Statistics
| Branch: | Revision:

root / hw / pc.c @ 9139046c

History | View | Annotate | Download (32.4 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "apic.h"
27
#include "fdc.h"
28
#include "ide.h"
29
#include "pci.h"
30
#include "vmware_vga.h"
31
#include "monitor.h"
32
#include "fw_cfg.h"
33
#include "hpet_emul.h"
34
#include "smbios.h"
35
#include "loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "mc146818rtc.h"
39
#include "i8254.h"
40
#include "pcspk.h"
41
#include "msi.h"
42
#include "sysbus.h"
43
#include "sysemu.h"
44
#include "kvm.h"
45
#include "xen.h"
46
#include "blockdev.h"
47
#include "ui/qemu-spice.h"
48
#include "memory.h"
49
#include "exec-memory.h"
50
#include "arch_init.h"
51

    
52
/* output Bochs bios info messages */
53
//#define DEBUG_BIOS
54

    
55
/* debug PC/ISA interrupts */
56
//#define DEBUG_IRQ
57

    
58
#ifdef DEBUG_IRQ
59
#define DPRINTF(fmt, ...)                                       \
60
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
61
#else
62
#define DPRINTF(fmt, ...)
63
#endif
64

    
65
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
66
#define ACPI_DATA_SIZE       0x10000
67
#define BIOS_CFG_IOPORT 0x510
68
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
69
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
70
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
71
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
72
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
73

    
74
#define MSI_ADDR_BASE 0xfee00000
75

    
76
#define E820_NR_ENTRIES                16
77

    
78
struct e820_entry {
79
    uint64_t address;
80
    uint64_t length;
81
    uint32_t type;
82
} QEMU_PACKED __attribute((__aligned__(4)));
83

    
84
struct e820_table {
85
    uint32_t count;
86
    struct e820_entry entry[E820_NR_ENTRIES];
87
} QEMU_PACKED __attribute((__aligned__(4)));
88

    
89
static struct e820_table e820_table;
90
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
91

    
92
void gsi_handler(void *opaque, int n, int level)
93
{
94
    GSIState *s = opaque;
95

    
96
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
97
    if (n < ISA_NUM_IRQS) {
98
        qemu_set_irq(s->i8259_irq[n], level);
99
    }
100
    qemu_set_irq(s->ioapic_irq[n], level);
101
}
102

    
103
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
104
{
105
}
106

    
107
/* MSDOS compatibility mode FPU exception support */
108
static qemu_irq ferr_irq;
109

    
110
void pc_register_ferr_irq(qemu_irq irq)
111
{
112
    ferr_irq = irq;
113
}
114

    
115
/* XXX: add IGNNE support */
116
void cpu_set_ferr(CPUX86State *s)
117
{
118
    qemu_irq_raise(ferr_irq);
119
}
120

    
121
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
122
{
123
    qemu_irq_lower(ferr_irq);
124
}
125

    
126
/* TSC handling */
127
uint64_t cpu_get_tsc(CPUX86State *env)
128
{
129
    return cpu_get_ticks();
130
}
131

    
132
/* SMM support */
133

    
134
static cpu_set_smm_t smm_set;
135
static void *smm_arg;
136

    
137
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
138
{
139
    assert(smm_set == NULL);
140
    assert(smm_arg == NULL);
141
    smm_set = callback;
142
    smm_arg = arg;
143
}
144

    
145
void cpu_smm_update(CPUX86State *env)
146
{
147
    if (smm_set && smm_arg && env == first_cpu)
148
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
149
}
150

    
151

    
152
/* IRQ handling */
153
int cpu_get_pic_interrupt(CPUX86State *env)
154
{
155
    int intno;
156

    
157
    intno = apic_get_interrupt(env->apic_state);
158
    if (intno >= 0) {
159
        return intno;
160
    }
161
    /* read the irq from the PIC */
162
    if (!apic_accept_pic_intr(env->apic_state)) {
163
        return -1;
164
    }
165

    
166
    intno = pic_read_irq(isa_pic);
167
    return intno;
168
}
169

    
170
static void pic_irq_request(void *opaque, int irq, int level)
171
{
172
    CPUX86State *env = first_cpu;
173

    
174
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
175
    if (env->apic_state) {
176
        while (env) {
177
            if (apic_accept_pic_intr(env->apic_state)) {
178
                apic_deliver_pic_intr(env->apic_state, level);
179
            }
180
            env = env->next_cpu;
181
        }
182
    } else {
183
        if (level)
184
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
185
        else
186
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
187
    }
188
}
189

    
190
/* PC cmos mappings */
191

    
192
#define REG_EQUIPMENT_BYTE          0x14
193

    
194
static int cmos_get_fd_drive_type(FDriveType fd0)
195
{
196
    int val;
197

    
198
    switch (fd0) {
199
    case FDRIVE_DRV_144:
200
        /* 1.44 Mb 3"5 drive */
201
        val = 4;
202
        break;
203
    case FDRIVE_DRV_288:
204
        /* 2.88 Mb 3"5 drive */
205
        val = 5;
206
        break;
207
    case FDRIVE_DRV_120:
208
        /* 1.2 Mb 5"5 drive */
209
        val = 2;
210
        break;
211
    case FDRIVE_DRV_NONE:
212
    default:
213
        val = 0;
214
        break;
215
    }
216
    return val;
217
}
218

    
219
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
220
                         int16_t cylinders, int8_t heads, int8_t sectors)
221
{
222
    rtc_set_memory(s, type_ofs, 47);
223
    rtc_set_memory(s, info_ofs, cylinders);
224
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
225
    rtc_set_memory(s, info_ofs + 2, heads);
226
    rtc_set_memory(s, info_ofs + 3, 0xff);
227
    rtc_set_memory(s, info_ofs + 4, 0xff);
228
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
229
    rtc_set_memory(s, info_ofs + 6, cylinders);
230
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
231
    rtc_set_memory(s, info_ofs + 8, sectors);
232
}
233

    
234
/* convert boot_device letter to something recognizable by the bios */
235
static int boot_device2nibble(char boot_device)
236
{
237
    switch(boot_device) {
238
    case 'a':
239
    case 'b':
240
        return 0x01; /* floppy boot */
241
    case 'c':
242
        return 0x02; /* hard drive boot */
243
    case 'd':
244
        return 0x03; /* CD-ROM boot */
245
    case 'n':
246
        return 0x04; /* Network boot */
247
    }
248
    return 0;
249
}
250

    
251
static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
252
{
253
#define PC_MAX_BOOT_DEVICES 3
254
    int nbds, bds[3] = { 0, };
255
    int i;
256

    
257
    nbds = strlen(boot_device);
258
    if (nbds > PC_MAX_BOOT_DEVICES) {
259
        error_report("Too many boot devices for PC");
260
        return(1);
261
    }
262
    for (i = 0; i < nbds; i++) {
263
        bds[i] = boot_device2nibble(boot_device[i]);
264
        if (bds[i] == 0) {
265
            error_report("Invalid boot device for PC: '%c'",
266
                         boot_device[i]);
267
            return(1);
268
        }
269
    }
270
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
271
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
272
    return(0);
273
}
274

    
275
static int pc_boot_set(void *opaque, const char *boot_device)
276
{
277
    return set_boot_dev(opaque, boot_device, 0);
278
}
279

    
280
typedef struct pc_cmos_init_late_arg {
281
    ISADevice *rtc_state;
282
    BusState *idebus[2];
283
} pc_cmos_init_late_arg;
284

    
285
static void pc_cmos_init_late(void *opaque)
286
{
287
    pc_cmos_init_late_arg *arg = opaque;
288
    ISADevice *s = arg->rtc_state;
289
    int16_t cylinders;
290
    int8_t heads, sectors;
291
    int val;
292
    int i;
293

    
294
    val = 0;
295
    if (ide_get_geometry(arg->idebus[0], 0,
296
                         &cylinders, &heads, &sectors) >= 0) {
297
        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
298
        val |= 0xf0;
299
    }
300
    if (ide_get_geometry(arg->idebus[0], 1,
301
                         &cylinders, &heads, &sectors) >= 0) {
302
        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
303
        val |= 0x0f;
304
    }
305
    rtc_set_memory(s, 0x12, val);
306

    
307
    val = 0;
308
    for (i = 0; i < 4; i++) {
309
        /* NOTE: ide_get_geometry() returns the physical
310
           geometry.  It is always such that: 1 <= sects <= 63, 1
311
           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
312
           geometry can be different if a translation is done. */
313
        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
314
                             &cylinders, &heads, &sectors) >= 0) {
315
            int translation = ide_get_bios_chs_trans(arg->idebus[i / 2],
316
                                                     i % 2);
317
            if (translation == BIOS_ATA_TRANSLATION_AUTO) {
318
                if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
319
                    /* No translation. */
320
                    translation = 0;
321
                } else {
322
                    /* LBA translation. */
323
                    translation = 1;
324
                }
325
            } else {
326
                translation--;
327
            }
328
            val |= translation << (i * 2);
329
        }
330
    }
331
    rtc_set_memory(s, 0x39, val);
332

    
333
    qemu_unregister_reset(pc_cmos_init_late, opaque);
334
}
335

    
336
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
337
                  const char *boot_device,
338
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
339
                  ISADevice *s)
340
{
341
    int val, nb, i;
342
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
343
    static pc_cmos_init_late_arg arg;
344

    
345
    /* various important CMOS locations needed by PC/Bochs bios */
346

    
347
    /* memory size */
348
    val = 640; /* base memory in K */
349
    rtc_set_memory(s, 0x15, val);
350
    rtc_set_memory(s, 0x16, val >> 8);
351

    
352
    val = (ram_size / 1024) - 1024;
353
    if (val > 65535)
354
        val = 65535;
355
    rtc_set_memory(s, 0x17, val);
356
    rtc_set_memory(s, 0x18, val >> 8);
357
    rtc_set_memory(s, 0x30, val);
358
    rtc_set_memory(s, 0x31, val >> 8);
359

    
360
    if (above_4g_mem_size) {
361
        rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
362
        rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
363
        rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
364
    }
365

    
366
    if (ram_size > (16 * 1024 * 1024))
367
        val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
368
    else
369
        val = 0;
370
    if (val > 65535)
371
        val = 65535;
372
    rtc_set_memory(s, 0x34, val);
373
    rtc_set_memory(s, 0x35, val >> 8);
374

    
375
    /* set the number of CPU */
376
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
377

    
378
    /* set boot devices, and disable floppy signature check if requested */
379
    if (set_boot_dev(s, boot_device, fd_bootchk)) {
380
        exit(1);
381
    }
382

    
383
    /* floppy type */
384
    if (floppy) {
385
        for (i = 0; i < 2; i++) {
386
            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
387
        }
388
    }
389
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
390
        cmos_get_fd_drive_type(fd_type[1]);
391
    rtc_set_memory(s, 0x10, val);
392

    
393
    val = 0;
394
    nb = 0;
395
    if (fd_type[0] < FDRIVE_DRV_NONE) {
396
        nb++;
397
    }
398
    if (fd_type[1] < FDRIVE_DRV_NONE) {
399
        nb++;
400
    }
401
    switch (nb) {
402
    case 0:
403
        break;
404
    case 1:
405
        val |= 0x01; /* 1 drive, ready for boot */
406
        break;
407
    case 2:
408
        val |= 0x41; /* 2 drives, ready for boot */
409
        break;
410
    }
411
    val |= 0x02; /* FPU is there */
412
    val |= 0x04; /* PS/2 mouse installed */
413
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
414

    
415
    /* hard drives */
416
    arg.rtc_state = s;
417
    arg.idebus[0] = idebus0;
418
    arg.idebus[1] = idebus1;
419
    qemu_register_reset(pc_cmos_init_late, &arg);
420
}
421

    
422
/* port 92 stuff: could be split off */
423
typedef struct Port92State {
424
    ISADevice dev;
425
    MemoryRegion io;
426
    uint8_t outport;
427
    qemu_irq *a20_out;
428
} Port92State;
429

    
430
static void port92_write(void *opaque, uint32_t addr, uint32_t val)
431
{
432
    Port92State *s = opaque;
433

    
434
    DPRINTF("port92: write 0x%02x\n", val);
435
    s->outport = val;
436
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
437
    if (val & 1) {
438
        qemu_system_reset_request();
439
    }
440
}
441

    
442
static uint32_t port92_read(void *opaque, uint32_t addr)
443
{
444
    Port92State *s = opaque;
445
    uint32_t ret;
446

    
447
    ret = s->outport;
448
    DPRINTF("port92: read 0x%02x\n", ret);
449
    return ret;
450
}
451

    
452
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
453
{
454
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
455

    
456
    s->a20_out = a20_out;
457
}
458

    
459
static const VMStateDescription vmstate_port92_isa = {
460
    .name = "port92",
461
    .version_id = 1,
462
    .minimum_version_id = 1,
463
    .minimum_version_id_old = 1,
464
    .fields      = (VMStateField []) {
465
        VMSTATE_UINT8(outport, Port92State),
466
        VMSTATE_END_OF_LIST()
467
    }
468
};
469

    
470
static void port92_reset(DeviceState *d)
471
{
472
    Port92State *s = container_of(d, Port92State, dev.qdev);
473

    
474
    s->outport &= ~1;
475
}
476

    
477
static const MemoryRegionPortio port92_portio[] = {
478
    { 0, 1, 1, .read = port92_read, .write = port92_write },
479
    PORTIO_END_OF_LIST(),
480
};
481

    
482
static const MemoryRegionOps port92_ops = {
483
    .old_portio = port92_portio
484
};
485

    
486
static int port92_initfn(ISADevice *dev)
487
{
488
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
489

    
490
    memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
491
    isa_register_ioport(dev, &s->io, 0x92);
492

    
493
    s->outport = 0;
494
    return 0;
495
}
496

    
497
static void port92_class_initfn(ObjectClass *klass, void *data)
498
{
499
    DeviceClass *dc = DEVICE_CLASS(klass);
500
    ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
501
    ic->init = port92_initfn;
502
    dc->no_user = 1;
503
    dc->reset = port92_reset;
504
    dc->vmsd = &vmstate_port92_isa;
505
}
506

    
507
static TypeInfo port92_info = {
508
    .name          = "port92",
509
    .parent        = TYPE_ISA_DEVICE,
510
    .instance_size = sizeof(Port92State),
511
    .class_init    = port92_class_initfn,
512
};
513

    
514
static void port92_register_types(void)
515
{
516
    type_register_static(&port92_info);
517
}
518

    
519
type_init(port92_register_types)
520

    
521
static void handle_a20_line_change(void *opaque, int irq, int level)
522
{
523
    CPUX86State *cpu = opaque;
524

    
525
    /* XXX: send to all CPUs ? */
526
    /* XXX: add logic to handle multiple A20 line sources */
527
    cpu_x86_set_a20(cpu, level);
528
}
529

    
530
/***********************************************************/
531
/* Bochs BIOS debug ports */
532

    
533
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
534
{
535
    static const char shutdown_str[8] = "Shutdown";
536
    static int shutdown_index = 0;
537

    
538
    switch(addr) {
539
        /* Bochs BIOS messages */
540
    case 0x400:
541
    case 0x401:
542
        /* used to be panic, now unused */
543
        break;
544
    case 0x402:
545
    case 0x403:
546
#ifdef DEBUG_BIOS
547
        fprintf(stderr, "%c", val);
548
#endif
549
        break;
550
    case 0x8900:
551
        /* same as Bochs power off */
552
        if (val == shutdown_str[shutdown_index]) {
553
            shutdown_index++;
554
            if (shutdown_index == 8) {
555
                shutdown_index = 0;
556
                qemu_system_shutdown_request();
557
            }
558
        } else {
559
            shutdown_index = 0;
560
        }
561
        break;
562

    
563
        /* LGPL'ed VGA BIOS messages */
564
    case 0x501:
565
    case 0x502:
566
        exit((val << 1) | 1);
567
    case 0x500:
568
    case 0x503:
569
#ifdef DEBUG_BIOS
570
        fprintf(stderr, "%c", val);
571
#endif
572
        break;
573
    }
574
}
575

    
576
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
577
{
578
    int index = le32_to_cpu(e820_table.count);
579
    struct e820_entry *entry;
580

    
581
    if (index >= E820_NR_ENTRIES)
582
        return -EBUSY;
583
    entry = &e820_table.entry[index++];
584

    
585
    entry->address = cpu_to_le64(address);
586
    entry->length = cpu_to_le64(length);
587
    entry->type = cpu_to_le32(type);
588

    
589
    e820_table.count = cpu_to_le32(index);
590
    return index;
591
}
592

    
593
static void *bochs_bios_init(void)
594
{
595
    void *fw_cfg;
596
    uint8_t *smbios_table;
597
    size_t smbios_len;
598
    uint64_t *numa_fw_cfg;
599
    int i, j;
600

    
601
    register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
602
    register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
603
    register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
604
    register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
605
    register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
606

    
607
    register_ioport_write(0x501, 1, 1, bochs_bios_write, NULL);
608
    register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
609
    register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
610
    register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
611
    register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
612

    
613
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
614

    
615
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
616
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
617
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
618
                     acpi_tables_len);
619
    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
620

    
621
    smbios_table = smbios_get_table(&smbios_len);
622
    if (smbios_table)
623
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
624
                         smbios_table, smbios_len);
625
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, (uint8_t *)&e820_table,
626
                     sizeof(struct e820_table));
627

    
628
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, (uint8_t *)&hpet_cfg,
629
                     sizeof(struct hpet_fw_config));
630
    /* allocate memory for the NUMA channel: one (64bit) word for the number
631
     * of nodes, one word for each VCPU->node and one word for each node to
632
     * hold the amount of memory.
633
     */
634
    numa_fw_cfg = g_malloc0((1 + max_cpus + nb_numa_nodes) * 8);
635
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
636
    for (i = 0; i < max_cpus; i++) {
637
        for (j = 0; j < nb_numa_nodes; j++) {
638
            if (node_cpumask[j] & (1 << i)) {
639
                numa_fw_cfg[i + 1] = cpu_to_le64(j);
640
                break;
641
            }
642
        }
643
    }
644
    for (i = 0; i < nb_numa_nodes; i++) {
645
        numa_fw_cfg[max_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
646
    }
647
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
648
                     (1 + max_cpus + nb_numa_nodes) * 8);
649

    
650
    return fw_cfg;
651
}
652

    
653
static long get_file_size(FILE *f)
654
{
655
    long where, size;
656

    
657
    /* XXX: on Unix systems, using fstat() probably makes more sense */
658

    
659
    where = ftell(f);
660
    fseek(f, 0, SEEK_END);
661
    size = ftell(f);
662
    fseek(f, where, SEEK_SET);
663

    
664
    return size;
665
}
666

    
667
static void load_linux(void *fw_cfg,
668
                       const char *kernel_filename,
669
                       const char *initrd_filename,
670
                       const char *kernel_cmdline,
671
                       target_phys_addr_t max_ram_size)
672
{
673
    uint16_t protocol;
674
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
675
    uint32_t initrd_max;
676
    uint8_t header[8192], *setup, *kernel, *initrd_data;
677
    target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
678
    FILE *f;
679
    char *vmode;
680

    
681
    /* Align to 16 bytes as a paranoia measure */
682
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
683

    
684
    /* load the kernel header */
685
    f = fopen(kernel_filename, "rb");
686
    if (!f || !(kernel_size = get_file_size(f)) ||
687
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
688
        MIN(ARRAY_SIZE(header), kernel_size)) {
689
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
690
                kernel_filename, strerror(errno));
691
        exit(1);
692
    }
693

    
694
    /* kernel protocol version */
695
#if 0
696
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
697
#endif
698
    if (ldl_p(header+0x202) == 0x53726448)
699
        protocol = lduw_p(header+0x206);
700
    else {
701
        /* This looks like a multiboot kernel. If it is, let's stop
702
           treating it like a Linux kernel. */
703
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
704
                           kernel_cmdline, kernel_size, header))
705
            return;
706
        protocol = 0;
707
    }
708

    
709
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
710
        /* Low kernel */
711
        real_addr    = 0x90000;
712
        cmdline_addr = 0x9a000 - cmdline_size;
713
        prot_addr    = 0x10000;
714
    } else if (protocol < 0x202) {
715
        /* High but ancient kernel */
716
        real_addr    = 0x90000;
717
        cmdline_addr = 0x9a000 - cmdline_size;
718
        prot_addr    = 0x100000;
719
    } else {
720
        /* High and recent kernel */
721
        real_addr    = 0x10000;
722
        cmdline_addr = 0x20000;
723
        prot_addr    = 0x100000;
724
    }
725

    
726
#if 0
727
    fprintf(stderr,
728
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
729
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
730
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
731
            real_addr,
732
            cmdline_addr,
733
            prot_addr);
734
#endif
735

    
736
    /* highest address for loading the initrd */
737
    if (protocol >= 0x203)
738
        initrd_max = ldl_p(header+0x22c);
739
    else
740
        initrd_max = 0x37ffffff;
741

    
742
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
743
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
744

    
745
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
746
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
747
    fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
748
                     (uint8_t*)strdup(kernel_cmdline),
749
                     strlen(kernel_cmdline)+1);
750

    
751
    if (protocol >= 0x202) {
752
        stl_p(header+0x228, cmdline_addr);
753
    } else {
754
        stw_p(header+0x20, 0xA33F);
755
        stw_p(header+0x22, cmdline_addr-real_addr);
756
    }
757

    
758
    /* handle vga= parameter */
759
    vmode = strstr(kernel_cmdline, "vga=");
760
    if (vmode) {
761
        unsigned int video_mode;
762
        /* skip "vga=" */
763
        vmode += 4;
764
        if (!strncmp(vmode, "normal", 6)) {
765
            video_mode = 0xffff;
766
        } else if (!strncmp(vmode, "ext", 3)) {
767
            video_mode = 0xfffe;
768
        } else if (!strncmp(vmode, "ask", 3)) {
769
            video_mode = 0xfffd;
770
        } else {
771
            video_mode = strtol(vmode, NULL, 0);
772
        }
773
        stw_p(header+0x1fa, video_mode);
774
    }
775

    
776
    /* loader type */
777
    /* High nybble = B reserved for QEMU; low nybble is revision number.
778
       If this code is substantially changed, you may want to consider
779
       incrementing the revision. */
780
    if (protocol >= 0x200)
781
        header[0x210] = 0xB0;
782

    
783
    /* heap */
784
    if (protocol >= 0x201) {
785
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
786
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
787
    }
788

    
789
    /* load initrd */
790
    if (initrd_filename) {
791
        if (protocol < 0x200) {
792
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
793
            exit(1);
794
        }
795

    
796
        initrd_size = get_image_size(initrd_filename);
797
        if (initrd_size < 0) {
798
            fprintf(stderr, "qemu: error reading initrd %s\n",
799
                    initrd_filename);
800
            exit(1);
801
        }
802

    
803
        initrd_addr = (initrd_max-initrd_size) & ~4095;
804

    
805
        initrd_data = g_malloc(initrd_size);
806
        load_image(initrd_filename, initrd_data);
807

    
808
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
809
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
810
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
811

    
812
        stl_p(header+0x218, initrd_addr);
813
        stl_p(header+0x21c, initrd_size);
814
    }
815

    
816
    /* load kernel and setup */
817
    setup_size = header[0x1f1];
818
    if (setup_size == 0)
819
        setup_size = 4;
820
    setup_size = (setup_size+1)*512;
821
    kernel_size -= setup_size;
822

    
823
    setup  = g_malloc(setup_size);
824
    kernel = g_malloc(kernel_size);
825
    fseek(f, 0, SEEK_SET);
826
    if (fread(setup, 1, setup_size, f) != setup_size) {
827
        fprintf(stderr, "fread() failed\n");
828
        exit(1);
829
    }
830
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
831
        fprintf(stderr, "fread() failed\n");
832
        exit(1);
833
    }
834
    fclose(f);
835
    memcpy(setup, header, MIN(sizeof(header), setup_size));
836

    
837
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
838
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
839
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
840

    
841
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
842
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
843
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
844

    
845
    option_rom[nb_option_roms].name = "linuxboot.bin";
846
    option_rom[nb_option_roms].bootindex = 0;
847
    nb_option_roms++;
848
}
849

    
850
#define NE2000_NB_MAX 6
851

    
852
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
853
                                              0x280, 0x380 };
854
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
855

    
856
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
857
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
858

    
859
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
860
{
861
    static int nb_ne2k = 0;
862

    
863
    if (nb_ne2k == NE2000_NB_MAX)
864
        return;
865
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
866
                    ne2000_irq[nb_ne2k], nd);
867
    nb_ne2k++;
868
}
869

    
870
int cpu_is_bsp(CPUX86State *env)
871
{
872
    /* We hard-wire the BSP to the first CPU. */
873
    return env->cpu_index == 0;
874
}
875

    
876
DeviceState *cpu_get_current_apic(void)
877
{
878
    if (cpu_single_env) {
879
        return cpu_single_env->apic_state;
880
    } else {
881
        return NULL;
882
    }
883
}
884

    
885
static DeviceState *apic_init(void *env, uint8_t apic_id)
886
{
887
    DeviceState *dev;
888
    static int apic_mapped;
889

    
890
    if (kvm_irqchip_in_kernel()) {
891
        dev = qdev_create(NULL, "kvm-apic");
892
    } else if (xen_enabled()) {
893
        dev = qdev_create(NULL, "xen-apic");
894
    } else {
895
        dev = qdev_create(NULL, "apic");
896
    }
897

    
898
    qdev_prop_set_uint8(dev, "id", apic_id);
899
    qdev_prop_set_ptr(dev, "cpu_env", env);
900
    qdev_init_nofail(dev);
901

    
902
    /* XXX: mapping more APICs at the same memory location */
903
    if (apic_mapped == 0) {
904
        /* NOTE: the APIC is directly connected to the CPU - it is not
905
           on the global memory bus. */
906
        /* XXX: what if the base changes? */
907
        sysbus_mmio_map(sysbus_from_qdev(dev), 0, MSI_ADDR_BASE);
908
        apic_mapped = 1;
909
    }
910

    
911
    return dev;
912
}
913

    
914
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
915
{
916
    CPUX86State *s = opaque;
917

    
918
    if (level) {
919
        cpu_interrupt(s, CPU_INTERRUPT_SMI);
920
    }
921
}
922

    
923
static void pc_cpu_reset(void *opaque)
924
{
925
    X86CPU *cpu = opaque;
926
    CPUX86State *env = &cpu->env;
927

    
928
    cpu_reset(CPU(cpu));
929
    env->halted = !cpu_is_bsp(env);
930
}
931

    
932
static X86CPU *pc_new_cpu(const char *cpu_model)
933
{
934
    X86CPU *cpu;
935
    CPUX86State *env;
936

    
937
    cpu = cpu_x86_init(cpu_model);
938
    if (cpu == NULL) {
939
        fprintf(stderr, "Unable to find x86 CPU definition\n");
940
        exit(1);
941
    }
942
    env = &cpu->env;
943
    if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
944
        env->apic_state = apic_init(env, env->cpuid_apic_id);
945
    }
946
    qemu_register_reset(pc_cpu_reset, cpu);
947
    pc_cpu_reset(cpu);
948
    return cpu;
949
}
950

    
951
void pc_cpus_init(const char *cpu_model)
952
{
953
    int i;
954

    
955
    /* init CPUs */
956
    if (cpu_model == NULL) {
957
#ifdef TARGET_X86_64
958
        cpu_model = "qemu64";
959
#else
960
        cpu_model = "qemu32";
961
#endif
962
    }
963

    
964
    for(i = 0; i < smp_cpus; i++) {
965
        pc_new_cpu(cpu_model);
966
    }
967
}
968

    
969
void *pc_memory_init(MemoryRegion *system_memory,
970
                    const char *kernel_filename,
971
                    const char *kernel_cmdline,
972
                    const char *initrd_filename,
973
                    ram_addr_t below_4g_mem_size,
974
                    ram_addr_t above_4g_mem_size,
975
                    MemoryRegion *rom_memory,
976
                    MemoryRegion **ram_memory)
977
{
978
    int linux_boot, i;
979
    MemoryRegion *ram, *option_rom_mr;
980
    MemoryRegion *ram_below_4g, *ram_above_4g;
981
    void *fw_cfg;
982

    
983
    linux_boot = (kernel_filename != NULL);
984

    
985
    /* Allocate RAM.  We allocate it as a single memory region and use
986
     * aliases to address portions of it, mostly for backwards compatibility
987
     * with older qemus that used qemu_ram_alloc().
988
     */
989
    ram = g_malloc(sizeof(*ram));
990
    memory_region_init_ram(ram, "pc.ram",
991
                           below_4g_mem_size + above_4g_mem_size);
992
    vmstate_register_ram_global(ram);
993
    *ram_memory = ram;
994
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
995
    memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
996
                             0, below_4g_mem_size);
997
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
998
    if (above_4g_mem_size > 0) {
999
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1000
        memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
1001
                                 below_4g_mem_size, above_4g_mem_size);
1002
        memory_region_add_subregion(system_memory, 0x100000000ULL,
1003
                                    ram_above_4g);
1004
    }
1005

    
1006

    
1007
    /* Initialize PC system firmware */
1008
    pc_system_firmware_init(rom_memory);
1009

    
1010
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1011
    memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
1012
    vmstate_register_ram_global(option_rom_mr);
1013
    memory_region_add_subregion_overlap(rom_memory,
1014
                                        PC_ROM_MIN_VGA,
1015
                                        option_rom_mr,
1016
                                        1);
1017

    
1018
    fw_cfg = bochs_bios_init();
1019
    rom_set_fw(fw_cfg);
1020

    
1021
    if (linux_boot) {
1022
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1023
    }
1024

    
1025
    for (i = 0; i < nb_option_roms; i++) {
1026
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1027
    }
1028
    return fw_cfg;
1029
}
1030

    
1031
qemu_irq *pc_allocate_cpu_irq(void)
1032
{
1033
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1034
}
1035

    
1036
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1037
{
1038
    DeviceState *dev = NULL;
1039

    
1040
    if (cirrus_vga_enabled) {
1041
        if (pci_bus) {
1042
            dev = pci_cirrus_vga_init(pci_bus);
1043
        } else {
1044
            dev = &isa_create_simple(isa_bus, "isa-cirrus-vga")->qdev;
1045
        }
1046
    } else if (vmsvga_enabled) {
1047
        if (pci_bus) {
1048
            dev = pci_vmsvga_init(pci_bus);
1049
        } else {
1050
            fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1051
        }
1052
#ifdef CONFIG_SPICE
1053
    } else if (qxl_enabled) {
1054
        if (pci_bus) {
1055
            dev = &pci_create_simple(pci_bus, -1, "qxl-vga")->qdev;
1056
        } else {
1057
            fprintf(stderr, "%s: qxl: no PCI bus\n", __FUNCTION__);
1058
        }
1059
#endif
1060
    } else if (std_vga_enabled) {
1061
        if (pci_bus) {
1062
            dev = pci_vga_init(pci_bus);
1063
        } else {
1064
            dev = isa_vga_init(isa_bus);
1065
        }
1066
    }
1067

    
1068
    return dev;
1069
}
1070

    
1071
static void cpu_request_exit(void *opaque, int irq, int level)
1072
{
1073
    CPUX86State *env = cpu_single_env;
1074

    
1075
    if (env && level) {
1076
        cpu_exit(env);
1077
    }
1078
}
1079

    
1080
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1081
                          ISADevice **rtc_state,
1082
                          ISADevice **floppy,
1083
                          bool no_vmport)
1084
{
1085
    int i;
1086
    DriveInfo *fd[MAX_FD];
1087
    DeviceState *hpet = NULL;
1088
    int pit_isa_irq = 0;
1089
    qemu_irq pit_alt_irq = NULL;
1090
    qemu_irq rtc_irq = NULL;
1091
    qemu_irq *a20_line;
1092
    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1093
    qemu_irq *cpu_exit_irq;
1094

    
1095
    register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1096

    
1097
    register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1098

    
1099
    /*
1100
     * Check if an HPET shall be created.
1101
     *
1102
     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1103
     * when the HPET wants to take over. Thus we have to disable the latter.
1104
     */
1105
    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1106
        hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1107

    
1108
        if (hpet) {
1109
            for (i = 0; i < GSI_NUM_PINS; i++) {
1110
                sysbus_connect_irq(sysbus_from_qdev(hpet), i, gsi[i]);
1111
            }
1112
            pit_isa_irq = -1;
1113
            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1114
            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1115
        }
1116
    }
1117
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1118

    
1119
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1120

    
1121
    if (!xen_enabled()) {
1122
        if (kvm_irqchip_in_kernel()) {
1123
            pit = kvm_pit_init(isa_bus, 0x40);
1124
        } else {
1125
            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1126
        }
1127
        if (hpet) {
1128
            /* connect PIT to output control line of the HPET */
1129
            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1130
        }
1131
        pcspk_init(isa_bus, pit);
1132
    }
1133

    
1134
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1135
        if (serial_hds[i]) {
1136
            serial_isa_init(isa_bus, i, serial_hds[i]);
1137
        }
1138
    }
1139

    
1140
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1141
        if (parallel_hds[i]) {
1142
            parallel_init(isa_bus, i, parallel_hds[i]);
1143
        }
1144
    }
1145

    
1146
    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1147
    i8042 = isa_create_simple(isa_bus, "i8042");
1148
    i8042_setup_a20_line(i8042, &a20_line[0]);
1149
    if (!no_vmport) {
1150
        vmport_init(isa_bus);
1151
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1152
    } else {
1153
        vmmouse = NULL;
1154
    }
1155
    if (vmmouse) {
1156
        qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1157
        qdev_init_nofail(&vmmouse->qdev);
1158
    }
1159
    port92 = isa_create_simple(isa_bus, "port92");
1160
    port92_init(port92, &a20_line[1]);
1161

    
1162
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1163
    DMA_init(0, cpu_exit_irq);
1164

    
1165
    for(i = 0; i < MAX_FD; i++) {
1166
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1167
    }
1168
    *floppy = fdctrl_init_isa(isa_bus, fd);
1169
}
1170

    
1171
void pc_pci_device_init(PCIBus *pci_bus)
1172
{
1173
    int max_bus;
1174
    int bus;
1175

    
1176
    max_bus = drive_get_max_bus(IF_SCSI);
1177
    for (bus = 0; bus <= max_bus; bus++) {
1178
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1179
    }
1180
}