Statistics
| Branch: | Revision:

root / cpu-exec.c @ 89fc88da

History | View | Annotate | Download (52.9 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 *
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
void cpu_loop_exit(void)
44
{
45
    /* NOTE: the register at this point must be saved by hand because
46
       longjmp restore them */
47
    regs_to_env();
48
    longjmp(env->jmp_env, 1);
49
}
50

    
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc)
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      uint64_t flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87

    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91

    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93

    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc &&
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base &&
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) +
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138

    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146

    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    uint64_t flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    flags |= env->intercept;
167
    cs_base = env->segs[R_CS].base;
168
    pc = cs_base + env->eip;
169
#elif defined(TARGET_ARM)
170
    flags = env->thumb | (env->vfp.vec_len << 1)
171
            | (env->vfp.vec_stride << 4);
172
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
173
        flags |= (1 << 6);
174
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
175
        flags |= (1 << 7);
176
    cs_base = 0;
177
    pc = env->regs[15];
178
#elif defined(TARGET_SPARC)
179
#ifdef TARGET_SPARC64
180
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183
#else
184
    // FPU enable . MMU Boot . MMU enabled . MMU no-fault . Supervisor
185
    flags = (env->psref << 4) | (((env->mmuregs[0] & MMU_BM) >> 14) << 3)
186
        | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
187
        | env->psrs;
188
#endif
189
    cs_base = env->npc;
190
    pc = env->pc;
191
#elif defined(TARGET_PPC)
192
    flags = env->hflags;
193
    cs_base = 0;
194
    pc = env->nip;
195
#elif defined(TARGET_MIPS)
196
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
197
    cs_base = 0;
198
    pc = env->PC[env->current_tc];
199
#elif defined(TARGET_M68K)
200
    flags = (env->fpcr & M68K_FPCR_PREC)  /* Bit  6 */
201
            | (env->sr & SR_S)            /* Bit  13 */
202
            | ((env->macsr >> 4) & 0xf);  /* Bits 0-3 */
203
    cs_base = 0;
204
    pc = env->pc;
205
#elif defined(TARGET_SH4)
206
    flags = env->sr & (SR_MD | SR_RB);
207
    cs_base = 0;         /* XXXXX */
208
    pc = env->pc;
209
#elif defined(TARGET_ALPHA)
210
    flags = env->ps;
211
    cs_base = 0;
212
    pc = env->pc;
213
#elif defined(TARGET_CRIS)
214
    flags = 0;
215
    cs_base = 0;
216
    pc = env->pc;
217
#else
218
#error unsupported CPU
219
#endif
220
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
221
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
222
                         tb->flags != flags, 0)) {
223
        tb = tb_find_slow(pc, cs_base, flags);
224
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
225
           doing it in tb_find_slow */
226
        if (tb_invalidated_flag) {
227
            /* as some TB could have been invalidated because
228
               of memory exceptions while generating the code, we
229
               must recompute the hash index here */
230
            T0 = 0;
231
        }
232
    }
233
    return tb;
234
}
235

    
236

    
237
/* main execution loop */
238

    
239
int cpu_exec(CPUState *env1)
240
{
241
#define DECLARE_HOST_REGS 1
242
#include "hostregs_helper.h"
243
#if defined(TARGET_SPARC)
244
#if defined(reg_REGWPTR)
245
    uint32_t *saved_regwptr;
246
#endif
247
#endif
248
#if defined(__sparc__) && !defined(HOST_SOLARIS)
249
    int saved_i7;
250
    target_ulong tmp_T0;
251
#endif
252
    int ret, interrupt_request;
253
    void (*gen_func)(void);
254
    TranslationBlock *tb;
255
    uint8_t *tc_ptr;
256

    
257
    if (cpu_halted(env1) == EXCP_HALTED)
258
        return EXCP_HALTED;
259

    
260
    cpu_single_env = env1;
261

    
262
    /* first we save global registers */
263
#define SAVE_HOST_REGS 1
264
#include "hostregs_helper.h"
265
    env = env1;
266
#if defined(__sparc__) && !defined(HOST_SOLARIS)
267
    /* we also save i7 because longjmp may not restore it */
268
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
269
#endif
270

    
271
    env_to_regs();
272
#if defined(TARGET_I386)
273
    /* put eflags in CPU temporary format */
274
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
275
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
276
    CC_OP = CC_OP_EFLAGS;
277
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
278
#elif defined(TARGET_SPARC)
279
#if defined(reg_REGWPTR)
280
    saved_regwptr = REGWPTR;
281
#endif
282
#elif defined(TARGET_M68K)
283
    env->cc_op = CC_OP_FLAGS;
284
    env->cc_dest = env->sr & 0xf;
285
    env->cc_x = (env->sr >> 4) & 1;
286
#elif defined(TARGET_ALPHA)
287
#elif defined(TARGET_ARM)
288
#elif defined(TARGET_PPC)
289
#elif defined(TARGET_MIPS)
290
#elif defined(TARGET_SH4)
291
#elif defined(TARGET_CRIS)
292
    /* XXXXX */
293
#else
294
#error unsupported target CPU
295
#endif
296
    env->exception_index = -1;
297

    
298
    /* prepare setjmp context for exception handling */
299
    for(;;) {
300
        if (setjmp(env->jmp_env) == 0) {
301
            env->current_tb = NULL;
302
            /* if an exception is pending, we execute it here */
303
            if (env->exception_index >= 0) {
304
                if (env->exception_index >= EXCP_INTERRUPT) {
305
                    /* exit request from the cpu execution loop */
306
                    ret = env->exception_index;
307
                    break;
308
                } else if (env->user_mode_only) {
309
                    /* if user mode only, we simulate a fake exception
310
                       which will be handled outside the cpu execution
311
                       loop */
312
#if defined(TARGET_I386)
313
                    do_interrupt_user(env->exception_index,
314
                                      env->exception_is_int,
315
                                      env->error_code,
316
                                      env->exception_next_eip);
317
#endif
318
                    ret = env->exception_index;
319
                    break;
320
                } else {
321
#if defined(TARGET_I386)
322
                    /* simulate a real cpu exception. On i386, it can
323
                       trigger new exceptions, but we do not handle
324
                       double or triple faults yet. */
325
                    do_interrupt(env->exception_index,
326
                                 env->exception_is_int,
327
                                 env->error_code,
328
                                 env->exception_next_eip, 0);
329
                    /* successfully delivered */
330
                    env->old_exception = -1;
331
#elif defined(TARGET_PPC)
332
                    do_interrupt(env);
333
#elif defined(TARGET_MIPS)
334
                    do_interrupt(env);
335
#elif defined(TARGET_SPARC)
336
                    do_interrupt(env->exception_index);
337
#elif defined(TARGET_ARM)
338
                    do_interrupt(env);
339
#elif defined(TARGET_SH4)
340
                    do_interrupt(env);
341
#elif defined(TARGET_ALPHA)
342
                    do_interrupt(env);
343
#elif defined(TARGET_CRIS)
344
                    do_interrupt(env);
345
#elif defined(TARGET_M68K)
346
                    do_interrupt(0);
347
#endif
348
                }
349
                env->exception_index = -1;
350
            }
351
#ifdef USE_KQEMU
352
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
353
                int ret;
354
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
355
                ret = kqemu_cpu_exec(env);
356
                /* put eflags in CPU temporary format */
357
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
358
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
359
                CC_OP = CC_OP_EFLAGS;
360
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
361
                if (ret == 1) {
362
                    /* exception */
363
                    longjmp(env->jmp_env, 1);
364
                } else if (ret == 2) {
365
                    /* softmmu execution needed */
366
                } else {
367
                    if (env->interrupt_request != 0) {
368
                        /* hardware interrupt will be executed just after */
369
                    } else {
370
                        /* otherwise, we restart */
371
                        longjmp(env->jmp_env, 1);
372
                    }
373
                }
374
            }
375
#endif
376

    
377
            T0 = 0; /* force lookup of first TB */
378
            for(;;) {
379
#if defined(__sparc__) && !defined(HOST_SOLARIS)
380
                /* g1 can be modified by some libc? functions */
381
                tmp_T0 = T0;
382
#endif
383
                interrupt_request = env->interrupt_request;
384
                if (__builtin_expect(interrupt_request, 0)
385
#if defined(TARGET_I386)
386
                        && env->hflags & HF_GIF_MASK
387
#endif
388
                                ) {
389
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
390
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
391
                        env->exception_index = EXCP_DEBUG;
392
                        cpu_loop_exit();
393
                    }
394
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
395
    defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
396
                    if (interrupt_request & CPU_INTERRUPT_HALT) {
397
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
398
                        env->halted = 1;
399
                        env->exception_index = EXCP_HLT;
400
                        cpu_loop_exit();
401
                    }
402
#endif
403
#if defined(TARGET_I386)
404
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
405
                        !(env->hflags & HF_SMM_MASK)) {
406
                        svm_check_intercept(SVM_EXIT_SMI);
407
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
408
                        do_smm_enter();
409
#if defined(__sparc__) && !defined(HOST_SOLARIS)
410
                        tmp_T0 = 0;
411
#else
412
                        T0 = 0;
413
#endif
414
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
415
                        (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
416
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
417
                        int intno;
418
                        svm_check_intercept(SVM_EXIT_INTR);
419
                        env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
420
                        intno = cpu_get_pic_interrupt(env);
421
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
422
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
423
                        }
424
                        do_interrupt(intno, 0, 0, 0, 1);
425
                        /* ensure that no TB jump will be modified as
426
                           the program flow was changed */
427
#if defined(__sparc__) && !defined(HOST_SOLARIS)
428
                        tmp_T0 = 0;
429
#else
430
                        T0 = 0;
431
#endif
432
#if !defined(CONFIG_USER_ONLY)
433
                    } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
434
                        (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
435
                         int intno;
436
                         /* FIXME: this should respect TPR */
437
                         env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
438
                         svm_check_intercept(SVM_EXIT_VINTR);
439
                         intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
440
                         if (loglevel & CPU_LOG_TB_IN_ASM)
441
                             fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
442
                         do_interrupt(intno, 0, 0, -1, 1);
443
                         stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
444
                                  ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
445
#if defined(__sparc__) && !defined(HOST_SOLARIS)
446
                         tmp_T0 = 0;
447
#else
448
                         T0 = 0;
449
#endif
450
#endif
451
                    }
452
#elif defined(TARGET_PPC)
453
#if 0
454
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
455
                        cpu_ppc_reset(env);
456
                    }
457
#endif
458
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
459
                        ppc_hw_interrupt(env);
460
                        if (env->pending_interrupts == 0)
461
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
462
#if defined(__sparc__) && !defined(HOST_SOLARIS)
463
                        tmp_T0 = 0;
464
#else
465
                        T0 = 0;
466
#endif
467
                    }
468
#elif defined(TARGET_MIPS)
469
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
470
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
471
                        (env->CP0_Status & (1 << CP0St_IE)) &&
472
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
473
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
474
                        !(env->hflags & MIPS_HFLAG_DM)) {
475
                        /* Raise it */
476
                        env->exception_index = EXCP_EXT_INTERRUPT;
477
                        env->error_code = 0;
478
                        do_interrupt(env);
479
#if defined(__sparc__) && !defined(HOST_SOLARIS)
480
                        tmp_T0 = 0;
481
#else
482
                        T0 = 0;
483
#endif
484
                    }
485
#elif defined(TARGET_SPARC)
486
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
487
                        (env->psret != 0)) {
488
                        int pil = env->interrupt_index & 15;
489
                        int type = env->interrupt_index & 0xf0;
490

    
491
                        if (((type == TT_EXTINT) &&
492
                             (pil == 15 || pil > env->psrpil)) ||
493
                            type != TT_EXTINT) {
494
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
495
                            do_interrupt(env->interrupt_index);
496
                            env->interrupt_index = 0;
497
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
498
                            cpu_check_irqs(env);
499
#endif
500
#if defined(__sparc__) && !defined(HOST_SOLARIS)
501
                            tmp_T0 = 0;
502
#else
503
                            T0 = 0;
504
#endif
505
                        }
506
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
507
                        //do_interrupt(0, 0, 0, 0, 0);
508
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
509
                    }
510
#elif defined(TARGET_ARM)
511
                    if (interrupt_request & CPU_INTERRUPT_FIQ
512
                        && !(env->uncached_cpsr & CPSR_F)) {
513
                        env->exception_index = EXCP_FIQ;
514
                        do_interrupt(env);
515
                    }
516
                    if (interrupt_request & CPU_INTERRUPT_HARD
517
                        && !(env->uncached_cpsr & CPSR_I)) {
518
                        env->exception_index = EXCP_IRQ;
519
                        do_interrupt(env);
520
                    }
521
#elif defined(TARGET_SH4)
522
                    /* XXXXX */
523
#elif defined(TARGET_ALPHA)
524
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
525
                        do_interrupt(env);
526
                    }
527
#elif defined(TARGET_CRIS)
528
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
529
                        do_interrupt(env);
530
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
531
                    }
532
#elif defined(TARGET_M68K)
533
                    if (interrupt_request & CPU_INTERRUPT_HARD
534
                        && ((env->sr & SR_I) >> SR_I_SHIFT)
535
                            < env->pending_level) {
536
                        /* Real hardware gets the interrupt vector via an
537
                           IACK cycle at this point.  Current emulated
538
                           hardware doesn't rely on this, so we
539
                           provide/save the vector when the interrupt is
540
                           first signalled.  */
541
                        env->exception_index = env->pending_vector;
542
                        do_interrupt(1);
543
                    }
544
#endif
545
                   /* Don't use the cached interupt_request value,
546
                      do_interrupt may have updated the EXITTB flag. */
547
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
548
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
549
                        /* ensure that no TB jump will be modified as
550
                           the program flow was changed */
551
#if defined(__sparc__) && !defined(HOST_SOLARIS)
552
                        tmp_T0 = 0;
553
#else
554
                        T0 = 0;
555
#endif
556
                    }
557
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
558
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
559
                        env->exception_index = EXCP_INTERRUPT;
560
                        cpu_loop_exit();
561
                    }
562
                }
563
#ifdef DEBUG_EXEC
564
                if ((loglevel & CPU_LOG_TB_CPU)) {
565
                    /* restore flags in standard format */
566
                    regs_to_env();
567
#if defined(TARGET_I386)
568
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
569
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
570
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
571
#elif defined(TARGET_ARM)
572
                    cpu_dump_state(env, logfile, fprintf, 0);
573
#elif defined(TARGET_SPARC)
574
                    REGWPTR = env->regbase + (env->cwp * 16);
575
                    env->regwptr = REGWPTR;
576
                    cpu_dump_state(env, logfile, fprintf, 0);
577
#elif defined(TARGET_PPC)
578
                    cpu_dump_state(env, logfile, fprintf, 0);
579
#elif defined(TARGET_M68K)
580
                    cpu_m68k_flush_flags(env, env->cc_op);
581
                    env->cc_op = CC_OP_FLAGS;
582
                    env->sr = (env->sr & 0xffe0)
583
                              | env->cc_dest | (env->cc_x << 4);
584
                    cpu_dump_state(env, logfile, fprintf, 0);
585
#elif defined(TARGET_MIPS)
586
                    cpu_dump_state(env, logfile, fprintf, 0);
587
#elif defined(TARGET_SH4)
588
                    cpu_dump_state(env, logfile, fprintf, 0);
589
#elif defined(TARGET_ALPHA)
590
                    cpu_dump_state(env, logfile, fprintf, 0);
591
#elif defined(TARGET_CRIS)
592
                    cpu_dump_state(env, logfile, fprintf, 0);
593
#else
594
#error unsupported target CPU
595
#endif
596
                }
597
#endif
598
                tb = tb_find_fast();
599
#ifdef DEBUG_EXEC
600
                if ((loglevel & CPU_LOG_EXEC)) {
601
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
602
                            (long)tb->tc_ptr, tb->pc,
603
                            lookup_symbol(tb->pc));
604
                }
605
#endif
606
#if defined(__sparc__) && !defined(HOST_SOLARIS)
607
                T0 = tmp_T0;
608
#endif
609
                /* see if we can patch the calling TB. When the TB
610
                   spans two pages, we cannot safely do a direct
611
                   jump. */
612
                {
613
                    if (T0 != 0 &&
614
#if USE_KQEMU
615
                        (env->kqemu_enabled != 2) &&
616
#endif
617
                        tb->page_addr[1] == -1
618
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
619
                    && (tb->cflags & CF_CODE_COPY) ==
620
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
621
#endif
622
                    ) {
623
                    spin_lock(&tb_lock);
624
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
625
#if defined(USE_CODE_COPY)
626
                    /* propagates the FP use info */
627
                    ((TranslationBlock *)(T0 & ~3))->cflags |=
628
                        (tb->cflags & CF_FP_USED);
629
#endif
630
                    spin_unlock(&tb_lock);
631
                }
632
                }
633
                tc_ptr = tb->tc_ptr;
634
                env->current_tb = tb;
635
                /* execute the generated code */
636
                gen_func = (void *)tc_ptr;
637
#if defined(__sparc__)
638
                __asm__ __volatile__("call        %0\n\t"
639
                                     "mov        %%o7,%%i0"
640
                                     : /* no outputs */
641
                                     : "r" (gen_func)
642
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
643
                                       "o0", "o1", "o2", "o3", "o4", "o5",
644
                                       "l0", "l1", "l2", "l3", "l4", "l5",
645
                                       "l6", "l7");
646
#elif defined(__arm__)
647
                asm volatile ("mov pc, %0\n\t"
648
                              ".global exec_loop\n\t"
649
                              "exec_loop:\n\t"
650
                              : /* no outputs */
651
                              : "r" (gen_func)
652
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
653
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
654
{
655
    if (!(tb->cflags & CF_CODE_COPY)) {
656
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
657
            save_native_fp_state(env);
658
        }
659
        gen_func();
660
    } else {
661
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
662
            restore_native_fp_state(env);
663
        }
664
        /* we work with native eflags */
665
        CC_SRC = cc_table[CC_OP].compute_all();
666
        CC_OP = CC_OP_EFLAGS;
667
        asm(".globl exec_loop\n"
668
            "\n"
669
            "debug1:\n"
670
            "    pushl %%ebp\n"
671
            "    fs movl %10, %9\n"
672
            "    fs movl %11, %%eax\n"
673
            "    andl $0x400, %%eax\n"
674
            "    fs orl %8, %%eax\n"
675
            "    pushl %%eax\n"
676
            "    popf\n"
677
            "    fs movl %%esp, %12\n"
678
            "    fs movl %0, %%eax\n"
679
            "    fs movl %1, %%ecx\n"
680
            "    fs movl %2, %%edx\n"
681
            "    fs movl %3, %%ebx\n"
682
            "    fs movl %4, %%esp\n"
683
            "    fs movl %5, %%ebp\n"
684
            "    fs movl %6, %%esi\n"
685
            "    fs movl %7, %%edi\n"
686
            "    fs jmp *%9\n"
687
            "exec_loop:\n"
688
            "    fs movl %%esp, %4\n"
689
            "    fs movl %12, %%esp\n"
690
            "    fs movl %%eax, %0\n"
691
            "    fs movl %%ecx, %1\n"
692
            "    fs movl %%edx, %2\n"
693
            "    fs movl %%ebx, %3\n"
694
            "    fs movl %%ebp, %5\n"
695
            "    fs movl %%esi, %6\n"
696
            "    fs movl %%edi, %7\n"
697
            "    pushf\n"
698
            "    popl %%eax\n"
699
            "    movl %%eax, %%ecx\n"
700
            "    andl $0x400, %%ecx\n"
701
            "    shrl $9, %%ecx\n"
702
            "    andl $0x8d5, %%eax\n"
703
            "    fs movl %%eax, %8\n"
704
            "    movl $1, %%eax\n"
705
            "    subl %%ecx, %%eax\n"
706
            "    fs movl %%eax, %11\n"
707
            "    fs movl %9, %%ebx\n" /* get T0 value */
708
            "    popl %%ebp\n"
709
            :
710
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
711
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
712
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
713
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
714
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
715
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
716
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
717
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
718
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
719
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
720
            "a" (gen_func),
721
            "m" (*(uint8_t *)offsetof(CPUState, df)),
722
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
723
            : "%ecx", "%edx"
724
            );
725
    }
726
}
727
#elif defined(__ia64)
728
                struct fptr {
729
                        void *ip;
730
                        void *gp;
731
                } fp;
732

    
733
                fp.ip = tc_ptr;
734
                fp.gp = code_gen_buffer + 2 * (1 << 20);
735
                (*(void (*)(void)) &fp)();
736
#else
737
                gen_func();
738
#endif
739
                env->current_tb = NULL;
740
                /* reset soft MMU for next block (it can currently
741
                   only be set by a memory fault) */
742
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
743
                if (env->hflags & HF_SOFTMMU_MASK) {
744
                    env->hflags &= ~HF_SOFTMMU_MASK;
745
                    /* do not allow linking to another block */
746
                    T0 = 0;
747
                }
748
#endif
749
#if defined(USE_KQEMU)
750
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
751
                if (kqemu_is_ok(env) &&
752
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
753
                    cpu_loop_exit();
754
                }
755
#endif
756
            } /* for(;;) */
757
        } else {
758
            env_to_regs();
759
        }
760
    } /* for(;;) */
761

    
762

    
763
#if defined(TARGET_I386)
764
#if defined(USE_CODE_COPY)
765
    if (env->native_fp_regs) {
766
        save_native_fp_state(env);
767
    }
768
#endif
769
    /* restore flags in standard format */
770
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
771
#elif defined(TARGET_ARM)
772
    /* XXX: Save/restore host fpu exception state?.  */
773
#elif defined(TARGET_SPARC)
774
#if defined(reg_REGWPTR)
775
    REGWPTR = saved_regwptr;
776
#endif
777
#elif defined(TARGET_PPC)
778
#elif defined(TARGET_M68K)
779
    cpu_m68k_flush_flags(env, env->cc_op);
780
    env->cc_op = CC_OP_FLAGS;
781
    env->sr = (env->sr & 0xffe0)
782
              | env->cc_dest | (env->cc_x << 4);
783
#elif defined(TARGET_MIPS)
784
#elif defined(TARGET_SH4)
785
#elif defined(TARGET_ALPHA)
786
#elif defined(TARGET_CRIS)
787
    /* XXXXX */
788
#else
789
#error unsupported target CPU
790
#endif
791

    
792
    /* restore global registers */
793
#if defined(__sparc__) && !defined(HOST_SOLARIS)
794
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
795
#endif
796
#include "hostregs_helper.h"
797

    
798
    /* fail safe : never use cpu_single_env outside cpu_exec() */
799
    cpu_single_env = NULL;
800
    return ret;
801
}
802

    
803
/* must only be called from the generated code as an exception can be
804
   generated */
805
void tb_invalidate_page_range(target_ulong start, target_ulong end)
806
{
807
    /* XXX: cannot enable it yet because it yields to MMU exception
808
       where NIP != read address on PowerPC */
809
#if 0
810
    target_ulong phys_addr;
811
    phys_addr = get_phys_addr_code(env, start);
812
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
813
#endif
814
}
815

    
816
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
817

    
818
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
819
{
820
    CPUX86State *saved_env;
821

    
822
    saved_env = env;
823
    env = s;
824
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
825
        selector &= 0xffff;
826
        cpu_x86_load_seg_cache(env, seg_reg, selector,
827
                               (selector << 4), 0xffff, 0);
828
    } else {
829
        load_seg(seg_reg, selector);
830
    }
831
    env = saved_env;
832
}
833

    
834
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
835
{
836
    CPUX86State *saved_env;
837

    
838
    saved_env = env;
839
    env = s;
840

    
841
    helper_fsave((target_ulong)ptr, data32);
842

    
843
    env = saved_env;
844
}
845

    
846
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
847
{
848
    CPUX86State *saved_env;
849

    
850
    saved_env = env;
851
    env = s;
852

    
853
    helper_frstor((target_ulong)ptr, data32);
854

    
855
    env = saved_env;
856
}
857

    
858
#endif /* TARGET_I386 */
859

    
860
#if !defined(CONFIG_SOFTMMU)
861

    
862
#if defined(TARGET_I386)
863

    
864
/* 'pc' is the host PC at which the exception was raised. 'address' is
865
   the effective address of the memory exception. 'is_write' is 1 if a
866
   write caused the exception and otherwise 0'. 'old_set' is the
867
   signal set which should be restored */
868
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
869
                                    int is_write, sigset_t *old_set,
870
                                    void *puc)
871
{
872
    TranslationBlock *tb;
873
    int ret;
874

    
875
    if (cpu_single_env)
876
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
877
#if defined(DEBUG_SIGNAL)
878
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
879
                pc, address, is_write, *(unsigned long *)old_set);
880
#endif
881
    /* XXX: locking issue */
882
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
883
        return 1;
884
    }
885

    
886
    /* see if it is an MMU fault */
887
    ret = cpu_x86_handle_mmu_fault(env, address, is_write,
888
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
889
    if (ret < 0)
890
        return 0; /* not an MMU fault */
891
    if (ret == 0)
892
        return 1; /* the MMU fault was handled without causing real CPU fault */
893
    /* now we have a real cpu fault */
894
    tb = tb_find_pc(pc);
895
    if (tb) {
896
        /* the PC is inside the translated code. It means that we have
897
           a virtual CPU fault */
898
        cpu_restore_state(tb, env, pc, puc);
899
    }
900
    if (ret == 1) {
901
#if 0
902
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
903
               env->eip, env->cr[2], env->error_code);
904
#endif
905
        /* we restore the process signal mask as the sigreturn should
906
           do it (XXX: use sigsetjmp) */
907
        sigprocmask(SIG_SETMASK, old_set, NULL);
908
        raise_exception_err(env->exception_index, env->error_code);
909
    } else {
910
        /* activate soft MMU for this block */
911
        env->hflags |= HF_SOFTMMU_MASK;
912
        cpu_resume_from_signal(env, puc);
913
    }
914
    /* never comes here */
915
    return 1;
916
}
917

    
918
#elif defined(TARGET_ARM)
919
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
920
                                    int is_write, sigset_t *old_set,
921
                                    void *puc)
922
{
923
    TranslationBlock *tb;
924
    int ret;
925

    
926
    if (cpu_single_env)
927
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
928
#if defined(DEBUG_SIGNAL)
929
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
930
           pc, address, is_write, *(unsigned long *)old_set);
931
#endif
932
    /* XXX: locking issue */
933
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
934
        return 1;
935
    }
936
    /* see if it is an MMU fault */
937
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
938
    if (ret < 0)
939
        return 0; /* not an MMU fault */
940
    if (ret == 0)
941
        return 1; /* the MMU fault was handled without causing real CPU fault */
942
    /* now we have a real cpu fault */
943
    tb = tb_find_pc(pc);
944
    if (tb) {
945
        /* the PC is inside the translated code. It means that we have
946
           a virtual CPU fault */
947
        cpu_restore_state(tb, env, pc, puc);
948
    }
949
    /* we restore the process signal mask as the sigreturn should
950
       do it (XXX: use sigsetjmp) */
951
    sigprocmask(SIG_SETMASK, old_set, NULL);
952
    cpu_loop_exit();
953
}
954
#elif defined(TARGET_SPARC)
955
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
956
                                    int is_write, sigset_t *old_set,
957
                                    void *puc)
958
{
959
    TranslationBlock *tb;
960
    int ret;
961

    
962
    if (cpu_single_env)
963
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
964
#if defined(DEBUG_SIGNAL)
965
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
966
           pc, address, is_write, *(unsigned long *)old_set);
967
#endif
968
    /* XXX: locking issue */
969
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
970
        return 1;
971
    }
972
    /* see if it is an MMU fault */
973
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
974
    if (ret < 0)
975
        return 0; /* not an MMU fault */
976
    if (ret == 0)
977
        return 1; /* the MMU fault was handled without causing real CPU fault */
978
    /* now we have a real cpu fault */
979
    tb = tb_find_pc(pc);
980
    if (tb) {
981
        /* the PC is inside the translated code. It means that we have
982
           a virtual CPU fault */
983
        cpu_restore_state(tb, env, pc, puc);
984
    }
985
    /* we restore the process signal mask as the sigreturn should
986
       do it (XXX: use sigsetjmp) */
987
    sigprocmask(SIG_SETMASK, old_set, NULL);
988
    cpu_loop_exit();
989
}
990
#elif defined (TARGET_PPC)
991
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
992
                                    int is_write, sigset_t *old_set,
993
                                    void *puc)
994
{
995
    TranslationBlock *tb;
996
    int ret;
997

    
998
    if (cpu_single_env)
999
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1000
#if defined(DEBUG_SIGNAL)
1001
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1002
           pc, address, is_write, *(unsigned long *)old_set);
1003
#endif
1004
    /* XXX: locking issue */
1005
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1006
        return 1;
1007
    }
1008

    
1009
    /* see if it is an MMU fault */
1010
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1011
    if (ret < 0)
1012
        return 0; /* not an MMU fault */
1013
    if (ret == 0)
1014
        return 1; /* the MMU fault was handled without causing real CPU fault */
1015

    
1016
    /* now we have a real cpu fault */
1017
    tb = tb_find_pc(pc);
1018
    if (tb) {
1019
        /* the PC is inside the translated code. It means that we have
1020
           a virtual CPU fault */
1021
        cpu_restore_state(tb, env, pc, puc);
1022
    }
1023
    if (ret == 1) {
1024
#if 0
1025
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1026
               env->nip, env->error_code, tb);
1027
#endif
1028
    /* we restore the process signal mask as the sigreturn should
1029
       do it (XXX: use sigsetjmp) */
1030
        sigprocmask(SIG_SETMASK, old_set, NULL);
1031
        do_raise_exception_err(env->exception_index, env->error_code);
1032
    } else {
1033
        /* activate soft MMU for this block */
1034
        cpu_resume_from_signal(env, puc);
1035
    }
1036
    /* never comes here */
1037
    return 1;
1038
}
1039

    
1040
#elif defined(TARGET_M68K)
1041
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1042
                                    int is_write, sigset_t *old_set,
1043
                                    void *puc)
1044
{
1045
    TranslationBlock *tb;
1046
    int ret;
1047

    
1048
    if (cpu_single_env)
1049
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1050
#if defined(DEBUG_SIGNAL)
1051
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1052
           pc, address, is_write, *(unsigned long *)old_set);
1053
#endif
1054
    /* XXX: locking issue */
1055
    if (is_write && page_unprotect(address, pc, puc)) {
1056
        return 1;
1057
    }
1058
    /* see if it is an MMU fault */
1059
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1060
    if (ret < 0)
1061
        return 0; /* not an MMU fault */
1062
    if (ret == 0)
1063
        return 1; /* the MMU fault was handled without causing real CPU fault */
1064
    /* now we have a real cpu fault */
1065
    tb = tb_find_pc(pc);
1066
    if (tb) {
1067
        /* the PC is inside the translated code. It means that we have
1068
           a virtual CPU fault */
1069
        cpu_restore_state(tb, env, pc, puc);
1070
    }
1071
    /* we restore the process signal mask as the sigreturn should
1072
       do it (XXX: use sigsetjmp) */
1073
    sigprocmask(SIG_SETMASK, old_set, NULL);
1074
    cpu_loop_exit();
1075
    /* never comes here */
1076
    return 1;
1077
}
1078

    
1079
#elif defined (TARGET_MIPS)
1080
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1081
                                    int is_write, sigset_t *old_set,
1082
                                    void *puc)
1083
{
1084
    TranslationBlock *tb;
1085
    int ret;
1086

    
1087
    if (cpu_single_env)
1088
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1089
#if defined(DEBUG_SIGNAL)
1090
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1091
           pc, address, is_write, *(unsigned long *)old_set);
1092
#endif
1093
    /* XXX: locking issue */
1094
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1095
        return 1;
1096
    }
1097

    
1098
    /* see if it is an MMU fault */
1099
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1100
    if (ret < 0)
1101
        return 0; /* not an MMU fault */
1102
    if (ret == 0)
1103
        return 1; /* the MMU fault was handled without causing real CPU fault */
1104

    
1105
    /* now we have a real cpu fault */
1106
    tb = tb_find_pc(pc);
1107
    if (tb) {
1108
        /* the PC is inside the translated code. It means that we have
1109
           a virtual CPU fault */
1110
        cpu_restore_state(tb, env, pc, puc);
1111
    }
1112
    if (ret == 1) {
1113
#if 0
1114
        printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1115
               env->PC, env->error_code, tb);
1116
#endif
1117
    /* we restore the process signal mask as the sigreturn should
1118
       do it (XXX: use sigsetjmp) */
1119
        sigprocmask(SIG_SETMASK, old_set, NULL);
1120
        do_raise_exception_err(env->exception_index, env->error_code);
1121
    } else {
1122
        /* activate soft MMU for this block */
1123
        cpu_resume_from_signal(env, puc);
1124
    }
1125
    /* never comes here */
1126
    return 1;
1127
}
1128

    
1129
#elif defined (TARGET_SH4)
1130
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1131
                                    int is_write, sigset_t *old_set,
1132
                                    void *puc)
1133
{
1134
    TranslationBlock *tb;
1135
    int ret;
1136

    
1137
    if (cpu_single_env)
1138
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1139
#if defined(DEBUG_SIGNAL)
1140
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1141
           pc, address, is_write, *(unsigned long *)old_set);
1142
#endif
1143
    /* XXX: locking issue */
1144
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1145
        return 1;
1146
    }
1147

    
1148
    /* see if it is an MMU fault */
1149
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1150
    if (ret < 0)
1151
        return 0; /* not an MMU fault */
1152
    if (ret == 0)
1153
        return 1; /* the MMU fault was handled without causing real CPU fault */
1154

    
1155
    /* now we have a real cpu fault */
1156
    tb = tb_find_pc(pc);
1157
    if (tb) {
1158
        /* the PC is inside the translated code. It means that we have
1159
           a virtual CPU fault */
1160
        cpu_restore_state(tb, env, pc, puc);
1161
    }
1162
#if 0
1163
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1164
               env->nip, env->error_code, tb);
1165
#endif
1166
    /* we restore the process signal mask as the sigreturn should
1167
       do it (XXX: use sigsetjmp) */
1168
    sigprocmask(SIG_SETMASK, old_set, NULL);
1169
    cpu_loop_exit();
1170
    /* never comes here */
1171
    return 1;
1172
}
1173

    
1174
#elif defined (TARGET_ALPHA)
1175
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1176
                                    int is_write, sigset_t *old_set,
1177
                                    void *puc)
1178
{
1179
    TranslationBlock *tb;
1180
    int ret;
1181

    
1182
    if (cpu_single_env)
1183
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1184
#if defined(DEBUG_SIGNAL)
1185
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1186
           pc, address, is_write, *(unsigned long *)old_set);
1187
#endif
1188
    /* XXX: locking issue */
1189
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1190
        return 1;
1191
    }
1192

    
1193
    /* see if it is an MMU fault */
1194
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1195
    if (ret < 0)
1196
        return 0; /* not an MMU fault */
1197
    if (ret == 0)
1198
        return 1; /* the MMU fault was handled without causing real CPU fault */
1199

    
1200
    /* now we have a real cpu fault */
1201
    tb = tb_find_pc(pc);
1202
    if (tb) {
1203
        /* the PC is inside the translated code. It means that we have
1204
           a virtual CPU fault */
1205
        cpu_restore_state(tb, env, pc, puc);
1206
    }
1207
#if 0
1208
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1209
               env->nip, env->error_code, tb);
1210
#endif
1211
    /* we restore the process signal mask as the sigreturn should
1212
       do it (XXX: use sigsetjmp) */
1213
    sigprocmask(SIG_SETMASK, old_set, NULL);
1214
    cpu_loop_exit();
1215
    /* never comes here */
1216
    return 1;
1217
}
1218
#elif defined (TARGET_CRIS)
1219
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1220
                                    int is_write, sigset_t *old_set,
1221
                                    void *puc)
1222
{
1223
    TranslationBlock *tb;
1224
    int ret;
1225

    
1226
    if (cpu_single_env)
1227
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1228
#if defined(DEBUG_SIGNAL)
1229
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1230
           pc, address, is_write, *(unsigned long *)old_set);
1231
#endif
1232
    /* XXX: locking issue */
1233
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1234
        return 1;
1235
    }
1236

    
1237
    /* see if it is an MMU fault */
1238
    ret = cpu_cris_handle_mmu_fault(env, address, is_write, 1, 0);
1239
    if (ret < 0)
1240
        return 0; /* not an MMU fault */
1241
    if (ret == 0)
1242
        return 1; /* the MMU fault was handled without causing real CPU fault */
1243

    
1244
    /* now we have a real cpu fault */
1245
    tb = tb_find_pc(pc);
1246
    if (tb) {
1247
        /* the PC is inside the translated code. It means that we have
1248
           a virtual CPU fault */
1249
        cpu_restore_state(tb, env, pc, puc);
1250
    }
1251
#if 0
1252
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1253
               env->nip, env->error_code, tb);
1254
#endif
1255
    /* we restore the process signal mask as the sigreturn should
1256
       do it (XXX: use sigsetjmp) */
1257
    sigprocmask(SIG_SETMASK, old_set, NULL);
1258
    cpu_loop_exit();
1259
    /* never comes here */
1260
    return 1;
1261
}
1262

    
1263
#else
1264
#error unsupported target CPU
1265
#endif
1266

    
1267
#if defined(__i386__)
1268

    
1269
#if defined(__APPLE__)
1270
# include <sys/ucontext.h>
1271

    
1272
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1273
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1274
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1275
#else
1276
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1277
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1278
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1279
#endif
1280

    
1281
#if defined(USE_CODE_COPY)
1282
static void cpu_send_trap(unsigned long pc, int trap,
1283
                          struct ucontext *uc)
1284
{
1285
    TranslationBlock *tb;
1286

    
1287
    if (cpu_single_env)
1288
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1289
    /* now we have a real cpu fault */
1290
    tb = tb_find_pc(pc);
1291
    if (tb) {
1292
        /* the PC is inside the translated code. It means that we have
1293
           a virtual CPU fault */
1294
        cpu_restore_state(tb, env, pc, uc);
1295
    }
1296
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1297
    raise_exception_err(trap, env->error_code);
1298
}
1299
#endif
1300

    
1301
int cpu_signal_handler(int host_signum, void *pinfo,
1302
                       void *puc)
1303
{
1304
    siginfo_t *info = pinfo;
1305
    struct ucontext *uc = puc;
1306
    unsigned long pc;
1307
    int trapno;
1308

    
1309
#ifndef REG_EIP
1310
/* for glibc 2.1 */
1311
#define REG_EIP    EIP
1312
#define REG_ERR    ERR
1313
#define REG_TRAPNO TRAPNO
1314
#endif
1315
    pc = EIP_sig(uc);
1316
    trapno = TRAP_sig(uc);
1317
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1318
    if (trapno == 0x00 || trapno == 0x05) {
1319
        /* send division by zero or bound exception */
1320
        cpu_send_trap(pc, trapno, uc);
1321
        return 1;
1322
    } else
1323
#endif
1324
        return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1325
                                 trapno == 0xe ?
1326
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1327
                                 &uc->uc_sigmask, puc);
1328
}
1329

    
1330
#elif defined(__x86_64__)
1331

    
1332
int cpu_signal_handler(int host_signum, void *pinfo,
1333
                       void *puc)
1334
{
1335
    siginfo_t *info = pinfo;
1336
    struct ucontext *uc = puc;
1337
    unsigned long pc;
1338

    
1339
    pc = uc->uc_mcontext.gregs[REG_RIP];
1340
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1341
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1342
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1343
                             &uc->uc_sigmask, puc);
1344
}
1345

    
1346
#elif defined(__powerpc__)
1347

    
1348
/***********************************************************************
1349
 * signal context platform-specific definitions
1350
 * From Wine
1351
 */
1352
#ifdef linux
1353
/* All Registers access - only for local access */
1354
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1355
/* Gpr Registers access  */
1356
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1357
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1358
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1359
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1360
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1361
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1362
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1363
/* Float Registers access  */
1364
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1365
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1366
/* Exception Registers access */
1367
# define DAR_sig(context)                        REG_sig(dar, context)
1368
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1369
# define TRAP_sig(context)                        REG_sig(trap, context)
1370
#endif /* linux */
1371

    
1372
#ifdef __APPLE__
1373
# include <sys/ucontext.h>
1374
typedef struct ucontext SIGCONTEXT;
1375
/* All Registers access - only for local access */
1376
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1377
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1378
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1379
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1380
/* Gpr Registers access */
1381
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1382
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1383
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1384
# define CTR_sig(context)                        REG_sig(ctr, context)
1385
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1386
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1387
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1388
/* Float Registers access */
1389
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1390
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1391
/* Exception Registers access */
1392
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1393
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1394
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1395
#endif /* __APPLE__ */
1396

    
1397
int cpu_signal_handler(int host_signum, void *pinfo,
1398
                       void *puc)
1399
{
1400
    siginfo_t *info = pinfo;
1401
    struct ucontext *uc = puc;
1402
    unsigned long pc;
1403
    int is_write;
1404

    
1405
    pc = IAR_sig(uc);
1406
    is_write = 0;
1407
#if 0
1408
    /* ppc 4xx case */
1409
    if (DSISR_sig(uc) & 0x00800000)
1410
        is_write = 1;
1411
#else
1412
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1413
        is_write = 1;
1414
#endif
1415
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1416
                             is_write, &uc->uc_sigmask, puc);
1417
}
1418

    
1419
#elif defined(__alpha__)
1420

    
1421
int cpu_signal_handler(int host_signum, void *pinfo,
1422
                           void *puc)
1423
{
1424
    siginfo_t *info = pinfo;
1425
    struct ucontext *uc = puc;
1426
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1427
    uint32_t insn = *pc;
1428
    int is_write = 0;
1429

    
1430
    /* XXX: need kernel patch to get write flag faster */
1431
    switch (insn >> 26) {
1432
    case 0x0d: // stw
1433
    case 0x0e: // stb
1434
    case 0x0f: // stq_u
1435
    case 0x24: // stf
1436
    case 0x25: // stg
1437
    case 0x26: // sts
1438
    case 0x27: // stt
1439
    case 0x2c: // stl
1440
    case 0x2d: // stq
1441
    case 0x2e: // stl_c
1442
    case 0x2f: // stq_c
1443
        is_write = 1;
1444
    }
1445

    
1446
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1447
                             is_write, &uc->uc_sigmask, puc);
1448
}
1449
#elif defined(__sparc__)
1450

    
1451
int cpu_signal_handler(int host_signum, void *pinfo,
1452
                       void *puc)
1453
{
1454
    siginfo_t *info = pinfo;
1455
    uint32_t *regs = (uint32_t *)(info + 1);
1456
    void *sigmask = (regs + 20);
1457
    unsigned long pc;
1458
    int is_write;
1459
    uint32_t insn;
1460

    
1461
    /* XXX: is there a standard glibc define ? */
1462
    pc = regs[1];
1463
    /* XXX: need kernel patch to get write flag faster */
1464
    is_write = 0;
1465
    insn = *(uint32_t *)pc;
1466
    if ((insn >> 30) == 3) {
1467
      switch((insn >> 19) & 0x3f) {
1468
      case 0x05: // stb
1469
      case 0x06: // sth
1470
      case 0x04: // st
1471
      case 0x07: // std
1472
      case 0x24: // stf
1473
      case 0x27: // stdf
1474
      case 0x25: // stfsr
1475
        is_write = 1;
1476
        break;
1477
      }
1478
    }
1479
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1480
                             is_write, sigmask, NULL);
1481
}
1482

    
1483
#elif defined(__arm__)
1484

    
1485
int cpu_signal_handler(int host_signum, void *pinfo,
1486
                       void *puc)
1487
{
1488
    siginfo_t *info = pinfo;
1489
    struct ucontext *uc = puc;
1490
    unsigned long pc;
1491
    int is_write;
1492

    
1493
    pc = uc->uc_mcontext.gregs[R15];
1494
    /* XXX: compute is_write */
1495
    is_write = 0;
1496
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1497
                             is_write,
1498
                             &uc->uc_sigmask, puc);
1499
}
1500

    
1501
#elif defined(__mc68000)
1502

    
1503
int cpu_signal_handler(int host_signum, void *pinfo,
1504
                       void *puc)
1505
{
1506
    siginfo_t *info = pinfo;
1507
    struct ucontext *uc = puc;
1508
    unsigned long pc;
1509
    int is_write;
1510

    
1511
    pc = uc->uc_mcontext.gregs[16];
1512
    /* XXX: compute is_write */
1513
    is_write = 0;
1514
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1515
                             is_write,
1516
                             &uc->uc_sigmask, puc);
1517
}
1518

    
1519
#elif defined(__ia64)
1520

    
1521
#ifndef __ISR_VALID
1522
  /* This ought to be in <bits/siginfo.h>... */
1523
# define __ISR_VALID        1
1524
#endif
1525

    
1526
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1527
{
1528
    siginfo_t *info = pinfo;
1529
    struct ucontext *uc = puc;
1530
    unsigned long ip;
1531
    int is_write = 0;
1532

    
1533
    ip = uc->uc_mcontext.sc_ip;
1534
    switch (host_signum) {
1535
      case SIGILL:
1536
      case SIGFPE:
1537
      case SIGSEGV:
1538
      case SIGBUS:
1539
      case SIGTRAP:
1540
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1541
              /* ISR.W (write-access) is bit 33:  */
1542
              is_write = (info->si_isr >> 33) & 1;
1543
          break;
1544

    
1545
      default:
1546
          break;
1547
    }
1548
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1549
                             is_write,
1550
                             &uc->uc_sigmask, puc);
1551
}
1552

    
1553
#elif defined(__s390__)
1554

    
1555
int cpu_signal_handler(int host_signum, void *pinfo,
1556
                       void *puc)
1557
{
1558
    siginfo_t *info = pinfo;
1559
    struct ucontext *uc = puc;
1560
    unsigned long pc;
1561
    int is_write;
1562

    
1563
    pc = uc->uc_mcontext.psw.addr;
1564
    /* XXX: compute is_write */
1565
    is_write = 0;
1566
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1567
                             is_write, &uc->uc_sigmask, puc);
1568
}
1569

    
1570
#elif defined(__mips__)
1571

    
1572
int cpu_signal_handler(int host_signum, void *pinfo,
1573
                       void *puc)
1574
{
1575
    siginfo_t *info = pinfo;
1576
    struct ucontext *uc = puc;
1577
    greg_t pc = uc->uc_mcontext.pc;
1578
    int is_write;
1579

    
1580
    /* XXX: compute is_write */
1581
    is_write = 0;
1582
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1583
                             is_write, &uc->uc_sigmask, puc);
1584
}
1585

    
1586
#else
1587

    
1588
#error host CPU specific signal handler needed
1589

    
1590
#endif
1591

    
1592
#endif /* !defined(CONFIG_SOFTMMU) */