Statistics
| Branch: | Revision:

root / kvm-all.c @ 8f6f962b

History | View | Annotate | Download (39.6 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29
#include "bswap.h"
30
#include "memory.h"
31

    
32
/* This check must be after config-host.h is included */
33
#ifdef CONFIG_EVENTFD
34
#include <sys/eventfd.h>
35
#endif
36

    
37
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38
#define PAGE_SIZE TARGET_PAGE_SIZE
39

    
40
//#define DEBUG_KVM
41

    
42
#ifdef DEBUG_KVM
43
#define DPRINTF(fmt, ...) \
44
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45
#else
46
#define DPRINTF(fmt, ...) \
47
    do { } while (0)
48
#endif
49

    
50
typedef struct KVMSlot
51
{
52
    target_phys_addr_t start_addr;
53
    ram_addr_t memory_size;
54
    void *ram;
55
    int slot;
56
    int flags;
57
} KVMSlot;
58

    
59
typedef struct kvm_dirty_log KVMDirtyLog;
60

    
61
struct KVMState
62
{
63
    KVMSlot slots[32];
64
    int fd;
65
    int vmfd;
66
    int coalesced_mmio;
67
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68
    bool coalesced_flush_in_progress;
69
    int broken_set_mem_region;
70
    int migration_log;
71
    int vcpu_events;
72
    int robust_singlestep;
73
    int debugregs;
74
#ifdef KVM_CAP_SET_GUEST_DEBUG
75
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76
#endif
77
    int pit_in_kernel;
78
    int xsave, xcrs;
79
    int many_ioeventfds;
80
    int irqchip_inject_ioctl;
81
#ifdef KVM_CAP_IRQ_ROUTING
82
    struct kvm_irq_routing *irq_routes;
83
    int nr_allocated_irq_routes;
84
    uint32_t *used_gsi_bitmap;
85
    unsigned int max_gsi;
86
#endif
87
};
88

    
89
KVMState *kvm_state;
90
bool kvm_kernel_irqchip;
91

    
92
static const KVMCapabilityInfo kvm_required_capabilites[] = {
93
    KVM_CAP_INFO(USER_MEMORY),
94
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
95
    KVM_CAP_LAST_INFO
96
};
97

    
98
static KVMSlot *kvm_alloc_slot(KVMState *s)
99
{
100
    int i;
101

    
102
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
103
        if (s->slots[i].memory_size == 0) {
104
            return &s->slots[i];
105
        }
106
    }
107

    
108
    fprintf(stderr, "%s: no free slot available\n", __func__);
109
    abort();
110
}
111

    
112
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
113
                                         target_phys_addr_t start_addr,
114
                                         target_phys_addr_t end_addr)
115
{
116
    int i;
117

    
118
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119
        KVMSlot *mem = &s->slots[i];
120

    
121
        if (start_addr == mem->start_addr &&
122
            end_addr == mem->start_addr + mem->memory_size) {
123
            return mem;
124
        }
125
    }
126

    
127
    return NULL;
128
}
129

    
130
/*
131
 * Find overlapping slot with lowest start address
132
 */
133
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
134
                                            target_phys_addr_t start_addr,
135
                                            target_phys_addr_t end_addr)
136
{
137
    KVMSlot *found = NULL;
138
    int i;
139

    
140
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141
        KVMSlot *mem = &s->slots[i];
142

    
143
        if (mem->memory_size == 0 ||
144
            (found && found->start_addr < mem->start_addr)) {
145
            continue;
146
        }
147

    
148
        if (end_addr > mem->start_addr &&
149
            start_addr < mem->start_addr + mem->memory_size) {
150
            found = mem;
151
        }
152
    }
153

    
154
    return found;
155
}
156

    
157
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
158
                                       target_phys_addr_t *phys_addr)
159
{
160
    int i;
161

    
162
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163
        KVMSlot *mem = &s->slots[i];
164

    
165
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
166
            *phys_addr = mem->start_addr + (ram - mem->ram);
167
            return 1;
168
        }
169
    }
170

    
171
    return 0;
172
}
173

    
174
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
175
{
176
    struct kvm_userspace_memory_region mem;
177

    
178
    mem.slot = slot->slot;
179
    mem.guest_phys_addr = slot->start_addr;
180
    mem.memory_size = slot->memory_size;
181
    mem.userspace_addr = (unsigned long)slot->ram;
182
    mem.flags = slot->flags;
183
    if (s->migration_log) {
184
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
185
    }
186
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
187
}
188

    
189
static void kvm_reset_vcpu(void *opaque)
190
{
191
    CPUState *env = opaque;
192

    
193
    kvm_arch_reset_vcpu(env);
194
}
195

    
196
int kvm_pit_in_kernel(void)
197
{
198
    return kvm_state->pit_in_kernel;
199
}
200

    
201
int kvm_init_vcpu(CPUState *env)
202
{
203
    KVMState *s = kvm_state;
204
    long mmap_size;
205
    int ret;
206

    
207
    DPRINTF("kvm_init_vcpu\n");
208

    
209
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
210
    if (ret < 0) {
211
        DPRINTF("kvm_create_vcpu failed\n");
212
        goto err;
213
    }
214

    
215
    env->kvm_fd = ret;
216
    env->kvm_state = s;
217
    env->kvm_vcpu_dirty = 1;
218

    
219
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
220
    if (mmap_size < 0) {
221
        ret = mmap_size;
222
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223
        goto err;
224
    }
225

    
226
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
227
                        env->kvm_fd, 0);
228
    if (env->kvm_run == MAP_FAILED) {
229
        ret = -errno;
230
        DPRINTF("mmap'ing vcpu state failed\n");
231
        goto err;
232
    }
233

    
234
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235
        s->coalesced_mmio_ring =
236
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237
    }
238

    
239
    ret = kvm_arch_init_vcpu(env);
240
    if (ret == 0) {
241
        qemu_register_reset(kvm_reset_vcpu, env);
242
        kvm_arch_reset_vcpu(env);
243
    }
244
err:
245
    return ret;
246
}
247

    
248
/*
249
 * dirty pages logging control
250
 */
251

    
252
static int kvm_mem_flags(KVMState *s, bool log_dirty)
253
{
254
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
255
}
256

    
257
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
258
{
259
    KVMState *s = kvm_state;
260
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
261
    int old_flags;
262

    
263
    old_flags = mem->flags;
264

    
265
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
266
    mem->flags = flags;
267

    
268
    /* If nothing changed effectively, no need to issue ioctl */
269
    if (s->migration_log) {
270
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
271
    }
272

    
273
    if (flags == old_flags) {
274
        return 0;
275
    }
276

    
277
    return kvm_set_user_memory_region(s, mem);
278
}
279

    
280
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
281
                                      ram_addr_t size, bool log_dirty)
282
{
283
    KVMState *s = kvm_state;
284
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
285

    
286
    if (mem == NULL)  {
287
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
288
                TARGET_FMT_plx "\n", __func__, phys_addr,
289
                (target_phys_addr_t)(phys_addr + size - 1));
290
        return -EINVAL;
291
    }
292
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
293
}
294

    
295
static void kvm_log_start(MemoryListener *listener,
296
                          MemoryRegionSection *section)
297
{
298
    int r;
299

    
300
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
301
                                   section->size, true);
302
    if (r < 0) {
303
        abort();
304
    }
305
}
306

    
307
static void kvm_log_stop(MemoryListener *listener,
308
                          MemoryRegionSection *section)
309
{
310
    int r;
311

    
312
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
313
                                   section->size, false);
314
    if (r < 0) {
315
        abort();
316
    }
317
}
318

    
319
static int kvm_set_migration_log(int enable)
320
{
321
    KVMState *s = kvm_state;
322
    KVMSlot *mem;
323
    int i, err;
324

    
325
    s->migration_log = enable;
326

    
327
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
328
        mem = &s->slots[i];
329

    
330
        if (!mem->memory_size) {
331
            continue;
332
        }
333
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
334
            continue;
335
        }
336
        err = kvm_set_user_memory_region(s, mem);
337
        if (err) {
338
            return err;
339
        }
340
    }
341
    return 0;
342
}
343

    
344
/* get kvm's dirty pages bitmap and update qemu's */
345
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
346
                                         unsigned long *bitmap)
347
{
348
    unsigned int i, j;
349
    unsigned long page_number, c;
350
    target_phys_addr_t addr, addr1;
351
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
352

    
353
    /*
354
     * bitmap-traveling is faster than memory-traveling (for addr...)
355
     * especially when most of the memory is not dirty.
356
     */
357
    for (i = 0; i < len; i++) {
358
        if (bitmap[i] != 0) {
359
            c = leul_to_cpu(bitmap[i]);
360
            do {
361
                j = ffsl(c) - 1;
362
                c &= ~(1ul << j);
363
                page_number = i * HOST_LONG_BITS + j;
364
                addr1 = page_number * TARGET_PAGE_SIZE;
365
                addr = section->offset_within_region + addr1;
366
                memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
367
            } while (c != 0);
368
        }
369
    }
370
    return 0;
371
}
372

    
373
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
374

    
375
/**
376
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
377
 * This function updates qemu's dirty bitmap using
378
 * memory_region_set_dirty().  This means all bits are set
379
 * to dirty.
380
 *
381
 * @start_add: start of logged region.
382
 * @end_addr: end of logged region.
383
 */
384
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
385
{
386
    KVMState *s = kvm_state;
387
    unsigned long size, allocated_size = 0;
388
    KVMDirtyLog d;
389
    KVMSlot *mem;
390
    int ret = 0;
391
    target_phys_addr_t start_addr = section->offset_within_address_space;
392
    target_phys_addr_t end_addr = start_addr + section->size;
393

    
394
    d.dirty_bitmap = NULL;
395
    while (start_addr < end_addr) {
396
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
397
        if (mem == NULL) {
398
            break;
399
        }
400

    
401
        /* XXX bad kernel interface alert
402
         * For dirty bitmap, kernel allocates array of size aligned to
403
         * bits-per-long.  But for case when the kernel is 64bits and
404
         * the userspace is 32bits, userspace can't align to the same
405
         * bits-per-long, since sizeof(long) is different between kernel
406
         * and user space.  This way, userspace will provide buffer which
407
         * may be 4 bytes less than the kernel will use, resulting in
408
         * userspace memory corruption (which is not detectable by valgrind
409
         * too, in most cases).
410
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
411
         * a hope that sizeof(long) wont become >8 any time soon.
412
         */
413
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
414
                     /*HOST_LONG_BITS*/ 64) / 8;
415
        if (!d.dirty_bitmap) {
416
            d.dirty_bitmap = g_malloc(size);
417
        } else if (size > allocated_size) {
418
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
419
        }
420
        allocated_size = size;
421
        memset(d.dirty_bitmap, 0, allocated_size);
422

    
423
        d.slot = mem->slot;
424

    
425
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
426
            DPRINTF("ioctl failed %d\n", errno);
427
            ret = -1;
428
            break;
429
        }
430

    
431
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
432
        start_addr = mem->start_addr + mem->memory_size;
433
    }
434
    g_free(d.dirty_bitmap);
435

    
436
    return ret;
437
}
438

    
439
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
440
{
441
    int ret = -ENOSYS;
442
    KVMState *s = kvm_state;
443

    
444
    if (s->coalesced_mmio) {
445
        struct kvm_coalesced_mmio_zone zone;
446

    
447
        zone.addr = start;
448
        zone.size = size;
449

    
450
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
451
    }
452

    
453
    return ret;
454
}
455

    
456
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
457
{
458
    int ret = -ENOSYS;
459
    KVMState *s = kvm_state;
460

    
461
    if (s->coalesced_mmio) {
462
        struct kvm_coalesced_mmio_zone zone;
463

    
464
        zone.addr = start;
465
        zone.size = size;
466

    
467
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
468
    }
469

    
470
    return ret;
471
}
472

    
473
int kvm_check_extension(KVMState *s, unsigned int extension)
474
{
475
    int ret;
476

    
477
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
478
    if (ret < 0) {
479
        ret = 0;
480
    }
481

    
482
    return ret;
483
}
484

    
485
static int kvm_check_many_ioeventfds(void)
486
{
487
    /* Userspace can use ioeventfd for io notification.  This requires a host
488
     * that supports eventfd(2) and an I/O thread; since eventfd does not
489
     * support SIGIO it cannot interrupt the vcpu.
490
     *
491
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
492
     * can avoid creating too many ioeventfds.
493
     */
494
#if defined(CONFIG_EVENTFD)
495
    int ioeventfds[7];
496
    int i, ret = 0;
497
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
498
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
499
        if (ioeventfds[i] < 0) {
500
            break;
501
        }
502
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
503
        if (ret < 0) {
504
            close(ioeventfds[i]);
505
            break;
506
        }
507
    }
508

    
509
    /* Decide whether many devices are supported or not */
510
    ret = i == ARRAY_SIZE(ioeventfds);
511

    
512
    while (i-- > 0) {
513
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
514
        close(ioeventfds[i]);
515
    }
516
    return ret;
517
#else
518
    return 0;
519
#endif
520
}
521

    
522
static const KVMCapabilityInfo *
523
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
524
{
525
    while (list->name) {
526
        if (!kvm_check_extension(s, list->value)) {
527
            return list;
528
        }
529
        list++;
530
    }
531
    return NULL;
532
}
533

    
534
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
535
{
536
    KVMState *s = kvm_state;
537
    KVMSlot *mem, old;
538
    int err;
539
    MemoryRegion *mr = section->mr;
540
    bool log_dirty = memory_region_is_logging(mr);
541
    target_phys_addr_t start_addr = section->offset_within_address_space;
542
    ram_addr_t size = section->size;
543
    void *ram = NULL;
544
    unsigned delta;
545

    
546
    /* kvm works in page size chunks, but the function may be called
547
       with sub-page size and unaligned start address. */
548
    delta = TARGET_PAGE_ALIGN(size) - size;
549
    if (delta > size) {
550
        return;
551
    }
552
    start_addr += delta;
553
    size -= delta;
554
    size &= TARGET_PAGE_MASK;
555
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
556
        return;
557
    }
558

    
559
    if (!memory_region_is_ram(mr)) {
560
        return;
561
    }
562

    
563
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
564

    
565
    while (1) {
566
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
567
        if (!mem) {
568
            break;
569
        }
570

    
571
        if (add && start_addr >= mem->start_addr &&
572
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
573
            (ram - start_addr == mem->ram - mem->start_addr)) {
574
            /* The new slot fits into the existing one and comes with
575
             * identical parameters - update flags and done. */
576
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
577
            return;
578
        }
579

    
580
        old = *mem;
581

    
582
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
583
            kvm_physical_sync_dirty_bitmap(section);
584
        }
585

    
586
        /* unregister the overlapping slot */
587
        mem->memory_size = 0;
588
        err = kvm_set_user_memory_region(s, mem);
589
        if (err) {
590
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
591
                    __func__, strerror(-err));
592
            abort();
593
        }
594

    
595
        /* Workaround for older KVM versions: we can't join slots, even not by
596
         * unregistering the previous ones and then registering the larger
597
         * slot. We have to maintain the existing fragmentation. Sigh.
598
         *
599
         * This workaround assumes that the new slot starts at the same
600
         * address as the first existing one. If not or if some overlapping
601
         * slot comes around later, we will fail (not seen in practice so far)
602
         * - and actually require a recent KVM version. */
603
        if (s->broken_set_mem_region &&
604
            old.start_addr == start_addr && old.memory_size < size && add) {
605
            mem = kvm_alloc_slot(s);
606
            mem->memory_size = old.memory_size;
607
            mem->start_addr = old.start_addr;
608
            mem->ram = old.ram;
609
            mem->flags = kvm_mem_flags(s, log_dirty);
610

    
611
            err = kvm_set_user_memory_region(s, mem);
612
            if (err) {
613
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
614
                        strerror(-err));
615
                abort();
616
            }
617

    
618
            start_addr += old.memory_size;
619
            ram += old.memory_size;
620
            size -= old.memory_size;
621
            continue;
622
        }
623

    
624
        /* register prefix slot */
625
        if (old.start_addr < start_addr) {
626
            mem = kvm_alloc_slot(s);
627
            mem->memory_size = start_addr - old.start_addr;
628
            mem->start_addr = old.start_addr;
629
            mem->ram = old.ram;
630
            mem->flags =  kvm_mem_flags(s, log_dirty);
631

    
632
            err = kvm_set_user_memory_region(s, mem);
633
            if (err) {
634
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
635
                        __func__, strerror(-err));
636
#ifdef TARGET_PPC
637
                fprintf(stderr, "%s: This is probably because your kernel's " \
638
                                "PAGE_SIZE is too big. Please try to use 4k " \
639
                                "PAGE_SIZE!\n", __func__);
640
#endif
641
                abort();
642
            }
643
        }
644

    
645
        /* register suffix slot */
646
        if (old.start_addr + old.memory_size > start_addr + size) {
647
            ram_addr_t size_delta;
648

    
649
            mem = kvm_alloc_slot(s);
650
            mem->start_addr = start_addr + size;
651
            size_delta = mem->start_addr - old.start_addr;
652
            mem->memory_size = old.memory_size - size_delta;
653
            mem->ram = old.ram + size_delta;
654
            mem->flags = kvm_mem_flags(s, log_dirty);
655

    
656
            err = kvm_set_user_memory_region(s, mem);
657
            if (err) {
658
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
659
                        __func__, strerror(-err));
660
                abort();
661
            }
662
        }
663
    }
664

    
665
    /* in case the KVM bug workaround already "consumed" the new slot */
666
    if (!size) {
667
        return;
668
    }
669
    if (!add) {
670
        return;
671
    }
672
    mem = kvm_alloc_slot(s);
673
    mem->memory_size = size;
674
    mem->start_addr = start_addr;
675
    mem->ram = ram;
676
    mem->flags = kvm_mem_flags(s, log_dirty);
677

    
678
    err = kvm_set_user_memory_region(s, mem);
679
    if (err) {
680
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
681
                strerror(-err));
682
        abort();
683
    }
684
}
685

    
686
static void kvm_region_add(MemoryListener *listener,
687
                           MemoryRegionSection *section)
688
{
689
    kvm_set_phys_mem(section, true);
690
}
691

    
692
static void kvm_region_del(MemoryListener *listener,
693
                           MemoryRegionSection *section)
694
{
695
    kvm_set_phys_mem(section, false);
696
}
697

    
698
static void kvm_log_sync(MemoryListener *listener,
699
                         MemoryRegionSection *section)
700
{
701
    int r;
702

    
703
    r = kvm_physical_sync_dirty_bitmap(section);
704
    if (r < 0) {
705
        abort();
706
    }
707
}
708

    
709
static void kvm_log_global_start(struct MemoryListener *listener)
710
{
711
    int r;
712

    
713
    r = kvm_set_migration_log(1);
714
    assert(r >= 0);
715
}
716

    
717
static void kvm_log_global_stop(struct MemoryListener *listener)
718
{
719
    int r;
720

    
721
    r = kvm_set_migration_log(0);
722
    assert(r >= 0);
723
}
724

    
725
static MemoryListener kvm_memory_listener = {
726
    .region_add = kvm_region_add,
727
    .region_del = kvm_region_del,
728
    .log_start = kvm_log_start,
729
    .log_stop = kvm_log_stop,
730
    .log_sync = kvm_log_sync,
731
    .log_global_start = kvm_log_global_start,
732
    .log_global_stop = kvm_log_global_stop,
733
};
734

    
735
static void kvm_handle_interrupt(CPUState *env, int mask)
736
{
737
    env->interrupt_request |= mask;
738

    
739
    if (!qemu_cpu_is_self(env)) {
740
        qemu_cpu_kick(env);
741
    }
742
}
743

    
744
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
745
{
746
    struct kvm_irq_level event;
747
    int ret;
748

    
749
    assert(kvm_irqchip_in_kernel());
750

    
751
    event.level = level;
752
    event.irq = irq;
753
    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
754
    if (ret < 0) {
755
        perror("kvm_set_irqchip_line");
756
        abort();
757
    }
758

    
759
    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
760
}
761

    
762
#ifdef KVM_CAP_IRQ_ROUTING
763
static void set_gsi(KVMState *s, unsigned int gsi)
764
{
765
    assert(gsi < s->max_gsi);
766

    
767
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
768
}
769

    
770
static void kvm_init_irq_routing(KVMState *s)
771
{
772
    int gsi_count;
773

    
774
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
775
    if (gsi_count > 0) {
776
        unsigned int gsi_bits, i;
777

    
778
        /* Round up so we can search ints using ffs */
779
        gsi_bits = (gsi_count + 31) / 32;
780
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
781
        s->max_gsi = gsi_bits;
782

    
783
        /* Mark any over-allocated bits as already in use */
784
        for (i = gsi_count; i < gsi_bits; i++) {
785
            set_gsi(s, i);
786
        }
787
    }
788

    
789
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
790
    s->nr_allocated_irq_routes = 0;
791

    
792
    kvm_arch_init_irq_routing(s);
793
}
794

    
795
static void kvm_add_routing_entry(KVMState *s,
796
                                  struct kvm_irq_routing_entry *entry)
797
{
798
    struct kvm_irq_routing_entry *new;
799
    int n, size;
800

    
801
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
802
        n = s->nr_allocated_irq_routes * 2;
803
        if (n < 64) {
804
            n = 64;
805
        }
806
        size = sizeof(struct kvm_irq_routing);
807
        size += n * sizeof(*new);
808
        s->irq_routes = g_realloc(s->irq_routes, size);
809
        s->nr_allocated_irq_routes = n;
810
    }
811
    n = s->irq_routes->nr++;
812
    new = &s->irq_routes->entries[n];
813
    memset(new, 0, sizeof(*new));
814
    new->gsi = entry->gsi;
815
    new->type = entry->type;
816
    new->flags = entry->flags;
817
    new->u = entry->u;
818

    
819
    set_gsi(s, entry->gsi);
820
}
821

    
822
void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
823
{
824
    struct kvm_irq_routing_entry e;
825

    
826
    e.gsi = irq;
827
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
828
    e.flags = 0;
829
    e.u.irqchip.irqchip = irqchip;
830
    e.u.irqchip.pin = pin;
831
    kvm_add_routing_entry(s, &e);
832
}
833

    
834
int kvm_irqchip_commit_routes(KVMState *s)
835
{
836
    s->irq_routes->flags = 0;
837
    return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
838
}
839

    
840
#else /* !KVM_CAP_IRQ_ROUTING */
841

    
842
static void kvm_init_irq_routing(KVMState *s)
843
{
844
}
845
#endif /* !KVM_CAP_IRQ_ROUTING */
846

    
847
static int kvm_irqchip_create(KVMState *s)
848
{
849
    QemuOptsList *list = qemu_find_opts("machine");
850
    int ret;
851

    
852
    if (QTAILQ_EMPTY(&list->head) ||
853
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
854
                           "kernel_irqchip", false) ||
855
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
856
        return 0;
857
    }
858

    
859
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
860
    if (ret < 0) {
861
        fprintf(stderr, "Create kernel irqchip failed\n");
862
        return ret;
863
    }
864

    
865
    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
866
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
867
        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
868
    }
869
    kvm_kernel_irqchip = true;
870

    
871
    kvm_init_irq_routing(s);
872

    
873
    return 0;
874
}
875

    
876
int kvm_init(void)
877
{
878
    static const char upgrade_note[] =
879
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
880
        "(see http://sourceforge.net/projects/kvm).\n";
881
    KVMState *s;
882
    const KVMCapabilityInfo *missing_cap;
883
    int ret;
884
    int i;
885

    
886
    s = g_malloc0(sizeof(KVMState));
887

    
888
#ifdef KVM_CAP_SET_GUEST_DEBUG
889
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
890
#endif
891
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
892
        s->slots[i].slot = i;
893
    }
894
    s->vmfd = -1;
895
    s->fd = qemu_open("/dev/kvm", O_RDWR);
896
    if (s->fd == -1) {
897
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
898
        ret = -errno;
899
        goto err;
900
    }
901

    
902
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
903
    if (ret < KVM_API_VERSION) {
904
        if (ret > 0) {
905
            ret = -EINVAL;
906
        }
907
        fprintf(stderr, "kvm version too old\n");
908
        goto err;
909
    }
910

    
911
    if (ret > KVM_API_VERSION) {
912
        ret = -EINVAL;
913
        fprintf(stderr, "kvm version not supported\n");
914
        goto err;
915
    }
916

    
917
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
918
    if (s->vmfd < 0) {
919
#ifdef TARGET_S390X
920
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
921
                        "your host kernel command line\n");
922
#endif
923
        ret = s->vmfd;
924
        goto err;
925
    }
926

    
927
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
928
    if (!missing_cap) {
929
        missing_cap =
930
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
931
    }
932
    if (missing_cap) {
933
        ret = -EINVAL;
934
        fprintf(stderr, "kvm does not support %s\n%s",
935
                missing_cap->name, upgrade_note);
936
        goto err;
937
    }
938

    
939
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
940

    
941
    s->broken_set_mem_region = 1;
942
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
943
    if (ret > 0) {
944
        s->broken_set_mem_region = 0;
945
    }
946

    
947
#ifdef KVM_CAP_VCPU_EVENTS
948
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
949
#endif
950

    
951
    s->robust_singlestep =
952
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
953

    
954
#ifdef KVM_CAP_DEBUGREGS
955
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
956
#endif
957

    
958
#ifdef KVM_CAP_XSAVE
959
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
960
#endif
961

    
962
#ifdef KVM_CAP_XCRS
963
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
964
#endif
965

    
966
    ret = kvm_arch_init(s);
967
    if (ret < 0) {
968
        goto err;
969
    }
970

    
971
    ret = kvm_irqchip_create(s);
972
    if (ret < 0) {
973
        goto err;
974
    }
975

    
976
    kvm_state = s;
977
    memory_listener_register(&kvm_memory_listener);
978

    
979
    s->many_ioeventfds = kvm_check_many_ioeventfds();
980

    
981
    cpu_interrupt_handler = kvm_handle_interrupt;
982

    
983
    return 0;
984

    
985
err:
986
    if (s) {
987
        if (s->vmfd >= 0) {
988
            close(s->vmfd);
989
        }
990
        if (s->fd != -1) {
991
            close(s->fd);
992
        }
993
    }
994
    g_free(s);
995

    
996
    return ret;
997
}
998

    
999
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1000
                          uint32_t count)
1001
{
1002
    int i;
1003
    uint8_t *ptr = data;
1004

    
1005
    for (i = 0; i < count; i++) {
1006
        if (direction == KVM_EXIT_IO_IN) {
1007
            switch (size) {
1008
            case 1:
1009
                stb_p(ptr, cpu_inb(port));
1010
                break;
1011
            case 2:
1012
                stw_p(ptr, cpu_inw(port));
1013
                break;
1014
            case 4:
1015
                stl_p(ptr, cpu_inl(port));
1016
                break;
1017
            }
1018
        } else {
1019
            switch (size) {
1020
            case 1:
1021
                cpu_outb(port, ldub_p(ptr));
1022
                break;
1023
            case 2:
1024
                cpu_outw(port, lduw_p(ptr));
1025
                break;
1026
            case 4:
1027
                cpu_outl(port, ldl_p(ptr));
1028
                break;
1029
            }
1030
        }
1031

    
1032
        ptr += size;
1033
    }
1034
}
1035

    
1036
static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1037
{
1038
    fprintf(stderr, "KVM internal error.");
1039
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1040
        int i;
1041

    
1042
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1043
        for (i = 0; i < run->internal.ndata; ++i) {
1044
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1045
                    i, (uint64_t)run->internal.data[i]);
1046
        }
1047
    } else {
1048
        fprintf(stderr, "\n");
1049
    }
1050
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1051
        fprintf(stderr, "emulation failure\n");
1052
        if (!kvm_arch_stop_on_emulation_error(env)) {
1053
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1054
            return EXCP_INTERRUPT;
1055
        }
1056
    }
1057
    /* FIXME: Should trigger a qmp message to let management know
1058
     * something went wrong.
1059
     */
1060
    return -1;
1061
}
1062

    
1063
void kvm_flush_coalesced_mmio_buffer(void)
1064
{
1065
    KVMState *s = kvm_state;
1066

    
1067
    if (s->coalesced_flush_in_progress) {
1068
        return;
1069
    }
1070

    
1071
    s->coalesced_flush_in_progress = true;
1072

    
1073
    if (s->coalesced_mmio_ring) {
1074
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1075
        while (ring->first != ring->last) {
1076
            struct kvm_coalesced_mmio *ent;
1077

    
1078
            ent = &ring->coalesced_mmio[ring->first];
1079

    
1080
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1081
            smp_wmb();
1082
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1083
        }
1084
    }
1085

    
1086
    s->coalesced_flush_in_progress = false;
1087
}
1088

    
1089
static void do_kvm_cpu_synchronize_state(void *_env)
1090
{
1091
    CPUState *env = _env;
1092

    
1093
    if (!env->kvm_vcpu_dirty) {
1094
        kvm_arch_get_registers(env);
1095
        env->kvm_vcpu_dirty = 1;
1096
    }
1097
}
1098

    
1099
void kvm_cpu_synchronize_state(CPUState *env)
1100
{
1101
    if (!env->kvm_vcpu_dirty) {
1102
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1103
    }
1104
}
1105

    
1106
void kvm_cpu_synchronize_post_reset(CPUState *env)
1107
{
1108
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1109
    env->kvm_vcpu_dirty = 0;
1110
}
1111

    
1112
void kvm_cpu_synchronize_post_init(CPUState *env)
1113
{
1114
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1115
    env->kvm_vcpu_dirty = 0;
1116
}
1117

    
1118
int kvm_cpu_exec(CPUState *env)
1119
{
1120
    struct kvm_run *run = env->kvm_run;
1121
    int ret, run_ret;
1122

    
1123
    DPRINTF("kvm_cpu_exec()\n");
1124

    
1125
    if (kvm_arch_process_async_events(env)) {
1126
        env->exit_request = 0;
1127
        return EXCP_HLT;
1128
    }
1129

    
1130
    cpu_single_env = env;
1131

    
1132
    do {
1133
        if (env->kvm_vcpu_dirty) {
1134
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1135
            env->kvm_vcpu_dirty = 0;
1136
        }
1137

    
1138
        kvm_arch_pre_run(env, run);
1139
        if (env->exit_request) {
1140
            DPRINTF("interrupt exit requested\n");
1141
            /*
1142
             * KVM requires us to reenter the kernel after IO exits to complete
1143
             * instruction emulation. This self-signal will ensure that we
1144
             * leave ASAP again.
1145
             */
1146
            qemu_cpu_kick_self();
1147
        }
1148
        cpu_single_env = NULL;
1149
        qemu_mutex_unlock_iothread();
1150

    
1151
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1152

    
1153
        qemu_mutex_lock_iothread();
1154
        cpu_single_env = env;
1155
        kvm_arch_post_run(env, run);
1156

    
1157
        kvm_flush_coalesced_mmio_buffer();
1158

    
1159
        if (run_ret < 0) {
1160
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1161
                DPRINTF("io window exit\n");
1162
                ret = EXCP_INTERRUPT;
1163
                break;
1164
            }
1165
            fprintf(stderr, "error: kvm run failed %s\n",
1166
                    strerror(-run_ret));
1167
            abort();
1168
        }
1169

    
1170
        switch (run->exit_reason) {
1171
        case KVM_EXIT_IO:
1172
            DPRINTF("handle_io\n");
1173
            kvm_handle_io(run->io.port,
1174
                          (uint8_t *)run + run->io.data_offset,
1175
                          run->io.direction,
1176
                          run->io.size,
1177
                          run->io.count);
1178
            ret = 0;
1179
            break;
1180
        case KVM_EXIT_MMIO:
1181
            DPRINTF("handle_mmio\n");
1182
            cpu_physical_memory_rw(run->mmio.phys_addr,
1183
                                   run->mmio.data,
1184
                                   run->mmio.len,
1185
                                   run->mmio.is_write);
1186
            ret = 0;
1187
            break;
1188
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1189
            DPRINTF("irq_window_open\n");
1190
            ret = EXCP_INTERRUPT;
1191
            break;
1192
        case KVM_EXIT_SHUTDOWN:
1193
            DPRINTF("shutdown\n");
1194
            qemu_system_reset_request();
1195
            ret = EXCP_INTERRUPT;
1196
            break;
1197
        case KVM_EXIT_UNKNOWN:
1198
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1199
                    (uint64_t)run->hw.hardware_exit_reason);
1200
            ret = -1;
1201
            break;
1202
        case KVM_EXIT_INTERNAL_ERROR:
1203
            ret = kvm_handle_internal_error(env, run);
1204
            break;
1205
        default:
1206
            DPRINTF("kvm_arch_handle_exit\n");
1207
            ret = kvm_arch_handle_exit(env, run);
1208
            break;
1209
        }
1210
    } while (ret == 0);
1211

    
1212
    if (ret < 0) {
1213
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1214
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1215
    }
1216

    
1217
    env->exit_request = 0;
1218
    cpu_single_env = NULL;
1219
    return ret;
1220
}
1221

    
1222
int kvm_ioctl(KVMState *s, int type, ...)
1223
{
1224
    int ret;
1225
    void *arg;
1226
    va_list ap;
1227

    
1228
    va_start(ap, type);
1229
    arg = va_arg(ap, void *);
1230
    va_end(ap);
1231

    
1232
    ret = ioctl(s->fd, type, arg);
1233
    if (ret == -1) {
1234
        ret = -errno;
1235
    }
1236
    return ret;
1237
}
1238

    
1239
int kvm_vm_ioctl(KVMState *s, int type, ...)
1240
{
1241
    int ret;
1242
    void *arg;
1243
    va_list ap;
1244

    
1245
    va_start(ap, type);
1246
    arg = va_arg(ap, void *);
1247
    va_end(ap);
1248

    
1249
    ret = ioctl(s->vmfd, type, arg);
1250
    if (ret == -1) {
1251
        ret = -errno;
1252
    }
1253
    return ret;
1254
}
1255

    
1256
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1257
{
1258
    int ret;
1259
    void *arg;
1260
    va_list ap;
1261

    
1262
    va_start(ap, type);
1263
    arg = va_arg(ap, void *);
1264
    va_end(ap);
1265

    
1266
    ret = ioctl(env->kvm_fd, type, arg);
1267
    if (ret == -1) {
1268
        ret = -errno;
1269
    }
1270
    return ret;
1271
}
1272

    
1273
int kvm_has_sync_mmu(void)
1274
{
1275
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1276
}
1277

    
1278
int kvm_has_vcpu_events(void)
1279
{
1280
    return kvm_state->vcpu_events;
1281
}
1282

    
1283
int kvm_has_robust_singlestep(void)
1284
{
1285
    return kvm_state->robust_singlestep;
1286
}
1287

    
1288
int kvm_has_debugregs(void)
1289
{
1290
    return kvm_state->debugregs;
1291
}
1292

    
1293
int kvm_has_xsave(void)
1294
{
1295
    return kvm_state->xsave;
1296
}
1297

    
1298
int kvm_has_xcrs(void)
1299
{
1300
    return kvm_state->xcrs;
1301
}
1302

    
1303
int kvm_has_many_ioeventfds(void)
1304
{
1305
    if (!kvm_enabled()) {
1306
        return 0;
1307
    }
1308
    return kvm_state->many_ioeventfds;
1309
}
1310

    
1311
int kvm_has_gsi_routing(void)
1312
{
1313
#ifdef KVM_CAP_IRQ_ROUTING
1314
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1315
#else
1316
    return false;
1317
#endif
1318
}
1319

    
1320
int kvm_allows_irq0_override(void)
1321
{
1322
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1323
}
1324

    
1325
void kvm_setup_guest_memory(void *start, size_t size)
1326
{
1327
    if (!kvm_has_sync_mmu()) {
1328
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1329

    
1330
        if (ret) {
1331
            perror("qemu_madvise");
1332
            fprintf(stderr,
1333
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1334
            exit(1);
1335
        }
1336
    }
1337
}
1338

    
1339
#ifdef KVM_CAP_SET_GUEST_DEBUG
1340
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1341
                                                 target_ulong pc)
1342
{
1343
    struct kvm_sw_breakpoint *bp;
1344

    
1345
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1346
        if (bp->pc == pc) {
1347
            return bp;
1348
        }
1349
    }
1350
    return NULL;
1351
}
1352

    
1353
int kvm_sw_breakpoints_active(CPUState *env)
1354
{
1355
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1356
}
1357

    
1358
struct kvm_set_guest_debug_data {
1359
    struct kvm_guest_debug dbg;
1360
    CPUState *env;
1361
    int err;
1362
};
1363

    
1364
static void kvm_invoke_set_guest_debug(void *data)
1365
{
1366
    struct kvm_set_guest_debug_data *dbg_data = data;
1367
    CPUState *env = dbg_data->env;
1368

    
1369
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1370
}
1371

    
1372
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1373
{
1374
    struct kvm_set_guest_debug_data data;
1375

    
1376
    data.dbg.control = reinject_trap;
1377

    
1378
    if (env->singlestep_enabled) {
1379
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1380
    }
1381
    kvm_arch_update_guest_debug(env, &data.dbg);
1382
    data.env = env;
1383

    
1384
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1385
    return data.err;
1386
}
1387

    
1388
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1389
                          target_ulong len, int type)
1390
{
1391
    struct kvm_sw_breakpoint *bp;
1392
    CPUState *env;
1393
    int err;
1394

    
1395
    if (type == GDB_BREAKPOINT_SW) {
1396
        bp = kvm_find_sw_breakpoint(current_env, addr);
1397
        if (bp) {
1398
            bp->use_count++;
1399
            return 0;
1400
        }
1401

    
1402
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1403
        if (!bp) {
1404
            return -ENOMEM;
1405
        }
1406

    
1407
        bp->pc = addr;
1408
        bp->use_count = 1;
1409
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1410
        if (err) {
1411
            g_free(bp);
1412
            return err;
1413
        }
1414

    
1415
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1416
                          bp, entry);
1417
    } else {
1418
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1419
        if (err) {
1420
            return err;
1421
        }
1422
    }
1423

    
1424
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1425
        err = kvm_update_guest_debug(env, 0);
1426
        if (err) {
1427
            return err;
1428
        }
1429
    }
1430
    return 0;
1431
}
1432

    
1433
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1434
                          target_ulong len, int type)
1435
{
1436
    struct kvm_sw_breakpoint *bp;
1437
    CPUState *env;
1438
    int err;
1439

    
1440
    if (type == GDB_BREAKPOINT_SW) {
1441
        bp = kvm_find_sw_breakpoint(current_env, addr);
1442
        if (!bp) {
1443
            return -ENOENT;
1444
        }
1445

    
1446
        if (bp->use_count > 1) {
1447
            bp->use_count--;
1448
            return 0;
1449
        }
1450

    
1451
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1452
        if (err) {
1453
            return err;
1454
        }
1455

    
1456
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1457
        g_free(bp);
1458
    } else {
1459
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1460
        if (err) {
1461
            return err;
1462
        }
1463
    }
1464

    
1465
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1466
        err = kvm_update_guest_debug(env, 0);
1467
        if (err) {
1468
            return err;
1469
        }
1470
    }
1471
    return 0;
1472
}
1473

    
1474
void kvm_remove_all_breakpoints(CPUState *current_env)
1475
{
1476
    struct kvm_sw_breakpoint *bp, *next;
1477
    KVMState *s = current_env->kvm_state;
1478
    CPUState *env;
1479

    
1480
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1481
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1482
            /* Try harder to find a CPU that currently sees the breakpoint. */
1483
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1484
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1485
                    break;
1486
                }
1487
            }
1488
        }
1489
    }
1490
    kvm_arch_remove_all_hw_breakpoints();
1491

    
1492
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1493
        kvm_update_guest_debug(env, 0);
1494
    }
1495
}
1496

    
1497
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1498

    
1499
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1500
{
1501
    return -EINVAL;
1502
}
1503

    
1504
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1505
                          target_ulong len, int type)
1506
{
1507
    return -EINVAL;
1508
}
1509

    
1510
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1511
                          target_ulong len, int type)
1512
{
1513
    return -EINVAL;
1514
}
1515

    
1516
void kvm_remove_all_breakpoints(CPUState *current_env)
1517
{
1518
}
1519
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1520

    
1521
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1522
{
1523
    struct kvm_signal_mask *sigmask;
1524
    int r;
1525

    
1526
    if (!sigset) {
1527
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1528
    }
1529

    
1530
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1531

    
1532
    sigmask->len = 8;
1533
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1534
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1535
    g_free(sigmask);
1536

    
1537
    return r;
1538
}
1539

    
1540
int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1541
{
1542
    int ret;
1543
    struct kvm_ioeventfd iofd;
1544

    
1545
    iofd.datamatch = val;
1546
    iofd.addr = addr;
1547
    iofd.len = 4;
1548
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1549
    iofd.fd = fd;
1550

    
1551
    if (!kvm_enabled()) {
1552
        return -ENOSYS;
1553
    }
1554

    
1555
    if (!assign) {
1556
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1557
    }
1558

    
1559
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1560

    
1561
    if (ret < 0) {
1562
        return -errno;
1563
    }
1564

    
1565
    return 0;
1566
}
1567

    
1568
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1569
{
1570
    struct kvm_ioeventfd kick = {
1571
        .datamatch = val,
1572
        .addr = addr,
1573
        .len = 2,
1574
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1575
        .fd = fd,
1576
    };
1577
    int r;
1578
    if (!kvm_enabled()) {
1579
        return -ENOSYS;
1580
    }
1581
    if (!assign) {
1582
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1583
    }
1584
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1585
    if (r < 0) {
1586
        return r;
1587
    }
1588
    return 0;
1589
}
1590

    
1591
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1592
{
1593
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1594
}
1595

    
1596
int kvm_on_sigbus(int code, void *addr)
1597
{
1598
    return kvm_arch_on_sigbus(code, addr);
1599
}