Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 8f40c388

History | View | Annotate | Download (55.8 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU Linux User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation (Linux host only). In this mode, QEMU can launch
61
Linux processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@end itemize
83

    
84
For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
85

    
86
@node Installation
87
@chapter Installation
88

    
89
If you want to compile QEMU yourself, see @ref{compilation}.
90

    
91
@menu
92
* install_linux::   Linux
93
* install_windows:: Windows
94
* install_mac::     Macintosh
95
@end menu
96

    
97
@node install_linux
98
@section Linux
99

    
100
If a precompiled package is available for your distribution - you just
101
have to install it. Otherwise, see @ref{compilation}.
102

    
103
@node install_windows
104
@section Windows
105

    
106
Download the experimental binary installer at
107
@url{http://www.free.oszoo.org/@/download.html}.
108

    
109
@node install_mac
110
@section Mac OS X
111

    
112
Download the experimental binary installer at
113
@url{http://www.free.oszoo.org/@/download.html}.
114

    
115
@node QEMU PC System emulator
116
@chapter QEMU PC System emulator
117

    
118
@menu
119
* pcsys_introduction:: Introduction
120
* pcsys_quickstart::   Quick Start
121
* sec_invocation::     Invocation
122
* pcsys_keys::         Keys
123
* pcsys_monitor::      QEMU Monitor
124
* disk_images::        Disk Images
125
* pcsys_network::      Network emulation
126
* direct_linux_boot::  Direct Linux Boot
127
* pcsys_usb::          USB emulation
128
* gdb_usage::          GDB usage
129
* pcsys_os_specific::  Target OS specific information
130
@end menu
131

    
132
@node pcsys_introduction
133
@section Introduction
134

    
135
@c man begin DESCRIPTION
136

    
137
The QEMU PC System emulator simulates the
138
following peripherals:
139

    
140
@itemize @minus
141
@item 
142
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143
@item
144
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145
extensions (hardware level, including all non standard modes).
146
@item
147
PS/2 mouse and keyboard
148
@item 
149
2 PCI IDE interfaces with hard disk and CD-ROM support
150
@item
151
Floppy disk
152
@item 
153
NE2000 PCI network adapters
154
@item
155
Serial ports
156
@item
157
Creative SoundBlaster 16 sound card
158
@item
159
ENSONIQ AudioPCI ES1370 sound card
160
@item
161
Adlib(OPL2) - Yamaha YM3812 compatible chip
162
@item
163
PCI UHCI USB controller and a virtual USB hub.
164
@end itemize
165

    
166
SMP is supported with up to 255 CPUs.
167

    
168
Note that adlib is only available when QEMU was configured with
169
-enable-adlib
170

    
171
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172
VGA BIOS.
173

    
174
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175

    
176
@c man end
177

    
178
@node pcsys_quickstart
179
@section Quick Start
180

    
181
Download and uncompress the linux image (@file{linux.img}) and type:
182

    
183
@example
184
qemu linux.img
185
@end example
186

    
187
Linux should boot and give you a prompt.
188

    
189
@node sec_invocation
190
@section Invocation
191

    
192
@example
193
@c man begin SYNOPSIS
194
usage: qemu [options] [disk_image]
195
@c man end
196
@end example
197

    
198
@c man begin OPTIONS
199
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
200

    
201
General options:
202
@table @option
203
@item -M machine
204
Select the emulated machine (@code{-M ?} for list)
205

    
206
@item -fda file
207
@item -fdb file
208
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210

    
211
@item -hda file
212
@item -hdb file
213
@item -hdc file
214
@item -hdd file
215
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216

    
217
@item -cdrom file
218
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219
@option{-cdrom} at the same time). You can use the host CD-ROM by
220
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221

    
222
@item -boot [a|c|d]
223
Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224
the default.
225

    
226
@item -snapshot
227
Write to temporary files instead of disk image files. In this case,
228
the raw disk image you use is not written back. You can however force
229
the write back by pressing @key{C-a s} (@pxref{disk_images}). 
230

    
231
@item -no-fd-bootchk
232
Disable boot signature checking for floppy disks in Bochs BIOS. It may
233
be needed to boot from old floppy disks.
234

    
235
@item -m megs
236
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237

    
238
@item -smp n
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported.
241

    
242
@item -nographic
243

    
244
Normally, QEMU uses SDL to display the VGA output. With this option,
245
you can totally disable graphical output so that QEMU is a simple
246
command line application. The emulated serial port is redirected on
247
the console. Therefore, you can still use QEMU to debug a Linux kernel
248
with a serial console.
249

    
250
@item -vnc d
251

    
252
Normally, QEMU uses SDL to display the VGA output.  With this option,
253
you can have QEMU listen on VNC display @var{d} and redirect the VGA
254
display over the VNC session.  It is very useful to enable the usb
255
tablet device when using this option (option @option{-usbdevice
256
tablet}). When using the VNC display, you must use the @option{-k}
257
option to set the keyboard layout.
258

    
259
@item -k language
260

    
261
Use keyboard layout @var{language} (for example @code{fr} for
262
French). This option is only needed where it is not easy to get raw PC
263
keycodes (e.g. on Macs, with some X11 servers or with a VNC
264
display). You don't normally need to use it on PC/Linux or PC/Windows
265
hosts.
266

    
267
The available layouts are:
268
@example
269
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
270
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
271
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
272
@end example
273

    
274
The default is @code{en-us}.
275

    
276
@item -audio-help
277

    
278
Will show the audio subsystem help: list of drivers, tunable
279
parameters.
280

    
281
@item -soundhw card1,card2,... or -soundhw all
282

    
283
Enable audio and selected sound hardware. Use ? to print all
284
available sound hardware.
285

    
286
@example
287
qemu -soundhw sb16,adlib hda
288
qemu -soundhw es1370 hda
289
qemu -soundhw all hda
290
qemu -soundhw ?
291
@end example
292

    
293
@item -localtime
294
Set the real time clock to local time (the default is to UTC
295
time). This option is needed to have correct date in MS-DOS or
296
Windows.
297

    
298
@item -full-screen
299
Start in full screen.
300

    
301
@item -pidfile file
302
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
303
from a script.
304

    
305
@item -win2k-hack
306
Use it when installing Windows 2000 to avoid a disk full bug. After
307
Windows 2000 is installed, you no longer need this option (this option
308
slows down the IDE transfers).
309

    
310
@end table
311

    
312
USB options:
313
@table @option
314

    
315
@item -usb
316
Enable the USB driver (will be the default soon)
317

    
318
@item -usbdevice devname
319
Add the USB device @var{devname}. @xref{usb_devices}.
320
@end table
321

    
322
Network options:
323

    
324
@table @option
325

    
326
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
327
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
328
= 0 is the default). The NIC is currently an NE2000 on the PC
329
target. Optionally, the MAC address can be changed. If no
330
@option{-net} option is specified, a single NIC is created.
331
Qemu can emulate several different models of network card.  Valid values for
332
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
333
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
334
targets.
335

    
336
@item -net user[,vlan=n][,hostname=name]
337
Use the user mode network stack which requires no administrator
338
priviledge to run.  @option{hostname=name} can be used to specify the client
339
hostname reported by the builtin DHCP server.
340

    
341
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
342
Connect the host TAP network interface @var{name} to VLAN @var{n} and
343
use the network script @var{file} to configure it. The default
344
network script is @file{/etc/qemu-ifup}. If @var{name} is not
345
provided, the OS automatically provides one.  @option{fd=h} can be
346
used to specify the handle of an already opened host TAP interface. Example:
347

    
348
@example
349
qemu linux.img -net nic -net tap
350
@end example
351

    
352
More complicated example (two NICs, each one connected to a TAP device)
353
@example
354
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
355
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
356
@end example
357

    
358

    
359
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
360

    
361
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
362
machine using a TCP socket connection. If @option{listen} is
363
specified, QEMU waits for incoming connections on @var{port}
364
(@var{host} is optional). @option{connect} is used to connect to
365
another QEMU instance using the @option{listen} option. @option{fd=h}
366
specifies an already opened TCP socket.
367

    
368
Example:
369
@example
370
# launch a first QEMU instance
371
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
372
               -net socket,listen=:1234
373
# connect the VLAN 0 of this instance to the VLAN 0
374
# of the first instance
375
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
376
               -net socket,connect=127.0.0.1:1234
377
@end example
378

    
379
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
380

    
381
Create a VLAN @var{n} shared with another QEMU virtual
382
machines using a UDP multicast socket, effectively making a bus for 
383
every QEMU with same multicast address @var{maddr} and @var{port}.
384
NOTES:
385
@enumerate
386
@item 
387
Several QEMU can be running on different hosts and share same bus (assuming 
388
correct multicast setup for these hosts).
389
@item
390
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
391
@url{http://user-mode-linux.sf.net}.
392
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
393
@end enumerate
394

    
395
Example:
396
@example
397
# launch one QEMU instance
398
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
399
               -net socket,mcast=230.0.0.1:1234
400
# launch another QEMU instance on same "bus"
401
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
402
               -net socket,mcast=230.0.0.1:1234
403
# launch yet another QEMU instance on same "bus"
404
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
405
               -net socket,mcast=230.0.0.1:1234
406
@end example
407

    
408
Example (User Mode Linux compat.):
409
@example
410
# launch QEMU instance (note mcast address selected
411
# is UML's default)
412
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
413
               -net socket,mcast=239.192.168.1:1102
414
# launch UML
415
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
416
@end example
417

    
418
@item -net none
419
Indicate that no network devices should be configured. It is used to
420
override the default configuration (@option{-net nic -net user}) which
421
is activated if no @option{-net} options are provided.
422

    
423
@item -tftp prefix
424
When using the user mode network stack, activate a built-in TFTP
425
server. All filenames beginning with @var{prefix} can be downloaded
426
from the host to the guest using a TFTP client. The TFTP client on the
427
guest must be configured in binary mode (use the command @code{bin} of
428
the Unix TFTP client). The host IP address on the guest is as usual
429
10.0.2.2.
430

    
431
@item -smb dir
432
When using the user mode network stack, activate a built-in SMB
433
server so that Windows OSes can access to the host files in @file{dir}
434
transparently.
435

    
436
In the guest Windows OS, the line:
437
@example
438
10.0.2.4 smbserver
439
@end example
440
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
441
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
442

    
443
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
444

    
445
Note that a SAMBA server must be installed on the host OS in
446
@file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
447
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
448

    
449
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
450

    
451
When using the user mode network stack, redirect incoming TCP or UDP
452
connections to the host port @var{host-port} to the guest
453
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
454
is not specified, its value is 10.0.2.15 (default address given by the
455
built-in DHCP server).
456

    
457
For example, to redirect host X11 connection from screen 1 to guest
458
screen 0, use the following:
459

    
460
@example
461
# on the host
462
qemu -redir tcp:6001::6000 [...]
463
# this host xterm should open in the guest X11 server
464
xterm -display :1
465
@end example
466

    
467
To redirect telnet connections from host port 5555 to telnet port on
468
the guest, use the following:
469

    
470
@example
471
# on the host
472
qemu -redir tcp:5555::23 [...]
473
telnet localhost 5555
474
@end example
475

    
476
Then when you use on the host @code{telnet localhost 5555}, you
477
connect to the guest telnet server.
478

    
479
@end table
480

    
481
Linux boot specific: When using these options, you can use a given
482
Linux kernel without installing it in the disk image. It can be useful
483
for easier testing of various kernels.
484

    
485
@table @option
486

    
487
@item -kernel bzImage 
488
Use @var{bzImage} as kernel image.
489

    
490
@item -append cmdline 
491
Use @var{cmdline} as kernel command line
492

    
493
@item -initrd file
494
Use @var{file} as initial ram disk.
495

    
496
@end table
497

    
498
Debug/Expert options:
499
@table @option
500

    
501
@item -serial dev
502
Redirect the virtual serial port to host character device
503
@var{dev}. The default device is @code{vc} in graphical mode and
504
@code{stdio} in non graphical mode.
505

    
506
This option can be used several times to simulate up to 4 serials
507
ports.
508

    
509
Use @code{-serial none} to disable all serial ports.
510

    
511
Available character devices are:
512
@table @code
513
@item vc
514
Virtual console
515
@item pty
516
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
517
@item none
518
No device is allocated.
519
@item null
520
void device
521
@item /dev/XXX
522
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
523
parameters are set according to the emulated ones.
524
@item /dev/parportN
525
[Linux only, parallel port only] Use host parallel port
526
@var{N}. Currently only SPP parallel port features can be used.
527
@item file:filename
528
Write output to filename. No character can be read.
529
@item stdio
530
[Unix only] standard input/output
531
@item pipe:filename
532
name pipe @var{filename}
533
@item COMn
534
[Windows only] Use host serial port @var{n}
535
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
536
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
537

    
538
If you just want a simple readonly console you can use @code{netcat} or
539
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
540
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
541
will appear in the netconsole session.
542

    
543
If you plan to send characters back via netconsole or you want to stop
544
and start qemu a lot of times, you should have qemu use the same
545
source port each time by using something like @code{-serial
546
udp::4555@@:4556} to qemu. Another approach is to use a patched
547
version of netcat which can listen to a TCP port and send and receive
548
characters via udp.  If you have a patched version of netcat which
549
activates telnet remote echo and single char transfer, then you can
550
use the following options to step up a netcat redirector to allow
551
telnet on port 5555 to access the qemu port.
552
@table @code
553
@item Qemu Options:
554
-serial udp::4555@@:4556
555
@item netcat options:
556
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
557
@item telnet options:
558
localhost 5555
559
@end table
560

    
561

    
562
@item tcp:[host]:port[,server][,nowait]
563
The TCP Net Console has two modes of operation.  It can send the serial
564
I/O to a location or wait for a connection from a location.  By default
565
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
566
the @var{server} option QEMU will wait for a client socket application
567
to connect to the port before continuing, unless the @code{nowait}
568
option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
569
one TCP connection at a time is accepted. You can use @code{telnet} to
570
connect to the corresponding character device.
571
@table @code
572
@item Example to send tcp console to 192.168.0.2 port 4444
573
-serial tcp:192.168.0.2:4444
574
@item Example to listen and wait on port 4444 for connection
575
-serial tcp::4444,server
576
@item Example to not wait and listen on ip 192.168.0.100 port 4444
577
-serial tcp:192.168.0.100:4444,server,nowait
578
@end table
579

    
580
@item telnet:host:port[,server][,nowait]
581
The telnet protocol is used instead of raw tcp sockets.  The options
582
work the same as if you had specified @code{-serial tcp}.  The
583
difference is that the port acts like a telnet server or client using
584
telnet option negotiation.  This will also allow you to send the
585
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
586
sequence.  Typically in unix telnet you do it with Control-] and then
587
type "send break" followed by pressing the enter key.
588

    
589
@end table
590

    
591
@item -parallel dev
592
Redirect the virtual parallel port to host device @var{dev} (same
593
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
594
be used to use hardware devices connected on the corresponding host
595
parallel port.
596

    
597
This option can be used several times to simulate up to 3 parallel
598
ports.
599

    
600
Use @code{-parallel none} to disable all parallel ports.
601

    
602
@item -monitor dev
603
Redirect the monitor to host device @var{dev} (same devices as the
604
serial port).
605
The default device is @code{vc} in graphical mode and @code{stdio} in
606
non graphical mode.
607

    
608
@item -s
609
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
610
@item -p port
611
Change gdb connection port.
612
@item -S
613
Do not start CPU at startup (you must type 'c' in the monitor).
614
@item -d             
615
Output log in /tmp/qemu.log
616
@item -hdachs c,h,s,[,t]
617
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
618
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
619
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
620
all thoses parameters. This option is useful for old MS-DOS disk
621
images.
622

    
623
@item -L path
624
Set the directory for the BIOS, VGA BIOS and keymaps.
625

    
626
@item -std-vga
627
Simulate a standard VGA card with Bochs VBE extensions (default is
628
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
629
VBE extensions (e.g. Windows XP) and if you want to use high
630
resolution modes (>= 1280x1024x16) then you should use this option.
631

    
632
@item -no-acpi
633
Disable ACPI (Advanced Configuration and Power Interface) support. Use
634
it if your guest OS complains about ACPI problems (PC target machine
635
only).
636

    
637
@item -loadvm file
638
Start right away with a saved state (@code{loadvm} in monitor)
639
@end table
640

    
641
@c man end
642

    
643
@node pcsys_keys
644
@section Keys
645

    
646
@c man begin OPTIONS
647

    
648
During the graphical emulation, you can use the following keys:
649
@table @key
650
@item Ctrl-Alt-f
651
Toggle full screen
652

    
653
@item Ctrl-Alt-n
654
Switch to virtual console 'n'. Standard console mappings are:
655
@table @emph
656
@item 1
657
Target system display
658
@item 2
659
Monitor
660
@item 3
661
Serial port
662
@end table
663

    
664
@item Ctrl-Alt
665
Toggle mouse and keyboard grab.
666
@end table
667

    
668
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
669
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
670

    
671
During emulation, if you are using the @option{-nographic} option, use
672
@key{Ctrl-a h} to get terminal commands:
673

    
674
@table @key
675
@item Ctrl-a h
676
Print this help
677
@item Ctrl-a x    
678
Exit emulatior
679
@item Ctrl-a s    
680
Save disk data back to file (if -snapshot)
681
@item Ctrl-a b
682
Send break (magic sysrq in Linux)
683
@item Ctrl-a c
684
Switch between console and monitor
685
@item Ctrl-a Ctrl-a
686
Send Ctrl-a
687
@end table
688
@c man end
689

    
690
@ignore
691

    
692
@c man begin SEEALSO
693
The HTML documentation of QEMU for more precise information and Linux
694
user mode emulator invocation.
695
@c man end
696

    
697
@c man begin AUTHOR
698
Fabrice Bellard
699
@c man end
700

    
701
@end ignore
702

    
703
@node pcsys_monitor
704
@section QEMU Monitor
705

    
706
The QEMU monitor is used to give complex commands to the QEMU
707
emulator. You can use it to:
708

    
709
@itemize @minus
710

    
711
@item
712
Remove or insert removable medias images
713
(such as CD-ROM or floppies)
714

    
715
@item 
716
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
717
from a disk file.
718

    
719
@item Inspect the VM state without an external debugger.
720

    
721
@end itemize
722

    
723
@subsection Commands
724

    
725
The following commands are available:
726

    
727
@table @option
728

    
729
@item help or ? [cmd]
730
Show the help for all commands or just for command @var{cmd}.
731

    
732
@item commit  
733
Commit changes to the disk images (if -snapshot is used)
734

    
735
@item info subcommand 
736
show various information about the system state
737

    
738
@table @option
739
@item info network
740
show the various VLANs and the associated devices
741
@item info block
742
show the block devices
743
@item info registers
744
show the cpu registers
745
@item info history
746
show the command line history
747
@item info pci
748
show emulated PCI device
749
@item info usb
750
show USB devices plugged on the virtual USB hub
751
@item info usbhost
752
show all USB host devices
753
@item info capture
754
show information about active capturing
755
@item info snapshots
756
show list of VM snapshots
757
@end table
758

    
759
@item q or quit
760
Quit the emulator.
761

    
762
@item eject [-f] device
763
Eject a removable media (use -f to force it).
764

    
765
@item change device filename
766
Change a removable media.
767

    
768
@item screendump filename
769
Save screen into PPM image @var{filename}.
770

    
771
@item wavcapture filename [frequency [bits [channels]]]
772
Capture audio into @var{filename}. Using sample rate @var{frequency}
773
bits per sample @var{bits} and number of channels @var{channels}.
774

    
775
Defaults:
776
@itemize @minus
777
@item Sample rate = 44100 Hz - CD quality
778
@item Bits = 16
779
@item Number of channels = 2 - Stereo
780
@end itemize
781

    
782
@item stopcapture index
783
Stop capture with a given @var{index}, index can be obtained with
784
@example
785
info capture
786
@end example
787

    
788
@item log item1[,...]
789
Activate logging of the specified items to @file{/tmp/qemu.log}.
790

    
791
@item savevm [tag|id]
792
Create a snapshot of the whole virtual machine. If @var{tag} is
793
provided, it is used as human readable identifier. If there is already
794
a snapshot with the same tag or ID, it is replaced. More info at
795
@ref{vm_snapshots}.
796

    
797
@item loadvm tag|id
798
Set the whole virtual machine to the snapshot identified by the tag
799
@var{tag} or the unique snapshot ID @var{id}.
800

    
801
@item delvm tag|id
802
Delete the snapshot identified by @var{tag} or @var{id}.
803

    
804
@item stop
805
Stop emulation.
806

    
807
@item c or cont
808
Resume emulation.
809

    
810
@item gdbserver [port]
811
Start gdbserver session (default port=1234)
812

    
813
@item x/fmt addr
814
Virtual memory dump starting at @var{addr}.
815

    
816
@item xp /fmt addr
817
Physical memory dump starting at @var{addr}.
818

    
819
@var{fmt} is a format which tells the command how to format the
820
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
821

    
822
@table @var
823
@item count 
824
is the number of items to be dumped.
825

    
826
@item format
827
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
828
c (char) or i (asm instruction).
829

    
830
@item size
831
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
832
@code{h} or @code{w} can be specified with the @code{i} format to
833
respectively select 16 or 32 bit code instruction size.
834

    
835
@end table
836

    
837
Examples: 
838
@itemize
839
@item
840
Dump 10 instructions at the current instruction pointer:
841
@example 
842
(qemu) x/10i $eip
843
0x90107063:  ret
844
0x90107064:  sti
845
0x90107065:  lea    0x0(%esi,1),%esi
846
0x90107069:  lea    0x0(%edi,1),%edi
847
0x90107070:  ret
848
0x90107071:  jmp    0x90107080
849
0x90107073:  nop
850
0x90107074:  nop
851
0x90107075:  nop
852
0x90107076:  nop
853
@end example
854

    
855
@item
856
Dump 80 16 bit values at the start of the video memory.
857
@smallexample 
858
(qemu) xp/80hx 0xb8000
859
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
860
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
861
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
862
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
863
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
864
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
865
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
866
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
867
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
868
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
869
@end smallexample
870
@end itemize
871

    
872
@item p or print/fmt expr
873

    
874
Print expression value. Only the @var{format} part of @var{fmt} is
875
used.
876

    
877
@item sendkey keys
878

    
879
Send @var{keys} to the emulator. Use @code{-} to press several keys
880
simultaneously. Example:
881
@example
882
sendkey ctrl-alt-f1
883
@end example
884

    
885
This command is useful to send keys that your graphical user interface
886
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
887

    
888
@item system_reset
889

    
890
Reset the system.
891

    
892
@item usb_add devname
893

    
894
Add the USB device @var{devname}.  For details of available devices see
895
@ref{usb_devices}
896

    
897
@item usb_del devname
898

    
899
Remove the USB device @var{devname} from the QEMU virtual USB
900
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
901
command @code{info usb} to see the devices you can remove.
902

    
903
@end table
904

    
905
@subsection Integer expressions
906

    
907
The monitor understands integers expressions for every integer
908
argument. You can use register names to get the value of specifics
909
CPU registers by prefixing them with @emph{$}.
910

    
911
@node disk_images
912
@section Disk Images
913

    
914
Since version 0.6.1, QEMU supports many disk image formats, including
915
growable disk images (their size increase as non empty sectors are
916
written), compressed and encrypted disk images. Version 0.8.3 added
917
the new qcow2 disk image format which is essential to support VM
918
snapshots.
919

    
920
@menu
921
* disk_images_quickstart::    Quick start for disk image creation
922
* disk_images_snapshot_mode:: Snapshot mode
923
* vm_snapshots::              VM snapshots
924
* qemu_img_invocation::       qemu-img Invocation
925
* host_drives::               Using host drives
926
* disk_images_fat_images::    Virtual FAT disk images
927
@end menu
928

    
929
@node disk_images_quickstart
930
@subsection Quick start for disk image creation
931

    
932
You can create a disk image with the command:
933
@example
934
qemu-img create myimage.img mysize
935
@end example
936
where @var{myimage.img} is the disk image filename and @var{mysize} is its
937
size in kilobytes. You can add an @code{M} suffix to give the size in
938
megabytes and a @code{G} suffix for gigabytes.
939

    
940
See @ref{qemu_img_invocation} for more information.
941

    
942
@node disk_images_snapshot_mode
943
@subsection Snapshot mode
944

    
945
If you use the option @option{-snapshot}, all disk images are
946
considered as read only. When sectors in written, they are written in
947
a temporary file created in @file{/tmp}. You can however force the
948
write back to the raw disk images by using the @code{commit} monitor
949
command (or @key{C-a s} in the serial console).
950

    
951
@node vm_snapshots
952
@subsection VM snapshots
953

    
954
VM snapshots are snapshots of the complete virtual machine including
955
CPU state, RAM, device state and the content of all the writable
956
disks. In order to use VM snapshots, you must have at least one non
957
removable and writable block device using the @code{qcow2} disk image
958
format. Normally this device is the first virtual hard drive.
959

    
960
Use the monitor command @code{savevm} to create a new VM snapshot or
961
replace an existing one. A human readable name can be assigned to each
962
snapshot in addition to its numerical ID.
963

    
964
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
965
a VM snapshot. @code{info snapshots} lists the available snapshots
966
with their associated information:
967

    
968
@example
969
(qemu) info snapshots
970
Snapshot devices: hda
971
Snapshot list (from hda):
972
ID        TAG                 VM SIZE                DATE       VM CLOCK
973
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
974
2                                 40M 2006-08-06 12:43:29   00:00:18.633
975
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
976
@end example
977

    
978
A VM snapshot is made of a VM state info (its size is shown in
979
@code{info snapshots}) and a snapshot of every writable disk image.
980
The VM state info is stored in the first @code{qcow2} non removable
981
and writable block device. The disk image snapshots are stored in
982
every disk image. The size of a snapshot in a disk image is difficult
983
to evaluate and is not shown by @code{info snapshots} because the
984
associated disk sectors are shared among all the snapshots to save
985
disk space (otherwise each snapshot would need a full copy of all the
986
disk images).
987

    
988
When using the (unrelated) @code{-snapshot} option
989
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
990
but they are deleted as soon as you exit QEMU.
991

    
992
VM snapshots currently have the following known limitations:
993
@itemize
994
@item 
995
They cannot cope with removable devices if they are removed or
996
inserted after a snapshot is done.
997
@item 
998
A few device drivers still have incomplete snapshot support so their
999
state is not saved or restored properly (in particular USB).
1000
@end itemize
1001

    
1002
@node qemu_img_invocation
1003
@subsection @code{qemu-img} Invocation
1004

    
1005
@include qemu-img.texi
1006

    
1007
@node host_drives
1008
@subsection Using host drives
1009

    
1010
In addition to disk image files, QEMU can directly access host
1011
devices. We describe here the usage for QEMU version >= 0.8.3.
1012

    
1013
@subsubsection Linux
1014

    
1015
On Linux, you can directly use the host device filename instead of a
1016
disk image filename provided you have enough proviledge to access
1017
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1018
@file{/dev/fd0} for the floppy.
1019

    
1020
@table @code
1021
@item CD
1022
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1023
specific code to detect CDROM insertion or removal. CDROM ejection by
1024
the guest OS is supported. Currently only data CDs are supported.
1025
@item Floppy
1026
You can specify a floppy device even if no floppy is loaded. Floppy
1027
removal is currently not detected accurately (if you change floppy
1028
without doing floppy access while the floppy is not loaded, the guest
1029
OS will think that the same floppy is loaded).
1030
@item Hard disks
1031
Hard disks can be used. Normally you must specify the whole disk
1032
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1033
see it as a partitioned disk. WARNING: unless you know what you do, it
1034
is better to only make READ-ONLY accesses to the hard disk otherwise
1035
you may corrupt your host data (use the @option{-snapshot} command
1036
line option or modify the device permissions accordingly).
1037
@end table
1038

    
1039
@subsubsection Windows
1040

    
1041
On Windows you can use any host drives as QEMU drive. The prefered
1042
syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1043
@file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1044
to the first CDROM drive.
1045

    
1046
Currently there is no specific code to handle removable medias, so it
1047
is better to use the @code{change} or @code{eject} monitor commands to
1048
change or eject media.
1049

    
1050
@subsubsection Mac OS X
1051

    
1052
@file{/dev/cdrom} is an alias to the first CDROM. 
1053

    
1054
Currently there is no specific code to handle removable medias, so it
1055
is better to use the @code{change} or @code{eject} monitor commands to
1056
change or eject media.
1057

    
1058
@node disk_images_fat_images
1059
@subsection Virtual FAT disk images
1060

    
1061
QEMU can automatically create a virtual FAT disk image from a
1062
directory tree. In order to use it, just type:
1063

    
1064
@example 
1065
qemu linux.img -hdb fat:/my_directory
1066
@end example
1067

    
1068
Then you access access to all the files in the @file{/my_directory}
1069
directory without having to copy them in a disk image or to export
1070
them via SAMBA or NFS. The default access is @emph{read-only}.
1071

    
1072
Floppies can be emulated with the @code{:floppy:} option:
1073

    
1074
@example 
1075
qemu linux.img -fda fat:floppy:/my_directory
1076
@end example
1077

    
1078
A read/write support is available for testing (beta stage) with the
1079
@code{:rw:} option:
1080

    
1081
@example 
1082
qemu linux.img -fda fat:floppy:rw:/my_directory
1083
@end example
1084

    
1085
What you should @emph{never} do:
1086
@itemize
1087
@item use non-ASCII filenames ;
1088
@item use "-snapshot" together with ":rw:" ;
1089
@item expect it to work when loadvm'ing ;
1090
@item write to the FAT directory on the host system while accessing it with the guest system.
1091
@end itemize
1092

    
1093
@node pcsys_network
1094
@section Network emulation
1095

    
1096
QEMU can simulate several networks cards (NE2000 boards on the PC
1097
target) and can connect them to an arbitrary number of Virtual Local
1098
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1099
VLAN. VLAN can be connected between separate instances of QEMU to
1100
simulate large networks. For simpler usage, a non priviledged user mode
1101
network stack can replace the TAP device to have a basic network
1102
connection.
1103

    
1104
@subsection VLANs
1105

    
1106
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1107
connection between several network devices. These devices can be for
1108
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1109
(TAP devices).
1110

    
1111
@subsection Using TAP network interfaces
1112

    
1113
This is the standard way to connect QEMU to a real network. QEMU adds
1114
a virtual network device on your host (called @code{tapN}), and you
1115
can then configure it as if it was a real ethernet card.
1116

    
1117
@subsubsection Linux host
1118

    
1119
As an example, you can download the @file{linux-test-xxx.tar.gz}
1120
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1121
configure properly @code{sudo} so that the command @code{ifconfig}
1122
contained in @file{qemu-ifup} can be executed as root. You must verify
1123
that your host kernel supports the TAP network interfaces: the
1124
device @file{/dev/net/tun} must be present.
1125

    
1126
See @ref{sec_invocation} to have examples of command lines using the
1127
TAP network interfaces.
1128

    
1129
@subsubsection Windows host
1130

    
1131
There is a virtual ethernet driver for Windows 2000/XP systems, called
1132
TAP-Win32. But it is not included in standard QEMU for Windows,
1133
so you will need to get it separately. It is part of OpenVPN package,
1134
so download OpenVPN from : @url{http://openvpn.net/}.
1135

    
1136
@subsection Using the user mode network stack
1137

    
1138
By using the option @option{-net user} (default configuration if no
1139
@option{-net} option is specified), QEMU uses a completely user mode
1140
network stack (you don't need root priviledge to use the virtual
1141
network). The virtual network configuration is the following:
1142

    
1143
@example
1144

    
1145
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1146
                           |          (10.0.2.2)
1147
                           |
1148
                           ---->  DNS server (10.0.2.3)
1149
                           |     
1150
                           ---->  SMB server (10.0.2.4)
1151
@end example
1152

    
1153
The QEMU VM behaves as if it was behind a firewall which blocks all
1154
incoming connections. You can use a DHCP client to automatically
1155
configure the network in the QEMU VM. The DHCP server assign addresses
1156
to the hosts starting from 10.0.2.15.
1157

    
1158
In order to check that the user mode network is working, you can ping
1159
the address 10.0.2.2 and verify that you got an address in the range
1160
10.0.2.x from the QEMU virtual DHCP server.
1161

    
1162
Note that @code{ping} is not supported reliably to the internet as it
1163
would require root priviledges. It means you can only ping the local
1164
router (10.0.2.2).
1165

    
1166
When using the built-in TFTP server, the router is also the TFTP
1167
server.
1168

    
1169
When using the @option{-redir} option, TCP or UDP connections can be
1170
redirected from the host to the guest. It allows for example to
1171
redirect X11, telnet or SSH connections.
1172

    
1173
@subsection Connecting VLANs between QEMU instances
1174

    
1175
Using the @option{-net socket} option, it is possible to make VLANs
1176
that span several QEMU instances. See @ref{sec_invocation} to have a
1177
basic example.
1178

    
1179
@node direct_linux_boot
1180
@section Direct Linux Boot
1181

    
1182
This section explains how to launch a Linux kernel inside QEMU without
1183
having to make a full bootable image. It is very useful for fast Linux
1184
kernel testing.
1185

    
1186
The syntax is:
1187
@example
1188
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1189
@end example
1190

    
1191
Use @option{-kernel} to provide the Linux kernel image and
1192
@option{-append} to give the kernel command line arguments. The
1193
@option{-initrd} option can be used to provide an INITRD image.
1194

    
1195
When using the direct Linux boot, a disk image for the first hard disk
1196
@file{hda} is required because its boot sector is used to launch the
1197
Linux kernel.
1198

    
1199
If you do not need graphical output, you can disable it and redirect
1200
the virtual serial port and the QEMU monitor to the console with the
1201
@option{-nographic} option. The typical command line is:
1202
@example
1203
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1204
     -append "root=/dev/hda console=ttyS0" -nographic
1205
@end example
1206

    
1207
Use @key{Ctrl-a c} to switch between the serial console and the
1208
monitor (@pxref{pcsys_keys}).
1209

    
1210
@node pcsys_usb
1211
@section USB emulation
1212

    
1213
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1214
virtual USB devices or real host USB devices (experimental, works only
1215
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1216
as necessary to connect multiple USB devices.
1217

    
1218
@menu
1219
* usb_devices::
1220
* host_usb_devices::
1221
@end menu
1222
@node usb_devices
1223
@subsection Connecting USB devices
1224

    
1225
USB devices can be connected with the @option{-usbdevice} commandline option
1226
or the @code{usb_add} monitor command.  Available devices are:
1227

    
1228
@table @var
1229
@item @code{mouse}
1230
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1231
@item @code{tablet}
1232
Pointer device that uses absolute coordinates (like a touchscreen).
1233
This means qemu is able to report the mouse position without having
1234
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1235
@item @code{disk:file}
1236
Mass storage device based on @var{file} (@pxref{disk_images})
1237
@item @code{host:bus.addr}
1238
Pass through the host device identified by @var{bus.addr}
1239
(Linux only)
1240
@item @code{host:vendor_id:product_id}
1241
Pass through the host device identified by @var{vendor_id:product_id}
1242
(Linux only)
1243
@end table
1244

    
1245
@node host_usb_devices
1246
@subsection Using host USB devices on a Linux host
1247

    
1248
WARNING: this is an experimental feature. QEMU will slow down when
1249
using it. USB devices requiring real time streaming (i.e. USB Video
1250
Cameras) are not supported yet.
1251

    
1252
@enumerate
1253
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1254
is actually using the USB device. A simple way to do that is simply to
1255
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1256
to @file{mydriver.o.disabled}.
1257

    
1258
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1259
@example
1260
ls /proc/bus/usb
1261
001  devices  drivers
1262
@end example
1263

    
1264
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1265
@example
1266
chown -R myuid /proc/bus/usb
1267
@end example
1268

    
1269
@item Launch QEMU and do in the monitor:
1270
@example 
1271
info usbhost
1272
  Device 1.2, speed 480 Mb/s
1273
    Class 00: USB device 1234:5678, USB DISK
1274
@end example
1275
You should see the list of the devices you can use (Never try to use
1276
hubs, it won't work).
1277

    
1278
@item Add the device in QEMU by using:
1279
@example 
1280
usb_add host:1234:5678
1281
@end example
1282

    
1283
Normally the guest OS should report that a new USB device is
1284
plugged. You can use the option @option{-usbdevice} to do the same.
1285

    
1286
@item Now you can try to use the host USB device in QEMU.
1287

    
1288
@end enumerate
1289

    
1290
When relaunching QEMU, you may have to unplug and plug again the USB
1291
device to make it work again (this is a bug).
1292

    
1293
@node gdb_usage
1294
@section GDB usage
1295

    
1296
QEMU has a primitive support to work with gdb, so that you can do
1297
'Ctrl-C' while the virtual machine is running and inspect its state.
1298

    
1299
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1300
gdb connection:
1301
@example
1302
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1303
       -append "root=/dev/hda"
1304
Connected to host network interface: tun0
1305
Waiting gdb connection on port 1234
1306
@end example
1307

    
1308
Then launch gdb on the 'vmlinux' executable:
1309
@example
1310
> gdb vmlinux
1311
@end example
1312

    
1313
In gdb, connect to QEMU:
1314
@example
1315
(gdb) target remote localhost:1234
1316
@end example
1317

    
1318
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1319
@example
1320
(gdb) c
1321
@end example
1322

    
1323
Here are some useful tips in order to use gdb on system code:
1324

    
1325
@enumerate
1326
@item
1327
Use @code{info reg} to display all the CPU registers.
1328
@item
1329
Use @code{x/10i $eip} to display the code at the PC position.
1330
@item
1331
Use @code{set architecture i8086} to dump 16 bit code. Then use
1332
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1333
@end enumerate
1334

    
1335
@node pcsys_os_specific
1336
@section Target OS specific information
1337

    
1338
@subsection Linux
1339

    
1340
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1341
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1342
color depth in the guest and the host OS.
1343

    
1344
When using a 2.6 guest Linux kernel, you should add the option
1345
@code{clock=pit} on the kernel command line because the 2.6 Linux
1346
kernels make very strict real time clock checks by default that QEMU
1347
cannot simulate exactly.
1348

    
1349
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1350
not activated because QEMU is slower with this patch. The QEMU
1351
Accelerator Module is also much slower in this case. Earlier Fedora
1352
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1353
patch by default. Newer kernels don't have it.
1354

    
1355
@subsection Windows
1356

    
1357
If you have a slow host, using Windows 95 is better as it gives the
1358
best speed. Windows 2000 is also a good choice.
1359

    
1360
@subsubsection SVGA graphic modes support
1361

    
1362
QEMU emulates a Cirrus Logic GD5446 Video
1363
card. All Windows versions starting from Windows 95 should recognize
1364
and use this graphic card. For optimal performances, use 16 bit color
1365
depth in the guest and the host OS.
1366

    
1367
If you are using Windows XP as guest OS and if you want to use high
1368
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1369
1280x1024x16), then you should use the VESA VBE virtual graphic card
1370
(option @option{-std-vga}).
1371

    
1372
@subsubsection CPU usage reduction
1373

    
1374
Windows 9x does not correctly use the CPU HLT
1375
instruction. The result is that it takes host CPU cycles even when
1376
idle. You can install the utility from
1377
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1378
problem. Note that no such tool is needed for NT, 2000 or XP.
1379

    
1380
@subsubsection Windows 2000 disk full problem
1381

    
1382
Windows 2000 has a bug which gives a disk full problem during its
1383
installation. When installing it, use the @option{-win2k-hack} QEMU
1384
option to enable a specific workaround. After Windows 2000 is
1385
installed, you no longer need this option (this option slows down the
1386
IDE transfers).
1387

    
1388
@subsubsection Windows 2000 shutdown
1389

    
1390
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1391
can. It comes from the fact that Windows 2000 does not automatically
1392
use the APM driver provided by the BIOS.
1393

    
1394
In order to correct that, do the following (thanks to Struan
1395
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1396
Add/Troubleshoot a device => Add a new device & Next => No, select the
1397
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1398
(again) a few times. Now the driver is installed and Windows 2000 now
1399
correctly instructs QEMU to shutdown at the appropriate moment. 
1400

    
1401
@subsubsection Share a directory between Unix and Windows
1402

    
1403
See @ref{sec_invocation} about the help of the option @option{-smb}.
1404

    
1405
@subsubsection Windows XP security problem
1406

    
1407
Some releases of Windows XP install correctly but give a security
1408
error when booting:
1409
@example
1410
A problem is preventing Windows from accurately checking the
1411
license for this computer. Error code: 0x800703e6.
1412
@end example
1413

    
1414
The workaround is to install a service pack for XP after a boot in safe
1415
mode. Then reboot, and the problem should go away. Since there is no
1416
network while in safe mode, its recommended to download the full
1417
installation of SP1 or SP2 and transfer that via an ISO or using the
1418
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1419

    
1420
@subsection MS-DOS and FreeDOS
1421

    
1422
@subsubsection CPU usage reduction
1423

    
1424
DOS does not correctly use the CPU HLT instruction. The result is that
1425
it takes host CPU cycles even when idle. You can install the utility
1426
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1427
problem.
1428

    
1429
@node QEMU System emulator for non PC targets
1430
@chapter QEMU System emulator for non PC targets
1431

    
1432
QEMU is a generic emulator and it emulates many non PC
1433
machines. Most of the options are similar to the PC emulator. The
1434
differences are mentionned in the following sections.
1435

    
1436
@menu
1437
* QEMU PowerPC System emulator::
1438
* Sparc32 System emulator invocation::
1439
* Sparc64 System emulator invocation::
1440
* MIPS System emulator invocation::
1441
* ARM System emulator invocation::
1442
@end menu
1443

    
1444
@node QEMU PowerPC System emulator
1445
@section QEMU PowerPC System emulator
1446

    
1447
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1448
or PowerMac PowerPC system.
1449

    
1450
QEMU emulates the following PowerMac peripherals:
1451

    
1452
@itemize @minus
1453
@item 
1454
UniNorth PCI Bridge 
1455
@item
1456
PCI VGA compatible card with VESA Bochs Extensions
1457
@item 
1458
2 PMAC IDE interfaces with hard disk and CD-ROM support
1459
@item 
1460
NE2000 PCI adapters
1461
@item
1462
Non Volatile RAM
1463
@item
1464
VIA-CUDA with ADB keyboard and mouse.
1465
@end itemize
1466

    
1467
QEMU emulates the following PREP peripherals:
1468

    
1469
@itemize @minus
1470
@item 
1471
PCI Bridge
1472
@item
1473
PCI VGA compatible card with VESA Bochs Extensions
1474
@item 
1475
2 IDE interfaces with hard disk and CD-ROM support
1476
@item
1477
Floppy disk
1478
@item 
1479
NE2000 network adapters
1480
@item
1481
Serial port
1482
@item
1483
PREP Non Volatile RAM
1484
@item
1485
PC compatible keyboard and mouse.
1486
@end itemize
1487

    
1488
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1489
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1490

    
1491
@c man begin OPTIONS
1492

    
1493
The following options are specific to the PowerPC emulation:
1494

    
1495
@table @option
1496

    
1497
@item -g WxH[xDEPTH]  
1498

    
1499
Set the initial VGA graphic mode. The default is 800x600x15.
1500

    
1501
@end table
1502

    
1503
@c man end 
1504

    
1505

    
1506
More information is available at
1507
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1508

    
1509
@node Sparc32 System emulator invocation
1510
@section Sparc32 System emulator invocation
1511

    
1512
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1513
(sun4m architecture). The emulation is somewhat complete.
1514

    
1515
QEMU emulates the following sun4m peripherals:
1516

    
1517
@itemize @minus
1518
@item
1519
IOMMU
1520
@item
1521
TCX Frame buffer
1522
@item 
1523
Lance (Am7990) Ethernet
1524
@item
1525
Non Volatile RAM M48T08
1526
@item
1527
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1528
and power/reset logic
1529
@item
1530
ESP SCSI controller with hard disk and CD-ROM support
1531
@item
1532
Floppy drive
1533
@end itemize
1534

    
1535
The number of peripherals is fixed in the architecture.
1536

    
1537
Since version 0.8.2, QEMU uses OpenBIOS
1538
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1539
firmware implementation. The goal is to implement a 100% IEEE
1540
1275-1994 (referred to as Open Firmware) compliant firmware.
1541

    
1542
A sample Linux 2.6 series kernel and ram disk image are available on
1543
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1544
Solaris kernels don't work.
1545

    
1546
@c man begin OPTIONS
1547

    
1548
The following options are specific to the Sparc emulation:
1549

    
1550
@table @option
1551

    
1552
@item -g WxH
1553

    
1554
Set the initial TCX graphic mode. The default is 1024x768.
1555

    
1556
@end table
1557

    
1558
@c man end 
1559

    
1560
@node Sparc64 System emulator invocation
1561
@section Sparc64 System emulator invocation
1562

    
1563
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1564
The emulator is not usable for anything yet.
1565

    
1566
QEMU emulates the following sun4u peripherals:
1567

    
1568
@itemize @minus
1569
@item
1570
UltraSparc IIi APB PCI Bridge 
1571
@item
1572
PCI VGA compatible card with VESA Bochs Extensions
1573
@item
1574
Non Volatile RAM M48T59
1575
@item
1576
PC-compatible serial ports
1577
@end itemize
1578

    
1579
@node MIPS System emulator invocation
1580
@section MIPS System emulator invocation
1581

    
1582
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1583
The emulator is able to boot a Linux kernel and to run a Linux Debian
1584
installation from NFS. The following devices are emulated:
1585

    
1586
@itemize @minus
1587
@item 
1588
MIPS R4K CPU
1589
@item
1590
PC style serial port
1591
@item
1592
NE2000 network card
1593
@end itemize
1594

    
1595
More information is available in the QEMU mailing-list archive.
1596

    
1597
@node ARM System emulator invocation
1598
@section ARM System emulator invocation
1599

    
1600
Use the executable @file{qemu-system-arm} to simulate a ARM
1601
machine. The ARM Integrator/CP board is emulated with the following
1602
devices:
1603

    
1604
@itemize @minus
1605
@item
1606
ARM926E or ARM1026E CPU
1607
@item
1608
Two PL011 UARTs
1609
@item 
1610
SMC 91c111 Ethernet adapter
1611
@item
1612
PL110 LCD controller
1613
@item
1614
PL050 KMI with PS/2 keyboard and mouse.
1615
@end itemize
1616

    
1617
The ARM Versatile baseboard is emulated with the following devices:
1618

    
1619
@itemize @minus
1620
@item
1621
ARM926E CPU
1622
@item
1623
PL190 Vectored Interrupt Controller
1624
@item
1625
Four PL011 UARTs
1626
@item 
1627
SMC 91c111 Ethernet adapter
1628
@item
1629
PL110 LCD controller
1630
@item
1631
PL050 KMI with PS/2 keyboard and mouse.
1632
@item
1633
PCI host bridge.  Note the emulated PCI bridge only provides access to
1634
PCI memory space.  It does not provide access to PCI IO space.
1635
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1636
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1637
mapped control registers.
1638
@item
1639
PCI OHCI USB controller.
1640
@item
1641
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1642
@end itemize
1643

    
1644
A Linux 2.6 test image is available on the QEMU web site. More
1645
information is available in the QEMU mailing-list archive.
1646

    
1647
@node QEMU Linux User space emulator 
1648
@chapter QEMU Linux User space emulator 
1649

    
1650
@menu
1651
* Quick Start::
1652
* Wine launch::
1653
* Command line options::
1654
* Other binaries::
1655
@end menu
1656

    
1657
@node Quick Start
1658
@section Quick Start
1659

    
1660
In order to launch a Linux process, QEMU needs the process executable
1661
itself and all the target (x86) dynamic libraries used by it. 
1662

    
1663
@itemize
1664

    
1665
@item On x86, you can just try to launch any process by using the native
1666
libraries:
1667

    
1668
@example 
1669
qemu-i386 -L / /bin/ls
1670
@end example
1671

    
1672
@code{-L /} tells that the x86 dynamic linker must be searched with a
1673
@file{/} prefix.
1674

    
1675
@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1676

    
1677
@example 
1678
qemu-i386 -L / qemu-i386 -L / /bin/ls
1679
@end example
1680

    
1681
@item On non x86 CPUs, you need first to download at least an x86 glibc
1682
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1683
@code{LD_LIBRARY_PATH} is not set:
1684

    
1685
@example
1686
unset LD_LIBRARY_PATH 
1687
@end example
1688

    
1689
Then you can launch the precompiled @file{ls} x86 executable:
1690

    
1691
@example
1692
qemu-i386 tests/i386/ls
1693
@end example
1694
You can look at @file{qemu-binfmt-conf.sh} so that
1695
QEMU is automatically launched by the Linux kernel when you try to
1696
launch x86 executables. It requires the @code{binfmt_misc} module in the
1697
Linux kernel.
1698

    
1699
@item The x86 version of QEMU is also included. You can try weird things such as:
1700
@example
1701
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1702
          /usr/local/qemu-i386/bin/ls-i386
1703
@end example
1704

    
1705
@end itemize
1706

    
1707
@node Wine launch
1708
@section Wine launch
1709

    
1710
@itemize
1711

    
1712
@item Ensure that you have a working QEMU with the x86 glibc
1713
distribution (see previous section). In order to verify it, you must be
1714
able to do:
1715

    
1716
@example
1717
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1718
@end example
1719

    
1720
@item Download the binary x86 Wine install
1721
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1722

    
1723
@item Configure Wine on your account. Look at the provided script
1724
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1725
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1726

    
1727
@item Then you can try the example @file{putty.exe}:
1728

    
1729
@example
1730
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1731
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1732
@end example
1733

    
1734
@end itemize
1735

    
1736
@node Command line options
1737
@section Command line options
1738

    
1739
@example
1740
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1741
@end example
1742

    
1743
@table @option
1744
@item -h
1745
Print the help
1746
@item -L path   
1747
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1748
@item -s size
1749
Set the x86 stack size in bytes (default=524288)
1750
@end table
1751

    
1752
Debug options:
1753

    
1754
@table @option
1755
@item -d
1756
Activate log (logfile=/tmp/qemu.log)
1757
@item -p pagesize
1758
Act as if the host page size was 'pagesize' bytes
1759
@end table
1760

    
1761
@node Other binaries
1762
@section Other binaries
1763

    
1764
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1765
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1766
configurations), and arm-uclinux bFLT format binaries.
1767

    
1768
The binary format is detected automatically.
1769

    
1770
@node compilation
1771
@chapter Compilation from the sources
1772

    
1773
@menu
1774
* Linux/Unix::
1775
* Windows::
1776
* Cross compilation for Windows with Linux::
1777
* Mac OS X::
1778
@end menu
1779

    
1780
@node Linux/Unix
1781
@section Linux/Unix
1782

    
1783
@subsection Compilation
1784

    
1785
First you must decompress the sources:
1786
@example
1787
cd /tmp
1788
tar zxvf qemu-x.y.z.tar.gz
1789
cd qemu-x.y.z
1790
@end example
1791

    
1792
Then you configure QEMU and build it (usually no options are needed):
1793
@example
1794
./configure
1795
make
1796
@end example
1797

    
1798
Then type as root user:
1799
@example
1800
make install
1801
@end example
1802
to install QEMU in @file{/usr/local}.
1803

    
1804
@subsection Tested tool versions
1805

    
1806
In order to compile QEMU succesfully, it is very important that you
1807
have the right tools. The most important one is gcc. I cannot guaranty
1808
that QEMU works if you do not use a tested gcc version. Look at
1809
'configure' and 'Makefile' if you want to make a different gcc
1810
version work.
1811

    
1812
@example
1813
host      gcc      binutils      glibc    linux       distribution
1814
----------------------------------------------------------------------
1815
x86       3.2      2.13.2        2.1.3    2.4.18
1816
          2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1817
          3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1818

    
1819
PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1820
          3.2
1821

    
1822
Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1823

    
1824
Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1825

    
1826
ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1827

    
1828
[1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1829
    for gcc version >= 3.3.
1830
[2] Linux >= 2.4.20 is necessary for precise exception support
1831
    (untested).
1832
[3] 2.4.9-ac10-rmk2-np1-cerf2
1833

    
1834
[4] gcc 2.95.x generates invalid code when using too many register
1835
variables. You must use gcc 3.x on PowerPC.
1836
@end example
1837

    
1838
@node Windows
1839
@section Windows
1840

    
1841
@itemize
1842
@item Install the current versions of MSYS and MinGW from
1843
@url{http://www.mingw.org/}. You can find detailed installation
1844
instructions in the download section and the FAQ.
1845

    
1846
@item Download 
1847
the MinGW development library of SDL 1.2.x
1848
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1849
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
1850
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1851
directory. Edit the @file{sdl-config} script so that it gives the
1852
correct SDL directory when invoked.
1853

    
1854
@item Extract the current version of QEMU.
1855
 
1856
@item Start the MSYS shell (file @file{msys.bat}).
1857

    
1858
@item Change to the QEMU directory. Launch @file{./configure} and 
1859
@file{make}.  If you have problems using SDL, verify that
1860
@file{sdl-config} can be launched from the MSYS command line.
1861

    
1862
@item You can install QEMU in @file{Program Files/Qemu} by typing 
1863
@file{make install}. Don't forget to copy @file{SDL.dll} in
1864
@file{Program Files/Qemu}.
1865

    
1866
@end itemize
1867

    
1868
@node Cross compilation for Windows with Linux
1869
@section Cross compilation for Windows with Linux
1870

    
1871
@itemize
1872
@item
1873
Install the MinGW cross compilation tools available at
1874
@url{http://www.mingw.org/}.
1875

    
1876
@item 
1877
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1878
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1879
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1880
the QEMU configuration script.
1881

    
1882
@item 
1883
Configure QEMU for Windows cross compilation:
1884
@example
1885
./configure --enable-mingw32
1886
@end example
1887
If necessary, you can change the cross-prefix according to the prefix
1888
choosen for the MinGW tools with --cross-prefix. You can also use
1889
--prefix to set the Win32 install path.
1890

    
1891
@item You can install QEMU in the installation directory by typing 
1892
@file{make install}. Don't forget to copy @file{SDL.dll} in the
1893
installation directory. 
1894

    
1895
@end itemize
1896

    
1897
Note: Currently, Wine does not seem able to launch
1898
QEMU for Win32.
1899

    
1900
@node Mac OS X
1901
@section Mac OS X
1902

    
1903
The Mac OS X patches are not fully merged in QEMU, so you should look
1904
at the QEMU mailing list archive to have all the necessary
1905
information.
1906

    
1907
@node Index
1908
@chapter Index
1909
@printindex cp
1910

    
1911
@bye