Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 8a92ea2f

History | View | Annotate | Download (103.5 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@end itemize
95

    
96
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97

    
98
@node Installation
99
@chapter Installation
100

    
101
If you want to compile QEMU yourself, see @ref{compilation}.
102

    
103
@menu
104
* install_linux::   Linux
105
* install_windows:: Windows
106
* install_mac::     Macintosh
107
@end menu
108

    
109
@node install_linux
110
@section Linux
111

    
112
If a precompiled package is available for your distribution - you just
113
have to install it. Otherwise, see @ref{compilation}.
114

    
115
@node install_windows
116
@section Windows
117

    
118
Download the experimental binary installer at
119
@url{http://www.free.oszoo.org/@/download.html}.
120

    
121
@node install_mac
122
@section Mac OS X
123

    
124
Download the experimental binary installer at
125
@url{http://www.free.oszoo.org/@/download.html}.
126

    
127
@node QEMU PC System emulator
128
@chapter QEMU PC System emulator
129

    
130
@menu
131
* pcsys_introduction:: Introduction
132
* pcsys_quickstart::   Quick Start
133
* sec_invocation::     Invocation
134
* pcsys_keys::         Keys
135
* pcsys_monitor::      QEMU Monitor
136
* disk_images::        Disk Images
137
* pcsys_network::      Network emulation
138
* direct_linux_boot::  Direct Linux Boot
139
* pcsys_usb::          USB emulation
140
* vnc_security::       VNC security
141
* gdb_usage::          GDB usage
142
* pcsys_os_specific::  Target OS specific information
143
@end menu
144

    
145
@node pcsys_introduction
146
@section Introduction
147

    
148
@c man begin DESCRIPTION
149

    
150
The QEMU PC System emulator simulates the
151
following peripherals:
152

    
153
@itemize @minus
154
@item
155
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156
@item
157
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158
extensions (hardware level, including all non standard modes).
159
@item
160
PS/2 mouse and keyboard
161
@item
162
2 PCI IDE interfaces with hard disk and CD-ROM support
163
@item
164
Floppy disk
165
@item
166
PCI/ISA PCI network adapters
167
@item
168
Serial ports
169
@item
170
Creative SoundBlaster 16 sound card
171
@item
172
ENSONIQ AudioPCI ES1370 sound card
173
@item
174
Intel 82801AA AC97 Audio compatible sound card
175
@item
176
Adlib(OPL2) - Yamaha YM3812 compatible chip
177
@item
178
Gravis Ultrasound GF1 sound card
179
@item
180
CS4231A compatible sound card
181
@item
182
PCI UHCI USB controller and a virtual USB hub.
183
@end itemize
184

    
185
SMP is supported with up to 255 CPUs.
186

    
187
Note that adlib, gus and cs4231a are only available when QEMU was
188
configured with --audio-card-list option containing the name(s) of
189
required card(s).
190

    
191
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192
VGA BIOS.
193

    
194
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195

    
196
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197
by Tibor "TS" Sch?tz.
198

    
199
CS4231A is the chip used in Windows Sound System and GUSMAX products
200

    
201
@c man end
202

    
203
@node pcsys_quickstart
204
@section Quick Start
205

    
206
Download and uncompress the linux image (@file{linux.img}) and type:
207

    
208
@example
209
qemu linux.img
210
@end example
211

    
212
Linux should boot and give you a prompt.
213

    
214
@node sec_invocation
215
@section Invocation
216

    
217
@example
218
@c man begin SYNOPSIS
219
usage: qemu [options] [@var{disk_image}]
220
@c man end
221
@end example
222

    
223
@c man begin OPTIONS
224
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225
targets do not need a disk image.
226

    
227
General options:
228
@table @option
229
@item -h
230
Display help and exit
231

    
232
@item -M @var{machine}
233
Select the emulated @var{machine} (@code{-M ?} for list)
234

    
235
@item -cpu @var{model}
236
Select CPU model (-cpu ? for list and additional feature selection)
237

    
238
@item -smp @var{n}
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241
to 4.
242

    
243
@item -fda @var{file}
244
@item -fdb @var{file}
245
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
247

    
248
@item -hda @var{file}
249
@item -hdb @var{file}
250
@item -hdc @var{file}
251
@item -hdd @var{file}
252
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
253

    
254
@item -cdrom @var{file}
255
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256
@option{-cdrom} at the same time). You can use the host CD-ROM by
257
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
258

    
259
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260

    
261
Define a new drive. Valid options are:
262

    
263
@table @code
264
@item file=@var{file}
265
This option defines which disk image (@pxref{disk_images}) to use with
266
this drive. If the filename contains comma, you must double it
267
(for instance, "file=my,,file" to use file "my,file").
268
@item if=@var{interface}
269
This option defines on which type on interface the drive is connected.
270
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271
@item bus=@var{bus},unit=@var{unit}
272
These options define where is connected the drive by defining the bus number and
273
the unit id.
274
@item index=@var{index}
275
This option defines where is connected the drive by using an index in the list
276
of available connectors of a given interface type.
277
@item media=@var{media}
278
This option defines the type of the media: disk or cdrom.
279
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280
These options have the same definition as they have in @option{-hdachs}.
281
@item snapshot=@var{snapshot}
282
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283
@item cache=@var{cache}
284
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285
@item format=@var{format}
286
Specify which disk @var{format} will be used rather than detecting
287
the format.  Can be used to specifiy format=raw to avoid interpreting
288
an untrusted format header.
289
@item serial=@var{serial}
290
This option specifies the serial number to assign to the device.
291
@end table
292

    
293
By default, writethrough caching is used for all block device.  This means that
294
the host page cache will be used to read and write data but write notification
295
will be sent to the guest only when the data has been reported as written by
296
the storage subsystem.
297

    
298
Writeback caching will report data writes as completed as soon as the data is
299
present in the host page cache.  This is safe as long as you trust your host.
300
If your host crashes or loses power, then the guest may experience data
301
corruption.  When using the @option{-snapshot} option, writeback caching is
302
used by default.
303

    
304
The host page can be avoided entirely with @option{cache=none}.  This will
305
attempt to do disk IO directly to the guests memory.  QEMU may still perform
306
an internal copy of the data.
307

    
308
Some block drivers perform badly with @option{cache=writethrough}, most notably,
309
qcow2.  If performance is more important than correctness,
310
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
311
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312
used.  For all other disk types, @option{cache=writethrough} is the default.
313

    
314
Instead of @option{-cdrom} you can use:
315
@example
316
qemu -drive file=file,index=2,media=cdrom
317
@end example
318

    
319
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320
use:
321
@example
322
qemu -drive file=file,index=0,media=disk
323
qemu -drive file=file,index=1,media=disk
324
qemu -drive file=file,index=2,media=disk
325
qemu -drive file=file,index=3,media=disk
326
@end example
327

    
328
You can connect a CDROM to the slave of ide0:
329
@example
330
qemu -drive file=file,if=ide,index=1,media=cdrom
331
@end example
332

    
333
If you don't specify the "file=" argument, you define an empty drive:
334
@example
335
qemu -drive if=ide,index=1,media=cdrom
336
@end example
337

    
338
You can connect a SCSI disk with unit ID 6 on the bus #0:
339
@example
340
qemu -drive file=file,if=scsi,bus=0,unit=6
341
@end example
342

    
343
Instead of @option{-fda}, @option{-fdb}, you can use:
344
@example
345
qemu -drive file=file,index=0,if=floppy
346
qemu -drive file=file,index=1,if=floppy
347
@end example
348

    
349
By default, @var{interface} is "ide" and @var{index} is automatically
350
incremented:
351
@example
352
qemu -drive file=a -drive file=b"
353
@end example
354
is interpreted like:
355
@example
356
qemu -hda a -hdb b
357
@end example
358

    
359
@item -mtdblock file
360
Use 'file' as on-board Flash memory image.
361

    
362
@item -sd file
363
Use 'file' as SecureDigital card image.
364

    
365
@item -pflash file
366
Use 'file' as a parallel flash image.
367

    
368
@item -boot [a|c|d|n]
369
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370
is the default.
371

    
372
@item -snapshot
373
Write to temporary files instead of disk image files. In this case,
374
the raw disk image you use is not written back. You can however force
375
the write back by pressing @key{C-a s} (@pxref{disk_images}).
376

    
377
@item -m @var{megs}
378
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
379
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380
gigabytes respectively.
381

    
382
@item -k @var{language}
383

    
384
Use keyboard layout @var{language} (for example @code{fr} for
385
French). This option is only needed where it is not easy to get raw PC
386
keycodes (e.g. on Macs, with some X11 servers or with a VNC
387
display). You don't normally need to use it on PC/Linux or PC/Windows
388
hosts.
389

    
390
The available layouts are:
391
@example
392
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
393
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
394
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
395
@end example
396

    
397
The default is @code{en-us}.
398

    
399
@item -audio-help
400

    
401
Will show the audio subsystem help: list of drivers, tunable
402
parameters.
403

    
404
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
405

    
406
Enable audio and selected sound hardware. Use ? to print all
407
available sound hardware.
408

    
409
@example
410
qemu -soundhw sb16,adlib disk.img
411
qemu -soundhw es1370 disk.img
412
qemu -soundhw ac97 disk.img
413
qemu -soundhw all disk.img
414
qemu -soundhw ?
415
@end example
416

    
417
Note that Linux's i810_audio OSS kernel (for AC97) module might
418
require manually specifying clocking.
419

    
420
@example
421
modprobe i810_audio clocking=48000
422
@end example
423

    
424
@end table
425

    
426
USB options:
427
@table @option
428

    
429
@item -usb
430
Enable the USB driver (will be the default soon)
431

    
432
@item -usbdevice @var{devname}
433
Add the USB device @var{devname}. @xref{usb_devices}.
434

    
435
@table @code
436

    
437
@item mouse
438
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
439

    
440
@item tablet
441
Pointer device that uses absolute coordinates (like a touchscreen). This
442
means qemu is able to report the mouse position without having to grab the
443
mouse. Also overrides the PS/2 mouse emulation when activated.
444

    
445
@item disk:[format=@var{format}]:file
446
Mass storage device based on file. The optional @var{format} argument
447
will be used rather than detecting the format. Can be used to specifiy
448
format=raw to avoid interpreting an untrusted format header.
449

    
450
@item host:bus.addr
451
Pass through the host device identified by bus.addr (Linux only).
452

    
453
@item host:vendor_id:product_id
454
Pass through the host device identified by vendor_id:product_id (Linux only).
455

    
456
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457
Serial converter to host character device @var{dev}, see @code{-serial} for the
458
available devices.
459

    
460
@item braille
461
Braille device.  This will use BrlAPI to display the braille output on a real
462
or fake device.
463

    
464
@item net:options
465
Network adapter that supports CDC ethernet and RNDIS protocols.
466

    
467
@end table
468

    
469
@item -name @var{name}
470
Sets the @var{name} of the guest.
471
This name will be displayed in the SDL window caption.
472
The @var{name} will also be used for the VNC server.
473

    
474
@item -uuid @var{uuid}
475
Set system UUID.
476

    
477
@end table
478

    
479
Display options:
480
@table @option
481

    
482
@item -nographic
483

    
484
Normally, QEMU uses SDL to display the VGA output. With this option,
485
you can totally disable graphical output so that QEMU is a simple
486
command line application. The emulated serial port is redirected on
487
the console. Therefore, you can still use QEMU to debug a Linux kernel
488
with a serial console.
489

    
490
@item -curses
491

    
492
Normally, QEMU uses SDL to display the VGA output.  With this option,
493
QEMU can display the VGA output when in text mode using a 
494
curses/ncurses interface.  Nothing is displayed in graphical mode.
495

    
496
@item -no-frame
497

    
498
Do not use decorations for SDL windows and start them using the whole
499
available screen space. This makes the using QEMU in a dedicated desktop
500
workspace more convenient.
501

    
502
@item -alt-grab
503

    
504
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505

    
506
@item -no-quit
507

    
508
Disable SDL window close capability.
509

    
510
@item -sdl
511

    
512
Enable SDL.
513

    
514
@item -portrait
515

    
516
Rotate graphical output 90 deg left (only PXA LCD).
517

    
518
@item -vga @var{type}
519
Select type of VGA card to emulate. Valid values for @var{type} are
520
@table @code
521
@item cirrus
522
Cirrus Logic GD5446 Video card. All Windows versions starting from
523
Windows 95 should recognize and use this graphic card. For optimal
524
performances, use 16 bit color depth in the guest and the host OS.
525
(This one is the default)
526
@item std
527
Standard VGA card with Bochs VBE extensions.  If your guest OS
528
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529
to use high resolution modes (>= 1280x1024x16) then you should use
530
this option.
531
@item vmware
532
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533
recent XFree86/XOrg server or Windows guest with a driver for this
534
card.
535
@item none
536
Disable VGA card.
537
@end table
538

    
539
@item -full-screen
540
Start in full screen.
541

    
542
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
543

    
544
Normally, QEMU uses SDL to display the VGA output.  With this option,
545
you can have QEMU listen on VNC display @var{display} and redirect the VGA
546
display over the VNC session.  It is very useful to enable the usb
547
tablet device when using this option (option @option{-usbdevice
548
tablet}). When using the VNC display, you must use the @option{-k}
549
parameter to set the keyboard layout if you are not using en-us. Valid
550
syntax for the @var{display} is
551

    
552
@table @code
553

    
554
@item @var{host}:@var{d}
555

    
556
TCP connections will only be allowed from @var{host} on display @var{d}.
557
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558
be omitted in which case the server will accept connections from any host.
559

    
560
@item @code{unix}:@var{path}
561

    
562
Connections will be allowed over UNIX domain sockets where @var{path} is the
563
location of a unix socket to listen for connections on.
564

    
565
@item none
566

    
567
VNC is initialized but not started. The monitor @code{change} command
568
can be used to later start the VNC server.
569

    
570
@end table
571

    
572
Following the @var{display} value there may be one or more @var{option} flags
573
separated by commas. Valid options are
574

    
575
@table @code
576

    
577
@item reverse
578

    
579
Connect to a listening VNC client via a ``reverse'' connection. The
580
client is specified by the @var{display}. For reverse network
581
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582
is a TCP port number, not a display number.
583

    
584
@item password
585

    
586
Require that password based authentication is used for client connections.
587
The password must be set separately using the @code{change} command in the
588
@ref{pcsys_monitor}
589

    
590
@item tls
591

    
592
Require that client use TLS when communicating with the VNC server. This
593
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594
attack. It is recommended that this option be combined with either the
595
@var{x509} or @var{x509verify} options.
596

    
597
@item x509=@var{/path/to/certificate/dir}
598

    
599
Valid if @option{tls} is specified. Require that x509 credentials are used
600
for negotiating the TLS session. The server will send its x509 certificate
601
to the client. It is recommended that a password be set on the VNC server
602
to provide authentication of the client when this is used. The path following
603
this option specifies where the x509 certificates are to be loaded from.
604
See the @ref{vnc_security} section for details on generating certificates.
605

    
606
@item x509verify=@var{/path/to/certificate/dir}
607

    
608
Valid if @option{tls} is specified. Require that x509 credentials are used
609
for negotiating the TLS session. The server will send its x509 certificate
610
to the client, and request that the client send its own x509 certificate.
611
The server will validate the client's certificate against the CA certificate,
612
and reject clients when validation fails. If the certificate authority is
613
trusted, this is a sufficient authentication mechanism. You may still wish
614
to set a password on the VNC server as a second authentication layer. The
615
path following this option specifies where the x509 certificates are to
616
be loaded from. See the @ref{vnc_security} section for details on generating
617
certificates.
618

    
619
@end table
620

    
621
@end table
622

    
623
Network options:
624

    
625
@table @option
626

    
627
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629
= 0 is the default). The NIC is an ne2k_pci by default on the PC
630
target. Optionally, the MAC address can be changed to @var{addr}
631
and a @var{name} can be assigned for use in monitor commands. If no
632
@option{-net} option is specified, a single NIC is created.
633
Qemu can emulate several different models of network card.
634
Valid values for @var{type} are
635
@code{i82551}, @code{i82557b}, @code{i82559er},
636
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638
Not all devices are supported on all targets.  Use -net nic,model=?
639
for a list of available devices for your target.
640

    
641
@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642
Use the user mode network stack which requires no administrator
643
privilege to run.  @option{hostname=name} can be used to specify the client
644
hostname reported by the builtin DHCP server.
645

    
646
@item -net channel,@var{port}:@var{dev}
647
Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
648

    
649
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
650
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
651
the network script @var{file} to configure it and the network script 
652
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
653
automatically provides one. @option{fd}=@var{h} can be used to specify
654
the handle of an already opened host TAP interface. The default network 
655
configure script is @file{/etc/qemu-ifup} and the default network 
656
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
657
or @option{downscript=no} to disable script execution. Example:
658

    
659
@example
660
qemu linux.img -net nic -net tap
661
@end example
662

    
663
More complicated example (two NICs, each one connected to a TAP device)
664
@example
665
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
666
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
667
@end example
668

    
669

    
670
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
671

    
672
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
673
machine using a TCP socket connection. If @option{listen} is
674
specified, QEMU waits for incoming connections on @var{port}
675
(@var{host} is optional). @option{connect} is used to connect to
676
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
677
specifies an already opened TCP socket.
678

    
679
Example:
680
@example
681
# launch a first QEMU instance
682
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
683
               -net socket,listen=:1234
684
# connect the VLAN 0 of this instance to the VLAN 0
685
# of the first instance
686
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
687
               -net socket,connect=127.0.0.1:1234
688
@end example
689

    
690
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
691

    
692
Create a VLAN @var{n} shared with another QEMU virtual
693
machines using a UDP multicast socket, effectively making a bus for
694
every QEMU with same multicast address @var{maddr} and @var{port}.
695
NOTES:
696
@enumerate
697
@item
698
Several QEMU can be running on different hosts and share same bus (assuming
699
correct multicast setup for these hosts).
700
@item
701
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
702
@url{http://user-mode-linux.sf.net}.
703
@item
704
Use @option{fd=h} to specify an already opened UDP multicast socket.
705
@end enumerate
706

    
707
Example:
708
@example
709
# launch one QEMU instance
710
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
711
               -net socket,mcast=230.0.0.1:1234
712
# launch another QEMU instance on same "bus"
713
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
714
               -net socket,mcast=230.0.0.1:1234
715
# launch yet another QEMU instance on same "bus"
716
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
717
               -net socket,mcast=230.0.0.1:1234
718
@end example
719

    
720
Example (User Mode Linux compat.):
721
@example
722
# launch QEMU instance (note mcast address selected
723
# is UML's default)
724
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
725
               -net socket,mcast=239.192.168.1:1102
726
# launch UML
727
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
728
@end example
729

    
730
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
731
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
732
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
733
and MODE @var{octalmode} to change default ownership and permissions for
734
communication port. This option is available only if QEMU has been compiled
735
with vde support enabled.
736

    
737
Example:
738
@example
739
# launch vde switch
740
vde_switch -F -sock /tmp/myswitch
741
# launch QEMU instance
742
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
743
@end example
744

    
745
@item -net none
746
Indicate that no network devices should be configured. It is used to
747
override the default configuration (@option{-net nic -net user}) which
748
is activated if no @option{-net} options are provided.
749

    
750
@item -tftp @var{dir}
751
When using the user mode network stack, activate a built-in TFTP
752
server. The files in @var{dir} will be exposed as the root of a TFTP server.
753
The TFTP client on the guest must be configured in binary mode (use the command
754
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
755
usual 10.0.2.2.
756

    
757
@item -bootp @var{file}
758
When using the user mode network stack, broadcast @var{file} as the BOOTP
759
filename.  In conjunction with @option{-tftp}, this can be used to network boot
760
a guest from a local directory.
761

    
762
Example (using pxelinux):
763
@example
764
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
765
@end example
766

    
767
@item -smb @var{dir}
768
When using the user mode network stack, activate a built-in SMB
769
server so that Windows OSes can access to the host files in @file{@var{dir}}
770
transparently.
771

    
772
In the guest Windows OS, the line:
773
@example
774
10.0.2.4 smbserver
775
@end example
776
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
777
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
778

    
779
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
780

    
781
Note that a SAMBA server must be installed on the host OS in
782
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
783
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
784

    
785
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
786

    
787
When using the user mode network stack, redirect incoming TCP or UDP
788
connections to the host port @var{host-port} to the guest
789
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
790
is not specified, its value is 10.0.2.15 (default address given by the
791
built-in DHCP server).
792

    
793
For example, to redirect host X11 connection from screen 1 to guest
794
screen 0, use the following:
795

    
796
@example
797
# on the host
798
qemu -redir tcp:6001::6000 [...]
799
# this host xterm should open in the guest X11 server
800
xterm -display :1
801
@end example
802

    
803
To redirect telnet connections from host port 5555 to telnet port on
804
the guest, use the following:
805

    
806
@example
807
# on the host
808
qemu -redir tcp:5555::23 [...]
809
telnet localhost 5555
810
@end example
811

    
812
Then when you use on the host @code{telnet localhost 5555}, you
813
connect to the guest telnet server.
814

    
815
@end table
816

    
817
Bluetooth(R) options:
818
@table @option
819

    
820
@item -bt hci[...]
821
Defines the function of the corresponding Bluetooth HCI.  -bt options
822
are matched with the HCIs present in the chosen machine type.  For
823
example when emulating a machine with only one HCI built into it, only
824
the first @code{-bt hci[...]} option is valid and defines the HCI's
825
logic.  The Transport Layer is decided by the machine type.  Currently
826
the machines @code{n800} and @code{n810} have one HCI and all other
827
machines have none.
828

    
829
@anchor{bt-hcis}
830
The following three types are recognized:
831

    
832
@table @code
833
@item -bt hci,null
834
(default) The corresponding Bluetooth HCI assumes no internal logic
835
and will not respond to any HCI commands or emit events.
836

    
837
@item -bt hci,host[:@var{id}]
838
(@code{bluez} only) The corresponding HCI passes commands / events
839
to / from the physical HCI identified by the name @var{id} (default:
840
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
841
capable systems like Linux.
842

    
843
@item -bt hci[,vlan=@var{n}]
844
Add a virtual, standard HCI that will participate in the Bluetooth
845
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
846
VLANs, devices inside a bluetooth network @var{n} can only communicate
847
with other devices in the same network (scatternet).
848
@end table
849

    
850
@item -bt vhci[,vlan=@var{n}]
851
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
852
to the host bluetooth stack instead of to the emulated target.  This
853
allows the host and target machines to participate in a common scatternet
854
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
855
be used as following:
856

    
857
@example
858
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
859
@end example
860

    
861
@item -bt device:@var{dev}[,vlan=@var{n}]
862
Emulate a bluetooth device @var{dev} and place it in network @var{n}
863
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
864
currently:
865

    
866
@table @code
867
@item keyboard
868
Virtual wireless keyboard implementing the HIDP bluetooth profile.
869
@end table
870

    
871
@end table
872

    
873
i386 target only:
874

    
875
@table @option
876

    
877
@item -win2k-hack
878
Use it when installing Windows 2000 to avoid a disk full bug. After
879
Windows 2000 is installed, you no longer need this option (this option
880
slows down the IDE transfers).
881

    
882
@item -rtc-td-hack
883
Use it if you experience time drift problem in Windows with ACPI HAL.
884
This option will try to figure out how many timer interrupts were not
885
processed by the Windows guest and will re-inject them.
886

    
887
@item -no-fd-bootchk
888
Disable boot signature checking for floppy disks in Bochs BIOS. It may
889
be needed to boot from old floppy disks.
890

    
891
@item -no-acpi
892
Disable ACPI (Advanced Configuration and Power Interface) support. Use
893
it if your guest OS complains about ACPI problems (PC target machine
894
only).
895

    
896
@item -no-hpet
897
Disable HPET support.
898

    
899
@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
900
Add ACPI table with specified header fields and context from specified files.
901

    
902
@end table
903

    
904
Linux boot specific: When using these options, you can use a given
905
Linux kernel without installing it in the disk image. It can be useful
906
for easier testing of various kernels.
907

    
908
@table @option
909

    
910
@item -kernel @var{bzImage}
911
Use @var{bzImage} as kernel image.
912

    
913
@item -append @var{cmdline}
914
Use @var{cmdline} as kernel command line
915

    
916
@item -initrd @var{file}
917
Use @var{file} as initial ram disk.
918

    
919
@end table
920

    
921
Debug/Expert options:
922
@table @option
923

    
924
@item -serial @var{dev}
925
Redirect the virtual serial port to host character device
926
@var{dev}. The default device is @code{vc} in graphical mode and
927
@code{stdio} in non graphical mode.
928

    
929
This option can be used several times to simulate up to 4 serial
930
ports.
931

    
932
Use @code{-serial none} to disable all serial ports.
933

    
934
Available character devices are:
935
@table @code
936
@item vc[:WxH]
937
Virtual console. Optionally, a width and height can be given in pixel with
938
@example
939
vc:800x600
940
@end example
941
It is also possible to specify width or height in characters:
942
@example
943
vc:80Cx24C
944
@end example
945
@item pty
946
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
947
@item none
948
No device is allocated.
949
@item null
950
void device
951
@item /dev/XXX
952
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
953
parameters are set according to the emulated ones.
954
@item /dev/parport@var{N}
955
[Linux only, parallel port only] Use host parallel port
956
@var{N}. Currently SPP and EPP parallel port features can be used.
957
@item file:@var{filename}
958
Write output to @var{filename}. No character can be read.
959
@item stdio
960
[Unix only] standard input/output
961
@item pipe:@var{filename}
962
name pipe @var{filename}
963
@item COM@var{n}
964
[Windows only] Use host serial port @var{n}
965
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
966
This implements UDP Net Console.
967
When @var{remote_host} or @var{src_ip} are not specified
968
they default to @code{0.0.0.0}.
969
When not using a specified @var{src_port} a random port is automatically chosen.
970
@item msmouse
971
Three button serial mouse. Configure the guest to use Microsoft protocol.
972

    
973
If you just want a simple readonly console you can use @code{netcat} or
974
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
975
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
976
will appear in the netconsole session.
977

    
978
If you plan to send characters back via netconsole or you want to stop
979
and start qemu a lot of times, you should have qemu use the same
980
source port each time by using something like @code{-serial
981
udp::4555@@:4556} to qemu. Another approach is to use a patched
982
version of netcat which can listen to a TCP port and send and receive
983
characters via udp.  If you have a patched version of netcat which
984
activates telnet remote echo and single char transfer, then you can
985
use the following options to step up a netcat redirector to allow
986
telnet on port 5555 to access the qemu port.
987
@table @code
988
@item Qemu Options:
989
-serial udp::4555@@:4556
990
@item netcat options:
991
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
992
@item telnet options:
993
localhost 5555
994
@end table
995

    
996

    
997
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
998
The TCP Net Console has two modes of operation.  It can send the serial
999
I/O to a location or wait for a connection from a location.  By default
1000
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1001
the @var{server} option QEMU will wait for a client socket application
1002
to connect to the port before continuing, unless the @code{nowait}
1003
option was specified.  The @code{nodelay} option disables the Nagle buffering
1004
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1005
one TCP connection at a time is accepted. You can use @code{telnet} to
1006
connect to the corresponding character device.
1007
@table @code
1008
@item Example to send tcp console to 192.168.0.2 port 4444
1009
-serial tcp:192.168.0.2:4444
1010
@item Example to listen and wait on port 4444 for connection
1011
-serial tcp::4444,server
1012
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1013
-serial tcp:192.168.0.100:4444,server,nowait
1014
@end table
1015

    
1016
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1017
The telnet protocol is used instead of raw tcp sockets.  The options
1018
work the same as if you had specified @code{-serial tcp}.  The
1019
difference is that the port acts like a telnet server or client using
1020
telnet option negotiation.  This will also allow you to send the
1021
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1022
sequence.  Typically in unix telnet you do it with Control-] and then
1023
type "send break" followed by pressing the enter key.
1024

    
1025
@item unix:@var{path}[,server][,nowait]
1026
A unix domain socket is used instead of a tcp socket.  The option works the
1027
same as if you had specified @code{-serial tcp} except the unix domain socket
1028
@var{path} is used for connections.
1029

    
1030
@item mon:@var{dev_string}
1031
This is a special option to allow the monitor to be multiplexed onto
1032
another serial port.  The monitor is accessed with key sequence of
1033
@key{Control-a} and then pressing @key{c}. See monitor access
1034
@ref{pcsys_keys} in the -nographic section for more keys.
1035
@var{dev_string} should be any one of the serial devices specified
1036
above.  An example to multiplex the monitor onto a telnet server
1037
listening on port 4444 would be:
1038
@table @code
1039
@item -serial mon:telnet::4444,server,nowait
1040
@end table
1041

    
1042
@item braille
1043
Braille device.  This will use BrlAPI to display the braille output on a real
1044
or fake device.
1045

    
1046
@end table
1047

    
1048
@item -parallel @var{dev}
1049
Redirect the virtual parallel port to host device @var{dev} (same
1050
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1051
be used to use hardware devices connected on the corresponding host
1052
parallel port.
1053

    
1054
This option can be used several times to simulate up to 3 parallel
1055
ports.
1056

    
1057
Use @code{-parallel none} to disable all parallel ports.
1058

    
1059
@item -monitor @var{dev}
1060
Redirect the monitor to host device @var{dev} (same devices as the
1061
serial port).
1062
The default device is @code{vc} in graphical mode and @code{stdio} in
1063
non graphical mode.
1064

    
1065
@item -pidfile @var{file}
1066
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1067
from a script.
1068

    
1069
@item -S
1070
Do not start CPU at startup (you must type 'c' in the monitor).
1071

    
1072
@item -s
1073
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1074

    
1075
@item -p @var{port}
1076
Change gdb connection port.  @var{port} can be either a decimal number
1077
to specify a TCP port, or a host device (same devices as the serial port).
1078

    
1079
@item -d
1080
Output log in /tmp/qemu.log
1081
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1082
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1083
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1084
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1085
all those parameters. This option is useful for old MS-DOS disk
1086
images.
1087

    
1088
@item -L  @var{path}
1089
Set the directory for the BIOS, VGA BIOS and keymaps.
1090

    
1091
@item -bios @var{file}
1092
Set the filename for the BIOS.
1093

    
1094
@item -kernel-kqemu
1095
Enable KQEMU full virtualization (default is user mode only).
1096

    
1097
@item -no-kqemu
1098
Disable KQEMU kernel module usage. KQEMU options are only available if
1099
KQEMU support is enabled when compiling.
1100

    
1101
@item -enable-kvm
1102
Enable KVM full virtualization support. This option is only available
1103
if KVM support is enabled when compiling.
1104

    
1105
@item -no-reboot
1106
Exit instead of rebooting.
1107

    
1108
@item -no-shutdown
1109
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1110
This allows for instance switching to monitor to commit changes to the
1111
disk image.
1112

    
1113
@item -loadvm @var{file}
1114
Start right away with a saved state (@code{loadvm} in monitor)
1115

    
1116
@item -daemonize
1117
Daemonize the QEMU process after initialization.  QEMU will not detach from
1118
standard IO until it is ready to receive connections on any of its devices.
1119
This option is a useful way for external programs to launch QEMU without having
1120
to cope with initialization race conditions.
1121

    
1122
@item -option-rom @var{file}
1123
Load the contents of @var{file} as an option ROM.
1124
This option is useful to load things like EtherBoot.
1125

    
1126
@item -clock @var{method}
1127
Force the use of the given methods for timer alarm. To see what timers
1128
are available use -clock ?.
1129

    
1130
@item -localtime
1131
Set the real time clock to local time (the default is to UTC
1132
time). This option is needed to have correct date in MS-DOS or
1133
Windows.
1134

    
1135
@item -startdate @var{date}
1136
Set the initial date of the real time clock. Valid formats for
1137
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1138
@code{2006-06-17}. The default value is @code{now}.
1139

    
1140
@item -icount [N|auto]
1141
Enable virtual instruction counter.  The virtual cpu will execute one
1142
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1143
then the virtual cpu speed will be automatically adjusted to keep virtual
1144
time within a few seconds of real time.
1145

    
1146
Note that while this option can give deterministic behavior, it does not
1147
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1148
order cores with complex cache hierarchies.  The number of instructions
1149
executed often has little or no correlation with actual performance.
1150

    
1151
@item -echr numeric_ascii_value
1152
Change the escape character used for switching to the monitor when using
1153
monitor and serial sharing.  The default is @code{0x01} when using the
1154
@code{-nographic} option.  @code{0x01} is equal to pressing
1155
@code{Control-a}.  You can select a different character from the ascii
1156
control keys where 1 through 26 map to Control-a through Control-z.  For
1157
instance you could use the either of the following to change the escape
1158
character to Control-t.
1159
@table @code
1160
@item -echr 0x14
1161
@item -echr 20
1162
@end table
1163

    
1164
@end table
1165

    
1166
@c man end
1167

    
1168
@node pcsys_keys
1169
@section Keys
1170

    
1171
@c man begin OPTIONS
1172

    
1173
During the graphical emulation, you can use the following keys:
1174
@table @key
1175
@item Ctrl-Alt-f
1176
Toggle full screen
1177

    
1178
@item Ctrl-Alt-n
1179
Switch to virtual console 'n'. Standard console mappings are:
1180
@table @emph
1181
@item 1
1182
Target system display
1183
@item 2
1184
Monitor
1185
@item 3
1186
Serial port
1187
@end table
1188

    
1189
@item Ctrl-Alt
1190
Toggle mouse and keyboard grab.
1191
@end table
1192

    
1193
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1194
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1195

    
1196
During emulation, if you are using the @option{-nographic} option, use
1197
@key{Ctrl-a h} to get terminal commands:
1198

    
1199
@table @key
1200
@item Ctrl-a h
1201
@item Ctrl-a ?
1202
Print this help
1203
@item Ctrl-a x
1204
Exit emulator
1205
@item Ctrl-a s
1206
Save disk data back to file (if -snapshot)
1207
@item Ctrl-a t
1208
Toggle console timestamps
1209
@item Ctrl-a b
1210
Send break (magic sysrq in Linux)
1211
@item Ctrl-a c
1212
Switch between console and monitor
1213
@item Ctrl-a Ctrl-a
1214
Send Ctrl-a
1215
@end table
1216
@c man end
1217

    
1218
@ignore
1219

    
1220
@c man begin SEEALSO
1221
The HTML documentation of QEMU for more precise information and Linux
1222
user mode emulator invocation.
1223
@c man end
1224

    
1225
@c man begin AUTHOR
1226
Fabrice Bellard
1227
@c man end
1228

    
1229
@end ignore
1230

    
1231
@node pcsys_monitor
1232
@section QEMU Monitor
1233

    
1234
The QEMU monitor is used to give complex commands to the QEMU
1235
emulator. You can use it to:
1236

    
1237
@itemize @minus
1238

    
1239
@item
1240
Remove or insert removable media images
1241
(such as CD-ROM or floppies).
1242

    
1243
@item
1244
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1245
from a disk file.
1246

    
1247
@item Inspect the VM state without an external debugger.
1248

    
1249
@end itemize
1250

    
1251
@subsection Commands
1252

    
1253
The following commands are available:
1254

    
1255
@table @option
1256

    
1257
@item help or ? [@var{cmd}]
1258
Show the help for all commands or just for command @var{cmd}.
1259

    
1260
@item commit
1261
Commit changes to the disk images (if -snapshot is used).
1262

    
1263
@item info @var{subcommand}
1264
Show various information about the system state.
1265

    
1266
@table @option
1267
@item info version
1268
show the version of QEMU
1269
@item info network
1270
show the various VLANs and the associated devices
1271
@item info chardev
1272
show the character devices
1273
@item info block
1274
show the block devices
1275
@item info block
1276
show block device statistics
1277
@item info registers
1278
show the cpu registers
1279
@item info cpus
1280
show infos for each CPU
1281
@item info history
1282
show the command line history
1283
@item info irq
1284
show the interrupts statistics (if available)
1285
@item info pic
1286
show i8259 (PIC) state
1287
@item info pci
1288
show emulated PCI device info
1289
@item info tlb
1290
show virtual to physical memory mappings (i386 only)
1291
@item info mem
1292
show the active virtual memory mappings (i386 only)
1293
@item info hpet
1294
show state of HPET (i386 only)
1295
@item info kqemu
1296
show KQEMU information
1297
@item info kvm
1298
show KVM information
1299
@item info usb
1300
show USB devices plugged on the virtual USB hub
1301
@item info usbhost
1302
show all USB host devices
1303
@item info profile
1304
show profiling information
1305
@item info capture
1306
show information about active capturing
1307
@item info snapshots
1308
show list of VM snapshots
1309
@item info status
1310
show the current VM status (running|paused)
1311
@item info pcmcia
1312
show guest PCMCIA status
1313
@item info mice
1314
show which guest mouse is receiving events
1315
@item info vnc
1316
show the vnc server status
1317
@item info name
1318
show the current VM name
1319
@item info uuid
1320
show the current VM UUID
1321
@item info cpustats
1322
show CPU statistics
1323
@item info slirp
1324
show SLIRP statistics (if available)
1325
@item info migrate
1326
show migration status
1327
@item info balloon
1328
show balloon information
1329
@end table
1330

    
1331
@item q or quit
1332
Quit the emulator.
1333

    
1334
@item eject [-f] @var{device}
1335
Eject a removable medium (use -f to force it).
1336

    
1337
@item change @var{device} @var{setting}
1338

    
1339
Change the configuration of a device.
1340

    
1341
@table @option
1342
@item change @var{diskdevice} @var{filename} [@var{format}]
1343
Change the medium for a removable disk device to point to @var{filename}. eg
1344

    
1345
@example
1346
(qemu) change ide1-cd0 /path/to/some.iso
1347
@end example
1348

    
1349
@var{format} is optional.
1350

    
1351
@item change vnc @var{display},@var{options}
1352
Change the configuration of the VNC server. The valid syntax for @var{display}
1353
and @var{options} are described at @ref{sec_invocation}. eg
1354

    
1355
@example
1356
(qemu) change vnc localhost:1
1357
@end example
1358

    
1359
@item change vnc password [@var{password}]
1360

    
1361
Change the password associated with the VNC server. If the new password is not
1362
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1363
significant up to 8 letters. eg
1364

    
1365
@example
1366
(qemu) change vnc password
1367
Password: ********
1368
@end example
1369

    
1370
@end table
1371

    
1372
@item screendump @var{filename}
1373
Save screen into PPM image @var{filename}.
1374

    
1375
@item logfile @var{filename}
1376
Output logs to @var{filename}.
1377

    
1378
@item log @var{item1}[,...]
1379
Activate logging of the specified items to @file{/tmp/qemu.log}.
1380

    
1381
@item savevm [@var{tag}|@var{id}]
1382
Create a snapshot of the whole virtual machine. If @var{tag} is
1383
provided, it is used as human readable identifier. If there is already
1384
a snapshot with the same tag or ID, it is replaced. More info at
1385
@ref{vm_snapshots}.
1386

    
1387
@item loadvm @var{tag}|@var{id}
1388
Set the whole virtual machine to the snapshot identified by the tag
1389
@var{tag} or the unique snapshot ID @var{id}.
1390

    
1391
@item delvm @var{tag}|@var{id}
1392
Delete the snapshot identified by @var{tag} or @var{id}.
1393

    
1394
@item stop
1395
Stop emulation.
1396

    
1397
@item c or cont
1398
Resume emulation.
1399

    
1400
@item gdbserver [@var{port}]
1401
Start gdbserver session (default @var{port}=1234)
1402

    
1403
@item x/fmt @var{addr}
1404
Virtual memory dump starting at @var{addr}.
1405

    
1406
@item xp /@var{fmt} @var{addr}
1407
Physical memory dump starting at @var{addr}.
1408

    
1409
@var{fmt} is a format which tells the command how to format the
1410
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1411

    
1412
@table @var
1413
@item count
1414
is the number of items to be dumped.
1415

    
1416
@item format
1417
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1418
c (char) or i (asm instruction).
1419

    
1420
@item size
1421
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1422
@code{h} or @code{w} can be specified with the @code{i} format to
1423
respectively select 16 or 32 bit code instruction size.
1424

    
1425
@end table
1426

    
1427
Examples:
1428
@itemize
1429
@item
1430
Dump 10 instructions at the current instruction pointer:
1431
@example
1432
(qemu) x/10i $eip
1433
0x90107063:  ret
1434
0x90107064:  sti
1435
0x90107065:  lea    0x0(%esi,1),%esi
1436
0x90107069:  lea    0x0(%edi,1),%edi
1437
0x90107070:  ret
1438
0x90107071:  jmp    0x90107080
1439
0x90107073:  nop
1440
0x90107074:  nop
1441
0x90107075:  nop
1442
0x90107076:  nop
1443
@end example
1444

    
1445
@item
1446
Dump 80 16 bit values at the start of the video memory.
1447
@smallexample
1448
(qemu) xp/80hx 0xb8000
1449
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1450
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1451
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1452
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1453
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1454
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1455
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1456
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1457
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1458
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1459
@end smallexample
1460
@end itemize
1461

    
1462
@item p or print/@var{fmt} @var{expr}
1463

    
1464
Print expression value. Only the @var{format} part of @var{fmt} is
1465
used.
1466

    
1467
@item sendkey @var{keys}
1468

    
1469
Send @var{keys} to the emulator. @var{keys} could be the name of the
1470
key or @code{#} followed by the raw value in either decimal or hexadecimal
1471
format. Use @code{-} to press several keys simultaneously. Example:
1472
@example
1473
sendkey ctrl-alt-f1
1474
@end example
1475

    
1476
This command is useful to send keys that your graphical user interface
1477
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1478

    
1479
@item system_reset
1480

    
1481
Reset the system.
1482

    
1483
@item system_powerdown
1484

    
1485
Power down the system (if supported).
1486

    
1487
@item sum @var{addr} @var{size}
1488

    
1489
Compute the checksum of a memory region.
1490

    
1491
@item usb_add @var{devname}
1492

    
1493
Add the USB device @var{devname}.  For details of available devices see
1494
@ref{usb_devices}
1495

    
1496
@item usb_del @var{devname}
1497

    
1498
Remove the USB device @var{devname} from the QEMU virtual USB
1499
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1500
command @code{info usb} to see the devices you can remove.
1501

    
1502
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1503
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1504
with optional scroll axis @var{dz}.
1505

    
1506
@item mouse_button @var{val}
1507
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1508

    
1509
@item mouse_set @var{index}
1510
Set which mouse device receives events at given @var{index}, index
1511
can be obtained with
1512
@example
1513
info mice
1514
@end example
1515

    
1516
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1517
Capture audio into @var{filename}. Using sample rate @var{frequency}
1518
bits per sample @var{bits} and number of channels @var{channels}.
1519

    
1520
Defaults:
1521
@itemize @minus
1522
@item Sample rate = 44100 Hz - CD quality
1523
@item Bits = 16
1524
@item Number of channels = 2 - Stereo
1525
@end itemize
1526

    
1527
@item stopcapture @var{index}
1528
Stop capture with a given @var{index}, index can be obtained with
1529
@example
1530
info capture
1531
@end example
1532

    
1533
@item memsave @var{addr} @var{size} @var{file}
1534
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1535

    
1536
@item pmemsave @var{addr} @var{size} @var{file}
1537
save to disk physical memory dump starting at @var{addr} of size @var{size}.
1538

    
1539
@item boot_set @var{bootdevicelist}
1540

    
1541
Define new values for the boot device list. Those values will override
1542
the values specified on the command line through the @code{-boot} option.
1543

    
1544
The values that can be specified here depend on the machine type, but are
1545
the same that can be specified in the @code{-boot} command line option.
1546

    
1547
@item nmi @var{cpu}
1548
Inject an NMI on the given CPU.
1549

    
1550
@item migrate [-d] @var{uri}
1551
Migrate to @var{uri} (using -d to not wait for completion).
1552

    
1553
@item migrate_cancel
1554
Cancel the current VM migration.
1555

    
1556
@item migrate_set_speed @var{value}
1557
Set maximum speed to @var{value} (in bytes) for migrations.
1558

    
1559
@item balloon @var{value}
1560
Request VM to change its memory allocation to @var{value} (in MB).
1561

    
1562
@item set_link @var{name} [up|down]
1563
Set link @var{name} up or down.
1564

    
1565
@end table
1566

    
1567
@subsection Integer expressions
1568

    
1569
The monitor understands integers expressions for every integer
1570
argument. You can use register names to get the value of specifics
1571
CPU registers by prefixing them with @emph{$}.
1572

    
1573
@node disk_images
1574
@section Disk Images
1575

    
1576
Since version 0.6.1, QEMU supports many disk image formats, including
1577
growable disk images (their size increase as non empty sectors are
1578
written), compressed and encrypted disk images. Version 0.8.3 added
1579
the new qcow2 disk image format which is essential to support VM
1580
snapshots.
1581

    
1582
@menu
1583
* disk_images_quickstart::    Quick start for disk image creation
1584
* disk_images_snapshot_mode:: Snapshot mode
1585
* vm_snapshots::              VM snapshots
1586
* qemu_img_invocation::       qemu-img Invocation
1587
* qemu_nbd_invocation::       qemu-nbd Invocation
1588
* host_drives::               Using host drives
1589
* disk_images_fat_images::    Virtual FAT disk images
1590
* disk_images_nbd::           NBD access
1591
@end menu
1592

    
1593
@node disk_images_quickstart
1594
@subsection Quick start for disk image creation
1595

    
1596
You can create a disk image with the command:
1597
@example
1598
qemu-img create myimage.img mysize
1599
@end example
1600
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1601
size in kilobytes. You can add an @code{M} suffix to give the size in
1602
megabytes and a @code{G} suffix for gigabytes.
1603

    
1604
See @ref{qemu_img_invocation} for more information.
1605

    
1606
@node disk_images_snapshot_mode
1607
@subsection Snapshot mode
1608

    
1609
If you use the option @option{-snapshot}, all disk images are
1610
considered as read only. When sectors in written, they are written in
1611
a temporary file created in @file{/tmp}. You can however force the
1612
write back to the raw disk images by using the @code{commit} monitor
1613
command (or @key{C-a s} in the serial console).
1614

    
1615
@node vm_snapshots
1616
@subsection VM snapshots
1617

    
1618
VM snapshots are snapshots of the complete virtual machine including
1619
CPU state, RAM, device state and the content of all the writable
1620
disks. In order to use VM snapshots, you must have at least one non
1621
removable and writable block device using the @code{qcow2} disk image
1622
format. Normally this device is the first virtual hard drive.
1623

    
1624
Use the monitor command @code{savevm} to create a new VM snapshot or
1625
replace an existing one. A human readable name can be assigned to each
1626
snapshot in addition to its numerical ID.
1627

    
1628
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1629
a VM snapshot. @code{info snapshots} lists the available snapshots
1630
with their associated information:
1631

    
1632
@example
1633
(qemu) info snapshots
1634
Snapshot devices: hda
1635
Snapshot list (from hda):
1636
ID        TAG                 VM SIZE                DATE       VM CLOCK
1637
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1638
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1639
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1640
@end example
1641

    
1642
A VM snapshot is made of a VM state info (its size is shown in
1643
@code{info snapshots}) and a snapshot of every writable disk image.
1644
The VM state info is stored in the first @code{qcow2} non removable
1645
and writable block device. The disk image snapshots are stored in
1646
every disk image. The size of a snapshot in a disk image is difficult
1647
to evaluate and is not shown by @code{info snapshots} because the
1648
associated disk sectors are shared among all the snapshots to save
1649
disk space (otherwise each snapshot would need a full copy of all the
1650
disk images).
1651

    
1652
When using the (unrelated) @code{-snapshot} option
1653
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1654
but they are deleted as soon as you exit QEMU.
1655

    
1656
VM snapshots currently have the following known limitations:
1657
@itemize
1658
@item
1659
They cannot cope with removable devices if they are removed or
1660
inserted after a snapshot is done.
1661
@item
1662
A few device drivers still have incomplete snapshot support so their
1663
state is not saved or restored properly (in particular USB).
1664
@end itemize
1665

    
1666
@node qemu_img_invocation
1667
@subsection @code{qemu-img} Invocation
1668

    
1669
@include qemu-img.texi
1670

    
1671
@node qemu_nbd_invocation
1672
@subsection @code{qemu-nbd} Invocation
1673

    
1674
@include qemu-nbd.texi
1675

    
1676
@node host_drives
1677
@subsection Using host drives
1678

    
1679
In addition to disk image files, QEMU can directly access host
1680
devices. We describe here the usage for QEMU version >= 0.8.3.
1681

    
1682
@subsubsection Linux
1683

    
1684
On Linux, you can directly use the host device filename instead of a
1685
disk image filename provided you have enough privileges to access
1686
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1687
@file{/dev/fd0} for the floppy.
1688

    
1689
@table @code
1690
@item CD
1691
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1692
specific code to detect CDROM insertion or removal. CDROM ejection by
1693
the guest OS is supported. Currently only data CDs are supported.
1694
@item Floppy
1695
You can specify a floppy device even if no floppy is loaded. Floppy
1696
removal is currently not detected accurately (if you change floppy
1697
without doing floppy access while the floppy is not loaded, the guest
1698
OS will think that the same floppy is loaded).
1699
@item Hard disks
1700
Hard disks can be used. Normally you must specify the whole disk
1701
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1702
see it as a partitioned disk. WARNING: unless you know what you do, it
1703
is better to only make READ-ONLY accesses to the hard disk otherwise
1704
you may corrupt your host data (use the @option{-snapshot} command
1705
line option or modify the device permissions accordingly).
1706
@end table
1707

    
1708
@subsubsection Windows
1709

    
1710
@table @code
1711
@item CD
1712
The preferred syntax is the drive letter (e.g. @file{d:}). The
1713
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1714
supported as an alias to the first CDROM drive.
1715

    
1716
Currently there is no specific code to handle removable media, so it
1717
is better to use the @code{change} or @code{eject} monitor commands to
1718
change or eject media.
1719
@item Hard disks
1720
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1721
where @var{N} is the drive number (0 is the first hard disk).
1722

    
1723
WARNING: unless you know what you do, it is better to only make
1724
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1725
host data (use the @option{-snapshot} command line so that the
1726
modifications are written in a temporary file).
1727
@end table
1728

    
1729

    
1730
@subsubsection Mac OS X
1731

    
1732
@file{/dev/cdrom} is an alias to the first CDROM.
1733

    
1734
Currently there is no specific code to handle removable media, so it
1735
is better to use the @code{change} or @code{eject} monitor commands to
1736
change or eject media.
1737

    
1738
@node disk_images_fat_images
1739
@subsection Virtual FAT disk images
1740

    
1741
QEMU can automatically create a virtual FAT disk image from a
1742
directory tree. In order to use it, just type:
1743

    
1744
@example
1745
qemu linux.img -hdb fat:/my_directory
1746
@end example
1747

    
1748
Then you access access to all the files in the @file{/my_directory}
1749
directory without having to copy them in a disk image or to export
1750
them via SAMBA or NFS. The default access is @emph{read-only}.
1751

    
1752
Floppies can be emulated with the @code{:floppy:} option:
1753

    
1754
@example
1755
qemu linux.img -fda fat:floppy:/my_directory
1756
@end example
1757

    
1758
A read/write support is available for testing (beta stage) with the
1759
@code{:rw:} option:
1760

    
1761
@example
1762
qemu linux.img -fda fat:floppy:rw:/my_directory
1763
@end example
1764

    
1765
What you should @emph{never} do:
1766
@itemize
1767
@item use non-ASCII filenames ;
1768
@item use "-snapshot" together with ":rw:" ;
1769
@item expect it to work when loadvm'ing ;
1770
@item write to the FAT directory on the host system while accessing it with the guest system.
1771
@end itemize
1772

    
1773
@node disk_images_nbd
1774
@subsection NBD access
1775

    
1776
QEMU can access directly to block device exported using the Network Block Device
1777
protocol.
1778

    
1779
@example
1780
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1781
@end example
1782

    
1783
If the NBD server is located on the same host, you can use an unix socket instead
1784
of an inet socket:
1785

    
1786
@example
1787
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1788
@end example
1789

    
1790
In this case, the block device must be exported using qemu-nbd:
1791

    
1792
@example
1793
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1794
@end example
1795

    
1796
The use of qemu-nbd allows to share a disk between several guests:
1797
@example
1798
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1799
@end example
1800

    
1801
and then you can use it with two guests:
1802
@example
1803
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1804
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1805
@end example
1806

    
1807
@node pcsys_network
1808
@section Network emulation
1809

    
1810
QEMU can simulate several network cards (PCI or ISA cards on the PC
1811
target) and can connect them to an arbitrary number of Virtual Local
1812
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1813
VLAN. VLAN can be connected between separate instances of QEMU to
1814
simulate large networks. For simpler usage, a non privileged user mode
1815
network stack can replace the TAP device to have a basic network
1816
connection.
1817

    
1818
@subsection VLANs
1819

    
1820
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1821
connection between several network devices. These devices can be for
1822
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1823
(TAP devices).
1824

    
1825
@subsection Using TAP network interfaces
1826

    
1827
This is the standard way to connect QEMU to a real network. QEMU adds
1828
a virtual network device on your host (called @code{tapN}), and you
1829
can then configure it as if it was a real ethernet card.
1830

    
1831
@subsubsection Linux host
1832

    
1833
As an example, you can download the @file{linux-test-xxx.tar.gz}
1834
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1835
configure properly @code{sudo} so that the command @code{ifconfig}
1836
contained in @file{qemu-ifup} can be executed as root. You must verify
1837
that your host kernel supports the TAP network interfaces: the
1838
device @file{/dev/net/tun} must be present.
1839

    
1840
See @ref{sec_invocation} to have examples of command lines using the
1841
TAP network interfaces.
1842

    
1843
@subsubsection Windows host
1844

    
1845
There is a virtual ethernet driver for Windows 2000/XP systems, called
1846
TAP-Win32. But it is not included in standard QEMU for Windows,
1847
so you will need to get it separately. It is part of OpenVPN package,
1848
so download OpenVPN from : @url{http://openvpn.net/}.
1849

    
1850
@subsection Using the user mode network stack
1851

    
1852
By using the option @option{-net user} (default configuration if no
1853
@option{-net} option is specified), QEMU uses a completely user mode
1854
network stack (you don't need root privilege to use the virtual
1855
network). The virtual network configuration is the following:
1856

    
1857
@example
1858

    
1859
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1860
                           |          (10.0.2.2)
1861
                           |
1862
                           ---->  DNS server (10.0.2.3)
1863
                           |
1864
                           ---->  SMB server (10.0.2.4)
1865
@end example
1866

    
1867
The QEMU VM behaves as if it was behind a firewall which blocks all
1868
incoming connections. You can use a DHCP client to automatically
1869
configure the network in the QEMU VM. The DHCP server assign addresses
1870
to the hosts starting from 10.0.2.15.
1871

    
1872
In order to check that the user mode network is working, you can ping
1873
the address 10.0.2.2 and verify that you got an address in the range
1874
10.0.2.x from the QEMU virtual DHCP server.
1875

    
1876
Note that @code{ping} is not supported reliably to the internet as it
1877
would require root privileges. It means you can only ping the local
1878
router (10.0.2.2).
1879

    
1880
When using the built-in TFTP server, the router is also the TFTP
1881
server.
1882

    
1883
When using the @option{-redir} option, TCP or UDP connections can be
1884
redirected from the host to the guest. It allows for example to
1885
redirect X11, telnet or SSH connections.
1886

    
1887
@subsection Connecting VLANs between QEMU instances
1888

    
1889
Using the @option{-net socket} option, it is possible to make VLANs
1890
that span several QEMU instances. See @ref{sec_invocation} to have a
1891
basic example.
1892

    
1893
@node direct_linux_boot
1894
@section Direct Linux Boot
1895

    
1896
This section explains how to launch a Linux kernel inside QEMU without
1897
having to make a full bootable image. It is very useful for fast Linux
1898
kernel testing.
1899

    
1900
The syntax is:
1901
@example
1902
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1903
@end example
1904

    
1905
Use @option{-kernel} to provide the Linux kernel image and
1906
@option{-append} to give the kernel command line arguments. The
1907
@option{-initrd} option can be used to provide an INITRD image.
1908

    
1909
When using the direct Linux boot, a disk image for the first hard disk
1910
@file{hda} is required because its boot sector is used to launch the
1911
Linux kernel.
1912

    
1913
If you do not need graphical output, you can disable it and redirect
1914
the virtual serial port and the QEMU monitor to the console with the
1915
@option{-nographic} option. The typical command line is:
1916
@example
1917
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1918
     -append "root=/dev/hda console=ttyS0" -nographic
1919
@end example
1920

    
1921
Use @key{Ctrl-a c} to switch between the serial console and the
1922
monitor (@pxref{pcsys_keys}).
1923

    
1924
@node pcsys_usb
1925
@section USB emulation
1926

    
1927
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1928
virtual USB devices or real host USB devices (experimental, works only
1929
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1930
as necessary to connect multiple USB devices.
1931

    
1932
@menu
1933
* usb_devices::
1934
* host_usb_devices::
1935
@end menu
1936
@node usb_devices
1937
@subsection Connecting USB devices
1938

    
1939
USB devices can be connected with the @option{-usbdevice} commandline option
1940
or the @code{usb_add} monitor command.  Available devices are:
1941

    
1942
@table @code
1943
@item mouse
1944
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1945
@item tablet
1946
Pointer device that uses absolute coordinates (like a touchscreen).
1947
This means qemu is able to report the mouse position without having
1948
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1949
@item disk:@var{file}
1950
Mass storage device based on @var{file} (@pxref{disk_images})
1951
@item host:@var{bus.addr}
1952
Pass through the host device identified by @var{bus.addr}
1953
(Linux only)
1954
@item host:@var{vendor_id:product_id}
1955
Pass through the host device identified by @var{vendor_id:product_id}
1956
(Linux only)
1957
@item wacom-tablet
1958
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1959
above but it can be used with the tslib library because in addition to touch
1960
coordinates it reports touch pressure.
1961
@item keyboard
1962
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1963
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1964
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1965
device @var{dev}. The available character devices are the same as for the
1966
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1967
used to override the default 0403:6001. For instance, 
1968
@example
1969
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1970
@end example
1971
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1972
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1973
@item braille
1974
Braille device.  This will use BrlAPI to display the braille output on a real
1975
or fake device.
1976
@item net:@var{options}
1977
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1978
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1979
For instance, user-mode networking can be used with
1980
@example
1981
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1982
@end example
1983
Currently this cannot be used in machines that support PCI NICs.
1984
@item bt[:@var{hci-type}]
1985
Bluetooth dongle whose type is specified in the same format as with
1986
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1987
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1988
This USB device implements the USB Transport Layer of HCI.  Example
1989
usage:
1990
@example
1991
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1992
@end example
1993
@end table
1994

    
1995
@node host_usb_devices
1996
@subsection Using host USB devices on a Linux host
1997

    
1998
WARNING: this is an experimental feature. QEMU will slow down when
1999
using it. USB devices requiring real time streaming (i.e. USB Video
2000
Cameras) are not supported yet.
2001

    
2002
@enumerate
2003
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
2004
is actually using the USB device. A simple way to do that is simply to
2005
disable the corresponding kernel module by renaming it from @file{mydriver.o}
2006
to @file{mydriver.o.disabled}.
2007

    
2008
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2009
@example
2010
ls /proc/bus/usb
2011
001  devices  drivers
2012
@end example
2013

    
2014
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2015
@example
2016
chown -R myuid /proc/bus/usb
2017
@end example
2018

    
2019
@item Launch QEMU and do in the monitor:
2020
@example
2021
info usbhost
2022
  Device 1.2, speed 480 Mb/s
2023
    Class 00: USB device 1234:5678, USB DISK
2024
@end example
2025
You should see the list of the devices you can use (Never try to use
2026
hubs, it won't work).
2027

    
2028
@item Add the device in QEMU by using:
2029
@example
2030
usb_add host:1234:5678
2031
@end example
2032

    
2033
Normally the guest OS should report that a new USB device is
2034
plugged. You can use the option @option{-usbdevice} to do the same.
2035

    
2036
@item Now you can try to use the host USB device in QEMU.
2037

    
2038
@end enumerate
2039

    
2040
When relaunching QEMU, you may have to unplug and plug again the USB
2041
device to make it work again (this is a bug).
2042

    
2043
@node vnc_security
2044
@section VNC security
2045

    
2046
The VNC server capability provides access to the graphical console
2047
of the guest VM across the network. This has a number of security
2048
considerations depending on the deployment scenarios.
2049

    
2050
@menu
2051
* vnc_sec_none::
2052
* vnc_sec_password::
2053
* vnc_sec_certificate::
2054
* vnc_sec_certificate_verify::
2055
* vnc_sec_certificate_pw::
2056
* vnc_generate_cert::
2057
@end menu
2058
@node vnc_sec_none
2059
@subsection Without passwords
2060

    
2061
The simplest VNC server setup does not include any form of authentication.
2062
For this setup it is recommended to restrict it to listen on a UNIX domain
2063
socket only. For example
2064

    
2065
@example
2066
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2067
@end example
2068

    
2069
This ensures that only users on local box with read/write access to that
2070
path can access the VNC server. To securely access the VNC server from a
2071
remote machine, a combination of netcat+ssh can be used to provide a secure
2072
tunnel.
2073

    
2074
@node vnc_sec_password
2075
@subsection With passwords
2076

    
2077
The VNC protocol has limited support for password based authentication. Since
2078
the protocol limits passwords to 8 characters it should not be considered
2079
to provide high security. The password can be fairly easily brute-forced by
2080
a client making repeat connections. For this reason, a VNC server using password
2081
authentication should be restricted to only listen on the loopback interface
2082
or UNIX domain sockets. Password authentication is requested with the @code{password}
2083
option, and then once QEMU is running the password is set with the monitor. Until
2084
the monitor is used to set the password all clients will be rejected.
2085

    
2086
@example
2087
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2088
(qemu) change vnc password
2089
Password: ********
2090
(qemu)
2091
@end example
2092

    
2093
@node vnc_sec_certificate
2094
@subsection With x509 certificates
2095

    
2096
The QEMU VNC server also implements the VeNCrypt extension allowing use of
2097
TLS for encryption of the session, and x509 certificates for authentication.
2098
The use of x509 certificates is strongly recommended, because TLS on its
2099
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2100
support provides a secure session, but no authentication. This allows any
2101
client to connect, and provides an encrypted session.
2102

    
2103
@example
2104
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2105
@end example
2106

    
2107
In the above example @code{/etc/pki/qemu} should contain at least three files,
2108
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2109
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2110
NB the @code{server-key.pem} file should be protected with file mode 0600 to
2111
only be readable by the user owning it.
2112

    
2113
@node vnc_sec_certificate_verify
2114
@subsection With x509 certificates and client verification
2115

    
2116
Certificates can also provide a means to authenticate the client connecting.
2117
The server will request that the client provide a certificate, which it will
2118
then validate against the CA certificate. This is a good choice if deploying
2119
in an environment with a private internal certificate authority.
2120

    
2121
@example
2122
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2123
@end example
2124

    
2125

    
2126
@node vnc_sec_certificate_pw
2127
@subsection With x509 certificates, client verification and passwords
2128

    
2129
Finally, the previous method can be combined with VNC password authentication
2130
to provide two layers of authentication for clients.
2131

    
2132
@example
2133
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2134
(qemu) change vnc password
2135
Password: ********
2136
(qemu)
2137
@end example
2138

    
2139
@node vnc_generate_cert
2140
@subsection Generating certificates for VNC
2141

    
2142
The GNU TLS packages provides a command called @code{certtool} which can
2143
be used to generate certificates and keys in PEM format. At a minimum it
2144
is neccessary to setup a certificate authority, and issue certificates to
2145
each server. If using certificates for authentication, then each client
2146
will also need to be issued a certificate. The recommendation is for the
2147
server to keep its certificates in either @code{/etc/pki/qemu} or for
2148
unprivileged users in @code{$HOME/.pki/qemu}.
2149

    
2150
@menu
2151
* vnc_generate_ca::
2152
* vnc_generate_server::
2153
* vnc_generate_client::
2154
@end menu
2155
@node vnc_generate_ca
2156
@subsubsection Setup the Certificate Authority
2157

    
2158
This step only needs to be performed once per organization / organizational
2159
unit. First the CA needs a private key. This key must be kept VERY secret
2160
and secure. If this key is compromised the entire trust chain of the certificates
2161
issued with it is lost.
2162

    
2163
@example
2164
# certtool --generate-privkey > ca-key.pem
2165
@end example
2166

    
2167
A CA needs to have a public certificate. For simplicity it can be a self-signed
2168
certificate, or one issue by a commercial certificate issuing authority. To
2169
generate a self-signed certificate requires one core piece of information, the
2170
name of the organization.
2171

    
2172
@example
2173
# cat > ca.info <<EOF
2174
cn = Name of your organization
2175
ca
2176
cert_signing_key
2177
EOF
2178
# certtool --generate-self-signed \
2179
           --load-privkey ca-key.pem
2180
           --template ca.info \
2181
           --outfile ca-cert.pem
2182
@end example
2183

    
2184
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2185
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2186

    
2187
@node vnc_generate_server
2188
@subsubsection Issuing server certificates
2189

    
2190
Each server (or host) needs to be issued with a key and certificate. When connecting
2191
the certificate is sent to the client which validates it against the CA certificate.
2192
The core piece of information for a server certificate is the hostname. This should
2193
be the fully qualified hostname that the client will connect with, since the client
2194
will typically also verify the hostname in the certificate. On the host holding the
2195
secure CA private key:
2196

    
2197
@example
2198
# cat > server.info <<EOF
2199
organization = Name  of your organization
2200
cn = server.foo.example.com
2201
tls_www_server
2202
encryption_key
2203
signing_key
2204
EOF
2205
# certtool --generate-privkey > server-key.pem
2206
# certtool --generate-certificate \
2207
           --load-ca-certificate ca-cert.pem \
2208
           --load-ca-privkey ca-key.pem \
2209
           --load-privkey server server-key.pem \
2210
           --template server.info \
2211
           --outfile server-cert.pem
2212
@end example
2213

    
2214
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2215
to the server for which they were generated. The @code{server-key.pem} is security
2216
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2217

    
2218
@node vnc_generate_client
2219
@subsubsection Issuing client certificates
2220

    
2221
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2222
certificates as its authentication mechanism, each client also needs to be issued
2223
a certificate. The client certificate contains enough metadata to uniquely identify
2224
the client, typically organization, state, city, building, etc. On the host holding
2225
the secure CA private key:
2226

    
2227
@example
2228
# cat > client.info <<EOF
2229
country = GB
2230
state = London
2231
locality = London
2232
organiazation = Name of your organization
2233
cn = client.foo.example.com
2234
tls_www_client
2235
encryption_key
2236
signing_key
2237
EOF
2238
# certtool --generate-privkey > client-key.pem
2239
# certtool --generate-certificate \
2240
           --load-ca-certificate ca-cert.pem \
2241
           --load-ca-privkey ca-key.pem \
2242
           --load-privkey client-key.pem \
2243
           --template client.info \
2244
           --outfile client-cert.pem
2245
@end example
2246

    
2247
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2248
copied to the client for which they were generated.
2249

    
2250
@node gdb_usage
2251
@section GDB usage
2252

    
2253
QEMU has a primitive support to work with gdb, so that you can do
2254
'Ctrl-C' while the virtual machine is running and inspect its state.
2255

    
2256
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2257
gdb connection:
2258
@example
2259
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2260
       -append "root=/dev/hda"
2261
Connected to host network interface: tun0
2262
Waiting gdb connection on port 1234
2263
@end example
2264

    
2265
Then launch gdb on the 'vmlinux' executable:
2266
@example
2267
> gdb vmlinux
2268
@end example
2269

    
2270
In gdb, connect to QEMU:
2271
@example
2272
(gdb) target remote localhost:1234
2273
@end example
2274

    
2275
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2276
@example
2277
(gdb) c
2278
@end example
2279

    
2280
Here are some useful tips in order to use gdb on system code:
2281

    
2282
@enumerate
2283
@item
2284
Use @code{info reg} to display all the CPU registers.
2285
@item
2286
Use @code{x/10i $eip} to display the code at the PC position.
2287
@item
2288
Use @code{set architecture i8086} to dump 16 bit code. Then use
2289
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2290
@end enumerate
2291

    
2292
Advanced debugging options:
2293

    
2294
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2295
@table @code
2296
@item maintenance packet qqemu.sstepbits
2297

    
2298
This will display the MASK bits used to control the single stepping IE:
2299
@example
2300
(gdb) maintenance packet qqemu.sstepbits
2301
sending: "qqemu.sstepbits"
2302
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2303
@end example
2304
@item maintenance packet qqemu.sstep
2305

    
2306
This will display the current value of the mask used when single stepping IE:
2307
@example
2308
(gdb) maintenance packet qqemu.sstep
2309
sending: "qqemu.sstep"
2310
received: "0x7"
2311
@end example
2312
@item maintenance packet Qqemu.sstep=HEX_VALUE
2313

    
2314
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2315
@example
2316
(gdb) maintenance packet Qqemu.sstep=0x5
2317
sending: "qemu.sstep=0x5"
2318
received: "OK"
2319
@end example
2320
@end table
2321

    
2322
@node pcsys_os_specific
2323
@section Target OS specific information
2324

    
2325
@subsection Linux
2326

    
2327
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2328
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2329
color depth in the guest and the host OS.
2330

    
2331
When using a 2.6 guest Linux kernel, you should add the option
2332
@code{clock=pit} on the kernel command line because the 2.6 Linux
2333
kernels make very strict real time clock checks by default that QEMU
2334
cannot simulate exactly.
2335

    
2336
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2337
not activated because QEMU is slower with this patch. The QEMU
2338
Accelerator Module is also much slower in this case. Earlier Fedora
2339
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2340
patch by default. Newer kernels don't have it.
2341

    
2342
@subsection Windows
2343

    
2344
If you have a slow host, using Windows 95 is better as it gives the
2345
best speed. Windows 2000 is also a good choice.
2346

    
2347
@subsubsection SVGA graphic modes support
2348

    
2349
QEMU emulates a Cirrus Logic GD5446 Video
2350
card. All Windows versions starting from Windows 95 should recognize
2351
and use this graphic card. For optimal performances, use 16 bit color
2352
depth in the guest and the host OS.
2353

    
2354
If you are using Windows XP as guest OS and if you want to use high
2355
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2356
1280x1024x16), then you should use the VESA VBE virtual graphic card
2357
(option @option{-std-vga}).
2358

    
2359
@subsubsection CPU usage reduction
2360

    
2361
Windows 9x does not correctly use the CPU HLT
2362
instruction. The result is that it takes host CPU cycles even when
2363
idle. You can install the utility from
2364
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2365
problem. Note that no such tool is needed for NT, 2000 or XP.
2366

    
2367
@subsubsection Windows 2000 disk full problem
2368

    
2369
Windows 2000 has a bug which gives a disk full problem during its
2370
installation. When installing it, use the @option{-win2k-hack} QEMU
2371
option to enable a specific workaround. After Windows 2000 is
2372
installed, you no longer need this option (this option slows down the
2373
IDE transfers).
2374

    
2375
@subsubsection Windows 2000 shutdown
2376

    
2377
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2378
can. It comes from the fact that Windows 2000 does not automatically
2379
use the APM driver provided by the BIOS.
2380

    
2381
In order to correct that, do the following (thanks to Struan
2382
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2383
Add/Troubleshoot a device => Add a new device & Next => No, select the
2384
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2385
(again) a few times. Now the driver is installed and Windows 2000 now
2386
correctly instructs QEMU to shutdown at the appropriate moment.
2387

    
2388
@subsubsection Share a directory between Unix and Windows
2389

    
2390
See @ref{sec_invocation} about the help of the option @option{-smb}.
2391

    
2392
@subsubsection Windows XP security problem
2393

    
2394
Some releases of Windows XP install correctly but give a security
2395
error when booting:
2396
@example
2397
A problem is preventing Windows from accurately checking the
2398
license for this computer. Error code: 0x800703e6.
2399
@end example
2400

    
2401
The workaround is to install a service pack for XP after a boot in safe
2402
mode. Then reboot, and the problem should go away. Since there is no
2403
network while in safe mode, its recommended to download the full
2404
installation of SP1 or SP2 and transfer that via an ISO or using the
2405
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2406

    
2407
@subsection MS-DOS and FreeDOS
2408

    
2409
@subsubsection CPU usage reduction
2410

    
2411
DOS does not correctly use the CPU HLT instruction. The result is that
2412
it takes host CPU cycles even when idle. You can install the utility
2413
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2414
problem.
2415

    
2416
@node QEMU System emulator for non PC targets
2417
@chapter QEMU System emulator for non PC targets
2418

    
2419
QEMU is a generic emulator and it emulates many non PC
2420
machines. Most of the options are similar to the PC emulator. The
2421
differences are mentioned in the following sections.
2422

    
2423
@menu
2424
* QEMU PowerPC System emulator::
2425
* Sparc32 System emulator::
2426
* Sparc64 System emulator::
2427
* MIPS System emulator::
2428
* ARM System emulator::
2429
* ColdFire System emulator::
2430
@end menu
2431

    
2432
@node QEMU PowerPC System emulator
2433
@section QEMU PowerPC System emulator
2434

    
2435
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2436
or PowerMac PowerPC system.
2437

    
2438
QEMU emulates the following PowerMac peripherals:
2439

    
2440
@itemize @minus
2441
@item
2442
UniNorth or Grackle PCI Bridge
2443
@item
2444
PCI VGA compatible card with VESA Bochs Extensions
2445
@item
2446
2 PMAC IDE interfaces with hard disk and CD-ROM support
2447
@item
2448
NE2000 PCI adapters
2449
@item
2450
Non Volatile RAM
2451
@item
2452
VIA-CUDA with ADB keyboard and mouse.
2453
@end itemize
2454

    
2455
QEMU emulates the following PREP peripherals:
2456

    
2457
@itemize @minus
2458
@item
2459
PCI Bridge
2460
@item
2461
PCI VGA compatible card with VESA Bochs Extensions
2462
@item
2463
2 IDE interfaces with hard disk and CD-ROM support
2464
@item
2465
Floppy disk
2466
@item
2467
NE2000 network adapters
2468
@item
2469
Serial port
2470
@item
2471
PREP Non Volatile RAM
2472
@item
2473
PC compatible keyboard and mouse.
2474
@end itemize
2475

    
2476
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2477
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2478

    
2479
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2480
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2481
v2) portable firmware implementation. The goal is to implement a 100%
2482
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2483

    
2484
@c man begin OPTIONS
2485

    
2486
The following options are specific to the PowerPC emulation:
2487

    
2488
@table @option
2489

    
2490
@item -g WxH[xDEPTH]
2491

    
2492
Set the initial VGA graphic mode. The default is 800x600x15.
2493

    
2494
@item -prom-env string
2495

    
2496
Set OpenBIOS variables in NVRAM, for example:
2497

    
2498
@example
2499
qemu-system-ppc -prom-env 'auto-boot?=false' \
2500
 -prom-env 'boot-device=hd:2,\yaboot' \
2501
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2502
@end example
2503

    
2504
These variables are not used by Open Hack'Ware.
2505

    
2506
@end table
2507

    
2508
@c man end
2509

    
2510

    
2511
More information is available at
2512
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2513

    
2514
@node Sparc32 System emulator
2515
@section Sparc32 System emulator
2516

    
2517
Use the executable @file{qemu-system-sparc} to simulate the following
2518
Sun4m architecture machines:
2519
@itemize @minus
2520
@item
2521
SPARCstation 4
2522
@item
2523
SPARCstation 5
2524
@item
2525
SPARCstation 10
2526
@item
2527
SPARCstation 20
2528
@item
2529
SPARCserver 600MP
2530
@item
2531
SPARCstation LX
2532
@item
2533
SPARCstation Voyager
2534
@item
2535
SPARCclassic
2536
@item
2537
SPARCbook
2538
@end itemize
2539

    
2540
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2541
but Linux limits the number of usable CPUs to 4.
2542

    
2543
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2544
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2545
emulators are not usable yet.
2546

    
2547
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2548

    
2549
@itemize @minus
2550
@item
2551
IOMMU or IO-UNITs
2552
@item
2553
TCX Frame buffer
2554
@item
2555
Lance (Am7990) Ethernet
2556
@item
2557
Non Volatile RAM M48T02/M48T08
2558
@item
2559
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2560
and power/reset logic
2561
@item
2562
ESP SCSI controller with hard disk and CD-ROM support
2563
@item
2564
Floppy drive (not on SS-600MP)
2565
@item
2566
CS4231 sound device (only on SS-5, not working yet)
2567
@end itemize
2568

    
2569
The number of peripherals is fixed in the architecture.  Maximum
2570
memory size depends on the machine type, for SS-5 it is 256MB and for
2571
others 2047MB.
2572

    
2573
Since version 0.8.2, QEMU uses OpenBIOS
2574
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2575
firmware implementation. The goal is to implement a 100% IEEE
2576
1275-1994 (referred to as Open Firmware) compliant firmware.
2577

    
2578
A sample Linux 2.6 series kernel and ram disk image are available on
2579
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2580
some kernel versions work. Please note that currently Solaris kernels
2581
don't work probably due to interface issues between OpenBIOS and
2582
Solaris.
2583

    
2584
@c man begin OPTIONS
2585

    
2586
The following options are specific to the Sparc32 emulation:
2587

    
2588
@table @option
2589

    
2590
@item -g WxHx[xDEPTH]
2591

    
2592
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2593
the only other possible mode is 1024x768x24.
2594

    
2595
@item -prom-env string
2596

    
2597
Set OpenBIOS variables in NVRAM, for example:
2598

    
2599
@example
2600
qemu-system-sparc -prom-env 'auto-boot?=false' \
2601
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2602
@end example
2603

    
2604
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2605

    
2606
Set the emulated machine type. Default is SS-5.
2607

    
2608
@end table
2609

    
2610
@c man end
2611

    
2612
@node Sparc64 System emulator
2613
@section Sparc64 System emulator
2614

    
2615
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2616
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2617
Niagara (T1) machine. The emulator is not usable for anything yet, but
2618
it can launch some kernels.
2619

    
2620
QEMU emulates the following peripherals:
2621

    
2622
@itemize @minus
2623
@item
2624
UltraSparc IIi APB PCI Bridge
2625
@item
2626
PCI VGA compatible card with VESA Bochs Extensions
2627
@item
2628
PS/2 mouse and keyboard
2629
@item
2630
Non Volatile RAM M48T59
2631
@item
2632
PC-compatible serial ports
2633
@item
2634
2 PCI IDE interfaces with hard disk and CD-ROM support
2635
@item
2636
Floppy disk
2637
@end itemize
2638

    
2639
@c man begin OPTIONS
2640

    
2641
The following options are specific to the Sparc64 emulation:
2642

    
2643
@table @option
2644

    
2645
@item -prom-env string
2646

    
2647
Set OpenBIOS variables in NVRAM, for example:
2648

    
2649
@example
2650
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2651
@end example
2652

    
2653
@item -M [sun4u|sun4v|Niagara]
2654

    
2655
Set the emulated machine type. The default is sun4u.
2656

    
2657
@end table
2658

    
2659
@c man end
2660

    
2661
@node MIPS System emulator
2662
@section MIPS System emulator
2663

    
2664
Four executables cover simulation of 32 and 64-bit MIPS systems in
2665
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2666
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2667
Five different machine types are emulated:
2668

    
2669
@itemize @minus
2670
@item
2671
A generic ISA PC-like machine "mips"
2672
@item
2673
The MIPS Malta prototype board "malta"
2674
@item
2675
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2676
@item
2677
MIPS emulator pseudo board "mipssim"
2678
@item
2679
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2680
@end itemize
2681

    
2682
The generic emulation is supported by Debian 'Etch' and is able to
2683
install Debian into a virtual disk image. The following devices are
2684
emulated:
2685

    
2686
@itemize @minus
2687
@item
2688
A range of MIPS CPUs, default is the 24Kf
2689
@item
2690
PC style serial port
2691
@item
2692
PC style IDE disk
2693
@item
2694
NE2000 network card
2695
@end itemize
2696

    
2697
The Malta emulation supports the following devices:
2698

    
2699
@itemize @minus
2700
@item
2701
Core board with MIPS 24Kf CPU and Galileo system controller
2702
@item
2703
PIIX4 PCI/USB/SMbus controller
2704
@item
2705
The Multi-I/O chip's serial device
2706
@item
2707
PCnet32 PCI network card
2708
@item
2709
Malta FPGA serial device
2710
@item
2711
Cirrus (default) or any other PCI VGA graphics card
2712
@end itemize
2713

    
2714
The ACER Pica emulation supports:
2715

    
2716
@itemize @minus
2717
@item
2718
MIPS R4000 CPU
2719
@item
2720
PC-style IRQ and DMA controllers
2721
@item
2722
PC Keyboard
2723
@item
2724
IDE controller
2725
@end itemize
2726

    
2727
The mipssim pseudo board emulation provides an environment similiar
2728
to what the proprietary MIPS emulator uses for running Linux.
2729
It supports:
2730

    
2731
@itemize @minus
2732
@item
2733
A range of MIPS CPUs, default is the 24Kf
2734
@item
2735
PC style serial port
2736
@item
2737
MIPSnet network emulation
2738
@end itemize
2739

    
2740
The MIPS Magnum R4000 emulation supports:
2741

    
2742
@itemize @minus
2743
@item
2744
MIPS R4000 CPU
2745
@item
2746
PC-style IRQ controller
2747
@item
2748
PC Keyboard
2749
@item
2750
SCSI controller
2751
@item
2752
G364 framebuffer
2753
@end itemize
2754

    
2755

    
2756
@node ARM System emulator
2757
@section ARM System emulator
2758

    
2759
Use the executable @file{qemu-system-arm} to simulate a ARM
2760
machine. The ARM Integrator/CP board is emulated with the following
2761
devices:
2762

    
2763
@itemize @minus
2764
@item
2765
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2766
@item
2767
Two PL011 UARTs
2768
@item
2769
SMC 91c111 Ethernet adapter
2770
@item
2771
PL110 LCD controller
2772
@item
2773
PL050 KMI with PS/2 keyboard and mouse.
2774
@item
2775
PL181 MultiMedia Card Interface with SD card.
2776
@end itemize
2777

    
2778
The ARM Versatile baseboard is emulated with the following devices:
2779

    
2780
@itemize @minus
2781
@item
2782
ARM926E, ARM1136 or Cortex-A8 CPU
2783
@item
2784
PL190 Vectored Interrupt Controller
2785
@item
2786
Four PL011 UARTs
2787
@item
2788
SMC 91c111 Ethernet adapter
2789
@item
2790
PL110 LCD controller
2791
@item
2792
PL050 KMI with PS/2 keyboard and mouse.
2793
@item
2794
PCI host bridge.  Note the emulated PCI bridge only provides access to
2795
PCI memory space.  It does not provide access to PCI IO space.
2796
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2797
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2798
mapped control registers.
2799
@item
2800
PCI OHCI USB controller.
2801
@item
2802
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2803
@item
2804
PL181 MultiMedia Card Interface with SD card.
2805
@end itemize
2806

    
2807
The ARM RealView Emulation baseboard is emulated with the following devices:
2808

    
2809
@itemize @minus
2810
@item
2811
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2812
@item
2813
ARM AMBA Generic/Distributed Interrupt Controller
2814
@item
2815
Four PL011 UARTs
2816
@item
2817
SMC 91c111 Ethernet adapter
2818
@item
2819
PL110 LCD controller
2820
@item
2821
PL050 KMI with PS/2 keyboard and mouse
2822
@item
2823
PCI host bridge
2824
@item
2825
PCI OHCI USB controller
2826
@item
2827
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2828
@item
2829
PL181 MultiMedia Card Interface with SD card.
2830
@end itemize
2831

    
2832
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2833
and "Terrier") emulation includes the following peripherals:
2834

    
2835
@itemize @minus
2836
@item
2837
Intel PXA270 System-on-chip (ARM V5TE core)
2838
@item
2839
NAND Flash memory
2840
@item
2841
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2842
@item
2843
On-chip OHCI USB controller
2844
@item
2845
On-chip LCD controller
2846
@item
2847
On-chip Real Time Clock
2848
@item
2849
TI ADS7846 touchscreen controller on SSP bus
2850
@item
2851
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2852
@item
2853
GPIO-connected keyboard controller and LEDs
2854
@item
2855
Secure Digital card connected to PXA MMC/SD host
2856
@item
2857
Three on-chip UARTs
2858
@item
2859
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2860
@end itemize
2861

    
2862
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2863
following elements:
2864

    
2865
@itemize @minus
2866
@item
2867
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2868
@item
2869
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2870
@item
2871
On-chip LCD controller
2872
@item
2873
On-chip Real Time Clock
2874
@item
2875
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2876
CODEC, connected through MicroWire and I@math{^2}S busses
2877
@item
2878
GPIO-connected matrix keypad
2879
@item
2880
Secure Digital card connected to OMAP MMC/SD host
2881
@item
2882
Three on-chip UARTs
2883
@end itemize
2884

    
2885
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2886
emulation supports the following elements:
2887

    
2888
@itemize @minus
2889
@item
2890
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2891
@item
2892
RAM and non-volatile OneNAND Flash memories
2893
@item
2894
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2895
display controller and a LS041y3 MIPI DBI-C controller
2896
@item
2897
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2898
driven through SPI bus
2899
@item
2900
National Semiconductor LM8323-controlled qwerty keyboard driven
2901
through I@math{^2}C bus
2902
@item
2903
Secure Digital card connected to OMAP MMC/SD host
2904
@item
2905
Three OMAP on-chip UARTs and on-chip STI debugging console
2906
@item
2907
A Bluetooth(R) transciever and HCI connected to an UART
2908
@item
2909
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2910
TUSB6010 chip - only USB host mode is supported
2911
@item
2912
TI TMP105 temperature sensor driven through I@math{^2}C bus
2913
@item
2914
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2915
@item
2916
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2917
through CBUS
2918
@end itemize
2919

    
2920
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2921
devices:
2922

    
2923
@itemize @minus
2924
@item
2925
Cortex-M3 CPU core.
2926
@item
2927
64k Flash and 8k SRAM.
2928
@item
2929
Timers, UARTs, ADC and I@math{^2}C interface.
2930
@item
2931
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2932
@end itemize
2933

    
2934
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2935
devices:
2936

    
2937
@itemize @minus
2938
@item
2939
Cortex-M3 CPU core.
2940
@item
2941
256k Flash and 64k SRAM.
2942
@item
2943
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2944
@item
2945
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2946
@end itemize
2947

    
2948
The Freecom MusicPal internet radio emulation includes the following
2949
elements:
2950

    
2951
@itemize @minus
2952
@item
2953
Marvell MV88W8618 ARM core.
2954
@item
2955
32 MB RAM, 256 KB SRAM, 8 MB flash.
2956
@item
2957
Up to 2 16550 UARTs
2958
@item
2959
MV88W8xx8 Ethernet controller
2960
@item
2961
MV88W8618 audio controller, WM8750 CODEC and mixer
2962
@item
2963
128?64 display with brightness control
2964
@item
2965
2 buttons, 2 navigation wheels with button function
2966
@end itemize
2967

    
2968
The Siemens SX1 models v1 and v2 (default) basic emulation.
2969
The emulaton includes the following elements:
2970

    
2971
@itemize @minus
2972
@item
2973
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2974
@item
2975
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2976
V1
2977
1 Flash of 16MB and 1 Flash of 8MB
2978
V2
2979
1 Flash of 32MB
2980
@item
2981
On-chip LCD controller
2982
@item
2983
On-chip Real Time Clock
2984
@item
2985
Secure Digital card connected to OMAP MMC/SD host
2986
@item
2987
Three on-chip UARTs
2988
@end itemize
2989

    
2990
A Linux 2.6 test image is available on the QEMU web site. More
2991
information is available in the QEMU mailing-list archive.
2992

    
2993
@c man begin OPTIONS
2994

    
2995
The following options are specific to the ARM emulation:
2996

    
2997
@table @option
2998

    
2999
@item -semihosting
3000
Enable semihosting syscall emulation.
3001

    
3002
On ARM this implements the "Angel" interface.
3003

    
3004
Note that this allows guest direct access to the host filesystem,
3005
so should only be used with trusted guest OS.
3006

    
3007
@end table
3008

    
3009
@node ColdFire System emulator
3010
@section ColdFire System emulator
3011

    
3012
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3013
The emulator is able to boot a uClinux kernel.
3014

    
3015
The M5208EVB emulation includes the following devices:
3016

    
3017
@itemize @minus
3018
@item
3019
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3020
@item
3021
Three Two on-chip UARTs.
3022
@item
3023
Fast Ethernet Controller (FEC)
3024
@end itemize
3025

    
3026
The AN5206 emulation includes the following devices:
3027

    
3028
@itemize @minus
3029
@item
3030
MCF5206 ColdFire V2 Microprocessor.
3031
@item
3032
Two on-chip UARTs.
3033
@end itemize
3034

    
3035
@c man begin OPTIONS
3036

    
3037
The following options are specific to the ARM emulation:
3038

    
3039
@table @option
3040

    
3041
@item -semihosting
3042
Enable semihosting syscall emulation.
3043

    
3044
On M68K this implements the "ColdFire GDB" interface used by libgloss.
3045

    
3046
Note that this allows guest direct access to the host filesystem,
3047
so should only be used with trusted guest OS.
3048

    
3049
@end table
3050

    
3051
@node QEMU User space emulator
3052
@chapter QEMU User space emulator
3053

    
3054
@menu
3055
* Supported Operating Systems ::
3056
* Linux User space emulator::
3057
* Mac OS X/Darwin User space emulator ::
3058
* BSD User space emulator ::
3059
@end menu
3060

    
3061
@node Supported Operating Systems
3062
@section Supported Operating Systems
3063

    
3064
The following OS are supported in user space emulation:
3065

    
3066
@itemize @minus
3067
@item
3068
Linux (referred as qemu-linux-user)
3069
@item
3070
Mac OS X/Darwin (referred as qemu-darwin-user)
3071
@item
3072
BSD (referred as qemu-bsd-user)
3073
@end itemize
3074

    
3075
@node Linux User space emulator
3076
@section Linux User space emulator
3077

    
3078
@menu
3079
* Quick Start::
3080
* Wine launch::
3081
* Command line options::
3082
* Other binaries::
3083
@end menu
3084

    
3085
@node Quick Start
3086
@subsection Quick Start
3087

    
3088
In order to launch a Linux process, QEMU needs the process executable
3089
itself and all the target (x86) dynamic libraries used by it.
3090

    
3091
@itemize
3092

    
3093
@item On x86, you can just try to launch any process by using the native
3094
libraries:
3095

    
3096
@example
3097
qemu-i386 -L / /bin/ls
3098
@end example
3099

    
3100
@code{-L /} tells that the x86 dynamic linker must be searched with a
3101
@file{/} prefix.
3102

    
3103
@item Since QEMU is also a linux process, you can launch qemu with
3104
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3105

    
3106
@example
3107
qemu-i386 -L / qemu-i386 -L / /bin/ls
3108
@end example
3109

    
3110
@item On non x86 CPUs, you need first to download at least an x86 glibc
3111
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3112
@code{LD_LIBRARY_PATH} is not set:
3113

    
3114
@example
3115
unset LD_LIBRARY_PATH
3116
@end example
3117

    
3118
Then you can launch the precompiled @file{ls} x86 executable:
3119

    
3120
@example
3121
qemu-i386 tests/i386/ls
3122
@end example
3123
You can look at @file{qemu-binfmt-conf.sh} so that
3124
QEMU is automatically launched by the Linux kernel when you try to
3125
launch x86 executables. It requires the @code{binfmt_misc} module in the
3126
Linux kernel.
3127

    
3128
@item The x86 version of QEMU is also included. You can try weird things such as:
3129
@example
3130
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3131
          /usr/local/qemu-i386/bin/ls-i386
3132
@end example
3133

    
3134
@end itemize
3135

    
3136
@node Wine launch
3137
@subsection Wine launch
3138

    
3139
@itemize
3140

    
3141
@item Ensure that you have a working QEMU with the x86 glibc
3142
distribution (see previous section). In order to verify it, you must be
3143
able to do:
3144

    
3145
@example
3146
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3147
@end example
3148

    
3149
@item Download the binary x86 Wine install
3150
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3151

    
3152
@item Configure Wine on your account. Look at the provided script
3153
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3154
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3155

    
3156
@item Then you can try the example @file{putty.exe}:
3157

    
3158
@example
3159
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3160
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3161
@end example
3162

    
3163
@end itemize
3164

    
3165
@node Command line options
3166
@subsection Command line options
3167

    
3168
@example
3169
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3170
@end example
3171

    
3172
@table @option
3173
@item -h
3174
Print the help
3175
@item -L path
3176
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3177
@item -s size
3178
Set the x86 stack size in bytes (default=524288)
3179
@item -cpu model
3180
Select CPU model (-cpu ? for list and additional feature selection)
3181
@end table
3182

    
3183
Debug options:
3184

    
3185
@table @option
3186
@item -d
3187
Activate log (logfile=/tmp/qemu.log)
3188
@item -p pagesize
3189
Act as if the host page size was 'pagesize' bytes
3190
@item -g port
3191
Wait gdb connection to port
3192
@end table
3193

    
3194
Environment variables:
3195

    
3196
@table @env
3197
@item QEMU_STRACE
3198
Print system calls and arguments similar to the 'strace' program
3199
(NOTE: the actual 'strace' program will not work because the user
3200
space emulator hasn't implemented ptrace).  At the moment this is
3201
incomplete.  All system calls that don't have a specific argument
3202
format are printed with information for six arguments.  Many
3203
flag-style arguments don't have decoders and will show up as numbers.
3204
@end table
3205

    
3206
@node Other binaries
3207
@subsection Other binaries
3208

    
3209
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3210
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3211
configurations), and arm-uclinux bFLT format binaries.
3212

    
3213
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3214
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3215
coldfire uClinux bFLT format binaries.
3216

    
3217
The binary format is detected automatically.
3218

    
3219
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3220

    
3221
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3222
(Sparc64 CPU, 32 bit ABI).
3223

    
3224
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3225
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3226

    
3227
@node Mac OS X/Darwin User space emulator
3228
@section Mac OS X/Darwin User space emulator
3229

    
3230
@menu
3231
* Mac OS X/Darwin Status::
3232
* Mac OS X/Darwin Quick Start::
3233
* Mac OS X/Darwin Command line options::
3234
@end menu
3235

    
3236
@node Mac OS X/Darwin Status
3237
@subsection Mac OS X/Darwin Status
3238

    
3239
@itemize @minus
3240
@item
3241
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3242
@item
3243
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3244
@item
3245
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3246
@item
3247
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3248
@end itemize
3249

    
3250
[1] If you're host commpage can be executed by qemu.
3251

    
3252
@node Mac OS X/Darwin Quick Start
3253
@subsection Quick Start
3254

    
3255
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3256
itself and all the target dynamic libraries used by it. If you don't have the FAT
3257
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3258
CD or compile them by hand.
3259

    
3260
@itemize
3261

    
3262
@item On x86, you can just try to launch any process by using the native
3263
libraries:
3264

    
3265
@example
3266
qemu-i386 /bin/ls
3267
@end example
3268

    
3269
or to run the ppc version of the executable:
3270

    
3271
@example
3272
qemu-ppc /bin/ls
3273
@end example
3274

    
3275
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3276
are installed:
3277

    
3278
@example
3279
qemu-i386 -L /opt/x86_root/ /bin/ls
3280
@end example
3281

    
3282
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3283
@file{/opt/x86_root/usr/bin/dyld}.
3284

    
3285
@end itemize
3286

    
3287
@node Mac OS X/Darwin Command line options
3288
@subsection Command line options
3289

    
3290
@example
3291
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3292
@end example
3293

    
3294
@table @option
3295
@item -h
3296
Print the help
3297
@item -L path
3298
Set the library root path (default=/)
3299
@item -s size
3300
Set the stack size in bytes (default=524288)
3301
@end table
3302

    
3303
Debug options:
3304

    
3305
@table @option
3306
@item -d
3307
Activate log (logfile=/tmp/qemu.log)
3308
@item -p pagesize
3309
Act as if the host page size was 'pagesize' bytes
3310
@end table
3311

    
3312
@node BSD User space emulator
3313
@section BSD User space emulator
3314

    
3315
@menu
3316
* BSD Status::
3317
* BSD Quick Start::
3318
* BSD Command line options::
3319
@end menu
3320

    
3321
@node BSD Status
3322
@subsection BSD Status
3323

    
3324
@itemize @minus
3325
@item
3326
target Sparc64 on Sparc64: Some trivial programs work.
3327
@end itemize
3328

    
3329
@node BSD Quick Start
3330
@subsection Quick Start
3331

    
3332
In order to launch a BSD process, QEMU needs the process executable
3333
itself and all the target dynamic libraries used by it.
3334

    
3335
@itemize
3336

    
3337
@item On Sparc64, you can just try to launch any process by using the native
3338
libraries:
3339

    
3340
@example
3341
qemu-sparc64 /bin/ls
3342
@end example
3343

    
3344
@end itemize
3345

    
3346
@node BSD Command line options
3347
@subsection Command line options
3348

    
3349
@example
3350
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3351
@end example
3352

    
3353
@table @option
3354
@item -h
3355
Print the help
3356
@item -L path
3357
Set the library root path (default=/)
3358
@item -s size
3359
Set the stack size in bytes (default=524288)
3360
@item -bsd type
3361
Set the type of the emulated BSD Operating system. Valid values are
3362
FreeBSD, NetBSD and OpenBSD (default).
3363
@end table
3364

    
3365
Debug options:
3366

    
3367
@table @option
3368
@item -d
3369
Activate log (logfile=/tmp/qemu.log)
3370
@item -p pagesize
3371
Act as if the host page size was 'pagesize' bytes
3372
@end table
3373

    
3374
@node compilation
3375
@chapter Compilation from the sources
3376

    
3377
@menu
3378
* Linux/Unix::
3379
* Windows::
3380
* Cross compilation for Windows with Linux::
3381
* Mac OS X::
3382
@end menu
3383

    
3384
@node Linux/Unix
3385
@section Linux/Unix
3386

    
3387
@subsection Compilation
3388

    
3389
First you must decompress the sources:
3390
@example
3391
cd /tmp
3392
tar zxvf qemu-x.y.z.tar.gz
3393
cd qemu-x.y.z
3394
@end example
3395

    
3396
Then you configure QEMU and build it (usually no options are needed):
3397
@example
3398
./configure
3399
make
3400
@end example
3401

    
3402
Then type as root user:
3403
@example
3404
make install
3405
@end example
3406
to install QEMU in @file{/usr/local}.
3407

    
3408
@subsection GCC version
3409

    
3410
In order to compile QEMU successfully, it is very important that you
3411
have the right tools. The most important one is gcc. On most hosts and
3412
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3413
Linux distribution includes a gcc 4.x compiler, you can usually
3414
install an older version (it is invoked by @code{gcc32} or
3415
@code{gcc34}). The QEMU configure script automatically probes for
3416
these older versions so that usually you don't have to do anything.
3417

    
3418
@node Windows
3419
@section Windows
3420

    
3421
@itemize
3422
@item Install the current versions of MSYS and MinGW from
3423
@url{http://www.mingw.org/}. You can find detailed installation
3424
instructions in the download section and the FAQ.
3425

    
3426
@item Download
3427
the MinGW development library of SDL 1.2.x
3428
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3429
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3430
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3431
directory. Edit the @file{sdl-config} script so that it gives the
3432
correct SDL directory when invoked.
3433

    
3434
@item Extract the current version of QEMU.
3435

    
3436
@item Start the MSYS shell (file @file{msys.bat}).
3437

    
3438
@item Change to the QEMU directory. Launch @file{./configure} and
3439
@file{make}.  If you have problems using SDL, verify that
3440
@file{sdl-config} can be launched from the MSYS command line.
3441

    
3442
@item You can install QEMU in @file{Program Files/Qemu} by typing
3443
@file{make install}. Don't forget to copy @file{SDL.dll} in
3444
@file{Program Files/Qemu}.
3445

    
3446
@end itemize
3447

    
3448
@node Cross compilation for Windows with Linux
3449
@section Cross compilation for Windows with Linux
3450

    
3451
@itemize
3452
@item
3453
Install the MinGW cross compilation tools available at
3454
@url{http://www.mingw.org/}.
3455

    
3456
@item
3457
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3458
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3459
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3460
the QEMU configuration script.
3461

    
3462
@item
3463
Configure QEMU for Windows cross compilation:
3464
@example
3465
./configure --enable-mingw32
3466
@end example
3467
If necessary, you can change the cross-prefix according to the prefix
3468
chosen for the MinGW tools with --cross-prefix. You can also use
3469
--prefix to set the Win32 install path.
3470

    
3471
@item You can install QEMU in the installation directory by typing
3472
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3473
installation directory.
3474

    
3475
@end itemize
3476

    
3477
Note: Currently, Wine does not seem able to launch
3478
QEMU for Win32.
3479

    
3480
@node Mac OS X
3481
@section Mac OS X
3482

    
3483
The Mac OS X patches are not fully merged in QEMU, so you should look
3484
at the QEMU mailing list archive to have all the necessary
3485
information.
3486

    
3487
@node Index
3488
@chapter Index
3489
@printindex cp
3490

    
3491
@bye