Statistics
| Branch: | Revision:

root / kvm-all.c @ 8a7c7393

History | View | Annotate | Download (42.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29
#include "bswap.h"
30
#include "memory.h"
31
#include "exec-memory.h"
32

    
33
/* This check must be after config-host.h is included */
34
#ifdef CONFIG_EVENTFD
35
#include <sys/eventfd.h>
36
#endif
37

    
38
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
39
#define PAGE_SIZE TARGET_PAGE_SIZE
40

    
41
//#define DEBUG_KVM
42

    
43
#ifdef DEBUG_KVM
44
#define DPRINTF(fmt, ...) \
45
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46
#else
47
#define DPRINTF(fmt, ...) \
48
    do { } while (0)
49
#endif
50

    
51
typedef struct KVMSlot
52
{
53
    target_phys_addr_t start_addr;
54
    ram_addr_t memory_size;
55
    void *ram;
56
    int slot;
57
    int flags;
58
} KVMSlot;
59

    
60
typedef struct kvm_dirty_log KVMDirtyLog;
61

    
62
struct KVMState
63
{
64
    KVMSlot slots[32];
65
    int fd;
66
    int vmfd;
67
    int coalesced_mmio;
68
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69
    bool coalesced_flush_in_progress;
70
    int broken_set_mem_region;
71
    int migration_log;
72
    int vcpu_events;
73
    int robust_singlestep;
74
    int debugregs;
75
#ifdef KVM_CAP_SET_GUEST_DEBUG
76
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77
#endif
78
    int pit_in_kernel;
79
    int pit_state2;
80
    int xsave, xcrs;
81
    int many_ioeventfds;
82
    int irqchip_inject_ioctl;
83
#ifdef KVM_CAP_IRQ_ROUTING
84
    struct kvm_irq_routing *irq_routes;
85
    int nr_allocated_irq_routes;
86
    uint32_t *used_gsi_bitmap;
87
    unsigned int max_gsi;
88
#endif
89
};
90

    
91
KVMState *kvm_state;
92
bool kvm_kernel_irqchip;
93

    
94
static const KVMCapabilityInfo kvm_required_capabilites[] = {
95
    KVM_CAP_INFO(USER_MEMORY),
96
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
97
    KVM_CAP_LAST_INFO
98
};
99

    
100
static KVMSlot *kvm_alloc_slot(KVMState *s)
101
{
102
    int i;
103

    
104
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
105
        if (s->slots[i].memory_size == 0) {
106
            return &s->slots[i];
107
        }
108
    }
109

    
110
    fprintf(stderr, "%s: no free slot available\n", __func__);
111
    abort();
112
}
113

    
114
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
115
                                         target_phys_addr_t start_addr,
116
                                         target_phys_addr_t end_addr)
117
{
118
    int i;
119

    
120
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121
        KVMSlot *mem = &s->slots[i];
122

    
123
        if (start_addr == mem->start_addr &&
124
            end_addr == mem->start_addr + mem->memory_size) {
125
            return mem;
126
        }
127
    }
128

    
129
    return NULL;
130
}
131

    
132
/*
133
 * Find overlapping slot with lowest start address
134
 */
135
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
136
                                            target_phys_addr_t start_addr,
137
                                            target_phys_addr_t end_addr)
138
{
139
    KVMSlot *found = NULL;
140
    int i;
141

    
142
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143
        KVMSlot *mem = &s->slots[i];
144

    
145
        if (mem->memory_size == 0 ||
146
            (found && found->start_addr < mem->start_addr)) {
147
            continue;
148
        }
149

    
150
        if (end_addr > mem->start_addr &&
151
            start_addr < mem->start_addr + mem->memory_size) {
152
            found = mem;
153
        }
154
    }
155

    
156
    return found;
157
}
158

    
159
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
160
                                       target_phys_addr_t *phys_addr)
161
{
162
    int i;
163

    
164
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165
        KVMSlot *mem = &s->slots[i];
166

    
167
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
168
            *phys_addr = mem->start_addr + (ram - mem->ram);
169
            return 1;
170
        }
171
    }
172

    
173
    return 0;
174
}
175

    
176
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177
{
178
    struct kvm_userspace_memory_region mem;
179

    
180
    mem.slot = slot->slot;
181
    mem.guest_phys_addr = slot->start_addr;
182
    mem.memory_size = slot->memory_size;
183
    mem.userspace_addr = (unsigned long)slot->ram;
184
    mem.flags = slot->flags;
185
    if (s->migration_log) {
186
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187
    }
188
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
189
}
190

    
191
static void kvm_reset_vcpu(void *opaque)
192
{
193
    CPUState *env = opaque;
194

    
195
    kvm_arch_reset_vcpu(env);
196
}
197

    
198
int kvm_pit_in_kernel(void)
199
{
200
    return kvm_state->pit_in_kernel;
201
}
202

    
203
int kvm_init_vcpu(CPUState *env)
204
{
205
    KVMState *s = kvm_state;
206
    long mmap_size;
207
    int ret;
208

    
209
    DPRINTF("kvm_init_vcpu\n");
210

    
211
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
212
    if (ret < 0) {
213
        DPRINTF("kvm_create_vcpu failed\n");
214
        goto err;
215
    }
216

    
217
    env->kvm_fd = ret;
218
    env->kvm_state = s;
219
    env->kvm_vcpu_dirty = 1;
220

    
221
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
222
    if (mmap_size < 0) {
223
        ret = mmap_size;
224
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
225
        goto err;
226
    }
227

    
228
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
229
                        env->kvm_fd, 0);
230
    if (env->kvm_run == MAP_FAILED) {
231
        ret = -errno;
232
        DPRINTF("mmap'ing vcpu state failed\n");
233
        goto err;
234
    }
235

    
236
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
237
        s->coalesced_mmio_ring =
238
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
239
    }
240

    
241
    ret = kvm_arch_init_vcpu(env);
242
    if (ret == 0) {
243
        qemu_register_reset(kvm_reset_vcpu, env);
244
        kvm_arch_reset_vcpu(env);
245
    }
246
err:
247
    return ret;
248
}
249

    
250
/*
251
 * dirty pages logging control
252
 */
253

    
254
static int kvm_mem_flags(KVMState *s, bool log_dirty)
255
{
256
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
257
}
258

    
259
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
260
{
261
    KVMState *s = kvm_state;
262
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
263
    int old_flags;
264

    
265
    old_flags = mem->flags;
266

    
267
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
268
    mem->flags = flags;
269

    
270
    /* If nothing changed effectively, no need to issue ioctl */
271
    if (s->migration_log) {
272
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
273
    }
274

    
275
    if (flags == old_flags) {
276
        return 0;
277
    }
278

    
279
    return kvm_set_user_memory_region(s, mem);
280
}
281

    
282
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
283
                                      ram_addr_t size, bool log_dirty)
284
{
285
    KVMState *s = kvm_state;
286
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
287

    
288
    if (mem == NULL)  {
289
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
290
                TARGET_FMT_plx "\n", __func__, phys_addr,
291
                (target_phys_addr_t)(phys_addr + size - 1));
292
        return -EINVAL;
293
    }
294
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
295
}
296

    
297
static void kvm_log_start(MemoryListener *listener,
298
                          MemoryRegionSection *section)
299
{
300
    int r;
301

    
302
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
303
                                   section->size, true);
304
    if (r < 0) {
305
        abort();
306
    }
307
}
308

    
309
static void kvm_log_stop(MemoryListener *listener,
310
                          MemoryRegionSection *section)
311
{
312
    int r;
313

    
314
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
315
                                   section->size, false);
316
    if (r < 0) {
317
        abort();
318
    }
319
}
320

    
321
static int kvm_set_migration_log(int enable)
322
{
323
    KVMState *s = kvm_state;
324
    KVMSlot *mem;
325
    int i, err;
326

    
327
    s->migration_log = enable;
328

    
329
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
330
        mem = &s->slots[i];
331

    
332
        if (!mem->memory_size) {
333
            continue;
334
        }
335
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
336
            continue;
337
        }
338
        err = kvm_set_user_memory_region(s, mem);
339
        if (err) {
340
            return err;
341
        }
342
    }
343
    return 0;
344
}
345

    
346
/* get kvm's dirty pages bitmap and update qemu's */
347
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
348
                                         unsigned long *bitmap)
349
{
350
    unsigned int i, j;
351
    unsigned long page_number, c;
352
    target_phys_addr_t addr, addr1;
353
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
354

    
355
    /*
356
     * bitmap-traveling is faster than memory-traveling (for addr...)
357
     * especially when most of the memory is not dirty.
358
     */
359
    for (i = 0; i < len; i++) {
360
        if (bitmap[i] != 0) {
361
            c = leul_to_cpu(bitmap[i]);
362
            do {
363
                j = ffsl(c) - 1;
364
                c &= ~(1ul << j);
365
                page_number = i * HOST_LONG_BITS + j;
366
                addr1 = page_number * TARGET_PAGE_SIZE;
367
                addr = section->offset_within_region + addr1;
368
                memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
369
            } while (c != 0);
370
        }
371
    }
372
    return 0;
373
}
374

    
375
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
376

    
377
/**
378
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379
 * This function updates qemu's dirty bitmap using
380
 * memory_region_set_dirty().  This means all bits are set
381
 * to dirty.
382
 *
383
 * @start_add: start of logged region.
384
 * @end_addr: end of logged region.
385
 */
386
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
387
{
388
    KVMState *s = kvm_state;
389
    unsigned long size, allocated_size = 0;
390
    KVMDirtyLog d;
391
    KVMSlot *mem;
392
    int ret = 0;
393
    target_phys_addr_t start_addr = section->offset_within_address_space;
394
    target_phys_addr_t end_addr = start_addr + section->size;
395

    
396
    d.dirty_bitmap = NULL;
397
    while (start_addr < end_addr) {
398
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
399
        if (mem == NULL) {
400
            break;
401
        }
402

    
403
        /* XXX bad kernel interface alert
404
         * For dirty bitmap, kernel allocates array of size aligned to
405
         * bits-per-long.  But for case when the kernel is 64bits and
406
         * the userspace is 32bits, userspace can't align to the same
407
         * bits-per-long, since sizeof(long) is different between kernel
408
         * and user space.  This way, userspace will provide buffer which
409
         * may be 4 bytes less than the kernel will use, resulting in
410
         * userspace memory corruption (which is not detectable by valgrind
411
         * too, in most cases).
412
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
413
         * a hope that sizeof(long) wont become >8 any time soon.
414
         */
415
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
416
                     /*HOST_LONG_BITS*/ 64) / 8;
417
        if (!d.dirty_bitmap) {
418
            d.dirty_bitmap = g_malloc(size);
419
        } else if (size > allocated_size) {
420
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
421
        }
422
        allocated_size = size;
423
        memset(d.dirty_bitmap, 0, allocated_size);
424

    
425
        d.slot = mem->slot;
426

    
427
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
428
            DPRINTF("ioctl failed %d\n", errno);
429
            ret = -1;
430
            break;
431
        }
432

    
433
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
434
        start_addr = mem->start_addr + mem->memory_size;
435
    }
436
    g_free(d.dirty_bitmap);
437

    
438
    return ret;
439
}
440

    
441
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
442
{
443
    int ret = -ENOSYS;
444
    KVMState *s = kvm_state;
445

    
446
    if (s->coalesced_mmio) {
447
        struct kvm_coalesced_mmio_zone zone;
448

    
449
        zone.addr = start;
450
        zone.size = size;
451

    
452
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
453
    }
454

    
455
    return ret;
456
}
457

    
458
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
459
{
460
    int ret = -ENOSYS;
461
    KVMState *s = kvm_state;
462

    
463
    if (s->coalesced_mmio) {
464
        struct kvm_coalesced_mmio_zone zone;
465

    
466
        zone.addr = start;
467
        zone.size = size;
468

    
469
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
470
    }
471

    
472
    return ret;
473
}
474

    
475
int kvm_check_extension(KVMState *s, unsigned int extension)
476
{
477
    int ret;
478

    
479
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
480
    if (ret < 0) {
481
        ret = 0;
482
    }
483

    
484
    return ret;
485
}
486

    
487
static int kvm_check_many_ioeventfds(void)
488
{
489
    /* Userspace can use ioeventfd for io notification.  This requires a host
490
     * that supports eventfd(2) and an I/O thread; since eventfd does not
491
     * support SIGIO it cannot interrupt the vcpu.
492
     *
493
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
494
     * can avoid creating too many ioeventfds.
495
     */
496
#if defined(CONFIG_EVENTFD)
497
    int ioeventfds[7];
498
    int i, ret = 0;
499
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
500
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
501
        if (ioeventfds[i] < 0) {
502
            break;
503
        }
504
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
505
        if (ret < 0) {
506
            close(ioeventfds[i]);
507
            break;
508
        }
509
    }
510

    
511
    /* Decide whether many devices are supported or not */
512
    ret = i == ARRAY_SIZE(ioeventfds);
513

    
514
    while (i-- > 0) {
515
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
516
        close(ioeventfds[i]);
517
    }
518
    return ret;
519
#else
520
    return 0;
521
#endif
522
}
523

    
524
static const KVMCapabilityInfo *
525
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
526
{
527
    while (list->name) {
528
        if (!kvm_check_extension(s, list->value)) {
529
            return list;
530
        }
531
        list++;
532
    }
533
    return NULL;
534
}
535

    
536
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
537
{
538
    KVMState *s = kvm_state;
539
    KVMSlot *mem, old;
540
    int err;
541
    MemoryRegion *mr = section->mr;
542
    bool log_dirty = memory_region_is_logging(mr);
543
    target_phys_addr_t start_addr = section->offset_within_address_space;
544
    ram_addr_t size = section->size;
545
    void *ram = NULL;
546
    unsigned delta;
547

    
548
    /* kvm works in page size chunks, but the function may be called
549
       with sub-page size and unaligned start address. */
550
    delta = TARGET_PAGE_ALIGN(size) - size;
551
    if (delta > size) {
552
        return;
553
    }
554
    start_addr += delta;
555
    size -= delta;
556
    size &= TARGET_PAGE_MASK;
557
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
558
        return;
559
    }
560

    
561
    if (!memory_region_is_ram(mr)) {
562
        return;
563
    }
564

    
565
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
566

    
567
    while (1) {
568
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
569
        if (!mem) {
570
            break;
571
        }
572

    
573
        if (add && start_addr >= mem->start_addr &&
574
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
575
            (ram - start_addr == mem->ram - mem->start_addr)) {
576
            /* The new slot fits into the existing one and comes with
577
             * identical parameters - update flags and done. */
578
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
579
            return;
580
        }
581

    
582
        old = *mem;
583

    
584
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
585
            kvm_physical_sync_dirty_bitmap(section);
586
        }
587

    
588
        /* unregister the overlapping slot */
589
        mem->memory_size = 0;
590
        err = kvm_set_user_memory_region(s, mem);
591
        if (err) {
592
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
593
                    __func__, strerror(-err));
594
            abort();
595
        }
596

    
597
        /* Workaround for older KVM versions: we can't join slots, even not by
598
         * unregistering the previous ones and then registering the larger
599
         * slot. We have to maintain the existing fragmentation. Sigh.
600
         *
601
         * This workaround assumes that the new slot starts at the same
602
         * address as the first existing one. If not or if some overlapping
603
         * slot comes around later, we will fail (not seen in practice so far)
604
         * - and actually require a recent KVM version. */
605
        if (s->broken_set_mem_region &&
606
            old.start_addr == start_addr && old.memory_size < size && add) {
607
            mem = kvm_alloc_slot(s);
608
            mem->memory_size = old.memory_size;
609
            mem->start_addr = old.start_addr;
610
            mem->ram = old.ram;
611
            mem->flags = kvm_mem_flags(s, log_dirty);
612

    
613
            err = kvm_set_user_memory_region(s, mem);
614
            if (err) {
615
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
616
                        strerror(-err));
617
                abort();
618
            }
619

    
620
            start_addr += old.memory_size;
621
            ram += old.memory_size;
622
            size -= old.memory_size;
623
            continue;
624
        }
625

    
626
        /* register prefix slot */
627
        if (old.start_addr < start_addr) {
628
            mem = kvm_alloc_slot(s);
629
            mem->memory_size = start_addr - old.start_addr;
630
            mem->start_addr = old.start_addr;
631
            mem->ram = old.ram;
632
            mem->flags =  kvm_mem_flags(s, log_dirty);
633

    
634
            err = kvm_set_user_memory_region(s, mem);
635
            if (err) {
636
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
637
                        __func__, strerror(-err));
638
#ifdef TARGET_PPC
639
                fprintf(stderr, "%s: This is probably because your kernel's " \
640
                                "PAGE_SIZE is too big. Please try to use 4k " \
641
                                "PAGE_SIZE!\n", __func__);
642
#endif
643
                abort();
644
            }
645
        }
646

    
647
        /* register suffix slot */
648
        if (old.start_addr + old.memory_size > start_addr + size) {
649
            ram_addr_t size_delta;
650

    
651
            mem = kvm_alloc_slot(s);
652
            mem->start_addr = start_addr + size;
653
            size_delta = mem->start_addr - old.start_addr;
654
            mem->memory_size = old.memory_size - size_delta;
655
            mem->ram = old.ram + size_delta;
656
            mem->flags = kvm_mem_flags(s, log_dirty);
657

    
658
            err = kvm_set_user_memory_region(s, mem);
659
            if (err) {
660
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
661
                        __func__, strerror(-err));
662
                abort();
663
            }
664
        }
665
    }
666

    
667
    /* in case the KVM bug workaround already "consumed" the new slot */
668
    if (!size) {
669
        return;
670
    }
671
    if (!add) {
672
        return;
673
    }
674
    mem = kvm_alloc_slot(s);
675
    mem->memory_size = size;
676
    mem->start_addr = start_addr;
677
    mem->ram = ram;
678
    mem->flags = kvm_mem_flags(s, log_dirty);
679

    
680
    err = kvm_set_user_memory_region(s, mem);
681
    if (err) {
682
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
683
                strerror(-err));
684
        abort();
685
    }
686
}
687

    
688
static void kvm_begin(MemoryListener *listener)
689
{
690
}
691

    
692
static void kvm_commit(MemoryListener *listener)
693
{
694
}
695

    
696
static void kvm_region_add(MemoryListener *listener,
697
                           MemoryRegionSection *section)
698
{
699
    kvm_set_phys_mem(section, true);
700
}
701

    
702
static void kvm_region_del(MemoryListener *listener,
703
                           MemoryRegionSection *section)
704
{
705
    kvm_set_phys_mem(section, false);
706
}
707

    
708
static void kvm_region_nop(MemoryListener *listener,
709
                           MemoryRegionSection *section)
710
{
711
}
712

    
713
static void kvm_log_sync(MemoryListener *listener,
714
                         MemoryRegionSection *section)
715
{
716
    int r;
717

    
718
    r = kvm_physical_sync_dirty_bitmap(section);
719
    if (r < 0) {
720
        abort();
721
    }
722
}
723

    
724
static void kvm_log_global_start(struct MemoryListener *listener)
725
{
726
    int r;
727

    
728
    r = kvm_set_migration_log(1);
729
    assert(r >= 0);
730
}
731

    
732
static void kvm_log_global_stop(struct MemoryListener *listener)
733
{
734
    int r;
735

    
736
    r = kvm_set_migration_log(0);
737
    assert(r >= 0);
738
}
739

    
740
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
741
                                  bool match_data, uint64_t data, int fd)
742
{
743
    int r;
744

    
745
    assert(match_data && section->size == 4);
746

    
747
    r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
748
                                    data, true);
749
    if (r < 0) {
750
        abort();
751
    }
752
}
753

    
754
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
755
                                  bool match_data, uint64_t data, int fd)
756
{
757
    int r;
758

    
759
    r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
760
                                    data, false);
761
    if (r < 0) {
762
        abort();
763
    }
764
}
765

    
766
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
767
                                 bool match_data, uint64_t data, int fd)
768
{
769
    int r;
770

    
771
    assert(match_data && section->size == 2);
772

    
773
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
774
                                   data, true);
775
    if (r < 0) {
776
        abort();
777
    }
778
}
779

    
780
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
781
                                 bool match_data, uint64_t data, int fd)
782

    
783
{
784
    int r;
785

    
786
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
787
                                   data, false);
788
    if (r < 0) {
789
        abort();
790
    }
791
}
792

    
793
static void kvm_eventfd_add(MemoryListener *listener,
794
                            MemoryRegionSection *section,
795
                            bool match_data, uint64_t data, int fd)
796
{
797
    if (section->address_space == get_system_memory()) {
798
        kvm_mem_ioeventfd_add(section, match_data, data, fd);
799
    } else {
800
        kvm_io_ioeventfd_add(section, match_data, data, fd);
801
    }
802
}
803

    
804
static void kvm_eventfd_del(MemoryListener *listener,
805
                            MemoryRegionSection *section,
806
                            bool match_data, uint64_t data, int fd)
807
{
808
    if (section->address_space == get_system_memory()) {
809
        kvm_mem_ioeventfd_del(section, match_data, data, fd);
810
    } else {
811
        kvm_io_ioeventfd_del(section, match_data, data, fd);
812
    }
813
}
814

    
815
static MemoryListener kvm_memory_listener = {
816
    .begin = kvm_begin,
817
    .commit = kvm_commit,
818
    .region_add = kvm_region_add,
819
    .region_del = kvm_region_del,
820
    .region_nop = kvm_region_nop,
821
    .log_start = kvm_log_start,
822
    .log_stop = kvm_log_stop,
823
    .log_sync = kvm_log_sync,
824
    .log_global_start = kvm_log_global_start,
825
    .log_global_stop = kvm_log_global_stop,
826
    .eventfd_add = kvm_eventfd_add,
827
    .eventfd_del = kvm_eventfd_del,
828
    .priority = 10,
829
};
830

    
831
static void kvm_handle_interrupt(CPUState *env, int mask)
832
{
833
    env->interrupt_request |= mask;
834

    
835
    if (!qemu_cpu_is_self(env)) {
836
        qemu_cpu_kick(env);
837
    }
838
}
839

    
840
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
841
{
842
    struct kvm_irq_level event;
843
    int ret;
844

    
845
    assert(kvm_irqchip_in_kernel());
846

    
847
    event.level = level;
848
    event.irq = irq;
849
    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
850
    if (ret < 0) {
851
        perror("kvm_set_irqchip_line");
852
        abort();
853
    }
854

    
855
    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
856
}
857

    
858
#ifdef KVM_CAP_IRQ_ROUTING
859
static void set_gsi(KVMState *s, unsigned int gsi)
860
{
861
    assert(gsi < s->max_gsi);
862

    
863
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
864
}
865

    
866
static void kvm_init_irq_routing(KVMState *s)
867
{
868
    int gsi_count;
869

    
870
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
871
    if (gsi_count > 0) {
872
        unsigned int gsi_bits, i;
873

    
874
        /* Round up so we can search ints using ffs */
875
        gsi_bits = (gsi_count + 31) / 32;
876
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
877
        s->max_gsi = gsi_bits;
878

    
879
        /* Mark any over-allocated bits as already in use */
880
        for (i = gsi_count; i < gsi_bits; i++) {
881
            set_gsi(s, i);
882
        }
883
    }
884

    
885
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
886
    s->nr_allocated_irq_routes = 0;
887

    
888
    kvm_arch_init_irq_routing(s);
889
}
890

    
891
static void kvm_add_routing_entry(KVMState *s,
892
                                  struct kvm_irq_routing_entry *entry)
893
{
894
    struct kvm_irq_routing_entry *new;
895
    int n, size;
896

    
897
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
898
        n = s->nr_allocated_irq_routes * 2;
899
        if (n < 64) {
900
            n = 64;
901
        }
902
        size = sizeof(struct kvm_irq_routing);
903
        size += n * sizeof(*new);
904
        s->irq_routes = g_realloc(s->irq_routes, size);
905
        s->nr_allocated_irq_routes = n;
906
    }
907
    n = s->irq_routes->nr++;
908
    new = &s->irq_routes->entries[n];
909
    memset(new, 0, sizeof(*new));
910
    new->gsi = entry->gsi;
911
    new->type = entry->type;
912
    new->flags = entry->flags;
913
    new->u = entry->u;
914

    
915
    set_gsi(s, entry->gsi);
916
}
917

    
918
void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
919
{
920
    struct kvm_irq_routing_entry e;
921

    
922
    e.gsi = irq;
923
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
924
    e.flags = 0;
925
    e.u.irqchip.irqchip = irqchip;
926
    e.u.irqchip.pin = pin;
927
    kvm_add_routing_entry(s, &e);
928
}
929

    
930
int kvm_irqchip_commit_routes(KVMState *s)
931
{
932
    s->irq_routes->flags = 0;
933
    return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
934
}
935

    
936
#else /* !KVM_CAP_IRQ_ROUTING */
937

    
938
static void kvm_init_irq_routing(KVMState *s)
939
{
940
}
941
#endif /* !KVM_CAP_IRQ_ROUTING */
942

    
943
static int kvm_irqchip_create(KVMState *s)
944
{
945
    QemuOptsList *list = qemu_find_opts("machine");
946
    int ret;
947

    
948
    if (QTAILQ_EMPTY(&list->head) ||
949
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
950
                           "kernel_irqchip", false) ||
951
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
952
        return 0;
953
    }
954

    
955
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
956
    if (ret < 0) {
957
        fprintf(stderr, "Create kernel irqchip failed\n");
958
        return ret;
959
    }
960

    
961
    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
962
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
963
        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
964
    }
965
    kvm_kernel_irqchip = true;
966

    
967
    kvm_init_irq_routing(s);
968

    
969
    return 0;
970
}
971

    
972
int kvm_init(void)
973
{
974
    static const char upgrade_note[] =
975
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
976
        "(see http://sourceforge.net/projects/kvm).\n";
977
    KVMState *s;
978
    const KVMCapabilityInfo *missing_cap;
979
    int ret;
980
    int i;
981

    
982
    s = g_malloc0(sizeof(KVMState));
983

    
984
#ifdef KVM_CAP_SET_GUEST_DEBUG
985
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
986
#endif
987
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
988
        s->slots[i].slot = i;
989
    }
990
    s->vmfd = -1;
991
    s->fd = qemu_open("/dev/kvm", O_RDWR);
992
    if (s->fd == -1) {
993
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
994
        ret = -errno;
995
        goto err;
996
    }
997

    
998
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
999
    if (ret < KVM_API_VERSION) {
1000
        if (ret > 0) {
1001
            ret = -EINVAL;
1002
        }
1003
        fprintf(stderr, "kvm version too old\n");
1004
        goto err;
1005
    }
1006

    
1007
    if (ret > KVM_API_VERSION) {
1008
        ret = -EINVAL;
1009
        fprintf(stderr, "kvm version not supported\n");
1010
        goto err;
1011
    }
1012

    
1013
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1014
    if (s->vmfd < 0) {
1015
#ifdef TARGET_S390X
1016
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1017
                        "your host kernel command line\n");
1018
#endif
1019
        ret = s->vmfd;
1020
        goto err;
1021
    }
1022

    
1023
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1024
    if (!missing_cap) {
1025
        missing_cap =
1026
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1027
    }
1028
    if (missing_cap) {
1029
        ret = -EINVAL;
1030
        fprintf(stderr, "kvm does not support %s\n%s",
1031
                missing_cap->name, upgrade_note);
1032
        goto err;
1033
    }
1034

    
1035
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1036

    
1037
    s->broken_set_mem_region = 1;
1038
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1039
    if (ret > 0) {
1040
        s->broken_set_mem_region = 0;
1041
    }
1042

    
1043
#ifdef KVM_CAP_VCPU_EVENTS
1044
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1045
#endif
1046

    
1047
    s->robust_singlestep =
1048
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1049

    
1050
#ifdef KVM_CAP_DEBUGREGS
1051
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1052
#endif
1053

    
1054
#ifdef KVM_CAP_XSAVE
1055
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1056
#endif
1057

    
1058
#ifdef KVM_CAP_XCRS
1059
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1060
#endif
1061

    
1062
#ifdef KVM_CAP_PIT_STATE2
1063
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1064
#endif
1065

    
1066
    ret = kvm_arch_init(s);
1067
    if (ret < 0) {
1068
        goto err;
1069
    }
1070

    
1071
    ret = kvm_irqchip_create(s);
1072
    if (ret < 0) {
1073
        goto err;
1074
    }
1075

    
1076
    kvm_state = s;
1077
    memory_listener_register(&kvm_memory_listener, NULL);
1078

    
1079
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1080

    
1081
    cpu_interrupt_handler = kvm_handle_interrupt;
1082

    
1083
    return 0;
1084

    
1085
err:
1086
    if (s) {
1087
        if (s->vmfd >= 0) {
1088
            close(s->vmfd);
1089
        }
1090
        if (s->fd != -1) {
1091
            close(s->fd);
1092
        }
1093
    }
1094
    g_free(s);
1095

    
1096
    return ret;
1097
}
1098

    
1099
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1100
                          uint32_t count)
1101
{
1102
    int i;
1103
    uint8_t *ptr = data;
1104

    
1105
    for (i = 0; i < count; i++) {
1106
        if (direction == KVM_EXIT_IO_IN) {
1107
            switch (size) {
1108
            case 1:
1109
                stb_p(ptr, cpu_inb(port));
1110
                break;
1111
            case 2:
1112
                stw_p(ptr, cpu_inw(port));
1113
                break;
1114
            case 4:
1115
                stl_p(ptr, cpu_inl(port));
1116
                break;
1117
            }
1118
        } else {
1119
            switch (size) {
1120
            case 1:
1121
                cpu_outb(port, ldub_p(ptr));
1122
                break;
1123
            case 2:
1124
                cpu_outw(port, lduw_p(ptr));
1125
                break;
1126
            case 4:
1127
                cpu_outl(port, ldl_p(ptr));
1128
                break;
1129
            }
1130
        }
1131

    
1132
        ptr += size;
1133
    }
1134
}
1135

    
1136
static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1137
{
1138
    fprintf(stderr, "KVM internal error.");
1139
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1140
        int i;
1141

    
1142
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1143
        for (i = 0; i < run->internal.ndata; ++i) {
1144
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1145
                    i, (uint64_t)run->internal.data[i]);
1146
        }
1147
    } else {
1148
        fprintf(stderr, "\n");
1149
    }
1150
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1151
        fprintf(stderr, "emulation failure\n");
1152
        if (!kvm_arch_stop_on_emulation_error(env)) {
1153
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1154
            return EXCP_INTERRUPT;
1155
        }
1156
    }
1157
    /* FIXME: Should trigger a qmp message to let management know
1158
     * something went wrong.
1159
     */
1160
    return -1;
1161
}
1162

    
1163
void kvm_flush_coalesced_mmio_buffer(void)
1164
{
1165
    KVMState *s = kvm_state;
1166

    
1167
    if (s->coalesced_flush_in_progress) {
1168
        return;
1169
    }
1170

    
1171
    s->coalesced_flush_in_progress = true;
1172

    
1173
    if (s->coalesced_mmio_ring) {
1174
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1175
        while (ring->first != ring->last) {
1176
            struct kvm_coalesced_mmio *ent;
1177

    
1178
            ent = &ring->coalesced_mmio[ring->first];
1179

    
1180
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1181
            smp_wmb();
1182
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1183
        }
1184
    }
1185

    
1186
    s->coalesced_flush_in_progress = false;
1187
}
1188

    
1189
static void do_kvm_cpu_synchronize_state(void *_env)
1190
{
1191
    CPUState *env = _env;
1192

    
1193
    if (!env->kvm_vcpu_dirty) {
1194
        kvm_arch_get_registers(env);
1195
        env->kvm_vcpu_dirty = 1;
1196
    }
1197
}
1198

    
1199
void kvm_cpu_synchronize_state(CPUState *env)
1200
{
1201
    if (!env->kvm_vcpu_dirty) {
1202
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1203
    }
1204
}
1205

    
1206
void kvm_cpu_synchronize_post_reset(CPUState *env)
1207
{
1208
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1209
    env->kvm_vcpu_dirty = 0;
1210
}
1211

    
1212
void kvm_cpu_synchronize_post_init(CPUState *env)
1213
{
1214
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1215
    env->kvm_vcpu_dirty = 0;
1216
}
1217

    
1218
int kvm_cpu_exec(CPUState *env)
1219
{
1220
    struct kvm_run *run = env->kvm_run;
1221
    int ret, run_ret;
1222

    
1223
    DPRINTF("kvm_cpu_exec()\n");
1224

    
1225
    if (kvm_arch_process_async_events(env)) {
1226
        env->exit_request = 0;
1227
        return EXCP_HLT;
1228
    }
1229

    
1230
    do {
1231
        if (env->kvm_vcpu_dirty) {
1232
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1233
            env->kvm_vcpu_dirty = 0;
1234
        }
1235

    
1236
        kvm_arch_pre_run(env, run);
1237
        if (env->exit_request) {
1238
            DPRINTF("interrupt exit requested\n");
1239
            /*
1240
             * KVM requires us to reenter the kernel after IO exits to complete
1241
             * instruction emulation. This self-signal will ensure that we
1242
             * leave ASAP again.
1243
             */
1244
            qemu_cpu_kick_self();
1245
        }
1246
        qemu_mutex_unlock_iothread();
1247

    
1248
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1249

    
1250
        qemu_mutex_lock_iothread();
1251
        kvm_arch_post_run(env, run);
1252

    
1253
        kvm_flush_coalesced_mmio_buffer();
1254

    
1255
        if (run_ret < 0) {
1256
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1257
                DPRINTF("io window exit\n");
1258
                ret = EXCP_INTERRUPT;
1259
                break;
1260
            }
1261
            fprintf(stderr, "error: kvm run failed %s\n",
1262
                    strerror(-run_ret));
1263
            abort();
1264
        }
1265

    
1266
        switch (run->exit_reason) {
1267
        case KVM_EXIT_IO:
1268
            DPRINTF("handle_io\n");
1269
            kvm_handle_io(run->io.port,
1270
                          (uint8_t *)run + run->io.data_offset,
1271
                          run->io.direction,
1272
                          run->io.size,
1273
                          run->io.count);
1274
            ret = 0;
1275
            break;
1276
        case KVM_EXIT_MMIO:
1277
            DPRINTF("handle_mmio\n");
1278
            cpu_physical_memory_rw(run->mmio.phys_addr,
1279
                                   run->mmio.data,
1280
                                   run->mmio.len,
1281
                                   run->mmio.is_write);
1282
            ret = 0;
1283
            break;
1284
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1285
            DPRINTF("irq_window_open\n");
1286
            ret = EXCP_INTERRUPT;
1287
            break;
1288
        case KVM_EXIT_SHUTDOWN:
1289
            DPRINTF("shutdown\n");
1290
            qemu_system_reset_request();
1291
            ret = EXCP_INTERRUPT;
1292
            break;
1293
        case KVM_EXIT_UNKNOWN:
1294
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1295
                    (uint64_t)run->hw.hardware_exit_reason);
1296
            ret = -1;
1297
            break;
1298
        case KVM_EXIT_INTERNAL_ERROR:
1299
            ret = kvm_handle_internal_error(env, run);
1300
            break;
1301
        default:
1302
            DPRINTF("kvm_arch_handle_exit\n");
1303
            ret = kvm_arch_handle_exit(env, run);
1304
            break;
1305
        }
1306
    } while (ret == 0);
1307

    
1308
    if (ret < 0) {
1309
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1310
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1311
    }
1312

    
1313
    env->exit_request = 0;
1314
    return ret;
1315
}
1316

    
1317
int kvm_ioctl(KVMState *s, int type, ...)
1318
{
1319
    int ret;
1320
    void *arg;
1321
    va_list ap;
1322

    
1323
    va_start(ap, type);
1324
    arg = va_arg(ap, void *);
1325
    va_end(ap);
1326

    
1327
    ret = ioctl(s->fd, type, arg);
1328
    if (ret == -1) {
1329
        ret = -errno;
1330
    }
1331
    return ret;
1332
}
1333

    
1334
int kvm_vm_ioctl(KVMState *s, int type, ...)
1335
{
1336
    int ret;
1337
    void *arg;
1338
    va_list ap;
1339

    
1340
    va_start(ap, type);
1341
    arg = va_arg(ap, void *);
1342
    va_end(ap);
1343

    
1344
    ret = ioctl(s->vmfd, type, arg);
1345
    if (ret == -1) {
1346
        ret = -errno;
1347
    }
1348
    return ret;
1349
}
1350

    
1351
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1352
{
1353
    int ret;
1354
    void *arg;
1355
    va_list ap;
1356

    
1357
    va_start(ap, type);
1358
    arg = va_arg(ap, void *);
1359
    va_end(ap);
1360

    
1361
    ret = ioctl(env->kvm_fd, type, arg);
1362
    if (ret == -1) {
1363
        ret = -errno;
1364
    }
1365
    return ret;
1366
}
1367

    
1368
int kvm_has_sync_mmu(void)
1369
{
1370
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1371
}
1372

    
1373
int kvm_has_vcpu_events(void)
1374
{
1375
    return kvm_state->vcpu_events;
1376
}
1377

    
1378
int kvm_has_robust_singlestep(void)
1379
{
1380
    return kvm_state->robust_singlestep;
1381
}
1382

    
1383
int kvm_has_debugregs(void)
1384
{
1385
    return kvm_state->debugregs;
1386
}
1387

    
1388
int kvm_has_xsave(void)
1389
{
1390
    return kvm_state->xsave;
1391
}
1392

    
1393
int kvm_has_xcrs(void)
1394
{
1395
    return kvm_state->xcrs;
1396
}
1397

    
1398
int kvm_has_pit_state2(void)
1399
{
1400
    return kvm_state->pit_state2;
1401
}
1402

    
1403
int kvm_has_many_ioeventfds(void)
1404
{
1405
    if (!kvm_enabled()) {
1406
        return 0;
1407
    }
1408
    return kvm_state->many_ioeventfds;
1409
}
1410

    
1411
int kvm_has_gsi_routing(void)
1412
{
1413
#ifdef KVM_CAP_IRQ_ROUTING
1414
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1415
#else
1416
    return false;
1417
#endif
1418
}
1419

    
1420
int kvm_allows_irq0_override(void)
1421
{
1422
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1423
}
1424

    
1425
void kvm_setup_guest_memory(void *start, size_t size)
1426
{
1427
    if (!kvm_has_sync_mmu()) {
1428
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1429

    
1430
        if (ret) {
1431
            perror("qemu_madvise");
1432
            fprintf(stderr,
1433
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1434
            exit(1);
1435
        }
1436
    }
1437
}
1438

    
1439
#ifdef KVM_CAP_SET_GUEST_DEBUG
1440
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1441
                                                 target_ulong pc)
1442
{
1443
    struct kvm_sw_breakpoint *bp;
1444

    
1445
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1446
        if (bp->pc == pc) {
1447
            return bp;
1448
        }
1449
    }
1450
    return NULL;
1451
}
1452

    
1453
int kvm_sw_breakpoints_active(CPUState *env)
1454
{
1455
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1456
}
1457

    
1458
struct kvm_set_guest_debug_data {
1459
    struct kvm_guest_debug dbg;
1460
    CPUState *env;
1461
    int err;
1462
};
1463

    
1464
static void kvm_invoke_set_guest_debug(void *data)
1465
{
1466
    struct kvm_set_guest_debug_data *dbg_data = data;
1467
    CPUState *env = dbg_data->env;
1468

    
1469
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1470
}
1471

    
1472
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1473
{
1474
    struct kvm_set_guest_debug_data data;
1475

    
1476
    data.dbg.control = reinject_trap;
1477

    
1478
    if (env->singlestep_enabled) {
1479
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1480
    }
1481
    kvm_arch_update_guest_debug(env, &data.dbg);
1482
    data.env = env;
1483

    
1484
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1485
    return data.err;
1486
}
1487

    
1488
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1489
                          target_ulong len, int type)
1490
{
1491
    struct kvm_sw_breakpoint *bp;
1492
    CPUState *env;
1493
    int err;
1494

    
1495
    if (type == GDB_BREAKPOINT_SW) {
1496
        bp = kvm_find_sw_breakpoint(current_env, addr);
1497
        if (bp) {
1498
            bp->use_count++;
1499
            return 0;
1500
        }
1501

    
1502
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1503
        if (!bp) {
1504
            return -ENOMEM;
1505
        }
1506

    
1507
        bp->pc = addr;
1508
        bp->use_count = 1;
1509
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1510
        if (err) {
1511
            g_free(bp);
1512
            return err;
1513
        }
1514

    
1515
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1516
                          bp, entry);
1517
    } else {
1518
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1519
        if (err) {
1520
            return err;
1521
        }
1522
    }
1523

    
1524
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1525
        err = kvm_update_guest_debug(env, 0);
1526
        if (err) {
1527
            return err;
1528
        }
1529
    }
1530
    return 0;
1531
}
1532

    
1533
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1534
                          target_ulong len, int type)
1535
{
1536
    struct kvm_sw_breakpoint *bp;
1537
    CPUState *env;
1538
    int err;
1539

    
1540
    if (type == GDB_BREAKPOINT_SW) {
1541
        bp = kvm_find_sw_breakpoint(current_env, addr);
1542
        if (!bp) {
1543
            return -ENOENT;
1544
        }
1545

    
1546
        if (bp->use_count > 1) {
1547
            bp->use_count--;
1548
            return 0;
1549
        }
1550

    
1551
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1552
        if (err) {
1553
            return err;
1554
        }
1555

    
1556
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1557
        g_free(bp);
1558
    } else {
1559
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1560
        if (err) {
1561
            return err;
1562
        }
1563
    }
1564

    
1565
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1566
        err = kvm_update_guest_debug(env, 0);
1567
        if (err) {
1568
            return err;
1569
        }
1570
    }
1571
    return 0;
1572
}
1573

    
1574
void kvm_remove_all_breakpoints(CPUState *current_env)
1575
{
1576
    struct kvm_sw_breakpoint *bp, *next;
1577
    KVMState *s = current_env->kvm_state;
1578
    CPUState *env;
1579

    
1580
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1581
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1582
            /* Try harder to find a CPU that currently sees the breakpoint. */
1583
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1584
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1585
                    break;
1586
                }
1587
            }
1588
        }
1589
    }
1590
    kvm_arch_remove_all_hw_breakpoints();
1591

    
1592
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1593
        kvm_update_guest_debug(env, 0);
1594
    }
1595
}
1596

    
1597
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1598

    
1599
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1600
{
1601
    return -EINVAL;
1602
}
1603

    
1604
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1605
                          target_ulong len, int type)
1606
{
1607
    return -EINVAL;
1608
}
1609

    
1610
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1611
                          target_ulong len, int type)
1612
{
1613
    return -EINVAL;
1614
}
1615

    
1616
void kvm_remove_all_breakpoints(CPUState *current_env)
1617
{
1618
}
1619
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1620

    
1621
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1622
{
1623
    struct kvm_signal_mask *sigmask;
1624
    int r;
1625

    
1626
    if (!sigset) {
1627
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1628
    }
1629

    
1630
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1631

    
1632
    sigmask->len = 8;
1633
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1634
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1635
    g_free(sigmask);
1636

    
1637
    return r;
1638
}
1639

    
1640
int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1641
{
1642
    int ret;
1643
    struct kvm_ioeventfd iofd;
1644

    
1645
    iofd.datamatch = val;
1646
    iofd.addr = addr;
1647
    iofd.len = 4;
1648
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1649
    iofd.fd = fd;
1650

    
1651
    if (!kvm_enabled()) {
1652
        return -ENOSYS;
1653
    }
1654

    
1655
    if (!assign) {
1656
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1657
    }
1658

    
1659
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1660

    
1661
    if (ret < 0) {
1662
        return -errno;
1663
    }
1664

    
1665
    return 0;
1666
}
1667

    
1668
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1669
{
1670
    struct kvm_ioeventfd kick = {
1671
        .datamatch = val,
1672
        .addr = addr,
1673
        .len = 2,
1674
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1675
        .fd = fd,
1676
    };
1677
    int r;
1678
    if (!kvm_enabled()) {
1679
        return -ENOSYS;
1680
    }
1681
    if (!assign) {
1682
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1683
    }
1684
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1685
    if (r < 0) {
1686
        return r;
1687
    }
1688
    return 0;
1689
}
1690

    
1691
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1692
{
1693
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1694
}
1695

    
1696
int kvm_on_sigbus(int code, void *addr)
1697
{
1698
    return kvm_arch_on_sigbus(code, addr);
1699
}