Revision 89e957e7 linux-user/main.c

b/linux-user/main.c
119 119

  
120 120
uint64_t gdt_table[6];
121 121

  
122
//#define DEBUG_VM86
123

  
124
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
125
{
126
    return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1;
127
}
128

  
129
static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
130
{
131
    return (uint8_t *)((seg << 4) + (reg & 0xffff));
132
}
133

  
134
static inline void pushw(CPUX86State *env, int val)
135
{
136
    env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | 
137
        ((env->regs[R_ESP] - 2) & 0xffff);
138
    *(uint16_t *)seg_to_linear(env->segs[R_SS], env->regs[R_ESP]) = val;
139
}
140

  
141
static inline unsigned int get_vflags(CPUX86State *env)
142
{
143
    unsigned int eflags;
144
    eflags = env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
145
    if (eflags & VIF_MASK)
146
        eflags |= IF_MASK;
147
    return eflags;
148
}
149

  
150
void save_v86_state(CPUX86State *env)
151
{
152
    TaskState *ts = env->opaque;
153
#ifdef DEBUG_VM86
154
    printf("save_v86_state\n");
155
#endif
156

  
157
    /* put the VM86 registers in the userspace register structure */
158
    ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
159
    ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
160
    ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
161
    ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
162
    ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
163
    ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
164
    ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
165
    ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
166
    ts->target_v86->regs.eip = tswap32(env->eip);
167
    ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
168
    ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
169
    ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
170
    ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
171
    ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
172
    ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
173
    ts->target_v86->regs.eflags = tswap32(env->eflags);
174

  
175
    /* restore 32 bit registers */
176
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
177
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
178
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
179
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
180
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
181
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
182
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
183
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
184
    env->eflags = ts->vm86_saved_regs.eflags;
185
    env->eip = ts->vm86_saved_regs.eip;
186
    
187
    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
188
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
189
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
190
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
191
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
192
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
193
}
194

  
195
/* return from vm86 mode to 32 bit. The vm86() syscall will return
196
   'retval' */
197
static inline void return_to_32bit(CPUX86State *env, int retval)
198
{
199
#ifdef DEBUG_VM86
200
    printf("return_to_32bit: ret=0x%x\n", retval);
201
#endif
202
    save_v86_state(env);
203
    env->regs[R_EAX] = retval;
204
}
205

  
206
/* handle VM86 interrupt (NOTE: the CPU core currently does not
207
   support TSS interrupt revectoring, so this code is always executed) */
208
static void do_int(CPUX86State *env, int intno)
209
{
210
    TaskState *ts = env->opaque;
211
    uint32_t *int_ptr, segoffs;
212
    
213
    if (env->segs[R_CS] == TARGET_BIOSSEG)
214
        goto cannot_handle; /* XXX: I am not sure this is really useful */
215
    if (is_revectored(intno, &ts->target_v86->int_revectored))
216
        goto cannot_handle;
217
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
218
                                       &ts->target_v86->int21_revectored))
219
        goto cannot_handle;
220
    int_ptr = (uint32_t *)(intno << 2);
221
    segoffs = tswap32(*int_ptr);
222
    if ((segoffs >> 16) == TARGET_BIOSSEG)
223
        goto cannot_handle;
224
#ifdef DEBUG_VM86
225
    printf("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
226
           intno, segoffs >> 16, segoffs & 0xffff);
227
#endif
228
    /* save old state */
229
    pushw(env, get_vflags(env));
230
    pushw(env, env->segs[R_CS]);
231
    pushw(env, env->eip);
232
    /* goto interrupt handler */
233
    env->eip = segoffs & 0xffff;
234
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
235
    env->eflags &= ~(VIF_MASK | TF_MASK);
236
    return;
237
 cannot_handle:
238
#ifdef DEBUG_VM86
239
    printf("VM86: return to 32 bits int 0x%x\n", intno);
240
#endif
241
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
242
}
243

  
244
void cpu_loop(struct CPUX86State *env)
122
void cpu_loop(CPUX86State *env)
245 123
{
246 124
    int trapnr;
247 125
    uint8_t *pc;
......
249 127

  
250 128
    for(;;) {
251 129
        trapnr = cpu_x86_exec(env);
252
        pc = env->seg_cache[R_CS].base + env->eip;
253 130
        switch(trapnr) {
254 131
        case EXCP0D_GPF:
255 132
            if (env->eflags & VM_MASK) {
256
#ifdef DEBUG_VM86
257
                printf("VM86 exception %04x:%08x %02x %02x\n",
258
                       env->segs[R_CS], env->eip, pc[0], pc[1]);
259
#endif
260
                /* VM86 mode */
261
                switch(pc[0]) {
262
                case 0xcd: /* int */
263
                    env->eip += 2;
264
                    do_int(env, pc[1]);
265
                    break;
266
                case 0x66:
267
                    switch(pc[1]) {
268
                    case 0xfb: /* sti */
269
                    case 0x9d: /* popf */
270
                    case 0xcf: /* iret */
271
                        env->eip += 2;
272
                        return_to_32bit(env, TARGET_VM86_STI);
273
                        break;
274
                    default:
275
                        goto vm86_gpf;
276
                    }
277
                    break;
278
                case 0xfb: /* sti */
279
                case 0x9d: /* popf */
280
                case 0xcf: /* iret */
281
                    env->eip++;
282
                    return_to_32bit(env, TARGET_VM86_STI);
283
                    break;
284
                default:
285
                vm86_gpf:
286
                    /* real VM86 GPF exception */
287
                    return_to_32bit(env, TARGET_VM86_UNKNOWN);
288
                    break;
289
                }
133
                handle_vm86_fault(env);
290 134
            } else {
135
                pc = env->seg_cache[R_CS].base + env->eip;
291 136
                if (pc[0] == 0xcd && pc[1] == 0x80) {
292 137
                    /* syscall */
293 138
                    env->eip += 2;
......
354 199
            /* just indicate that signals should be handled asap */
355 200
            break;
356 201
        default:
202
            pc = env->seg_cache[R_CS].base + env->eip;
357 203
            fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 
358 204
                    (long)pc, trapnr);
359 205
            abort();

Also available in: Unified diff