Statistics
| Branch: | Revision:

root / cputlb.c @ 90260c6c

History | View | Annotate | Download (10.9 kB)

1
/*
2
 *  Common CPU TLB handling
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "config.h"
21
#include "cpu.h"
22
#include "exec/exec-all.h"
23
#include "exec/memory.h"
24
#include "exec/address-spaces.h"
25

    
26
#include "exec/cputlb.h"
27

    
28
#include "exec/memory-internal.h"
29

    
30
//#define DEBUG_TLB
31
//#define DEBUG_TLB_CHECK
32

    
33
/* statistics */
34
int tlb_flush_count;
35

    
36
static const CPUTLBEntry s_cputlb_empty_entry = {
37
    .addr_read  = -1,
38
    .addr_write = -1,
39
    .addr_code  = -1,
40
    .addend     = -1,
41
};
42

    
43
/* NOTE:
44
 * If flush_global is true (the usual case), flush all tlb entries.
45
 * If flush_global is false, flush (at least) all tlb entries not
46
 * marked global.
47
 *
48
 * Since QEMU doesn't currently implement a global/not-global flag
49
 * for tlb entries, at the moment tlb_flush() will also flush all
50
 * tlb entries in the flush_global == false case. This is OK because
51
 * CPU architectures generally permit an implementation to drop
52
 * entries from the TLB at any time, so flushing more entries than
53
 * required is only an efficiency issue, not a correctness issue.
54
 */
55
void tlb_flush(CPUArchState *env, int flush_global)
56
{
57
    CPUState *cpu = ENV_GET_CPU(env);
58
    int i;
59

    
60
#if defined(DEBUG_TLB)
61
    printf("tlb_flush:\n");
62
#endif
63
    /* must reset current TB so that interrupts cannot modify the
64
       links while we are modifying them */
65
    cpu->current_tb = NULL;
66

    
67
    for (i = 0; i < CPU_TLB_SIZE; i++) {
68
        int mmu_idx;
69

    
70
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
71
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
72
        }
73
    }
74

    
75
    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
76

    
77
    env->tlb_flush_addr = -1;
78
    env->tlb_flush_mask = 0;
79
    tlb_flush_count++;
80
}
81

    
82
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
83
{
84
    if (addr == (tlb_entry->addr_read &
85
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
86
        addr == (tlb_entry->addr_write &
87
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
88
        addr == (tlb_entry->addr_code &
89
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
90
        *tlb_entry = s_cputlb_empty_entry;
91
    }
92
}
93

    
94
void tlb_flush_page(CPUArchState *env, target_ulong addr)
95
{
96
    CPUState *cpu = ENV_GET_CPU(env);
97
    int i;
98
    int mmu_idx;
99

    
100
#if defined(DEBUG_TLB)
101
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
102
#endif
103
    /* Check if we need to flush due to large pages.  */
104
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
105
#if defined(DEBUG_TLB)
106
        printf("tlb_flush_page: forced full flush ("
107
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
108
               env->tlb_flush_addr, env->tlb_flush_mask);
109
#endif
110
        tlb_flush(env, 1);
111
        return;
112
    }
113
    /* must reset current TB so that interrupts cannot modify the
114
       links while we are modifying them */
115
    cpu->current_tb = NULL;
116

    
117
    addr &= TARGET_PAGE_MASK;
118
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
119
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
120
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
121
    }
122

    
123
    tb_flush_jmp_cache(env, addr);
124
}
125

    
126
/* update the TLBs so that writes to code in the virtual page 'addr'
127
   can be detected */
128
void tlb_protect_code(ram_addr_t ram_addr)
129
{
130
    cpu_physical_memory_reset_dirty(ram_addr,
131
                                    ram_addr + TARGET_PAGE_SIZE,
132
                                    CODE_DIRTY_FLAG);
133
}
134

    
135
/* update the TLB so that writes in physical page 'phys_addr' are no longer
136
   tested for self modifying code */
137
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
138
                             target_ulong vaddr)
139
{
140
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
141
}
142

    
143
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
144
{
145
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
146
}
147

    
148
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
149
                           uintptr_t length)
150
{
151
    uintptr_t addr;
152

    
153
    if (tlb_is_dirty_ram(tlb_entry)) {
154
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
155
        if ((addr - start) < length) {
156
            tlb_entry->addr_write |= TLB_NOTDIRTY;
157
        }
158
    }
159
}
160

    
161
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
162
{
163
    ram_addr_t ram_addr;
164
    void *p;
165

    
166
    if (tlb_is_dirty_ram(tlb_entry)) {
167
        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
168
            + tlb_entry->addend);
169
        ram_addr = qemu_ram_addr_from_host_nofail(p);
170
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
171
            tlb_entry->addr_write |= TLB_NOTDIRTY;
172
        }
173
    }
174
}
175

    
176
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
177
{
178
    CPUArchState *env;
179

    
180
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
181
        int mmu_idx;
182

    
183
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
184
            unsigned int i;
185

    
186
            for (i = 0; i < CPU_TLB_SIZE; i++) {
187
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
188
                                      start1, length);
189
            }
190
        }
191
    }
192
}
193

    
194
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
195
{
196
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
197
        tlb_entry->addr_write = vaddr;
198
    }
199
}
200

    
201
/* update the TLB corresponding to virtual page vaddr
202
   so that it is no longer dirty */
203
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
204
{
205
    int i;
206
    int mmu_idx;
207

    
208
    vaddr &= TARGET_PAGE_MASK;
209
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
210
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
211
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
212
    }
213
}
214

    
215
/* Our TLB does not support large pages, so remember the area covered by
216
   large pages and trigger a full TLB flush if these are invalidated.  */
217
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
218
                               target_ulong size)
219
{
220
    target_ulong mask = ~(size - 1);
221

    
222
    if (env->tlb_flush_addr == (target_ulong)-1) {
223
        env->tlb_flush_addr = vaddr & mask;
224
        env->tlb_flush_mask = mask;
225
        return;
226
    }
227
    /* Extend the existing region to include the new page.
228
       This is a compromise between unnecessary flushes and the cost
229
       of maintaining a full variable size TLB.  */
230
    mask &= env->tlb_flush_mask;
231
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
232
        mask <<= 1;
233
    }
234
    env->tlb_flush_addr &= mask;
235
    env->tlb_flush_mask = mask;
236
}
237

    
238
/* Add a new TLB entry. At most one entry for a given virtual address
239
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
240
   supplied size is only used by tlb_flush_page.  */
241
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
242
                  hwaddr paddr, int prot,
243
                  int mmu_idx, target_ulong size)
244
{
245
    MemoryRegionSection *section;
246
    unsigned int index;
247
    target_ulong address;
248
    target_ulong code_address;
249
    uintptr_t addend;
250
    CPUTLBEntry *te;
251
    hwaddr iotlb, xlat, sz;
252

    
253
    assert(size >= TARGET_PAGE_SIZE);
254
    if (size != TARGET_PAGE_SIZE) {
255
        tlb_add_large_page(env, vaddr, size);
256
    }
257

    
258
    sz = size;
259
    section = address_space_translate_for_iotlb(&address_space_memory, paddr,
260
                                                &xlat, &sz);
261
    assert(sz >= TARGET_PAGE_SIZE);
262

    
263
#if defined(DEBUG_TLB)
264
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
265
           " prot=%x idx=%d\n",
266
           vaddr, paddr, prot, mmu_idx);
267
#endif
268

    
269
    address = vaddr;
270
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
271
        /* IO memory case */
272
        address |= TLB_MMIO;
273
        addend = 0;
274
    } else {
275
        /* TLB_MMIO for rom/romd handled below */
276
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
277
    }
278

    
279
    code_address = address;
280
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
281
                                            prot, &address);
282

    
283
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
284
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
285
    te = &env->tlb_table[mmu_idx][index];
286
    te->addend = addend - vaddr;
287
    if (prot & PAGE_READ) {
288
        te->addr_read = address;
289
    } else {
290
        te->addr_read = -1;
291
    }
292

    
293
    if (prot & PAGE_EXEC) {
294
        te->addr_code = code_address;
295
    } else {
296
        te->addr_code = -1;
297
    }
298
    if (prot & PAGE_WRITE) {
299
        if ((memory_region_is_ram(section->mr) && section->readonly)
300
            || memory_region_is_romd(section->mr)) {
301
            /* Write access calls the I/O callback.  */
302
            te->addr_write = address | TLB_MMIO;
303
        } else if (memory_region_is_ram(section->mr)
304
                   && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
305
            te->addr_write = address | TLB_NOTDIRTY;
306
        } else {
307
            te->addr_write = address;
308
        }
309
    } else {
310
        te->addr_write = -1;
311
    }
312
}
313

    
314
/* NOTE: this function can trigger an exception */
315
/* NOTE2: the returned address is not exactly the physical address: it
316
 * is actually a ram_addr_t (in system mode; the user mode emulation
317
 * version of this function returns a guest virtual address).
318
 */
319
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
320
{
321
    int mmu_idx, page_index, pd;
322
    void *p;
323
    MemoryRegion *mr;
324

    
325
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
326
    mmu_idx = cpu_mmu_index(env1);
327
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
328
                 (addr & TARGET_PAGE_MASK))) {
329
        cpu_ldub_code(env1, addr);
330
    }
331
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
332
    mr = iotlb_to_region(pd);
333
    if (memory_region_is_unassigned(mr)) {
334
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
335
        cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
336
#else
337
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
338
                  TARGET_FMT_lx "\n", addr);
339
#endif
340
    }
341
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
342
    return qemu_ram_addr_from_host_nofail(p);
343
}
344

    
345
#define MMUSUFFIX _cmmu
346
#undef GETPC
347
#define GETPC() ((uintptr_t)0)
348
#define SOFTMMU_CODE_ACCESS
349

    
350
#define SHIFT 0
351
#include "exec/softmmu_template.h"
352

    
353
#define SHIFT 1
354
#include "exec/softmmu_template.h"
355

    
356
#define SHIFT 2
357
#include "exec/softmmu_template.h"
358

    
359
#define SHIFT 3
360
#include "exec/softmmu_template.h"
361

    
362
#undef env