391
    CPUState *cpu;
392

    
393
    va_start(ap, fmt);
394
    fprintf(stderr, "qemu: hardware error: ");
395
    vfprintf(stderr, fmt, ap);
396
    fprintf(stderr, "\n");
397
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
398
        cpu = ENV_GET_CPU(env);
399
        fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
400
        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
401
    }
402
    va_end(ap);
403
    abort();
404
}
405

    
406
void cpu_synchronize_all_states(void)
407
{
408
    CPUArchState *env;
409

    
410
    for (env = first_cpu; env; env = env->next_cpu) {
411
        cpu_synchronize_state(ENV_GET_CPU(env));
412
    }
413
}
414

    
415
void cpu_synchronize_all_post_reset(void)
416
{
417
    CPUArchState *cpu;
418

    
419
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420
        cpu_synchronize_post_reset(ENV_GET_CPU(cpu));
421
    }
422
}
423

    
424
void cpu_synchronize_all_post_init(void)
425
{
426
    CPUArchState *cpu;
427

    
428
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429
        cpu_synchronize_post_init(ENV_GET_CPU(cpu));
430
    }
431
}
432

    
433
bool cpu_is_stopped(CPUState *cpu)
434
{
435
    return !runstate_is_running() || cpu->stopped;
436
}
437

    
438
static void do_vm_stop(RunState state)
439
{
440
    if (runstate_is_running()) {
441
        cpu_disable_ticks();
442
        pause_all_vcpus();
443
        runstate_set(state);
444
        vm_state_notify(0, state);
445
        bdrv_drain_all();
446
        bdrv_flush_all();
447
        monitor_protocol_event(QEVENT_STOP, NULL);
448
    }
449
}
450

    
451
static bool cpu_can_run(CPUState *cpu)
452
{
453
    if (cpu->stop) {
454
        return false;
455
    }
456
    if (cpu->stopped || !runstate_is_running()) {
457
        return false;
458
    }
459
    return true;
460
}
461

    
462
static void cpu_handle_guest_debug(CPUArchState *env)
463
{
464
    CPUState *cpu = ENV_GET_CPU(env);
465

    
466
    gdb_set_stop_cpu(env);
467
    qemu_system_debug_request();
468
    cpu->stopped = true;
469
}
470

    
471
static void cpu_signal(int sig)
472
{
473
    if (cpu_single_env) {
474
        cpu_exit(ENV_GET_CPU(cpu_single_env));
475
    }
476
    exit_request = 1;
477
}
478

    
479
#ifdef CONFIG_LINUX
480
static void sigbus_reraise(void)
481
{
482
    sigset_t set;
483
    struct sigaction action;
484

    
485
    memset(&action, 0, sizeof(action));
486
    action.sa_handler = SIG_DFL;
487
    if (!sigaction(SIGBUS, &action, NULL)) {
488
        raise(SIGBUS);
489
        sigemptyset(&set);
490
        sigaddset(&set, SIGBUS);
491
        sigprocmask(SIG_UNBLOCK, &set, NULL);
492
    }
493
    perror("Failed to re-raise SIGBUS!\n");
494
    abort();
495
}
496

    
497
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
498
                           void *ctx)
499
{
500
    if (kvm_on_sigbus(siginfo->ssi_code,
501
                      (void *)(intptr_t)siginfo->ssi_addr)) {
502
        sigbus_reraise();
503
    }
504
}
505

    
506
static void qemu_init_sigbus(void)
507
{
508
    struct sigaction action;
509

    
510
    memset(&action, 0, sizeof(action));
511
    action.sa_flags = SA_SIGINFO;
512
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
513
    sigaction(SIGBUS, &action, NULL);
514

    
515
    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
516
}
517

    
518
static void qemu_kvm_eat_signals(CPUState *cpu)
519
{
520
    struct timespec ts = { 0, 0 };
521
    siginfo_t siginfo;
522
    sigset_t waitset;
523
    sigset_t chkset;
524
    int r;
525

    
526
    sigemptyset(&waitset);
527
    sigaddset(&waitset, SIG_IPI);
528
    sigaddset(&waitset, SIGBUS);
529

    
530
    do {
531
        r = sigtimedwait(&waitset, &siginfo, &ts);
532
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
533
            perror("sigtimedwait");
534
            exit(1);
535
        }
536

    
537
        switch (r) {
538
        case SIGBUS:
539
            if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
540
                sigbus_reraise();
541
            }
542
            break;
543
        default:
544
            break;
545
        }
546

    
547
        r = sigpending(&chkset);
548
        if (r == -1) {
549
            perror("sigpending");
550
            exit(1);
551
        }
552
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
553
}
554

    
555
#else /* !CONFIG_LINUX */
556

    
557
static void qemu_init_sigbus(void)
558
{
559
}
560

    
561
static void qemu_kvm_eat_signals(CPUState *cpu)
562
{
563
}
564
#endif /* !CONFIG_LINUX */
565

    
566
#ifndef _WIN32
567
static void dummy_signal(int sig)
568
{
569
}
570

    
571
static void qemu_kvm_init_cpu_signals(CPUState *cpu)
572
{
573
    int r;
574
    sigset_t set;
575
    struct sigaction sigact;
576

    
577
    memset(&sigact, 0, sizeof(sigact));
578
    sigact.sa_handler = dummy_signal;
579
    sigaction(SIG_IPI, &sigact, NULL);
580

    
581
    pthread_sigmask(SIG_BLOCK, NULL, &set);
582
    sigdelset(&set, SIG_IPI);
583
    sigdelset(&set, SIGBUS);
584
    r = kvm_set_signal_mask(cpu, &set);
585
    if (r) {
586
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
587
        exit(1);
588
    }
589
}
590

    
591
static void qemu_tcg_init_cpu_signals(void)
592
{
593
    sigset_t set;
594
    struct sigaction sigact;
595

    
596
    memset(&sigact, 0, sizeof(sigact));
597
    sigact.sa_handler = cpu_signal;
598
    sigaction(SIG_IPI, &sigact, NULL);
599

    
600
    sigemptyset(&set);
601
    sigaddset(&set, SIG_IPI);
602
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
603
}
604

    
605
#else /* _WIN32 */
606
static void qemu_kvm_init_cpu_signals(CPUState *cpu)
607
{
608
    abort();
609
}
610

    
611
static void qemu_tcg_init_cpu_signals(void)
612
{
613
}
614
#endif /* _WIN32 */
615

    
616
static QemuMutex qemu_global_mutex;
617
static QemuCond qemu_io_proceeded_cond;
618
static bool iothread_requesting_mutex;
619

    
620
static QemuThread io_thread;
621

    
622
static QemuThread *tcg_cpu_thread;
623
static QemuCond *tcg_halt_cond;
624

    
625
/* cpu creation */
626
static QemuCond qemu_cpu_cond;
627
/* system init */
628
static QemuCond qemu_pause_cond;
629
static QemuCond qemu_work_cond;
630

    
631
void qemu_init_cpu_loop(void)
632
{
633
    qemu_init_sigbus();
634
    qemu_cond_init(&qemu_cpu_cond);
635
    qemu_cond_init(&qemu_pause_cond);
636
    qemu_cond_init(&qemu_work_cond);
637
    qemu_cond_init(&qemu_io_proceeded_cond);
638
    qemu_mutex_init(&qemu_global_mutex);
639

    
640
    qemu_thread_get_self(&io_thread);
641
}
642

    
643
void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
644
{
645
    struct qemu_work_item wi;
646

    
647
    if (qemu_cpu_is_self(cpu)) {
648
        func(data);
649
        return;
650
    }
651

    
652
    wi.func = func;
653
    wi.data = data;
654
    if (cpu->queued_work_first == NULL) {
655
        cpu->queued_work_first = &wi;
656
    } else {
657
        cpu->queued_work_last->next = &wi;
658
    }
659
    cpu->queued_work_last = &wi;
660
    wi.next = NULL;
661
    wi.done = false;
662

    
663
    qemu_cpu_kick(cpu);
664
    while (!wi.done) {
665
        CPUArchState *self_env = cpu_single_env;
666

    
667
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
668
        cpu_single_env = self_env;
669
    }
670
}
671

    
672
static void flush_queued_work(CPUState *cpu)
673
{
674
    struct qemu_work_item *wi;
675

    
676
    if (cpu->queued_work_first == NULL) {
677
        return;
678
    }
679

    
680
    while ((wi = cpu->queued_work_first)) {
681
        cpu->queued_work_first = wi->next;
682
        wi->func(wi->data);
683
        wi->done = true;
684
    }
685
    cpu->queued_work_last = NULL;
686
    qemu_cond_broadcast(&qemu_work_cond);
687
}
688

    
689
static void qemu_wait_io_event_common(CPUState *cpu)
690
{
691
    if (cpu->stop) {
692
        cpu->stop = false;
693
        cpu->stopped = true;
694
        qemu_cond_signal(&qemu_pause_cond);
695
    }
696
    flush_queued_work(cpu);
697
    cpu->thread_kicked = false;
698
}
699

    
700
static void qemu_tcg_wait_io_event(void)
701
{
702
    CPUArchState *env;
703

    
704
    while (all_cpu_threads_idle()) {
705
       /* Start accounting real time to the virtual clock if the CPUs
706
          are idle.  */
707
        qemu_clock_warp(vm_clock);
708
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
709
    }
710

    
711
    while (iothread_requesting_mutex) {
712
        qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
713
    }
714

    
715
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
716
        qemu_wait_io_event_common(ENV_GET_CPU(env));
717
    }
718
}
719

    
720
static void qemu_kvm_wait_io_event(CPUState *cpu)
721
{
722
    while (cpu_thread_is_idle(cpu)) {
723
        qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
724
    }
725

    
726
    qemu_kvm_eat_signals(cpu);
727
    qemu_wait_io_event_common(cpu);
728
}
729

    
730
static void *qemu_kvm_cpu_thread_fn(void *arg)
731
{
732
    CPUArchState *env = arg;
733
    CPUState *cpu = ENV_GET_CPU(env);
734
    int r;
735

    
736
    qemu_mutex_lock(&qemu_global_mutex);
737
    qemu_thread_get_self(cpu->thread);
738
    cpu->thread_id = qemu_get_thread_id();
739
    cpu_single_env = env;
740

    
741
    r = kvm_init_vcpu(cpu);
742
    if (r < 0) {
743
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
744
        exit(1);
745
    }
746

    
747
    qemu_kvm_init_cpu_signals(cpu);
748

    
749
    /* signal CPU creation */
750
    cpu->created = true;
751
    qemu_cond_signal(&qemu_cpu_cond);
752

    
753
    while (1) {
754
        if (cpu_can_run(cpu)) {
755
            r = kvm_cpu_exec(env);
756
            if (r == EXCP_DEBUG) {
757
                cpu_handle_guest_debug(env);
758
            }
759
        }
760
        qemu_kvm_wait_io_event(cpu);
761
    }
762

    
763
    return NULL;
764
}
765

    
766
static void *qemu_dummy_cpu_thread_fn(void *arg)
767
{
768
#ifdef _WIN32
769
    fprintf(stderr, "qtest is not supported under Windows\n");
770
    exit(1);
771
#else
772
    CPUArchState *env = arg;
773
    CPUState *cpu = ENV_GET_CPU(env);
774
    sigset_t waitset;
775
    int r;
776

    
777
    qemu_mutex_lock_iothread();
778
    qemu_thread_get_self(cpu->thread);
779
    cpu->thread_id = qemu_get_thread_id();
780

    
781
    sigemptyset(&waitset);
782
    sigaddset(&waitset, SIG_IPI);
783

    
784
    /* signal CPU creation */
785
    cpu->created = true;
786
    qemu_cond_signal(&qemu_cpu_cond);
787

    
788
    cpu_single_env = env;
789
    while (1) {
790
        cpu_single_env = NULL;
791
        qemu_mutex_unlock_iothread();
792
        do {
793
            int sig;
794
            r = sigwait(&waitset, &sig);
795
        } while (r == -1 && (errno == EAGAIN || errno == EINTR));
796
        if (r == -1) {
797
            perror("sigwait");
798
            exit(1);
799
        }
800
        qemu_mutex_lock_iothread();
801
        cpu_single_env = env;
802
        qemu_wait_io_event_common(cpu);
803
    }
804

    
805
    return NULL;
806
#endif
807
}
808

    
809
static void tcg_exec_all(void);
810

    
811
static void tcg_signal_cpu_creation(CPUState *cpu, void *data)
812
{
813
    cpu->thread_id = qemu_get_thread_id();
814
    cpu->created = true;
815
}
816

    
817
static void *qemu_tcg_cpu_thread_fn(void *arg)
818
{
819
    CPUState *cpu = arg;
820
    CPUArchState *env;
821

    
822
    qemu_tcg_init_cpu_signals();
823
    qemu_thread_get_self(cpu->thread);
824

    
825
    qemu_mutex_lock(&qemu_global_mutex);
826
    qemu_for_each_cpu(tcg_signal_cpu_creation, NULL);
827
    qemu_cond_signal(&qemu_cpu_cond);
828

    
829
    /* wait for initial kick-off after machine start */
830
    while (ENV_GET_CPU(first_cpu)->stopped) {
831
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
832

    
833
        /* process any pending work */
834
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
835
            qemu_wait_io_event_common(ENV_GET_CPU(env));
836
        }
837
    }
838

    
839
    while (1) {
840
        tcg_exec_all();
841
        if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
842
            qemu_notify_event();
843
        }
844
        qemu_tcg_wait_io_event();
845
    }
846

    
847
    return NULL;
848
}
849

    
850
static void qemu_cpu_kick_thread(CPUState *cpu)
851
{
852
#ifndef _WIN32
853
    int err;
854

    
855
    err = pthread_kill(cpu->thread->thread, SIG_IPI);
856
    if (err) {
857
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
858
        exit(1);
859
    }
860
#else /* _WIN32 */
861
    if (!qemu_cpu_is_self(cpu)) {
862
        CONTEXT tcgContext;
863

    
864
        if (SuspendThread(cpu->hThread) == (DWORD)-1) {
865
            fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
866
                    GetLastError());
867
            exit(1);
868
        }
869

    
870
        /* On multi-core systems, we are not sure that the thread is actually
871
         * suspended until we can get the context.
872
         */
873
        tcgContext.ContextFlags = CONTEXT_CONTROL;
874
        while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
875
            continue;
876
        }
877

    
878
        cpu_signal(0);
879

    
880
        if (ResumeThread(cpu->hThread) == (DWORD)-1) {
881
            fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
882
                    GetLastError());
883
            exit(1);
884
        }
885
    }
886
#endif
887
}
888

    
889
void qemu_cpu_kick(CPUState *cpu)
890
{
891
    qemu_cond_broadcast(cpu->halt_cond);
892
    if (!tcg_enabled() && !cpu->thread_kicked) {
893
        qemu_cpu_kick_thread(cpu);
894
        cpu->thread_kicked = true;
895
    }
896
}
897

    
898
void qemu_cpu_kick_self(void)
899
{
900
#ifndef _WIN32
901
    assert(cpu_single_env);
902
    CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
903

    
904
    if (!cpu_single_cpu->thread_kicked) {
905
        qemu_cpu_kick_thread(cpu_single_cpu);
906
        cpu_single_cpu->thread_kicked = true;
907
    }
908
#else
909
    abort();
910
#endif
911
}
912

    
913
bool qemu_cpu_is_self(CPUState *cpu)
914
{
915
    return qemu_thread_is_self(cpu->thread);
916
}
917

    
918
static bool qemu_in_vcpu_thread(void)
919
{
920
    return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
921
}
922

    
923
void qemu_mutex_lock_iothread(void)
924
{
925
    if (!tcg_enabled()) {
926
        qemu_mutex_lock(&qemu_global_mutex);
927
    } else {
928
        iothread_requesting_mutex = true;
929
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
930
            qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
931
            qemu_mutex_lock(&qemu_global_mutex);
932
        }
933
        iothread_requesting_mutex = false;
934
        qemu_cond_broadcast(&qemu_io_proceeded_cond);
935
    }
936
}
937

    
938
void qemu_mutex_unlock_iothread(void)
939
{
940
    qemu_mutex_unlock(&qemu_global_mutex);
941
}
942

    
943
static int all_vcpus_paused(void)
944
{
945
    CPUArchState *penv = first_cpu;
946

    
947
    while (penv) {
948
        CPUState *pcpu = ENV_GET_CPU(penv);
949
        if (!pcpu->stopped) {
950
            return 0;
951
        }
952
        penv = penv->next_cpu;
953
    }
954

    
955
    return 1;
956
}
957

    
958
void pause_all_vcpus(void)
959
{
960
    CPUArchState *penv = first_cpu;
961

    
962
    qemu_clock_enable(vm_clock, false);
963
    while (penv) {
964
        CPUState *pcpu = ENV_GET_CPU(penv);
965
        pcpu->stop = true;
966
        qemu_cpu_kick(pcpu);
967
        penv = penv->next_cpu;
968
    }
969

    
970
    if (qemu_in_vcpu_thread()) {
971
        cpu_stop_current();
972
        if (!kvm_enabled()) {
973
            penv = first_cpu;
974
            while (penv) {
975
                CPUState *pcpu = ENV_GET_CPU(penv);
976
                pcpu->stop = false;
977
                pcpu->stopped = true;
978
                penv = penv->next_cpu;
979
            }
980
            return;
981
        }
982
    }
983

    
984
    while (!all_vcpus_paused()) {
985
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
986
        penv = first_cpu;
987
        while (penv) {
988
            qemu_cpu_kick(ENV_GET_CPU(penv));
989
            penv = penv->next_cpu;
990
        }
991
    }
992
}
993

    
994
void cpu_resume(CPUState *cpu)
995
{
996
    cpu->stop = false;
997
    cpu->stopped = false;
998
    qemu_cpu_kick(cpu);
999
}
1000

    
1001
void resume_all_vcpus(void)
1002
{
1003
    CPUArchState *penv = first_cpu;
1004

    
1005
    qemu_clock_enable(vm_clock, true);
1006
    while (penv) {
1007
        CPUState *pcpu = ENV_GET_CPU(penv);
1008
        cpu_resume(pcpu);
1009
        penv = penv->next_cpu;
1010
    }
1011
}
1012

    
1013
static void qemu_tcg_init_vcpu(CPUState *cpu)
1014
{
1015
    /* share a single thread for all cpus with TCG */
1016
    if (!tcg_cpu_thread) {
1017
        cpu->thread = g_malloc0(sizeof(QemuThread));
1018
        cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1019
        qemu_cond_init(cpu->halt_cond);
1020
        tcg_halt_cond = cpu->halt_cond;
1021
        qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
1022
                           QEMU_THREAD_JOINABLE);
1023
#ifdef _WIN32
1024
        cpu->hThread = qemu_thread_get_handle(cpu->thread);
1025
#endif
1026
        while (!cpu->created) {
1027
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1028
        }
1029
        tcg_cpu_thread = cpu->thread;
1030
    } else {
1031
        cpu->thread = tcg_cpu_thread;
1032
        cpu->halt_cond = tcg_halt_cond;
1033
    }
1034
}
1035

    
1036
static void qemu_kvm_start_vcpu(CPUArchState *env)
1037
{
1038
    CPUState *cpu = ENV_GET_CPU(env);
1039

    
1040
    cpu->thread = g_malloc0(sizeof(QemuThread));
1041
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1042
    qemu_cond_init(cpu->halt_cond);
1043
    qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1044
                       QEMU_THREAD_JOINABLE);
1045
    while (!cpu->created) {
1046
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1047
    }
1048
}
1049

    
1050
static void qemu_dummy_start_vcpu(CPUArchState *env)
1051
{
1052
    CPUState *cpu = ENV_GET_CPU(env);
1053

    
1054
    cpu->thread = g_malloc0(sizeof(QemuThread));
1055
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1056
    qemu_cond_init(cpu->halt_cond);
1057
    qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1058
                       QEMU_THREAD_JOINABLE);
1059
    while (!cpu->created) {
1060
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1061
    }
1062
}
1063

    
1064
void qemu_init_vcpu(void *_env)
1065
{
1066
    CPUArchState *env = _env;
1067
    CPUState *cpu = ENV_GET_CPU(env);
1068

    
1069
    cpu->nr_cores = smp_cores;
1070
    cpu->nr_threads = smp_threads;
1071
    cpu->stopped = true;
1072
    if (kvm_enabled()) {
1073
        qemu_kvm_start_vcpu(env);
1074
    } else if (tcg_enabled()) {
1075
        qemu_tcg_init_vcpu(cpu);
1076
    } else {
1077
        qemu_dummy_start_vcpu(env);
1078
    }
1079
}
1080

    
1081
void cpu_stop_current(void)
1082
{
1083
    if (cpu_single_env) {
1084
        CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
1085
        cpu_single_cpu->stop = false;
1086
        cpu_single_cpu->stopped = true;
1087
        cpu_exit(cpu_single_cpu);
1088
        qemu_cond_signal(&qemu_pause_cond);
1089
    }
1090
}
1091

    
1092
void vm_stop(RunState state)
1093
{
1094
    if (qemu_in_vcpu_thread()) {
1095
        qemu_system_vmstop_request(state);
1096
        /*
1097
         * FIXME: should not return to device code in case
1098
         * vm_stop() has been requested.
1099
         */
1100
        cpu_stop_current();
1101
        return;
1102
    }
1103
    do_vm_stop(state);
1104
}
1105

    
1106
/* does a state transition even if the VM is already stopped,
1107
   current state is forgotten forever */
1108
void vm_stop_force_state(RunState state)
1109
{
1110
    if (runstate_is_running()) {
1111
        vm_stop(state);
1112
    } else {
1113
        runstate_set(state);
1114
    }
1115
}
1116

    
1117
static int tcg_cpu_exec(CPUArchState *env)
1118
{
1119
    int ret;
1120
#ifdef CONFIG_PROFILER
1121
    int64_t ti;
1122
#endif
1123

    
1124
#ifdef CONFIG_PROFILER
1125
    ti = profile_getclock();
1126
#endif
1127
    if (use_icount) {
1128
        int64_t count;
1129
        int decr;
1130
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1131
        env->icount_decr.u16.low = 0;
1132
        env->icount_extra = 0;
1133
        count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1134
        qemu_icount += count;
1135
        decr = (count > 0xffff) ? 0xffff : count;
1136
        count -= decr;
1137
        env->icount_decr.u16.low = decr;
1138
        env->icount_extra = count;
1139
    }
1140
    ret = cpu_exec(env);
1141
#ifdef CONFIG_PROFILER
1142
    qemu_time += profile_getclock() - ti;
1143
#endif
1144
    if (use_icount) {
1145
        /* Fold pending instructions back into the
1146
           instruction counter, and clear the interrupt flag.  */
1147
        qemu_icount -= (env->icount_decr.u16.low
1148
                        + env->icount_extra);
1149
        env->icount_decr.u32 = 0;
1150
        env->icount_extra = 0;
1151
    }
1152
    return ret;
1153
}
1154

    
1155
static void tcg_exec_all(void)
1156
{
1157
    int r;
1158

    
1159
    /* Account partial waits to the vm_clock.  */
1160
    qemu_clock_warp(vm_clock);
1161

    
1162
    if (next_cpu == NULL) {
1163
        next_cpu = first_cpu;
1164
    }
1165
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1166
        CPUArchState *env = next_cpu;
1167
        CPUState *cpu = ENV_GET_CPU(env);
1168

    
1169
        qemu_clock_enable(vm_clock,
1170
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1171

    
1172
        if (cpu_can_run(cpu)) {
1173
            r = tcg_cpu_exec(env);
1174
            if (r == EXCP_DEBUG) {
1175
                cpu_handle_guest_debug(env);
1176
                break;
1177
            }
1178
        } else if (cpu->stop || cpu->stopped) {
1179
            break;
1180
        }
1181
    }
1182
    exit_request = 0;
1183
}
1184

    
1185
void set_numa_modes(void)
1186
{
1187
    CPUArchState *env;
1188
    CPUState *cpu;
1189
    int i;
1190

    
1191
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1192
        cpu = ENV_GET_CPU(env);
1193
        for (i = 0; i < nb_numa_nodes; i++) {
1194
            if (test_bit(cpu->cpu_index, node_cpumask[i])) {
1195
                cpu->numa_node = i;
1196
            }
1197
        }
1198
    }
1199
}
1200

    
1201
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1202
{
1203
    /* XXX: implement xxx_cpu_list for targets that still miss it */
1204
#if defined(cpu_list)
1205
    cpu_list(f, cpu_fprintf);
1206
#endif
1207
}
1208

    
1209
CpuInfoList *qmp_query_cpus(Error **errp)
1210
{
1211
    CpuInfoList *head = NULL, *cur_item = NULL;
1212
    CPUArchState *env;
1213

    
1214
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1215
        CPUState *cpu = ENV_GET_CPU(env);
1216
        CpuInfoList *info;
1217

    
1218
        cpu_synchronize_state(cpu);
1219

    
1220
        info = g_malloc0(sizeof(*info));
1221
        info->value = g_malloc0(sizeof(*info->value));
1222
        info->value->CPU = cpu->cpu_index;
1223
        info->value->current = (env == first_cpu);
1224
        info->value->halted = cpu->halted;
1225
        info->value->thread_id = cpu->thread_id;
1226
#if defined(TARGET_I386)
1227
        info->value->has_pc = true;
1228
        info->value->pc = env->eip + env->segs[R_CS].base;
1229
#elif defined(TARGET_PPC)
1230
        info->value->has_nip = true;
1231
        info->value->nip = env->nip;
1232
#elif defined(TARGET_SPARC)
1233
        info->value->has_pc = true;
1234
        info->value->pc = env->pc;
1235
        info->value->has_npc = true;
1236
        info->value->npc = env->npc;
1237
#elif defined(TARGET_MIPS)
1238
        info->value->has_PC = true;
1239
        info->value->PC = env->active_tc.PC;
1240
#endif
1241

    
1242
        /* XXX: waiting for the qapi to support GSList */
1243
        if (!cur_item) {
1244
            head = cur_item = info;
1245
        } else {
1246
            cur_item->next = info;
1247
            cur_item = info;
1248
        }
1249
    }
1250

    
1251
    return head;
1252
}
1253

    
1254
void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1255
                 bool has_cpu, int64_t cpu_index, Error **errp)
1256
{
1257
    FILE *f;
1258
    uint32_t l;
1259
    CPUArchState *env;
1260
    CPUState *cpu;
1261
    uint8_t buf[1024];
1262

    
1263
    if (!has_cpu) {
1264
        cpu_index = 0;
1265
    }
1266

    
1267
    cpu = qemu_get_cpu(cpu_index);
1268
    if (cpu == NULL) {
1269
        error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1270
                  "a CPU number");
1271
        return;
1272
    }
1273
    env = cpu->env_ptr;
1274

    
1275
    f = fopen(filename, "wb");
1276
    if (!f) {
1277
        error_setg_file_open(errp, errno, filename);
1278
        return;
1279
    }
1280

    
1281
    while (size != 0) {
1282
        l = sizeof(buf);
1283
        if (l > size)
1284
            l = size;
1285
        cpu_memory_rw_debug(env, addr, buf, l, 0);
1286
        if (fwrite(buf, 1, l, f) != l) {
1287
            error_set(errp, QERR_IO_ERROR);
1288
            goto exit;
1289
        }
1290
        addr += l;
1291
        size -= l;
1292
    }
1293

    
1294
exit:
1295
    fclose(f);
1296
}
1297

    
1298
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1299
                  Error **errp)
1300
{
1301
    FILE *f;
1302
    uint32_t l;
1303
    uint8_t buf[1024];
1304

    
1305
    f = fopen(filename, "wb");
1306
    if (!f) {
1307
        error_setg_file_open(errp, errno, filename);
1308
        return;
1309
    }
1310

    
1311
    while (size != 0) {
1312
        l = sizeof(buf);
1313
        if (l > size)
1314
            l = size;
1315
        cpu_physical_memory_rw(addr, buf, l, 0);
1316
        if (fwrite(buf, 1, l, f) != l) {
1317
            error_set(errp, QERR_IO_ERROR);
1318
            goto exit;
1319
        }
1320
        addr += l;
1321
        size -= l;
1322
    }
1323

    
1324
exit:
1325
    fclose(f);
1326
}
1327

    
1328
void qmp_inject_nmi(Error **errp)
1329
{
1330
#if defined(TARGET_I386)
1331
    CPUArchState *env;
1332

    
1333
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1334
        if (!env->apic_state) {
1335
            cpu_interrupt(CPU(x86_env_get_cpu(env)), CPU_INTERRUPT_NMI);
1336
        } else {
1337
            apic_deliver_nmi(env->apic_state);
1338
        }
1339
    }
1340
#else
1341
    error_set(errp, QERR_UNSUPPORTED);
1342
#endif
1343
}