Statistics
| Branch: | Revision:

root / vl.c @ 8d11df9e

History | View | Annotate | Download (81.8 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32

    
33
#ifndef _WIN32
34
#include <sys/times.h>
35
#include <sys/wait.h>
36
#include <termios.h>
37
#include <sys/poll.h>
38
#include <sys/mman.h>
39
#include <sys/ioctl.h>
40
#include <sys/socket.h>
41
#ifdef _BSD
42
#include <sys/stat.h>
43
#ifndef __APPLE__
44
#include <libutil.h>
45
#endif
46
#else
47
#include <linux/if.h>
48
#include <linux/if_tun.h>
49
#include <pty.h>
50
#include <malloc.h>
51
#include <linux/rtc.h>
52
#endif
53
#endif
54

    
55
#if defined(CONFIG_SLIRP)
56
#include "libslirp.h"
57
#endif
58

    
59
#ifdef _WIN32
60
#include <malloc.h>
61
#include <sys/timeb.h>
62
#include <windows.h>
63
#define getopt_long_only getopt_long
64
#define memalign(align, size) malloc(size)
65
#endif
66

    
67
#ifdef CONFIG_SDL
68
#ifdef __APPLE__
69
#include <SDL/SDL.h>
70
#endif
71
#endif /* CONFIG_SDL */
72

    
73
#include "disas.h"
74

    
75
#include "exec-all.h"
76

    
77
//#define DO_TB_FLUSH
78

    
79
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
80

    
81
//#define DEBUG_UNUSED_IOPORT
82
//#define DEBUG_IOPORT
83

    
84
#if !defined(CONFIG_SOFTMMU)
85
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
86
#else
87
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
88
#endif
89

    
90
#ifdef TARGET_PPC
91
#define DEFAULT_RAM_SIZE 144
92
#else
93
#define DEFAULT_RAM_SIZE 128
94
#endif
95
/* in ms */
96
#define GUI_REFRESH_INTERVAL 30
97

    
98
/* XXX: use a two level table to limit memory usage */
99
#define MAX_IOPORTS 65536
100

    
101
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
102
char phys_ram_file[1024];
103
CPUState *global_env;
104
CPUState *cpu_single_env;
105
void *ioport_opaque[MAX_IOPORTS];
106
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
107
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
108
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
109
int vga_ram_size;
110
int bios_size;
111
static DisplayState display_state;
112
int nographic;
113
int64_t ticks_per_sec;
114
int boot_device = 'c';
115
int ram_size;
116
static char network_script[1024];
117
int pit_min_timer_count = 0;
118
int nb_nics;
119
NetDriverState nd_table[MAX_NICS];
120
QEMUTimer *gui_timer;
121
int vm_running;
122
int audio_enabled = 0;
123
int pci_enabled = 1;
124
int prep_enabled = 0;
125
int rtc_utc = 1;
126
int cirrus_vga_enabled = 1;
127
int graphic_width = 800;
128
int graphic_height = 600;
129
int graphic_depth = 15;
130
TextConsole *vga_console;
131
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
132

    
133
/***********************************************************/
134
/* x86 ISA bus support */
135

    
136
target_phys_addr_t isa_mem_base = 0;
137

    
138
uint32_t default_ioport_readb(void *opaque, uint32_t address)
139
{
140
#ifdef DEBUG_UNUSED_IOPORT
141
    fprintf(stderr, "inb: port=0x%04x\n", address);
142
#endif
143
    return 0xff;
144
}
145

    
146
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
147
{
148
#ifdef DEBUG_UNUSED_IOPORT
149
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
150
#endif
151
}
152

    
153
/* default is to make two byte accesses */
154
uint32_t default_ioport_readw(void *opaque, uint32_t address)
155
{
156
    uint32_t data;
157
    data = ioport_read_table[0][address](ioport_opaque[address], address);
158
    address = (address + 1) & (MAX_IOPORTS - 1);
159
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
160
    return data;
161
}
162

    
163
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
164
{
165
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
166
    address = (address + 1) & (MAX_IOPORTS - 1);
167
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
168
}
169

    
170
uint32_t default_ioport_readl(void *opaque, uint32_t address)
171
{
172
#ifdef DEBUG_UNUSED_IOPORT
173
    fprintf(stderr, "inl: port=0x%04x\n", address);
174
#endif
175
    return 0xffffffff;
176
}
177

    
178
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
179
{
180
#ifdef DEBUG_UNUSED_IOPORT
181
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
182
#endif
183
}
184

    
185
void init_ioports(void)
186
{
187
    int i;
188

    
189
    for(i = 0; i < MAX_IOPORTS; i++) {
190
        ioport_read_table[0][i] = default_ioport_readb;
191
        ioport_write_table[0][i] = default_ioport_writeb;
192
        ioport_read_table[1][i] = default_ioport_readw;
193
        ioport_write_table[1][i] = default_ioport_writew;
194
        ioport_read_table[2][i] = default_ioport_readl;
195
        ioport_write_table[2][i] = default_ioport_writel;
196
    }
197
}
198

    
199
/* size is the word size in byte */
200
int register_ioport_read(int start, int length, int size, 
201
                         IOPortReadFunc *func, void *opaque)
202
{
203
    int i, bsize;
204

    
205
    if (size == 1) {
206
        bsize = 0;
207
    } else if (size == 2) {
208
        bsize = 1;
209
    } else if (size == 4) {
210
        bsize = 2;
211
    } else {
212
        hw_error("register_ioport_read: invalid size");
213
        return -1;
214
    }
215
    for(i = start; i < start + length; i += size) {
216
        ioport_read_table[bsize][i] = func;
217
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
218
            hw_error("register_ioport_read: invalid opaque");
219
        ioport_opaque[i] = opaque;
220
    }
221
    return 0;
222
}
223

    
224
/* size is the word size in byte */
225
int register_ioport_write(int start, int length, int size, 
226
                          IOPortWriteFunc *func, void *opaque)
227
{
228
    int i, bsize;
229

    
230
    if (size == 1) {
231
        bsize = 0;
232
    } else if (size == 2) {
233
        bsize = 1;
234
    } else if (size == 4) {
235
        bsize = 2;
236
    } else {
237
        hw_error("register_ioport_write: invalid size");
238
        return -1;
239
    }
240
    for(i = start; i < start + length; i += size) {
241
        ioport_write_table[bsize][i] = func;
242
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
243
            hw_error("register_ioport_read: invalid opaque");
244
        ioport_opaque[i] = opaque;
245
    }
246
    return 0;
247
}
248

    
249
void isa_unassign_ioport(int start, int length)
250
{
251
    int i;
252

    
253
    for(i = start; i < start + length; i++) {
254
        ioport_read_table[0][i] = default_ioport_readb;
255
        ioport_read_table[1][i] = default_ioport_readw;
256
        ioport_read_table[2][i] = default_ioport_readl;
257

    
258
        ioport_write_table[0][i] = default_ioport_writeb;
259
        ioport_write_table[1][i] = default_ioport_writew;
260
        ioport_write_table[2][i] = default_ioport_writel;
261
    }
262
}
263

    
264
void pstrcpy(char *buf, int buf_size, const char *str)
265
{
266
    int c;
267
    char *q = buf;
268

    
269
    if (buf_size <= 0)
270
        return;
271

    
272
    for(;;) {
273
        c = *str++;
274
        if (c == 0 || q >= buf + buf_size - 1)
275
            break;
276
        *q++ = c;
277
    }
278
    *q = '\0';
279
}
280

    
281
/* strcat and truncate. */
282
char *pstrcat(char *buf, int buf_size, const char *s)
283
{
284
    int len;
285
    len = strlen(buf);
286
    if (len < buf_size) 
287
        pstrcpy(buf + len, buf_size - len, s);
288
    return buf;
289
}
290

    
291
int strstart(const char *str, const char *val, const char **ptr)
292
{
293
    const char *p, *q;
294
    p = str;
295
    q = val;
296
    while (*q != '\0') {
297
        if (*p != *q)
298
            return 0;
299
        p++;
300
        q++;
301
    }
302
    if (ptr)
303
        *ptr = p;
304
    return 1;
305
}
306

    
307
/* return the size or -1 if error */
308
int get_image_size(const char *filename)
309
{
310
    int fd, size;
311
    fd = open(filename, O_RDONLY | O_BINARY);
312
    if (fd < 0)
313
        return -1;
314
    size = lseek(fd, 0, SEEK_END);
315
    close(fd);
316
    return size;
317
}
318

    
319
/* return the size or -1 if error */
320
int load_image(const char *filename, uint8_t *addr)
321
{
322
    int fd, size;
323
    fd = open(filename, O_RDONLY | O_BINARY);
324
    if (fd < 0)
325
        return -1;
326
    size = lseek(fd, 0, SEEK_END);
327
    lseek(fd, 0, SEEK_SET);
328
    if (read(fd, addr, size) != size) {
329
        close(fd);
330
        return -1;
331
    }
332
    close(fd);
333
    return size;
334
}
335

    
336
void cpu_outb(CPUState *env, int addr, int val)
337
{
338
#ifdef DEBUG_IOPORT
339
    if (loglevel & CPU_LOG_IOPORT)
340
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
341
#endif    
342
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
343
}
344

    
345
void cpu_outw(CPUState *env, int addr, int val)
346
{
347
#ifdef DEBUG_IOPORT
348
    if (loglevel & CPU_LOG_IOPORT)
349
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
350
#endif    
351
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
352
}
353

    
354
void cpu_outl(CPUState *env, int addr, int val)
355
{
356
#ifdef DEBUG_IOPORT
357
    if (loglevel & CPU_LOG_IOPORT)
358
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
359
#endif
360
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
361
}
362

    
363
int cpu_inb(CPUState *env, int addr)
364
{
365
    int val;
366
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
367
#ifdef DEBUG_IOPORT
368
    if (loglevel & CPU_LOG_IOPORT)
369
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
370
#endif
371
    return val;
372
}
373

    
374
int cpu_inw(CPUState *env, int addr)
375
{
376
    int val;
377
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
378
#ifdef DEBUG_IOPORT
379
    if (loglevel & CPU_LOG_IOPORT)
380
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
381
#endif
382
    return val;
383
}
384

    
385
int cpu_inl(CPUState *env, int addr)
386
{
387
    int val;
388
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
389
#ifdef DEBUG_IOPORT
390
    if (loglevel & CPU_LOG_IOPORT)
391
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
392
#endif
393
    return val;
394
}
395

    
396
/***********************************************************/
397
void hw_error(const char *fmt, ...)
398
{
399
    va_list ap;
400

    
401
    va_start(ap, fmt);
402
    fprintf(stderr, "qemu: hardware error: ");
403
    vfprintf(stderr, fmt, ap);
404
    fprintf(stderr, "\n");
405
#ifdef TARGET_I386
406
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
407
#else
408
    cpu_dump_state(global_env, stderr, 0);
409
#endif
410
    va_end(ap);
411
    abort();
412
}
413

    
414
/***********************************************************/
415
/* keyboard/mouse */
416

    
417
static QEMUPutKBDEvent *qemu_put_kbd_event;
418
static void *qemu_put_kbd_event_opaque;
419
static QEMUPutMouseEvent *qemu_put_mouse_event;
420
static void *qemu_put_mouse_event_opaque;
421

    
422
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
423
{
424
    qemu_put_kbd_event_opaque = opaque;
425
    qemu_put_kbd_event = func;
426
}
427

    
428
void qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque)
429
{
430
    qemu_put_mouse_event_opaque = opaque;
431
    qemu_put_mouse_event = func;
432
}
433

    
434
void kbd_put_keycode(int keycode)
435
{
436
    if (qemu_put_kbd_event) {
437
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
438
    }
439
}
440

    
441
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
442
{
443
    if (qemu_put_mouse_event) {
444
        qemu_put_mouse_event(qemu_put_mouse_event_opaque, 
445
                             dx, dy, dz, buttons_state);
446
    }
447
}
448

    
449
/***********************************************************/
450
/* timers */
451

    
452
#if defined(__powerpc__)
453

    
454
static inline uint32_t get_tbl(void) 
455
{
456
    uint32_t tbl;
457
    asm volatile("mftb %0" : "=r" (tbl));
458
    return tbl;
459
}
460

    
461
static inline uint32_t get_tbu(void) 
462
{
463
        uint32_t tbl;
464
        asm volatile("mftbu %0" : "=r" (tbl));
465
        return tbl;
466
}
467

    
468
int64_t cpu_get_real_ticks(void)
469
{
470
    uint32_t l, h, h1;
471
    /* NOTE: we test if wrapping has occurred */
472
    do {
473
        h = get_tbu();
474
        l = get_tbl();
475
        h1 = get_tbu();
476
    } while (h != h1);
477
    return ((int64_t)h << 32) | l;
478
}
479

    
480
#elif defined(__i386__)
481

    
482
int64_t cpu_get_real_ticks(void)
483
{
484
    int64_t val;
485
    asm volatile ("rdtsc" : "=A" (val));
486
    return val;
487
}
488

    
489
#elif defined(__x86_64__)
490

    
491
int64_t cpu_get_real_ticks(void)
492
{
493
    uint32_t low,high;
494
    int64_t val;
495
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
496
    val = high;
497
    val <<= 32;
498
    val |= low;
499
    return val;
500
}
501

    
502
#else
503
#error unsupported CPU
504
#endif
505

    
506
static int64_t cpu_ticks_offset;
507
static int cpu_ticks_enabled;
508

    
509
static inline int64_t cpu_get_ticks(void)
510
{
511
    if (!cpu_ticks_enabled) {
512
        return cpu_ticks_offset;
513
    } else {
514
        return cpu_get_real_ticks() + cpu_ticks_offset;
515
    }
516
}
517

    
518
/* enable cpu_get_ticks() */
519
void cpu_enable_ticks(void)
520
{
521
    if (!cpu_ticks_enabled) {
522
        cpu_ticks_offset -= cpu_get_real_ticks();
523
        cpu_ticks_enabled = 1;
524
    }
525
}
526

    
527
/* disable cpu_get_ticks() : the clock is stopped. You must not call
528
   cpu_get_ticks() after that.  */
529
void cpu_disable_ticks(void)
530
{
531
    if (cpu_ticks_enabled) {
532
        cpu_ticks_offset = cpu_get_ticks();
533
        cpu_ticks_enabled = 0;
534
    }
535
}
536

    
537
static int64_t get_clock(void)
538
{
539
#ifdef _WIN32
540
    struct _timeb tb;
541
    _ftime(&tb);
542
    return ((int64_t)tb.time * 1000 + (int64_t)tb.millitm) * 1000;
543
#else
544
    struct timeval tv;
545
    gettimeofday(&tv, NULL);
546
    return tv.tv_sec * 1000000LL + tv.tv_usec;
547
#endif
548
}
549

    
550
void cpu_calibrate_ticks(void)
551
{
552
    int64_t usec, ticks;
553

    
554
    usec = get_clock();
555
    ticks = cpu_get_real_ticks();
556
#ifdef _WIN32
557
    Sleep(50);
558
#else
559
    usleep(50 * 1000);
560
#endif
561
    usec = get_clock() - usec;
562
    ticks = cpu_get_real_ticks() - ticks;
563
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
564
}
565

    
566
/* compute with 96 bit intermediate result: (a*b)/c */
567
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
568
{
569
    union {
570
        uint64_t ll;
571
        struct {
572
#ifdef WORDS_BIGENDIAN
573
            uint32_t high, low;
574
#else
575
            uint32_t low, high;
576
#endif            
577
        } l;
578
    } u, res;
579
    uint64_t rl, rh;
580

    
581
    u.ll = a;
582
    rl = (uint64_t)u.l.low * (uint64_t)b;
583
    rh = (uint64_t)u.l.high * (uint64_t)b;
584
    rh += (rl >> 32);
585
    res.l.high = rh / c;
586
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
587
    return res.ll;
588
}
589

    
590
#define QEMU_TIMER_REALTIME 0
591
#define QEMU_TIMER_VIRTUAL  1
592

    
593
struct QEMUClock {
594
    int type;
595
    /* XXX: add frequency */
596
};
597

    
598
struct QEMUTimer {
599
    QEMUClock *clock;
600
    int64_t expire_time;
601
    QEMUTimerCB *cb;
602
    void *opaque;
603
    struct QEMUTimer *next;
604
};
605

    
606
QEMUClock *rt_clock;
607
QEMUClock *vm_clock;
608

    
609
static QEMUTimer *active_timers[2];
610
#ifdef _WIN32
611
static MMRESULT timerID;
612
#else
613
/* frequency of the times() clock tick */
614
static int timer_freq;
615
#endif
616

    
617
QEMUClock *qemu_new_clock(int type)
618
{
619
    QEMUClock *clock;
620
    clock = qemu_mallocz(sizeof(QEMUClock));
621
    if (!clock)
622
        return NULL;
623
    clock->type = type;
624
    return clock;
625
}
626

    
627
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
628
{
629
    QEMUTimer *ts;
630

    
631
    ts = qemu_mallocz(sizeof(QEMUTimer));
632
    ts->clock = clock;
633
    ts->cb = cb;
634
    ts->opaque = opaque;
635
    return ts;
636
}
637

    
638
void qemu_free_timer(QEMUTimer *ts)
639
{
640
    qemu_free(ts);
641
}
642

    
643
/* stop a timer, but do not dealloc it */
644
void qemu_del_timer(QEMUTimer *ts)
645
{
646
    QEMUTimer **pt, *t;
647

    
648
    /* NOTE: this code must be signal safe because
649
       qemu_timer_expired() can be called from a signal. */
650
    pt = &active_timers[ts->clock->type];
651
    for(;;) {
652
        t = *pt;
653
        if (!t)
654
            break;
655
        if (t == ts) {
656
            *pt = t->next;
657
            break;
658
        }
659
        pt = &t->next;
660
    }
661
}
662

    
663
/* modify the current timer so that it will be fired when current_time
664
   >= expire_time. The corresponding callback will be called. */
665
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
666
{
667
    QEMUTimer **pt, *t;
668

    
669
    qemu_del_timer(ts);
670

    
671
    /* add the timer in the sorted list */
672
    /* NOTE: this code must be signal safe because
673
       qemu_timer_expired() can be called from a signal. */
674
    pt = &active_timers[ts->clock->type];
675
    for(;;) {
676
        t = *pt;
677
        if (!t)
678
            break;
679
        if (t->expire_time > expire_time) 
680
            break;
681
        pt = &t->next;
682
    }
683
    ts->expire_time = expire_time;
684
    ts->next = *pt;
685
    *pt = ts;
686
}
687

    
688
int qemu_timer_pending(QEMUTimer *ts)
689
{
690
    QEMUTimer *t;
691
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
692
        if (t == ts)
693
            return 1;
694
    }
695
    return 0;
696
}
697

    
698
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
699
{
700
    if (!timer_head)
701
        return 0;
702
    return (timer_head->expire_time <= current_time);
703
}
704

    
705
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
706
{
707
    QEMUTimer *ts;
708
    
709
    for(;;) {
710
        ts = *ptimer_head;
711
        if (ts->expire_time > current_time)
712
            break;
713
        /* remove timer from the list before calling the callback */
714
        *ptimer_head = ts->next;
715
        ts->next = NULL;
716
        
717
        /* run the callback (the timer list can be modified) */
718
        ts->cb(ts->opaque);
719
    }
720
}
721

    
722
int64_t qemu_get_clock(QEMUClock *clock)
723
{
724
    switch(clock->type) {
725
    case QEMU_TIMER_REALTIME:
726
#ifdef _WIN32
727
        return GetTickCount();
728
#else
729
        {
730
            struct tms tp;
731

    
732
            /* Note that using gettimeofday() is not a good solution
733
               for timers because its value change when the date is
734
               modified. */
735
            if (timer_freq == 100) {
736
                return times(&tp) * 10;
737
            } else {
738
                return ((int64_t)times(&tp) * 1000) / timer_freq;
739
            }
740
        }
741
#endif
742
    default:
743
    case QEMU_TIMER_VIRTUAL:
744
        return cpu_get_ticks();
745
    }
746
}
747

    
748
/* save a timer */
749
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
750
{
751
    uint64_t expire_time;
752

    
753
    if (qemu_timer_pending(ts)) {
754
        expire_time = ts->expire_time;
755
    } else {
756
        expire_time = -1;
757
    }
758
    qemu_put_be64(f, expire_time);
759
}
760

    
761
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
762
{
763
    uint64_t expire_time;
764

    
765
    expire_time = qemu_get_be64(f);
766
    if (expire_time != -1) {
767
        qemu_mod_timer(ts, expire_time);
768
    } else {
769
        qemu_del_timer(ts);
770
    }
771
}
772

    
773
static void timer_save(QEMUFile *f, void *opaque)
774
{
775
    if (cpu_ticks_enabled) {
776
        hw_error("cannot save state if virtual timers are running");
777
    }
778
    qemu_put_be64s(f, &cpu_ticks_offset);
779
    qemu_put_be64s(f, &ticks_per_sec);
780
}
781

    
782
static int timer_load(QEMUFile *f, void *opaque, int version_id)
783
{
784
    if (version_id != 1)
785
        return -EINVAL;
786
    if (cpu_ticks_enabled) {
787
        return -EINVAL;
788
    }
789
    qemu_get_be64s(f, &cpu_ticks_offset);
790
    qemu_get_be64s(f, &ticks_per_sec);
791
    return 0;
792
}
793

    
794
#ifdef _WIN32
795
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
796
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
797
#else
798
static void host_alarm_handler(int host_signum)
799
#endif
800
{
801
#if 0
802
#define DISP_FREQ 1000
803
    {
804
        static int64_t delta_min = INT64_MAX;
805
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
806
        static int count;
807
        ti = qemu_get_clock(vm_clock);
808
        if (last_clock != 0) {
809
            delta = ti - last_clock;
810
            if (delta < delta_min)
811
                delta_min = delta;
812
            if (delta > delta_max)
813
                delta_max = delta;
814
            delta_cum += delta;
815
            if (++count == DISP_FREQ) {
816
                printf("timer: min=%lld us max=%lld us avg=%lld us avg_freq=%0.3f Hz\n",
817
                       muldiv64(delta_min, 1000000, ticks_per_sec),
818
                       muldiv64(delta_max, 1000000, ticks_per_sec),
819
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
820
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
821
                count = 0;
822
                delta_min = INT64_MAX;
823
                delta_max = 0;
824
                delta_cum = 0;
825
            }
826
        }
827
        last_clock = ti;
828
    }
829
#endif
830
    if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
831
                           qemu_get_clock(vm_clock)) ||
832
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
833
                           qemu_get_clock(rt_clock))) {
834
        /* stop the cpu because a timer occured */
835
        cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
836
    }
837
}
838

    
839
#ifndef _WIN32
840

    
841
#if defined(__linux__)
842

    
843
#define RTC_FREQ 1024
844

    
845
static int rtc_fd;
846

    
847
static int start_rtc_timer(void)
848
{
849
    rtc_fd = open("/dev/rtc", O_RDONLY);
850
    if (rtc_fd < 0)
851
        return -1;
852
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
853
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
854
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
855
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
856
        goto fail;
857
    }
858
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
859
    fail:
860
        close(rtc_fd);
861
        return -1;
862
    }
863
    pit_min_timer_count = PIT_FREQ / RTC_FREQ;
864
    return 0;
865
}
866

    
867
#else
868

    
869
static int start_rtc_timer(void)
870
{
871
    return -1;
872
}
873

    
874
#endif /* !defined(__linux__) */
875

    
876
#endif /* !defined(_WIN32) */
877

    
878
static void init_timers(void)
879
{
880
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
881
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
882

    
883
#ifdef _WIN32
884
    {
885
        int count=0;
886
        timerID = timeSetEvent(10,    // interval (ms)
887
                               0,     // resolution
888
                               host_alarm_handler, // function
889
                               (DWORD)&count,  // user parameter
890
                               TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
891
         if( !timerID ) {
892
            perror("failed timer alarm");
893
            exit(1);
894
         }
895
    }
896
    pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
897
#else
898
    {
899
        struct sigaction act;
900
        struct itimerval itv;
901
        
902
        /* get times() syscall frequency */
903
        timer_freq = sysconf(_SC_CLK_TCK);
904
        
905
        /* timer signal */
906
        sigfillset(&act.sa_mask);
907
        act.sa_flags = 0;
908
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
909
        act.sa_flags |= SA_ONSTACK;
910
#endif
911
        act.sa_handler = host_alarm_handler;
912
        sigaction(SIGALRM, &act, NULL);
913

    
914
        itv.it_interval.tv_sec = 0;
915
        itv.it_interval.tv_usec = 1000;
916
        itv.it_value.tv_sec = 0;
917
        itv.it_value.tv_usec = 10 * 1000;
918
        setitimer(ITIMER_REAL, &itv, NULL);
919
        /* we probe the tick duration of the kernel to inform the user if
920
           the emulated kernel requested a too high timer frequency */
921
        getitimer(ITIMER_REAL, &itv);
922

    
923
#if defined(__linux__)
924
        if (itv.it_interval.tv_usec > 1000) {
925
            /* try to use /dev/rtc to have a faster timer */
926
            if (start_rtc_timer() < 0)
927
                goto use_itimer;
928
            /* disable itimer */
929
            itv.it_interval.tv_sec = 0;
930
            itv.it_interval.tv_usec = 0;
931
            itv.it_value.tv_sec = 0;
932
            itv.it_value.tv_usec = 0;
933
            setitimer(ITIMER_REAL, &itv, NULL);
934

    
935
            /* use the RTC */
936
            sigaction(SIGIO, &act, NULL);
937
            fcntl(rtc_fd, F_SETFL, O_ASYNC);
938
            fcntl(rtc_fd, F_SETOWN, getpid());
939
        } else 
940
#endif /* defined(__linux__) */
941
        {
942
        use_itimer:
943
            pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * 
944
                                   PIT_FREQ) / 1000000;
945
        }
946
    }
947
#endif
948
}
949

    
950
void quit_timers(void)
951
{
952
#ifdef _WIN32
953
    timeKillEvent(timerID);
954
#endif
955
}
956

    
957
/***********************************************************/
958
/* character device */
959

    
960
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
961
{
962
    return s->chr_write(s, buf, len);
963
}
964

    
965
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
966
{
967
    char buf[4096];
968
    va_list ap;
969
    va_start(ap, fmt);
970
    vsnprintf(buf, sizeof(buf), fmt, ap);
971
    qemu_chr_write(s, buf, strlen(buf));
972
    va_end(ap);
973
}
974

    
975
void qemu_chr_send_event(CharDriverState *s, int event)
976
{
977
    if (s->chr_send_event)
978
        s->chr_send_event(s, event);
979
}
980

    
981
void qemu_chr_add_read_handler(CharDriverState *s, 
982
                               IOCanRWHandler *fd_can_read, 
983
                               IOReadHandler *fd_read, void *opaque)
984
{
985
    s->chr_add_read_handler(s, fd_can_read, fd_read, opaque);
986
}
987
             
988
void qemu_chr_add_event_handler(CharDriverState *s, IOEventHandler *chr_event)
989
{
990
    s->chr_event = chr_event;
991
}
992

    
993
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
994
{
995
    return len;
996
}
997

    
998
static void null_chr_add_read_handler(CharDriverState *chr, 
999
                                    IOCanRWHandler *fd_can_read, 
1000
                                    IOReadHandler *fd_read, void *opaque)
1001
{
1002
}
1003

    
1004
CharDriverState *qemu_chr_open_null(void)
1005
{
1006
    CharDriverState *chr;
1007

    
1008
    chr = qemu_mallocz(sizeof(CharDriverState));
1009
    if (!chr)
1010
        return NULL;
1011
    chr->chr_write = null_chr_write;
1012
    chr->chr_add_read_handler = null_chr_add_read_handler;
1013
    return chr;
1014
}
1015

    
1016
#ifndef _WIN32
1017

    
1018
typedef struct {
1019
    int fd_in, fd_out;
1020
    /* for nographic stdio only */
1021
    IOCanRWHandler *fd_can_read; 
1022
    IOReadHandler *fd_read;
1023
    void *fd_opaque;
1024
} FDCharDriver;
1025

    
1026
#define STDIO_MAX_CLIENTS 2
1027

    
1028
static int stdio_nb_clients;
1029
static CharDriverState *stdio_clients[STDIO_MAX_CLIENTS];
1030

    
1031
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1032
{
1033
    FDCharDriver *s = chr->opaque;
1034
    return write(s->fd_out, buf, len);
1035
}
1036

    
1037
static void fd_chr_add_read_handler(CharDriverState *chr, 
1038
                                    IOCanRWHandler *fd_can_read, 
1039
                                    IOReadHandler *fd_read, void *opaque)
1040
{
1041
    FDCharDriver *s = chr->opaque;
1042

    
1043
    if (nographic && s->fd_in == 0) {
1044
        s->fd_can_read = fd_can_read;
1045
        s->fd_read = fd_read;
1046
        s->fd_opaque = opaque;
1047
    } else {
1048
        qemu_add_fd_read_handler(s->fd_in, fd_can_read, fd_read, opaque);
1049
    }
1050
}
1051

    
1052
/* open a character device to a unix fd */
1053
CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1054
{
1055
    CharDriverState *chr;
1056
    FDCharDriver *s;
1057

    
1058
    chr = qemu_mallocz(sizeof(CharDriverState));
1059
    if (!chr)
1060
        return NULL;
1061
    s = qemu_mallocz(sizeof(FDCharDriver));
1062
    if (!s) {
1063
        free(chr);
1064
        return NULL;
1065
    }
1066
    s->fd_in = fd_in;
1067
    s->fd_out = fd_out;
1068
    chr->opaque = s;
1069
    chr->chr_write = fd_chr_write;
1070
    chr->chr_add_read_handler = fd_chr_add_read_handler;
1071
    return chr;
1072
}
1073

    
1074
/* for STDIO, we handle the case where several clients use it
1075
   (nographic mode) */
1076

    
1077
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1078

    
1079
static int term_got_escape, client_index;
1080

    
1081
void term_print_help(void)
1082
{
1083
    printf("\n"
1084
           "C-a h    print this help\n"
1085
           "C-a x    exit emulator\n"
1086
           "C-a s    save disk data back to file (if -snapshot)\n"
1087
           "C-a b    send break (magic sysrq)\n"
1088
           "C-a c    switch between console and monitor\n"
1089
           "C-a C-a  send C-a\n"
1090
           );
1091
}
1092

    
1093
/* called when a char is received */
1094
static void stdio_received_byte(int ch)
1095
{
1096
    if (term_got_escape) {
1097
        term_got_escape = 0;
1098
        switch(ch) {
1099
        case 'h':
1100
            term_print_help();
1101
            break;
1102
        case 'x':
1103
            exit(0);
1104
            break;
1105
        case 's': 
1106
            {
1107
                int i;
1108
                for (i = 0; i < MAX_DISKS; i++) {
1109
                    if (bs_table[i])
1110
                        bdrv_commit(bs_table[i]);
1111
                }
1112
            }
1113
            break;
1114
        case 'b':
1115
            if (client_index < stdio_nb_clients) {
1116
                CharDriverState *chr;
1117
                FDCharDriver *s;
1118

    
1119
                chr = stdio_clients[client_index];
1120
                s = chr->opaque;
1121
                chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
1122
            }
1123
            break;
1124
        case 'c':
1125
            client_index++;
1126
            if (client_index >= stdio_nb_clients)
1127
                client_index = 0;
1128
            if (client_index == 0) {
1129
                /* send a new line in the monitor to get the prompt */
1130
                ch = '\r';
1131
                goto send_char;
1132
            }
1133
            break;
1134
        case TERM_ESCAPE:
1135
            goto send_char;
1136
        }
1137
    } else if (ch == TERM_ESCAPE) {
1138
        term_got_escape = 1;
1139
    } else {
1140
    send_char:
1141
        if (client_index < stdio_nb_clients) {
1142
            uint8_t buf[1];
1143
            CharDriverState *chr;
1144
            FDCharDriver *s;
1145
            
1146
            chr = stdio_clients[client_index];
1147
            s = chr->opaque;
1148
            buf[0] = ch;
1149
            /* XXX: should queue the char if the device is not
1150
               ready */
1151
            if (s->fd_can_read(s->fd_opaque) > 0) 
1152
                s->fd_read(s->fd_opaque, buf, 1);
1153
        }
1154
    }
1155
}
1156

    
1157
static int stdio_can_read(void *opaque)
1158
{
1159
    /* XXX: not strictly correct */
1160
    return 1;
1161
}
1162

    
1163
static void stdio_read(void *opaque, const uint8_t *buf, int size)
1164
{
1165
    int i;
1166
    for(i = 0; i < size; i++)
1167
        stdio_received_byte(buf[i]);
1168
}
1169

    
1170
/* init terminal so that we can grab keys */
1171
static struct termios oldtty;
1172
static int old_fd0_flags;
1173

    
1174
static void term_exit(void)
1175
{
1176
    tcsetattr (0, TCSANOW, &oldtty);
1177
    fcntl(0, F_SETFL, old_fd0_flags);
1178
}
1179

    
1180
static void term_init(void)
1181
{
1182
    struct termios tty;
1183

    
1184
    tcgetattr (0, &tty);
1185
    oldtty = tty;
1186
    old_fd0_flags = fcntl(0, F_GETFL);
1187

    
1188
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1189
                          |INLCR|IGNCR|ICRNL|IXON);
1190
    tty.c_oflag |= OPOST;
1191
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1192
    /* if graphical mode, we allow Ctrl-C handling */
1193
    if (nographic)
1194
        tty.c_lflag &= ~ISIG;
1195
    tty.c_cflag &= ~(CSIZE|PARENB);
1196
    tty.c_cflag |= CS8;
1197
    tty.c_cc[VMIN] = 1;
1198
    tty.c_cc[VTIME] = 0;
1199
    
1200
    tcsetattr (0, TCSANOW, &tty);
1201

    
1202
    atexit(term_exit);
1203

    
1204
    fcntl(0, F_SETFL, O_NONBLOCK);
1205
}
1206

    
1207
CharDriverState *qemu_chr_open_stdio(void)
1208
{
1209
    CharDriverState *chr;
1210

    
1211
    if (nographic) {
1212
        if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1213
            return NULL;
1214
        chr = qemu_chr_open_fd(0, 1);
1215
        if (stdio_nb_clients == 0)
1216
            qemu_add_fd_read_handler(0, stdio_can_read, stdio_read, NULL);
1217
        client_index = stdio_nb_clients;
1218
    } else {
1219
        if (stdio_nb_clients != 0)
1220
            return NULL;
1221
        chr = qemu_chr_open_fd(0, 1);
1222
    }
1223
    stdio_clients[stdio_nb_clients++] = chr;
1224
    if (stdio_nb_clients == 1) {
1225
        /* set the terminal in raw mode */
1226
        term_init();
1227
    }
1228
    return chr;
1229
}
1230

    
1231
#if defined(__linux__)
1232
CharDriverState *qemu_chr_open_pty(void)
1233
{
1234
    char slave_name[1024];
1235
    int master_fd, slave_fd;
1236
    
1237
    /* Not satisfying */
1238
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1239
        return NULL;
1240
    }
1241
    fprintf(stderr, "char device redirected to %s\n", slave_name);
1242
    return qemu_chr_open_fd(master_fd, master_fd);
1243
}
1244
#else
1245
CharDriverState *qemu_chr_open_pty(void)
1246
{
1247
    return NULL;
1248
}
1249
#endif
1250

    
1251
#endif /* !defined(_WIN32) */
1252

    
1253
CharDriverState *qemu_chr_open(const char *filename)
1254
{
1255
    if (!strcmp(filename, "vc")) {
1256
        return text_console_init(&display_state);
1257
    } else if (!strcmp(filename, "null")) {
1258
        return qemu_chr_open_null();
1259
    } else 
1260
#ifndef _WIN32
1261
    if (!strcmp(filename, "pty")) {
1262
        return qemu_chr_open_pty();
1263
    } else if (!strcmp(filename, "stdio")) {
1264
        return qemu_chr_open_stdio();
1265
    } else 
1266
#endif
1267
    {
1268
        return NULL;
1269
    }
1270
}
1271

    
1272
/***********************************************************/
1273
/* Linux network device redirectors */
1274

    
1275
void hex_dump(FILE *f, const uint8_t *buf, int size)
1276
{
1277
    int len, i, j, c;
1278

    
1279
    for(i=0;i<size;i+=16) {
1280
        len = size - i;
1281
        if (len > 16)
1282
            len = 16;
1283
        fprintf(f, "%08x ", i);
1284
        for(j=0;j<16;j++) {
1285
            if (j < len)
1286
                fprintf(f, " %02x", buf[i+j]);
1287
            else
1288
                fprintf(f, "   ");
1289
        }
1290
        fprintf(f, " ");
1291
        for(j=0;j<len;j++) {
1292
            c = buf[i+j];
1293
            if (c < ' ' || c > '~')
1294
                c = '.';
1295
            fprintf(f, "%c", c);
1296
        }
1297
        fprintf(f, "\n");
1298
    }
1299
}
1300

    
1301
void qemu_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
1302
{
1303
    nd->send_packet(nd, buf, size);
1304
}
1305

    
1306
void qemu_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read, 
1307
                          IOReadHandler *fd_read, void *opaque)
1308
{
1309
    nd->add_read_packet(nd, fd_can_read, fd_read, opaque);
1310
}
1311

    
1312
/* dummy network adapter */
1313

    
1314
static void dummy_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
1315
{
1316
}
1317

    
1318
static void dummy_add_read_packet(NetDriverState *nd, 
1319
                                  IOCanRWHandler *fd_can_read, 
1320
                                  IOReadHandler *fd_read, void *opaque)
1321
{
1322
}
1323

    
1324
static int net_dummy_init(NetDriverState *nd)
1325
{
1326
    nd->send_packet = dummy_send_packet;
1327
    nd->add_read_packet = dummy_add_read_packet;
1328
    pstrcpy(nd->ifname, sizeof(nd->ifname), "dummy");
1329
    return 0;
1330
}
1331

    
1332
#if defined(CONFIG_SLIRP)
1333

    
1334
/* slirp network adapter */
1335

    
1336
static void *slirp_fd_opaque;
1337
static IOCanRWHandler *slirp_fd_can_read;
1338
static IOReadHandler *slirp_fd_read;
1339
static int slirp_inited;
1340

    
1341
int slirp_can_output(void)
1342
{
1343
    return slirp_fd_can_read(slirp_fd_opaque);
1344
}
1345

    
1346
void slirp_output(const uint8_t *pkt, int pkt_len)
1347
{
1348
#if 0
1349
    printf("output:\n");
1350
    hex_dump(stdout, pkt, pkt_len);
1351
#endif
1352
    slirp_fd_read(slirp_fd_opaque, pkt, pkt_len);
1353
}
1354

    
1355
static void slirp_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
1356
{
1357
#if 0
1358
    printf("input:\n");
1359
    hex_dump(stdout, buf, size);
1360
#endif
1361
    slirp_input(buf, size);
1362
}
1363

    
1364
static void slirp_add_read_packet(NetDriverState *nd, 
1365
                                  IOCanRWHandler *fd_can_read, 
1366
                                  IOReadHandler *fd_read, void *opaque)
1367
{
1368
    slirp_fd_opaque = opaque;
1369
    slirp_fd_can_read = fd_can_read;
1370
    slirp_fd_read = fd_read;
1371
}
1372

    
1373
static int net_slirp_init(NetDriverState *nd)
1374
{
1375
    if (!slirp_inited) {
1376
        slirp_inited = 1;
1377
        slirp_init();
1378
    }
1379
    nd->send_packet = slirp_send_packet;
1380
    nd->add_read_packet = slirp_add_read_packet;
1381
    pstrcpy(nd->ifname, sizeof(nd->ifname), "slirp");
1382
    return 0;
1383
}
1384

    
1385
#endif /* CONFIG_SLIRP */
1386

    
1387
#if !defined(_WIN32)
1388
#ifdef _BSD
1389
static int tun_open(char *ifname, int ifname_size)
1390
{
1391
    int fd;
1392
    char *dev;
1393
    struct stat s;
1394

    
1395
    fd = open("/dev/tap", O_RDWR);
1396
    if (fd < 0) {
1397
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
1398
        return -1;
1399
    }
1400

    
1401
    fstat(fd, &s);
1402
    dev = devname(s.st_rdev, S_IFCHR);
1403
    pstrcpy(ifname, ifname_size, dev);
1404

    
1405
    fcntl(fd, F_SETFL, O_NONBLOCK);
1406
    return fd;
1407
}
1408
#else
1409
static int tun_open(char *ifname, int ifname_size)
1410
{
1411
    struct ifreq ifr;
1412
    int fd, ret;
1413
    
1414
    fd = open("/dev/net/tun", O_RDWR);
1415
    if (fd < 0) {
1416
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1417
        return -1;
1418
    }
1419
    memset(&ifr, 0, sizeof(ifr));
1420
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1421
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1422
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1423
    if (ret != 0) {
1424
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1425
        close(fd);
1426
        return -1;
1427
    }
1428
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1429
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
1430
    fcntl(fd, F_SETFL, O_NONBLOCK);
1431
    return fd;
1432
}
1433
#endif
1434

    
1435
static void tun_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
1436
{
1437
    write(nd->fd, buf, size);
1438
}
1439

    
1440
static void tun_add_read_packet(NetDriverState *nd, 
1441
                                IOCanRWHandler *fd_can_read, 
1442
                                IOReadHandler *fd_read, void *opaque)
1443
{
1444
    qemu_add_fd_read_handler(nd->fd, fd_can_read, fd_read, opaque);
1445
}
1446

    
1447
static int net_tun_init(NetDriverState *nd)
1448
{
1449
    int pid, status;
1450
    char *args[3];
1451
    char **parg;
1452

    
1453
    nd->fd = tun_open(nd->ifname, sizeof(nd->ifname));
1454
    if (nd->fd < 0)
1455
        return -1;
1456

    
1457
    /* try to launch network init script */
1458
    pid = fork();
1459
    if (pid >= 0) {
1460
        if (pid == 0) {
1461
            parg = args;
1462
            *parg++ = network_script;
1463
            *parg++ = nd->ifname;
1464
            *parg++ = NULL;
1465
            execv(network_script, args);
1466
            exit(1);
1467
        }
1468
        while (waitpid(pid, &status, 0) != pid);
1469
        if (!WIFEXITED(status) ||
1470
            WEXITSTATUS(status) != 0) {
1471
            fprintf(stderr, "%s: could not launch network script\n",
1472
                    network_script);
1473
        }
1474
    }
1475
    nd->send_packet = tun_send_packet;
1476
    nd->add_read_packet = tun_add_read_packet;
1477
    return 0;
1478
}
1479

    
1480
static int net_fd_init(NetDriverState *nd, int fd)
1481
{
1482
    nd->fd = fd;
1483
    nd->send_packet = tun_send_packet;
1484
    nd->add_read_packet = tun_add_read_packet;
1485
    pstrcpy(nd->ifname, sizeof(nd->ifname), "tunfd");
1486
    return 0;
1487
}
1488

    
1489
#endif /* !_WIN32 */
1490

    
1491
/***********************************************************/
1492
/* dumb display */
1493

    
1494
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
1495
{
1496
}
1497

    
1498
static void dumb_resize(DisplayState *ds, int w, int h)
1499
{
1500
}
1501

    
1502
static void dumb_refresh(DisplayState *ds)
1503
{
1504
    vga_update_display();
1505
}
1506

    
1507
void dumb_display_init(DisplayState *ds)
1508
{
1509
    ds->data = NULL;
1510
    ds->linesize = 0;
1511
    ds->depth = 0;
1512
    ds->dpy_update = dumb_update;
1513
    ds->dpy_resize = dumb_resize;
1514
    ds->dpy_refresh = dumb_refresh;
1515
}
1516

    
1517
#if !defined(CONFIG_SOFTMMU)
1518
/***********************************************************/
1519
/* cpu signal handler */
1520
static void host_segv_handler(int host_signum, siginfo_t *info, 
1521
                              void *puc)
1522
{
1523
    if (cpu_signal_handler(host_signum, info, puc))
1524
        return;
1525
    if (stdio_nb_clients > 0)
1526
        term_exit();
1527
    abort();
1528
}
1529
#endif
1530

    
1531
/***********************************************************/
1532
/* I/O handling */
1533

    
1534
#define MAX_IO_HANDLERS 64
1535

    
1536
typedef struct IOHandlerRecord {
1537
    int fd;
1538
    IOCanRWHandler *fd_can_read;
1539
    IOReadHandler *fd_read;
1540
    void *opaque;
1541
    /* temporary data */
1542
    struct pollfd *ufd;
1543
    int max_size;
1544
    struct IOHandlerRecord *next;
1545
} IOHandlerRecord;
1546

    
1547
static IOHandlerRecord *first_io_handler;
1548

    
1549
int qemu_add_fd_read_handler(int fd, IOCanRWHandler *fd_can_read, 
1550
                             IOReadHandler *fd_read, void *opaque)
1551
{
1552
    IOHandlerRecord *ioh;
1553

    
1554
    ioh = qemu_mallocz(sizeof(IOHandlerRecord));
1555
    if (!ioh)
1556
        return -1;
1557
    ioh->fd = fd;
1558
    ioh->fd_can_read = fd_can_read;
1559
    ioh->fd_read = fd_read;
1560
    ioh->opaque = opaque;
1561
    ioh->next = first_io_handler;
1562
    first_io_handler = ioh;
1563
    return 0;
1564
}
1565

    
1566
void qemu_del_fd_read_handler(int fd)
1567
{
1568
    IOHandlerRecord **pioh, *ioh;
1569

    
1570
    pioh = &first_io_handler;
1571
    for(;;) {
1572
        ioh = *pioh;
1573
        if (ioh == NULL)
1574
            break;
1575
        if (ioh->fd == fd) {
1576
            *pioh = ioh->next;
1577
            break;
1578
        }
1579
        pioh = &ioh->next;
1580
    }
1581
}
1582

    
1583
/***********************************************************/
1584
/* savevm/loadvm support */
1585

    
1586
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
1587
{
1588
    fwrite(buf, 1, size, f);
1589
}
1590

    
1591
void qemu_put_byte(QEMUFile *f, int v)
1592
{
1593
    fputc(v, f);
1594
}
1595

    
1596
void qemu_put_be16(QEMUFile *f, unsigned int v)
1597
{
1598
    qemu_put_byte(f, v >> 8);
1599
    qemu_put_byte(f, v);
1600
}
1601

    
1602
void qemu_put_be32(QEMUFile *f, unsigned int v)
1603
{
1604
    qemu_put_byte(f, v >> 24);
1605
    qemu_put_byte(f, v >> 16);
1606
    qemu_put_byte(f, v >> 8);
1607
    qemu_put_byte(f, v);
1608
}
1609

    
1610
void qemu_put_be64(QEMUFile *f, uint64_t v)
1611
{
1612
    qemu_put_be32(f, v >> 32);
1613
    qemu_put_be32(f, v);
1614
}
1615

    
1616
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
1617
{
1618
    return fread(buf, 1, size, f);
1619
}
1620

    
1621
int qemu_get_byte(QEMUFile *f)
1622
{
1623
    int v;
1624
    v = fgetc(f);
1625
    if (v == EOF)
1626
        return 0;
1627
    else
1628
        return v;
1629
}
1630

    
1631
unsigned int qemu_get_be16(QEMUFile *f)
1632
{
1633
    unsigned int v;
1634
    v = qemu_get_byte(f) << 8;
1635
    v |= qemu_get_byte(f);
1636
    return v;
1637
}
1638

    
1639
unsigned int qemu_get_be32(QEMUFile *f)
1640
{
1641
    unsigned int v;
1642
    v = qemu_get_byte(f) << 24;
1643
    v |= qemu_get_byte(f) << 16;
1644
    v |= qemu_get_byte(f) << 8;
1645
    v |= qemu_get_byte(f);
1646
    return v;
1647
}
1648

    
1649
uint64_t qemu_get_be64(QEMUFile *f)
1650
{
1651
    uint64_t v;
1652
    v = (uint64_t)qemu_get_be32(f) << 32;
1653
    v |= qemu_get_be32(f);
1654
    return v;
1655
}
1656

    
1657
int64_t qemu_ftell(QEMUFile *f)
1658
{
1659
    return ftell(f);
1660
}
1661

    
1662
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
1663
{
1664
    if (fseek(f, pos, whence) < 0)
1665
        return -1;
1666
    return ftell(f);
1667
}
1668

    
1669
typedef struct SaveStateEntry {
1670
    char idstr[256];
1671
    int instance_id;
1672
    int version_id;
1673
    SaveStateHandler *save_state;
1674
    LoadStateHandler *load_state;
1675
    void *opaque;
1676
    struct SaveStateEntry *next;
1677
} SaveStateEntry;
1678

    
1679
static SaveStateEntry *first_se;
1680

    
1681
int register_savevm(const char *idstr, 
1682
                    int instance_id, 
1683
                    int version_id,
1684
                    SaveStateHandler *save_state,
1685
                    LoadStateHandler *load_state,
1686
                    void *opaque)
1687
{
1688
    SaveStateEntry *se, **pse;
1689

    
1690
    se = qemu_malloc(sizeof(SaveStateEntry));
1691
    if (!se)
1692
        return -1;
1693
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
1694
    se->instance_id = instance_id;
1695
    se->version_id = version_id;
1696
    se->save_state = save_state;
1697
    se->load_state = load_state;
1698
    se->opaque = opaque;
1699
    se->next = NULL;
1700

    
1701
    /* add at the end of list */
1702
    pse = &first_se;
1703
    while (*pse != NULL)
1704
        pse = &(*pse)->next;
1705
    *pse = se;
1706
    return 0;
1707
}
1708

    
1709
#define QEMU_VM_FILE_MAGIC   0x5145564d
1710
#define QEMU_VM_FILE_VERSION 0x00000001
1711

    
1712
int qemu_savevm(const char *filename)
1713
{
1714
    SaveStateEntry *se;
1715
    QEMUFile *f;
1716
    int len, len_pos, cur_pos, saved_vm_running, ret;
1717

    
1718
    saved_vm_running = vm_running;
1719
    vm_stop(0);
1720

    
1721
    f = fopen(filename, "wb");
1722
    if (!f) {
1723
        ret = -1;
1724
        goto the_end;
1725
    }
1726

    
1727
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1728
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1729

    
1730
    for(se = first_se; se != NULL; se = se->next) {
1731
        /* ID string */
1732
        len = strlen(se->idstr);
1733
        qemu_put_byte(f, len);
1734
        qemu_put_buffer(f, se->idstr, len);
1735

    
1736
        qemu_put_be32(f, se->instance_id);
1737
        qemu_put_be32(f, se->version_id);
1738

    
1739
        /* record size: filled later */
1740
        len_pos = ftell(f);
1741
        qemu_put_be32(f, 0);
1742
        
1743
        se->save_state(f, se->opaque);
1744

    
1745
        /* fill record size */
1746
        cur_pos = ftell(f);
1747
        len = ftell(f) - len_pos - 4;
1748
        fseek(f, len_pos, SEEK_SET);
1749
        qemu_put_be32(f, len);
1750
        fseek(f, cur_pos, SEEK_SET);
1751
    }
1752

    
1753
    fclose(f);
1754
    ret = 0;
1755
 the_end:
1756
    if (saved_vm_running)
1757
        vm_start();
1758
    return ret;
1759
}
1760

    
1761
static SaveStateEntry *find_se(const char *idstr, int instance_id)
1762
{
1763
    SaveStateEntry *se;
1764

    
1765
    for(se = first_se; se != NULL; se = se->next) {
1766
        if (!strcmp(se->idstr, idstr) && 
1767
            instance_id == se->instance_id)
1768
            return se;
1769
    }
1770
    return NULL;
1771
}
1772

    
1773
int qemu_loadvm(const char *filename)
1774
{
1775
    SaveStateEntry *se;
1776
    QEMUFile *f;
1777
    int len, cur_pos, ret, instance_id, record_len, version_id;
1778
    int saved_vm_running;
1779
    unsigned int v;
1780
    char idstr[256];
1781
    
1782
    saved_vm_running = vm_running;
1783
    vm_stop(0);
1784

    
1785
    f = fopen(filename, "rb");
1786
    if (!f) {
1787
        ret = -1;
1788
        goto the_end;
1789
    }
1790

    
1791
    v = qemu_get_be32(f);
1792
    if (v != QEMU_VM_FILE_MAGIC)
1793
        goto fail;
1794
    v = qemu_get_be32(f);
1795
    if (v != QEMU_VM_FILE_VERSION) {
1796
    fail:
1797
        fclose(f);
1798
        ret = -1;
1799
        goto the_end;
1800
    }
1801
    for(;;) {
1802
#if defined (DO_TB_FLUSH)
1803
        tb_flush(global_env);
1804
#endif
1805
        len = qemu_get_byte(f);
1806
        if (feof(f))
1807
            break;
1808
        qemu_get_buffer(f, idstr, len);
1809
        idstr[len] = '\0';
1810
        instance_id = qemu_get_be32(f);
1811
        version_id = qemu_get_be32(f);
1812
        record_len = qemu_get_be32(f);
1813
#if 0
1814
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
1815
               idstr, instance_id, version_id, record_len);
1816
#endif
1817
        cur_pos = ftell(f);
1818
        se = find_se(idstr, instance_id);
1819
        if (!se) {
1820
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
1821
                    instance_id, idstr);
1822
        } else {
1823
            ret = se->load_state(f, se->opaque, version_id);
1824
            if (ret < 0) {
1825
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
1826
                        instance_id, idstr);
1827
            }
1828
        }
1829
        /* always seek to exact end of record */
1830
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
1831
    }
1832
    fclose(f);
1833
    ret = 0;
1834
 the_end:
1835
    if (saved_vm_running)
1836
        vm_start();
1837
    return ret;
1838
}
1839

    
1840
/***********************************************************/
1841
/* cpu save/restore */
1842

    
1843
#if defined(TARGET_I386)
1844

    
1845
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
1846
{
1847
    qemu_put_be32(f, dt->selector);
1848
    qemu_put_be32(f, (uint32_t)dt->base);
1849
    qemu_put_be32(f, dt->limit);
1850
    qemu_put_be32(f, dt->flags);
1851
}
1852

    
1853
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
1854
{
1855
    dt->selector = qemu_get_be32(f);
1856
    dt->base = (uint8_t *)qemu_get_be32(f);
1857
    dt->limit = qemu_get_be32(f);
1858
    dt->flags = qemu_get_be32(f);
1859
}
1860

    
1861
void cpu_save(QEMUFile *f, void *opaque)
1862
{
1863
    CPUState *env = opaque;
1864
    uint16_t fptag, fpus, fpuc;
1865
    uint32_t hflags;
1866
    int i;
1867

    
1868
    for(i = 0; i < 8; i++)
1869
        qemu_put_be32s(f, &env->regs[i]);
1870
    qemu_put_be32s(f, &env->eip);
1871
    qemu_put_be32s(f, &env->eflags);
1872
    qemu_put_be32s(f, &env->eflags);
1873
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
1874
    qemu_put_be32s(f, &hflags);
1875
    
1876
    /* FPU */
1877
    fpuc = env->fpuc;
1878
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
1879
    fptag = 0;
1880
    for (i=7; i>=0; i--) {
1881
        fptag <<= 2;
1882
        if (env->fptags[i]) {
1883
            fptag |= 3;
1884
        }
1885
    }
1886
    
1887
    qemu_put_be16s(f, &fpuc);
1888
    qemu_put_be16s(f, &fpus);
1889
    qemu_put_be16s(f, &fptag);
1890

    
1891
    for(i = 0; i < 8; i++) {
1892
        uint64_t mant;
1893
        uint16_t exp;
1894
        cpu_get_fp80(&mant, &exp, env->fpregs[i]);
1895
        qemu_put_be64(f, mant);
1896
        qemu_put_be16(f, exp);
1897
    }
1898

    
1899
    for(i = 0; i < 6; i++)
1900
        cpu_put_seg(f, &env->segs[i]);
1901
    cpu_put_seg(f, &env->ldt);
1902
    cpu_put_seg(f, &env->tr);
1903
    cpu_put_seg(f, &env->gdt);
1904
    cpu_put_seg(f, &env->idt);
1905
    
1906
    qemu_put_be32s(f, &env->sysenter_cs);
1907
    qemu_put_be32s(f, &env->sysenter_esp);
1908
    qemu_put_be32s(f, &env->sysenter_eip);
1909
    
1910
    qemu_put_be32s(f, &env->cr[0]);
1911
    qemu_put_be32s(f, &env->cr[2]);
1912
    qemu_put_be32s(f, &env->cr[3]);
1913
    qemu_put_be32s(f, &env->cr[4]);
1914
    
1915
    for(i = 0; i < 8; i++)
1916
        qemu_put_be32s(f, &env->dr[i]);
1917

    
1918
    /* MMU */
1919
    qemu_put_be32s(f, &env->a20_mask);
1920
}
1921

    
1922
int cpu_load(QEMUFile *f, void *opaque, int version_id)
1923
{
1924
    CPUState *env = opaque;
1925
    int i;
1926
    uint32_t hflags;
1927
    uint16_t fpus, fpuc, fptag;
1928

    
1929
    if (version_id != 2)
1930
        return -EINVAL;
1931
    for(i = 0; i < 8; i++)
1932
        qemu_get_be32s(f, &env->regs[i]);
1933
    qemu_get_be32s(f, &env->eip);
1934
    qemu_get_be32s(f, &env->eflags);
1935
    qemu_get_be32s(f, &env->eflags);
1936
    qemu_get_be32s(f, &hflags);
1937

    
1938
    qemu_get_be16s(f, &fpuc);
1939
    qemu_get_be16s(f, &fpus);
1940
    qemu_get_be16s(f, &fptag);
1941

    
1942
    for(i = 0; i < 8; i++) {
1943
        uint64_t mant;
1944
        uint16_t exp;
1945
        mant = qemu_get_be64(f);
1946
        exp = qemu_get_be16(f);
1947
        env->fpregs[i] = cpu_set_fp80(mant, exp);
1948
    }
1949

    
1950
    env->fpuc = fpuc;
1951
    env->fpstt = (fpus >> 11) & 7;
1952
    env->fpus = fpus & ~0x3800;
1953
    for(i = 0; i < 8; i++) {
1954
        env->fptags[i] = ((fptag & 3) == 3);
1955
        fptag >>= 2;
1956
    }
1957
    
1958
    for(i = 0; i < 6; i++)
1959
        cpu_get_seg(f, &env->segs[i]);
1960
    cpu_get_seg(f, &env->ldt);
1961
    cpu_get_seg(f, &env->tr);
1962
    cpu_get_seg(f, &env->gdt);
1963
    cpu_get_seg(f, &env->idt);
1964
    
1965
    qemu_get_be32s(f, &env->sysenter_cs);
1966
    qemu_get_be32s(f, &env->sysenter_esp);
1967
    qemu_get_be32s(f, &env->sysenter_eip);
1968
    
1969
    qemu_get_be32s(f, &env->cr[0]);
1970
    qemu_get_be32s(f, &env->cr[2]);
1971
    qemu_get_be32s(f, &env->cr[3]);
1972
    qemu_get_be32s(f, &env->cr[4]);
1973
    
1974
    for(i = 0; i < 8; i++)
1975
        qemu_get_be32s(f, &env->dr[i]);
1976

    
1977
    /* MMU */
1978
    qemu_get_be32s(f, &env->a20_mask);
1979

    
1980
    /* XXX: compute hflags from scratch, except for CPL and IIF */
1981
    env->hflags = hflags;
1982
    tlb_flush(env, 1);
1983
    return 0;
1984
}
1985

    
1986
#elif defined(TARGET_PPC)
1987
void cpu_save(QEMUFile *f, void *opaque)
1988
{
1989
}
1990

    
1991
int cpu_load(QEMUFile *f, void *opaque, int version_id)
1992
{
1993
    return 0;
1994
}
1995
#else
1996

    
1997
#warning No CPU save/restore functions
1998

    
1999
#endif
2000

    
2001
/***********************************************************/
2002
/* ram save/restore */
2003

    
2004
/* we just avoid storing empty pages */
2005
static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len)
2006
{
2007
    int i, v;
2008

    
2009
    v = buf[0];
2010
    for(i = 1; i < len; i++) {
2011
        if (buf[i] != v)
2012
            goto normal_save;
2013
    }
2014
    qemu_put_byte(f, 1);
2015
    qemu_put_byte(f, v);
2016
    return;
2017
 normal_save:
2018
    qemu_put_byte(f, 0); 
2019
    qemu_put_buffer(f, buf, len);
2020
}
2021

    
2022
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2023
{
2024
    int v;
2025

    
2026
    v = qemu_get_byte(f);
2027
    switch(v) {
2028
    case 0:
2029
        if (qemu_get_buffer(f, buf, len) != len)
2030
            return -EIO;
2031
        break;
2032
    case 1:
2033
        v = qemu_get_byte(f);
2034
        memset(buf, v, len);
2035
        break;
2036
    default:
2037
        return -EINVAL;
2038
    }
2039
    return 0;
2040
}
2041

    
2042
static void ram_save(QEMUFile *f, void *opaque)
2043
{
2044
    int i;
2045
    qemu_put_be32(f, phys_ram_size);
2046
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2047
        ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2048
    }
2049
}
2050

    
2051
static int ram_load(QEMUFile *f, void *opaque, int version_id)
2052
{
2053
    int i, ret;
2054

    
2055
    if (version_id != 1)
2056
        return -EINVAL;
2057
    if (qemu_get_be32(f) != phys_ram_size)
2058
        return -EINVAL;
2059
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2060
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2061
        if (ret)
2062
            return ret;
2063
    }
2064
    return 0;
2065
}
2066

    
2067
/***********************************************************/
2068
/* main execution loop */
2069

    
2070
void gui_update(void *opaque)
2071
{
2072
    display_state.dpy_refresh(&display_state);
2073
    qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
2074
}
2075

    
2076
/* XXX: support several handlers */
2077
VMStopHandler *vm_stop_cb;
2078
VMStopHandler *vm_stop_opaque;
2079

    
2080
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
2081
{
2082
    vm_stop_cb = cb;
2083
    vm_stop_opaque = opaque;
2084
    return 0;
2085
}
2086

    
2087
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
2088
{
2089
    vm_stop_cb = NULL;
2090
}
2091

    
2092
void vm_start(void)
2093
{
2094
    if (!vm_running) {
2095
        cpu_enable_ticks();
2096
        vm_running = 1;
2097
    }
2098
}
2099

    
2100
void vm_stop(int reason) 
2101
{
2102
    if (vm_running) {
2103
        cpu_disable_ticks();
2104
        vm_running = 0;
2105
        if (reason != 0) {
2106
            if (vm_stop_cb) {
2107
                vm_stop_cb(vm_stop_opaque, reason);
2108
            }
2109
        }
2110
    }
2111
}
2112

    
2113
/* reset/shutdown handler */
2114

    
2115
typedef struct QEMUResetEntry {
2116
    QEMUResetHandler *func;
2117
    void *opaque;
2118
    struct QEMUResetEntry *next;
2119
} QEMUResetEntry;
2120

    
2121
static QEMUResetEntry *first_reset_entry;
2122
static int reset_requested;
2123
static int shutdown_requested;
2124

    
2125
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
2126
{
2127
    QEMUResetEntry **pre, *re;
2128

    
2129
    pre = &first_reset_entry;
2130
    while (*pre != NULL)
2131
        pre = &(*pre)->next;
2132
    re = qemu_mallocz(sizeof(QEMUResetEntry));
2133
    re->func = func;
2134
    re->opaque = opaque;
2135
    re->next = NULL;
2136
    *pre = re;
2137
}
2138

    
2139
void qemu_system_reset(void)
2140
{
2141
    QEMUResetEntry *re;
2142

    
2143
    /* reset all devices */
2144
    for(re = first_reset_entry; re != NULL; re = re->next) {
2145
        re->func(re->opaque);
2146
    }
2147
}
2148

    
2149
void qemu_system_reset_request(void)
2150
{
2151
    reset_requested = 1;
2152
    cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
2153
}
2154

    
2155
void qemu_system_shutdown_request(void)
2156
{
2157
    shutdown_requested = 1;
2158
    cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
2159
}
2160

    
2161
static void main_cpu_reset(void *opaque)
2162
{
2163
#ifdef TARGET_I386
2164
    CPUState *env = opaque;
2165
    cpu_reset(env);
2166
#endif
2167
}
2168

    
2169
void main_loop_wait(int timeout)
2170
{
2171
#ifndef _WIN32
2172
    struct pollfd ufds[MAX_IO_HANDLERS + 1], *pf;
2173
    IOHandlerRecord *ioh, *ioh_next;
2174
    uint8_t buf[4096];
2175
    int n, max_size;
2176
#endif
2177
    int ret;
2178

    
2179
#ifdef _WIN32
2180
        if (timeout > 0)
2181
            Sleep(timeout);
2182
#else
2183
        /* poll any events */
2184
        /* XXX: separate device handlers from system ones */
2185
        pf = ufds;
2186
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2187
            if (!ioh->fd_can_read) {
2188
                max_size = 0;
2189
                pf->fd = ioh->fd;
2190
                pf->events = POLLIN;
2191
                ioh->ufd = pf;
2192
                pf++;
2193
            } else {
2194
                max_size = ioh->fd_can_read(ioh->opaque);
2195
                if (max_size > 0) {
2196
                    if (max_size > sizeof(buf))
2197
                        max_size = sizeof(buf);
2198
                    pf->fd = ioh->fd;
2199
                    pf->events = POLLIN;
2200
                    ioh->ufd = pf;
2201
                    pf++;
2202
                } else {
2203
                    ioh->ufd = NULL;
2204
                }
2205
            }
2206
            ioh->max_size = max_size;
2207
        }
2208
        
2209
        ret = poll(ufds, pf - ufds, timeout);
2210
        if (ret > 0) {
2211
            /* XXX: better handling of removal */
2212
            for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
2213
                ioh_next = ioh->next;
2214
                pf = ioh->ufd;
2215
                if (pf) {
2216
                    if (pf->revents & POLLIN) {
2217
                        if (ioh->max_size == 0) {
2218
                            /* just a read event */
2219
                            ioh->fd_read(ioh->opaque, NULL, 0);
2220
                        } else {
2221
                            n = read(ioh->fd, buf, ioh->max_size);
2222
                            if (n >= 0) {
2223
                                ioh->fd_read(ioh->opaque, buf, n);
2224
                            } else if (errno != EAGAIN) {
2225
                                ioh->fd_read(ioh->opaque, NULL, -errno);
2226
                            }
2227
                        }
2228
                    }
2229
                }
2230
            }
2231
        }
2232
#endif /* !defined(_WIN32) */
2233
#if defined(CONFIG_SLIRP)
2234
        /* XXX: merge with poll() */
2235
        if (slirp_inited) {
2236
            fd_set rfds, wfds, xfds;
2237
            int nfds;
2238
            struct timeval tv;
2239

    
2240
            nfds = -1;
2241
            FD_ZERO(&rfds);
2242
            FD_ZERO(&wfds);
2243
            FD_ZERO(&xfds);
2244
            slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
2245
            tv.tv_sec = 0;
2246
            tv.tv_usec = 0;
2247
            ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
2248
            if (ret >= 0) {
2249
                slirp_select_poll(&rfds, &wfds, &xfds);
2250
            }
2251
        }
2252
#endif
2253

    
2254
        if (vm_running) {
2255
            qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
2256
                            qemu_get_clock(vm_clock));
2257
            
2258
            if (audio_enabled) {
2259
                /* XXX: add explicit timer */
2260
                SB16_run();
2261
            }
2262
            
2263
            /* run dma transfers, if any */
2264
            DMA_run();
2265
        }
2266

    
2267
        /* real time timers */
2268
        qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
2269
                        qemu_get_clock(rt_clock));
2270
}
2271

    
2272
int main_loop(void)
2273
{
2274
    int ret, timeout;
2275
    CPUState *env = global_env;
2276

    
2277
    for(;;) {
2278
        if (vm_running) {
2279
            ret = cpu_exec(env);
2280
            if (shutdown_requested) {
2281
                ret = EXCP_INTERRUPT; 
2282
                break;
2283
            }
2284
            if (reset_requested) {
2285
                reset_requested = 0;
2286
                qemu_system_reset();
2287
                ret = EXCP_INTERRUPT; 
2288
            }
2289
            if (ret == EXCP_DEBUG) {
2290
                vm_stop(EXCP_DEBUG);
2291
            }
2292
            /* if hlt instruction, we wait until the next IRQ */
2293
            /* XXX: use timeout computed from timers */
2294
            if (ret == EXCP_HLT) 
2295
                timeout = 10;
2296
            else
2297
                timeout = 0;
2298
        } else {
2299
            timeout = 10;
2300
        }
2301
        main_loop_wait(timeout);
2302
    }
2303
    cpu_disable_ticks();
2304
    return ret;
2305
}
2306

    
2307
void help(void)
2308
{
2309
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2004 Fabrice Bellard\n"
2310
           "usage: %s [options] [disk_image]\n"
2311
           "\n"
2312
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
2313
           "\n"
2314
           "Standard options:\n"
2315
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
2316
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
2317
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
2318
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
2319
           "-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
2320
           "-snapshot       write to temporary files instead of disk image files\n"
2321
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
2322
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
2323
           "-enable-audio   enable audio support\n"
2324
           "-localtime      set the real time clock to local time [default=utc]\n"
2325
#ifdef TARGET_PPC
2326
           "-prep           Simulate a PREP system (default is PowerMAC)\n"
2327
           "-g WxH[xDEPTH]  Set the initial VGA graphic mode\n"
2328
#endif
2329
           "\n"
2330
           "Network options:\n"
2331
           "-nics n         simulate 'n' network cards [default=1]\n"
2332
           "-macaddr addr   set the mac address of the first interface\n"
2333
           "-n script       set tap/tun network init script [default=%s]\n"
2334
           "-tun-fd fd      use this fd as already opened tap/tun interface\n"
2335
#ifdef CONFIG_SLIRP
2336
           "-user-net       use user mode network stack [default if no tap/tun script]\n"
2337
#endif
2338
           "-dummy-net      use dummy network stack\n"
2339
           "\n"
2340
           "Linux boot specific:\n"
2341
           "-kernel bzImage use 'bzImage' as kernel image\n"
2342
           "-append cmdline use 'cmdline' as kernel command line\n"
2343
           "-initrd file    use 'file' as initial ram disk\n"
2344
           "\n"
2345
           "Debug/Expert options:\n"
2346
           "-monitor dev    redirect the monitor to char device 'dev'\n"
2347
           "-serial dev     redirect the serial port to char device 'dev'\n"
2348
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
2349
           "-s              wait gdb connection to port %d\n"
2350
           "-p port         change gdb connection port\n"
2351
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
2352
           "-hdachs c,h,s   force hard disk 0 geometry (usually qemu can guess it)\n"
2353
           "-L path         set the directory for the BIOS and VGA BIOS\n"
2354
#ifdef USE_CODE_COPY
2355
           "-no-code-copy   disable code copy acceleration\n"
2356
#endif
2357
#ifdef TARGET_I386
2358
           "-isa            simulate an ISA-only system (default is PCI system)\n"
2359
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
2360
           "                (default is CL-GD5446 PCI VGA)\n"
2361
#endif
2362
           "\n"
2363
           "During emulation, the following keys are useful:\n"
2364
           "ctrl-shift-f    toggle full screen\n"
2365
           "ctrl-shift-Fn   switch to virtual console 'n'\n"
2366
           "ctrl-shift      toggle mouse and keyboard grab\n"
2367
           "\n"
2368
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
2369
           ,
2370
#ifdef CONFIG_SOFTMMU
2371
           "qemu",
2372
#else
2373
           "qemu-fast",
2374
#endif
2375
           DEFAULT_RAM_SIZE,
2376
           DEFAULT_NETWORK_SCRIPT,
2377
           DEFAULT_GDBSTUB_PORT,
2378
           "/tmp/qemu.log");
2379
#ifndef CONFIG_SOFTMMU
2380
    printf("\n"
2381
           "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
2382
           "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
2383
           "PC emulation.\n");
2384
#endif
2385
    exit(1);
2386
}
2387

    
2388
#define HAS_ARG 0x0001
2389

    
2390
enum {
2391
    QEMU_OPTION_h,
2392

    
2393
    QEMU_OPTION_fda,
2394
    QEMU_OPTION_fdb,
2395
    QEMU_OPTION_hda,
2396
    QEMU_OPTION_hdb,
2397
    QEMU_OPTION_hdc,
2398
    QEMU_OPTION_hdd,
2399
    QEMU_OPTION_cdrom,
2400
    QEMU_OPTION_boot,
2401
    QEMU_OPTION_snapshot,
2402
    QEMU_OPTION_m,
2403
    QEMU_OPTION_nographic,
2404
    QEMU_OPTION_enable_audio,
2405

    
2406
    QEMU_OPTION_nics,
2407
    QEMU_OPTION_macaddr,
2408
    QEMU_OPTION_n,
2409
    QEMU_OPTION_tun_fd,
2410
    QEMU_OPTION_user_net,
2411
    QEMU_OPTION_dummy_net,
2412

    
2413
    QEMU_OPTION_kernel,
2414
    QEMU_OPTION_append,
2415
    QEMU_OPTION_initrd,
2416

    
2417
    QEMU_OPTION_S,
2418
    QEMU_OPTION_s,
2419
    QEMU_OPTION_p,
2420
    QEMU_OPTION_d,
2421
    QEMU_OPTION_hdachs,
2422
    QEMU_OPTION_L,
2423
    QEMU_OPTION_no_code_copy,
2424
    QEMU_OPTION_pci,
2425
    QEMU_OPTION_isa,
2426
    QEMU_OPTION_prep,
2427
    QEMU_OPTION_localtime,
2428
    QEMU_OPTION_cirrusvga,
2429
    QEMU_OPTION_g,
2430
    QEMU_OPTION_std_vga,
2431
    QEMU_OPTION_monitor,
2432
    QEMU_OPTION_serial,
2433
};
2434

    
2435
typedef struct QEMUOption {
2436
    const char *name;
2437
    int flags;
2438
    int index;
2439
} QEMUOption;
2440

    
2441
const QEMUOption qemu_options[] = {
2442
    { "h", 0, QEMU_OPTION_h },
2443

    
2444
    { "fda", HAS_ARG, QEMU_OPTION_fda },
2445
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
2446
    { "hda", HAS_ARG, QEMU_OPTION_hda },
2447
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
2448
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
2449
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
2450
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
2451
    { "boot", HAS_ARG, QEMU_OPTION_boot },
2452
    { "snapshot", 0, QEMU_OPTION_snapshot },
2453
    { "m", HAS_ARG, QEMU_OPTION_m },
2454
    { "nographic", 0, QEMU_OPTION_nographic },
2455
    { "enable-audio", 0, QEMU_OPTION_enable_audio },
2456

    
2457
    { "nics", HAS_ARG, QEMU_OPTION_nics},
2458
    { "macaddr", HAS_ARG, QEMU_OPTION_macaddr},
2459
    { "n", HAS_ARG, QEMU_OPTION_n },
2460
    { "tun-fd", HAS_ARG, QEMU_OPTION_tun_fd },
2461
#ifdef CONFIG_SLIRP
2462
    { "user-net", 0, QEMU_OPTION_user_net },
2463
#endif
2464
    { "dummy-net", 0, QEMU_OPTION_dummy_net },
2465

    
2466
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
2467
    { "append", HAS_ARG, QEMU_OPTION_append },
2468
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
2469

    
2470
    { "S", 0, QEMU_OPTION_S },
2471
    { "s", 0, QEMU_OPTION_s },
2472
    { "p", HAS_ARG, QEMU_OPTION_p },
2473
    { "d", HAS_ARG, QEMU_OPTION_d },
2474
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
2475
    { "L", HAS_ARG, QEMU_OPTION_L },
2476
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
2477
#ifdef TARGET_PPC
2478
    { "prep", 0, QEMU_OPTION_prep },
2479
    { "g", 1, QEMU_OPTION_g },
2480
#endif
2481
    { "localtime", 0, QEMU_OPTION_localtime },
2482
    { "isa", 0, QEMU_OPTION_isa },
2483
    { "std-vga", 0, QEMU_OPTION_std_vga },
2484
    { "monitor", 1, QEMU_OPTION_monitor },
2485
    { "serial", 1, QEMU_OPTION_serial },
2486
    
2487
    /* temporary options */
2488
    { "pci", 0, QEMU_OPTION_pci },
2489
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
2490
    { NULL },
2491
};
2492

    
2493
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
2494

    
2495
/* this stack is only used during signal handling */
2496
#define SIGNAL_STACK_SIZE 32768
2497

    
2498
static uint8_t *signal_stack;
2499

    
2500
#endif
2501

    
2502
/* password input */
2503

    
2504
static BlockDriverState *get_bdrv(int index)
2505
{
2506
    BlockDriverState *bs;
2507

    
2508
    if (index < 4) {
2509
        bs = bs_table[index];
2510
    } else if (index < 6) {
2511
        bs = fd_table[index - 4];
2512
    } else {
2513
        bs = NULL;
2514
    }
2515
    return bs;
2516
}
2517

    
2518
static void read_passwords(void)
2519
{
2520
    BlockDriverState *bs;
2521
    int i, j;
2522
    char password[256];
2523

    
2524
    for(i = 0; i < 6; i++) {
2525
        bs = get_bdrv(i);
2526
        if (bs && bdrv_is_encrypted(bs)) {
2527
            term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
2528
            for(j = 0; j < 3; j++) {
2529
                monitor_readline("Password: ", 
2530
                                 1, password, sizeof(password));
2531
                if (bdrv_set_key(bs, password) == 0)
2532
                    break;
2533
                term_printf("invalid password\n");
2534
            }
2535
        }
2536
    }
2537
}
2538

    
2539
#define NET_IF_TUN   0
2540
#define NET_IF_USER  1
2541
#define NET_IF_DUMMY 2
2542

    
2543
int main(int argc, char **argv)
2544
{
2545
#ifdef CONFIG_GDBSTUB
2546
    int use_gdbstub, gdbstub_port;
2547
#endif
2548
    int i, has_cdrom;
2549
    int snapshot, linux_boot;
2550
    CPUState *env;
2551
    const char *initrd_filename;
2552
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
2553
    const char *kernel_filename, *kernel_cmdline;
2554
    DisplayState *ds = &display_state;
2555
    int cyls, heads, secs;
2556
    int start_emulation = 1;
2557
    uint8_t macaddr[6];
2558
    int net_if_type, nb_tun_fds, tun_fds[MAX_NICS];
2559
    int optind;
2560
    const char *r, *optarg;
2561
    CharDriverState *monitor_hd;
2562
    char monitor_device[128];
2563
    char serial_devices[MAX_SERIAL_PORTS][128];
2564
    int serial_device_index;
2565
    
2566
#if !defined(CONFIG_SOFTMMU)
2567
    /* we never want that malloc() uses mmap() */
2568
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2569
#endif
2570
    initrd_filename = NULL;
2571
    for(i = 0; i < MAX_FD; i++)
2572
        fd_filename[i] = NULL;
2573
    for(i = 0; i < MAX_DISKS; i++)
2574
        hd_filename[i] = NULL;
2575
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
2576
    vga_ram_size = VGA_RAM_SIZE;
2577
    bios_size = BIOS_SIZE;
2578
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2579
#ifdef CONFIG_GDBSTUB
2580
    use_gdbstub = 0;
2581
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
2582
#endif
2583
    snapshot = 0;
2584
    nographic = 0;
2585
    kernel_filename = NULL;
2586
    kernel_cmdline = "";
2587
    has_cdrom = 1;
2588
    cyls = heads = secs = 0;
2589
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
2590

    
2591
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
2592
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
2593
        serial_devices[i][0] = '\0';
2594
    serial_device_index = 0;
2595
    
2596
    nb_tun_fds = 0;
2597
    net_if_type = -1;
2598
    nb_nics = 1;
2599
    /* default mac address of the first network interface */
2600
    macaddr[0] = 0x52;
2601
    macaddr[1] = 0x54;
2602
    macaddr[2] = 0x00;
2603
    macaddr[3] = 0x12;
2604
    macaddr[4] = 0x34;
2605
    macaddr[5] = 0x56;
2606
    
2607
    optind = 1;
2608
    for(;;) {
2609
        if (optind >= argc)
2610
            break;
2611
        r = argv[optind];
2612
        if (r[0] != '-') {
2613
            hd_filename[0] = argv[optind++];
2614
        } else {
2615
            const QEMUOption *popt;
2616

    
2617
            optind++;
2618
            popt = qemu_options;
2619
            for(;;) {
2620
                if (!popt->name) {
2621
                    fprintf(stderr, "%s: invalid option -- '%s'\n", 
2622
                            argv[0], r);
2623
                    exit(1);
2624
                }
2625
                if (!strcmp(popt->name, r + 1))
2626
                    break;
2627
                popt++;
2628
            }
2629
            if (popt->flags & HAS_ARG) {
2630
                if (optind >= argc) {
2631
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
2632
                            argv[0], r);
2633
                    exit(1);
2634
                }
2635
                optarg = argv[optind++];
2636
            } else {
2637
                optarg = NULL;
2638
            }
2639

    
2640
            switch(popt->index) {
2641
            case QEMU_OPTION_initrd:
2642
                initrd_filename = optarg;
2643
                break;
2644
            case QEMU_OPTION_hda:
2645
                hd_filename[0] = optarg;
2646
                break;
2647
            case QEMU_OPTION_hdb:
2648
                hd_filename[1] = optarg;
2649
                break;
2650
            case QEMU_OPTION_snapshot:
2651
                snapshot = 1;
2652
                break;
2653
            case QEMU_OPTION_hdachs:
2654
                {
2655
                    const char *p;
2656
                    p = optarg;
2657
                    cyls = strtol(p, (char **)&p, 0);
2658
                    if (*p != ',')
2659
                        goto chs_fail;
2660
                    p++;
2661
                    heads = strtol(p, (char **)&p, 0);
2662
                    if (*p != ',')
2663
                        goto chs_fail;
2664
                    p++;
2665
                    secs = strtol(p, (char **)&p, 0);
2666
                    if (*p != '\0') {
2667
                    chs_fail:
2668
                        cyls = 0;
2669
                    }
2670
                }
2671
                break;
2672
            case QEMU_OPTION_nographic:
2673
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
2674
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
2675
                nographic = 1;
2676
                break;
2677
            case QEMU_OPTION_kernel:
2678
                kernel_filename = optarg;
2679
                break;
2680
            case QEMU_OPTION_append:
2681
                kernel_cmdline = optarg;
2682
                break;
2683
            case QEMU_OPTION_tun_fd:
2684
                {
2685
                    const char *p;
2686
                    int fd;
2687
                    net_if_type = NET_IF_TUN;
2688
                    if (nb_tun_fds < MAX_NICS) {
2689
                        fd = strtol(optarg, (char **)&p, 0);
2690
                        if (*p != '\0') {
2691
                            fprintf(stderr, "qemu: invalid fd for network interface %d\n", nb_tun_fds);
2692
                            exit(1);
2693
                        }
2694
                        tun_fds[nb_tun_fds++] = fd;
2695
                    }
2696
                }
2697
                break;
2698
            case QEMU_OPTION_hdc:
2699
                hd_filename[2] = optarg;
2700
                has_cdrom = 0;
2701
                break;
2702
            case QEMU_OPTION_hdd:
2703
                hd_filename[3] = optarg;
2704
                break;
2705
            case QEMU_OPTION_cdrom:
2706
                hd_filename[2] = optarg;
2707
                has_cdrom = 1;
2708
                break;
2709
            case QEMU_OPTION_boot:
2710
                boot_device = optarg[0];
2711
                if (boot_device != 'a' && boot_device != 'b' &&
2712
                    boot_device != 'c' && boot_device != 'd') {
2713
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
2714
                    exit(1);
2715
                }
2716
                break;
2717
            case QEMU_OPTION_fda:
2718
                fd_filename[0] = optarg;
2719
                break;
2720
            case QEMU_OPTION_fdb:
2721
                fd_filename[1] = optarg;
2722
                break;
2723
            case QEMU_OPTION_no_code_copy:
2724
                code_copy_enabled = 0;
2725
                break;
2726
            case QEMU_OPTION_nics:
2727
                nb_nics = atoi(optarg);
2728
                if (nb_nics < 0 || nb_nics > MAX_NICS) {
2729
                    fprintf(stderr, "qemu: invalid number of network interfaces\n");
2730
                    exit(1);
2731
                }
2732
                break;
2733
            case QEMU_OPTION_macaddr:
2734
                {
2735
                    const char *p;
2736
                    int i;
2737
                    p = optarg;
2738
                    for(i = 0; i < 6; i++) {
2739
                        macaddr[i] = strtol(p, (char **)&p, 16);
2740
                        if (i == 5) {
2741
                            if (*p != '\0') 
2742
                                goto macaddr_error;
2743
                        } else {
2744
                            if (*p != ':') {
2745
                            macaddr_error:
2746
                                fprintf(stderr, "qemu: invalid syntax for ethernet address\n");
2747
                                exit(1);
2748
                            }
2749
                            p++;
2750
                        }
2751
                    }
2752
                }
2753
                break;
2754
            case QEMU_OPTION_user_net:
2755
                net_if_type = NET_IF_USER;
2756
                break;
2757
            case QEMU_OPTION_dummy_net:
2758
                net_if_type = NET_IF_DUMMY;
2759
                break;
2760
            case QEMU_OPTION_enable_audio:
2761
                audio_enabled = 1;
2762
                break;
2763
            case QEMU_OPTION_h:
2764
                help();
2765
                break;
2766
            case QEMU_OPTION_m:
2767
                ram_size = atoi(optarg) * 1024 * 1024;
2768
                if (ram_size <= 0)
2769
                    help();
2770
                if (ram_size > PHYS_RAM_MAX_SIZE) {
2771
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
2772
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
2773
                    exit(1);
2774
                }
2775
                break;
2776
            case QEMU_OPTION_d:
2777
                {
2778
                    int mask;
2779
                    CPULogItem *item;
2780
                    
2781
                    mask = cpu_str_to_log_mask(optarg);
2782
                    if (!mask) {
2783
                        printf("Log items (comma separated):\n");
2784
                    for(item = cpu_log_items; item->mask != 0; item++) {
2785
                        printf("%-10s %s\n", item->name, item->help);
2786
                    }
2787
                    exit(1);
2788
                    }
2789
                    cpu_set_log(mask);
2790
                }
2791
                break;
2792
            case QEMU_OPTION_n:
2793
                pstrcpy(network_script, sizeof(network_script), optarg);
2794
                break;
2795
#ifdef CONFIG_GDBSTUB
2796
            case QEMU_OPTION_s:
2797
                use_gdbstub = 1;
2798
                break;
2799
            case QEMU_OPTION_p:
2800
                gdbstub_port = atoi(optarg);
2801
                break;
2802
#endif
2803
            case QEMU_OPTION_L:
2804
                bios_dir = optarg;
2805
                break;
2806
            case QEMU_OPTION_S:
2807
                start_emulation = 0;
2808
                break;
2809
            case QEMU_OPTION_pci:
2810
                pci_enabled = 1;
2811
                break;
2812
            case QEMU_OPTION_isa:
2813
                pci_enabled = 0;
2814
                break;
2815
            case QEMU_OPTION_prep:
2816
                prep_enabled = 1;
2817
                break;
2818
            case QEMU_OPTION_localtime:
2819
                rtc_utc = 0;
2820
                break;
2821
            case QEMU_OPTION_cirrusvga:
2822
                cirrus_vga_enabled = 1;
2823
                break;
2824
            case QEMU_OPTION_std_vga:
2825
                cirrus_vga_enabled = 0;
2826
                break;
2827
            case QEMU_OPTION_g:
2828
                {
2829
                    const char *p;
2830
                    int w, h, depth;
2831
                    p = optarg;
2832
                    w = strtol(p, (char **)&p, 10);
2833
                    if (w <= 0) {
2834
                    graphic_error:
2835
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
2836
                        exit(1);
2837
                    }
2838
                    if (*p != 'x')
2839
                        goto graphic_error;
2840
                    p++;
2841
                    h = strtol(p, (char **)&p, 10);
2842
                    if (h <= 0)
2843
                        goto graphic_error;
2844
                    if (*p == 'x') {
2845
                        p++;
2846
                        depth = strtol(p, (char **)&p, 10);
2847
                        if (depth != 8 && depth != 15 && depth != 16 && 
2848
                            depth != 24 && depth != 32)
2849
                            goto graphic_error;
2850
                    } else if (*p == '\0') {
2851
                        depth = graphic_depth;
2852
                    } else {
2853
                        goto graphic_error;
2854
                    }
2855
                    
2856
                    graphic_width = w;
2857
                    graphic_height = h;
2858
                    graphic_depth = depth;
2859
                }
2860
                break;
2861
            case QEMU_OPTION_monitor:
2862
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
2863
                break;
2864
            case QEMU_OPTION_serial:
2865
                if (serial_device_index >= MAX_SERIAL_PORTS) {
2866
                    fprintf(stderr, "qemu: too many serial ports\n");
2867
                    exit(1);
2868
                }
2869
                pstrcpy(serial_devices[serial_device_index], 
2870
                        sizeof(serial_devices[0]), optarg);
2871
                serial_device_index++;
2872
                break;
2873
            }
2874
        }
2875
    }
2876

    
2877
    linux_boot = (kernel_filename != NULL);
2878
        
2879
    if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
2880
        fd_filename[0] == '\0')
2881
        help();
2882
    
2883
    /* boot to cd by default if no hard disk */
2884
    if (hd_filename[0] == '\0' && boot_device == 'c') {
2885
        if (fd_filename[0] != '\0')
2886
            boot_device = 'a';
2887
        else
2888
            boot_device = 'd';
2889
    }
2890

    
2891
#if !defined(CONFIG_SOFTMMU)
2892
    /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
2893
    {
2894
        static uint8_t stdout_buf[4096];
2895
        setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
2896
    }
2897
#else
2898
    setvbuf(stdout, NULL, _IOLBF, 0);
2899
#endif
2900

    
2901
    /* init host network redirectors */
2902
    if (net_if_type == -1) {
2903
        net_if_type = NET_IF_TUN;
2904
#if defined(CONFIG_SLIRP)
2905
        if (access(network_script, R_OK) < 0) {
2906
            net_if_type = NET_IF_USER;
2907
        }
2908
#endif
2909
    }
2910

    
2911
    for(i = 0; i < nb_nics; i++) {
2912
        NetDriverState *nd = &nd_table[i];
2913
        nd->index = i;
2914
        /* init virtual mac address */
2915
        nd->macaddr[0] = macaddr[0];
2916
        nd->macaddr[1] = macaddr[1];
2917
        nd->macaddr[2] = macaddr[2];
2918
        nd->macaddr[3] = macaddr[3];
2919
        nd->macaddr[4] = macaddr[4];
2920
        nd->macaddr[5] = macaddr[5] + i;
2921
        switch(net_if_type) {
2922
#if defined(CONFIG_SLIRP)
2923
        case NET_IF_USER:
2924
            net_slirp_init(nd);
2925
            break;
2926
#endif
2927
#if !defined(_WIN32)
2928
        case NET_IF_TUN:
2929
            if (i < nb_tun_fds) {
2930
                net_fd_init(nd, tun_fds[i]);
2931
            } else {
2932
                if (net_tun_init(nd) < 0)
2933
                    net_dummy_init(nd);
2934
            }
2935
            break;
2936
#endif
2937
        case NET_IF_DUMMY:
2938
        default:
2939
            net_dummy_init(nd);
2940
            break;
2941
        }
2942
    }
2943

    
2944
    /* init the memory */
2945
    phys_ram_size = ram_size + vga_ram_size + bios_size;
2946

    
2947
#ifdef CONFIG_SOFTMMU
2948
#ifdef _BSD
2949
    /* mallocs are always aligned on BSD. valloc is better for correctness */
2950
    phys_ram_base = valloc(phys_ram_size);
2951
#else
2952
    phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size);
2953
#endif
2954
    if (!phys_ram_base) {
2955
        fprintf(stderr, "Could not allocate physical memory\n");
2956
        exit(1);
2957
    }
2958
#else
2959
    /* as we must map the same page at several addresses, we must use
2960
       a fd */
2961
    {
2962
        const char *tmpdir;
2963

    
2964
        tmpdir = getenv("QEMU_TMPDIR");
2965
        if (!tmpdir)
2966
            tmpdir = "/tmp";
2967
        snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2968
        if (mkstemp(phys_ram_file) < 0) {
2969
            fprintf(stderr, "Could not create temporary memory file '%s'\n", 
2970
                    phys_ram_file);
2971
            exit(1);
2972
        }
2973
        phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2974
        if (phys_ram_fd < 0) {
2975
            fprintf(stderr, "Could not open temporary memory file '%s'\n", 
2976
                    phys_ram_file);
2977
            exit(1);
2978
        }
2979
        ftruncate(phys_ram_fd, phys_ram_size);
2980
        unlink(phys_ram_file);
2981
        phys_ram_base = mmap(get_mmap_addr(phys_ram_size), 
2982
                             phys_ram_size, 
2983
                             PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
2984
                             phys_ram_fd, 0);
2985
        if (phys_ram_base == MAP_FAILED) {
2986
            fprintf(stderr, "Could not map physical memory\n");
2987
            exit(1);
2988
        }
2989
    }
2990
#endif
2991

    
2992
    /* we always create the cdrom drive, even if no disk is there */
2993
    bdrv_init();
2994
    if (has_cdrom) {
2995
        bs_table[2] = bdrv_new("cdrom");
2996
        bdrv_set_type_hint(bs_table[2], BDRV_TYPE_CDROM);
2997
    }
2998

    
2999
    /* open the virtual block devices */
3000
    for(i = 0; i < MAX_DISKS; i++) {
3001
        if (hd_filename[i]) {
3002
            if (!bs_table[i]) {
3003
                char buf[64];
3004
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
3005
                bs_table[i] = bdrv_new(buf);
3006
            }
3007
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot) < 0) {
3008
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
3009
                        hd_filename[i]);
3010
                exit(1);
3011
            }
3012
            if (i == 0 && cyls != 0) 
3013
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
3014
        }
3015
    }
3016

    
3017
    /* we always create at least one floppy disk */
3018
    fd_table[0] = bdrv_new("fda");
3019
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
3020

    
3021
    for(i = 0; i < MAX_FD; i++) {
3022
        if (fd_filename[i]) {
3023
            if (!fd_table[i]) {
3024
                char buf[64];
3025
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
3026
                fd_table[i] = bdrv_new(buf);
3027
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
3028
            }
3029
            if (fd_filename[i] != '\0') {
3030
                if (bdrv_open(fd_table[i], fd_filename[i], snapshot) < 0) {
3031
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
3032
                            fd_filename[i]);
3033
                    exit(1);
3034
                }
3035
            }
3036
        }
3037
    }
3038

    
3039
    /* init CPU state */
3040
    env = cpu_init();
3041
    global_env = env;
3042
    cpu_single_env = env;
3043

    
3044
    register_savevm("timer", 0, 1, timer_save, timer_load, env);
3045
    register_savevm("cpu", 0, 2, cpu_save, cpu_load, env);
3046
    register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
3047
    qemu_register_reset(main_cpu_reset, global_env);
3048

    
3049
    init_ioports();
3050
    cpu_calibrate_ticks();
3051

    
3052
    /* terminal init */
3053
    if (nographic) {
3054
        dumb_display_init(ds);
3055
    } else {
3056
#ifdef CONFIG_SDL
3057
        sdl_display_init(ds);
3058
#else
3059
        dumb_display_init(ds);
3060
#endif
3061
    }
3062

    
3063
    vga_console = graphic_console_init(ds);
3064
    
3065
    monitor_hd = qemu_chr_open(monitor_device);
3066
    if (!monitor_hd) {
3067
        fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
3068
        exit(1);
3069
    }
3070
    monitor_init(monitor_hd, !nographic);
3071

    
3072
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
3073
        if (serial_devices[i][0] != '\0') {
3074
            serial_hds[i] = qemu_chr_open(serial_devices[i]);
3075
            if (!serial_hds[i]) {
3076
                fprintf(stderr, "qemu: could not open serial device '%s'\n", 
3077
                        serial_devices[i]);
3078
                exit(1);
3079
            }
3080
            if (!strcmp(serial_devices[i], "vc"))
3081
                qemu_chr_printf(serial_hds[i], "serial%d console\n", i);
3082
        }
3083
    }
3084

    
3085
    /* setup cpu signal handlers for MMU / self modifying code handling */
3086
#if !defined(CONFIG_SOFTMMU)
3087
    
3088
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
3089
    {
3090
        stack_t stk;
3091
        signal_stack = memalign(16, SIGNAL_STACK_SIZE);
3092
        stk.ss_sp = signal_stack;
3093
        stk.ss_size = SIGNAL_STACK_SIZE;
3094
        stk.ss_flags = 0;
3095

    
3096
        if (sigaltstack(&stk, NULL) < 0) {
3097
            perror("sigaltstack");
3098
            exit(1);
3099
        }
3100
    }
3101
#endif
3102
    {
3103
        struct sigaction act;
3104
        
3105
        sigfillset(&act.sa_mask);
3106
        act.sa_flags = SA_SIGINFO;
3107
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
3108
        act.sa_flags |= SA_ONSTACK;
3109
#endif
3110
        act.sa_sigaction = host_segv_handler;
3111
        sigaction(SIGSEGV, &act, NULL);
3112
        sigaction(SIGBUS, &act, NULL);
3113
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
3114
        sigaction(SIGFPE, &act, NULL);
3115
#endif
3116
    }
3117
#endif
3118

    
3119
#ifndef _WIN32
3120
    {
3121
        struct sigaction act;
3122
        sigfillset(&act.sa_mask);
3123
        act.sa_flags = 0;
3124
        act.sa_handler = SIG_IGN;
3125
        sigaction(SIGPIPE, &act, NULL);
3126
    }
3127
#endif
3128
    init_timers();
3129

    
3130
#if defined(TARGET_I386)
3131
    pc_init(ram_size, vga_ram_size, boot_device,
3132
            ds, fd_filename, snapshot,
3133
            kernel_filename, kernel_cmdline, initrd_filename);
3134
#elif defined(TARGET_PPC)
3135
    ppc_init(ram_size, vga_ram_size, boot_device,
3136
             ds, fd_filename, snapshot,
3137
             kernel_filename, kernel_cmdline, initrd_filename);
3138
#endif
3139

    
3140
    gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
3141
    qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
3142

    
3143
#ifdef CONFIG_GDBSTUB
3144
    if (use_gdbstub) {
3145
        if (gdbserver_start(gdbstub_port) < 0) {
3146
            fprintf(stderr, "Could not open gdbserver socket on port %d\n", 
3147
                    gdbstub_port);
3148
            exit(1);
3149
        } else {
3150
            printf("Waiting gdb connection on port %d\n", gdbstub_port);
3151
        }
3152
    } else 
3153
#endif
3154
    {
3155
        /* XXX: simplify init */
3156
        read_passwords();
3157
        if (start_emulation) {
3158
            vm_start();
3159
        }
3160
    }
3161
    main_loop();
3162
    quit_timers();
3163
    return 0;
3164
}