Statistics
| Branch: | Revision:

root / hw / musicpal.c @ 91834991

History | View | Annotate | Download (38.9 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_ETH_BASE             0x80008000
24
#define MP_ETH_SIZE             0x00001000
25

    
26
#define MP_UART1_BASE           0x8000C840
27
#define MP_UART2_BASE           0x8000C940
28

    
29
#define MP_FLASHCFG_BASE        0x90006000
30
#define MP_FLASHCFG_SIZE        0x00001000
31

    
32
#define MP_AUDIO_BASE           0x90007000
33
#define MP_AUDIO_SIZE           0x00001000
34

    
35
#define MP_PIC_BASE             0x90008000
36
#define MP_PIC_SIZE             0x00001000
37

    
38
#define MP_PIT_BASE             0x90009000
39
#define MP_PIT_SIZE             0x00001000
40

    
41
#define MP_LCD_BASE             0x9000c000
42
#define MP_LCD_SIZE             0x00001000
43

    
44
#define MP_SRAM_BASE            0xC0000000
45
#define MP_SRAM_SIZE            0x00020000
46

    
47
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
48
#define MP_FLASH_SIZE_MAX       32*1024*1024
49

    
50
#define MP_TIMER1_IRQ           4
51
/* ... */
52
#define MP_TIMER4_IRQ           7
53
#define MP_EHCI_IRQ             8
54
#define MP_ETH_IRQ              9
55
#define MP_UART1_IRQ            11
56
#define MP_UART2_IRQ            11
57
#define MP_GPIO_IRQ             12
58
#define MP_RTC_IRQ              28
59
#define MP_AUDIO_IRQ            30
60

    
61
static uint32_t gpio_in_state = 0xffffffff;
62
static uint32_t gpio_out_state;
63
static ram_addr_t sram_off;
64

    
65
/* Address conversion helpers */
66
static void *target2host_addr(uint32_t addr)
67
{
68
    if (addr < MP_SRAM_BASE) {
69
        if (addr >= MP_RAM_DEFAULT_SIZE)
70
            return NULL;
71
        return (void *)(phys_ram_base + addr);
72
    } else {
73
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
74
            return NULL;
75
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
76
    }
77
}
78

    
79
static uint32_t host2target_addr(void *addr)
80
{
81
    if (addr < ((void *)phys_ram_base) + sram_off)
82
        return (unsigned long)addr - (unsigned long)phys_ram_base;
83
    else
84
        return (unsigned long)addr - (unsigned long)phys_ram_base -
85
            sram_off + MP_SRAM_BASE;
86
}
87

    
88

    
89
typedef enum i2c_state {
90
    STOPPED = 0,
91
    INITIALIZING,
92
    SENDING_BIT7,
93
    SENDING_BIT6,
94
    SENDING_BIT5,
95
    SENDING_BIT4,
96
    SENDING_BIT3,
97
    SENDING_BIT2,
98
    SENDING_BIT1,
99
    SENDING_BIT0,
100
    WAITING_FOR_ACK,
101
    RECEIVING_BIT7,
102
    RECEIVING_BIT6,
103
    RECEIVING_BIT5,
104
    RECEIVING_BIT4,
105
    RECEIVING_BIT3,
106
    RECEIVING_BIT2,
107
    RECEIVING_BIT1,
108
    RECEIVING_BIT0,
109
    SENDING_ACK
110
} i2c_state;
111

    
112
typedef struct i2c_interface {
113
    i2c_bus *bus;
114
    i2c_state state;
115
    int last_data;
116
    int last_clock;
117
    uint8_t buffer;
118
    int current_addr;
119
} i2c_interface;
120

    
121
static void i2c_enter_stop(i2c_interface *i2c)
122
{
123
    if (i2c->current_addr >= 0)
124
        i2c_end_transfer(i2c->bus);
125
    i2c->current_addr = -1;
126
    i2c->state = STOPPED;
127
}
128

    
129
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
130
{
131
    if (!i2c)
132
        return;
133

    
134
    switch (i2c->state) {
135
    case STOPPED:
136
        if (data == 0 && i2c->last_data == 1 && clock == 1)
137
            i2c->state = INITIALIZING;
138
        break;
139

    
140
    case INITIALIZING:
141
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
142
            i2c->state = SENDING_BIT7;
143
        else
144
            i2c_enter_stop(i2c);
145
        break;
146

    
147
    case SENDING_BIT7 ... SENDING_BIT0:
148
        if (clock == 0 && i2c->last_clock == 1) {
149
            i2c->buffer = (i2c->buffer << 1) | data;
150
            i2c->state++; /* will end up in WAITING_FOR_ACK */
151
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
152
            i2c_enter_stop(i2c);
153
        break;
154

    
155
    case WAITING_FOR_ACK:
156
        if (clock == 0 && i2c->last_clock == 1) {
157
            if (i2c->current_addr < 0) {
158
                i2c->current_addr = i2c->buffer;
159
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
160
                                   i2c->buffer & 1);
161
            } else
162
                i2c_send(i2c->bus, i2c->buffer);
163
            if (i2c->current_addr & 1) {
164
                i2c->state = RECEIVING_BIT7;
165
                i2c->buffer = i2c_recv(i2c->bus);
166
            } else
167
                i2c->state = SENDING_BIT7;
168
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
169
            i2c_enter_stop(i2c);
170
        break;
171

    
172
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
173
        if (clock == 0 && i2c->last_clock == 1) {
174
            i2c->state++; /* will end up in SENDING_ACK */
175
            i2c->buffer <<= 1;
176
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
177
            i2c_enter_stop(i2c);
178
        break;
179

    
180
    case SENDING_ACK:
181
        if (clock == 0 && i2c->last_clock == 1) {
182
            i2c->state = RECEIVING_BIT7;
183
            if (data == 0)
184
                i2c->buffer = i2c_recv(i2c->bus);
185
            else
186
                i2c_nack(i2c->bus);
187
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
188
            i2c_enter_stop(i2c);
189
        break;
190
    }
191

    
192
    i2c->last_data = data;
193
    i2c->last_clock = clock;
194
}
195

    
196
static int i2c_get_data(i2c_interface *i2c)
197
{
198
    if (!i2c)
199
        return 0;
200

    
201
    switch (i2c->state) {
202
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
203
        return (i2c->buffer >> 7);
204

    
205
    case WAITING_FOR_ACK:
206
    default:
207
        return 0;
208
    }
209
}
210

    
211
static i2c_interface *mixer_i2c;
212

    
213
#ifdef HAS_AUDIO
214

    
215
/* Audio register offsets */
216
#define MP_AUDIO_PLAYBACK_MODE  0x00
217
#define MP_AUDIO_CLOCK_DIV      0x18
218
#define MP_AUDIO_IRQ_STATUS     0x20
219
#define MP_AUDIO_IRQ_ENABLE     0x24
220
#define MP_AUDIO_TX_START_LO    0x28
221
#define MP_AUDIO_TX_THRESHOLD   0x2C
222
#define MP_AUDIO_TX_STATUS      0x38
223
#define MP_AUDIO_TX_START_HI    0x40
224

    
225
/* Status register and IRQ enable bits */
226
#define MP_AUDIO_TX_HALF        (1 << 6)
227
#define MP_AUDIO_TX_FULL        (1 << 7)
228

    
229
/* Playback mode bits */
230
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
231
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
232
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
233

    
234
/* Wolfson 8750 I2C address */
235
#define MP_WM_ADDR              0x34
236

    
237
const char audio_name[] = "mv88w8618";
238

    
239
typedef struct musicpal_audio_state {
240
    uint32_t base;
241
    qemu_irq irq;
242
    uint32_t playback_mode;
243
    uint32_t status;
244
    uint32_t irq_enable;
245
    unsigned long phys_buf;
246
    void *target_buffer;
247
    unsigned int threshold;
248
    unsigned int play_pos;
249
    unsigned int last_free;
250
    uint32_t clock_div;
251
    i2c_slave *wm;
252
} musicpal_audio_state;
253

    
254
static void audio_callback(void *opaque, int free_out, int free_in)
255
{
256
    musicpal_audio_state *s = opaque;
257
    int16_t *codec_buffer;
258
    int pos, block_size;
259

    
260
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
261
        return;
262

    
263
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
264
        free_out <<= 2;
265
    else
266
        free_out <<= 1;
267

    
268
    block_size = s->threshold/2;
269
    if (free_out - s->last_free < block_size)
270
        return;
271

    
272
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
273
        memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
274
               (uint32_t *)(s->target_buffer + s->play_pos),
275
               block_size);
276
    else {
277
        codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
278
        for (pos = 0; pos < block_size; pos += 2) {
279
            *codec_buffer++ = cpu_to_le16(256 *
280
                    *(int8_t *)(s->target_buffer + s->play_pos + pos));
281
            *codec_buffer++ = cpu_to_le16(256 *
282
                    *(int8_t *)(s->target_buffer + s->play_pos + pos + 1));
283
        }
284
    }
285
    wm8750_dac_commit(s->wm);
286

    
287
    s->last_free = free_out - block_size;
288

    
289
    if (s->play_pos == 0) {
290
        s->status |= MP_AUDIO_TX_HALF;
291
        s->play_pos = block_size;
292
    } else {
293
        s->status |= MP_AUDIO_TX_FULL;
294
        s->play_pos = 0;
295
    }
296

    
297
    if (s->status & s->irq_enable)
298
        qemu_irq_raise(s->irq);
299
}
300

    
301
static void musicpal_audio_clock_update(musicpal_audio_state *s)
302
{
303
    int rate;
304

    
305
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
306
        rate = 24576000 / 64; /* 24.576MHz */
307
    else
308
        rate = 11289600 / 64; /* 11.2896MHz */
309

    
310
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
311

    
312
    wm8750_set_bclk_in(s->wm, rate);
313
}
314

    
315
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
316
{
317
    musicpal_audio_state *s = opaque;
318

    
319
    offset -= s->base;
320
    switch (offset) {
321
    case MP_AUDIO_PLAYBACK_MODE:
322
        return s->playback_mode;
323

    
324
    case MP_AUDIO_CLOCK_DIV:
325
        return s->clock_div;
326

    
327
    case MP_AUDIO_IRQ_STATUS:
328
        return s->status;
329

    
330
    case MP_AUDIO_IRQ_ENABLE:
331
        return s->irq_enable;
332

    
333
    case MP_AUDIO_TX_STATUS:
334
        return s->play_pos >> 2;
335

    
336
    default:
337
        return 0;
338
    }
339
}
340

    
341
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
342
                                 uint32_t value)
343
{
344
    musicpal_audio_state *s = opaque;
345

    
346
    offset -= s->base;
347
    switch (offset) {
348
    case MP_AUDIO_PLAYBACK_MODE:
349
        if (value & MP_AUDIO_PLAYBACK_EN &&
350
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
351
            s->status = 0;
352
            s->last_free = 0;
353
            s->play_pos = 0;
354
        }
355
        s->playback_mode = value;
356
        musicpal_audio_clock_update(s);
357
        break;
358

    
359
    case MP_AUDIO_CLOCK_DIV:
360
        s->clock_div = value;
361
        s->last_free = 0;
362
        s->play_pos = 0;
363
        musicpal_audio_clock_update(s);
364
        break;
365

    
366
    case MP_AUDIO_IRQ_STATUS:
367
        s->status &= ~value;
368
        break;
369

    
370
    case MP_AUDIO_IRQ_ENABLE:
371
        s->irq_enable = value;
372
        if (s->status & s->irq_enable)
373
            qemu_irq_raise(s->irq);
374
        break;
375

    
376
    case MP_AUDIO_TX_START_LO:
377
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
378
        s->target_buffer = target2host_addr(s->phys_buf);
379
        s->play_pos = 0;
380
        s->last_free = 0;
381
        break;
382

    
383
    case MP_AUDIO_TX_THRESHOLD:
384
        s->threshold = (value + 1) * 4;
385
        break;
386

    
387
    case MP_AUDIO_TX_START_HI:
388
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
389
        s->target_buffer = target2host_addr(s->phys_buf);
390
        s->play_pos = 0;
391
        s->last_free = 0;
392
        break;
393
    }
394
}
395

    
396
static void musicpal_audio_reset(void *opaque)
397
{
398
    musicpal_audio_state *s = opaque;
399

    
400
    s->playback_mode = 0;
401
    s->status = 0;
402
    s->irq_enable = 0;
403
}
404

    
405
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
406
    musicpal_audio_read,
407
    musicpal_audio_read,
408
    musicpal_audio_read
409
};
410

    
411
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
412
    musicpal_audio_write,
413
    musicpal_audio_write,
414
    musicpal_audio_write
415
};
416

    
417
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
418
{
419
    AudioState *audio;
420
    musicpal_audio_state *s;
421
    i2c_interface *i2c;
422
    int iomemtype;
423

    
424
    audio = AUD_init();
425
    if (!audio) {
426
        AUD_log(audio_name, "No audio state\n");
427
        return NULL;
428
    }
429

    
430
    s = qemu_mallocz(sizeof(musicpal_audio_state));
431
    if (!s)
432
        return NULL;
433
    s->base = base;
434
    s->irq = irq;
435

    
436
    i2c = qemu_mallocz(sizeof(i2c_interface));
437
    if (!i2c)
438
        return NULL;
439
    i2c->bus = i2c_init_bus();
440
    i2c->current_addr = -1;
441

    
442
    s->wm = wm8750_init(i2c->bus, audio);
443
    if (!s->wm)
444
        return NULL;
445
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
446
    wm8750_data_req_set(s->wm, audio_callback, s);
447

    
448
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
449
                       musicpal_audio_writefn, s);
450
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
451

    
452
    qemu_register_reset(musicpal_audio_reset, s);
453

    
454
    return i2c;
455
}
456
#else  /* !HAS_AUDIO */
457
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
458
{
459
    return NULL;
460
}
461
#endif /* !HAS_AUDIO */
462

    
463
/* Ethernet register offsets */
464
#define MP_ETH_SMIR             0x010
465
#define MP_ETH_PCXR             0x408
466
#define MP_ETH_SDCMR            0x448
467
#define MP_ETH_ICR              0x450
468
#define MP_ETH_IMR              0x458
469
#define MP_ETH_FRDP0            0x480
470
#define MP_ETH_FRDP1            0x484
471
#define MP_ETH_FRDP2            0x488
472
#define MP_ETH_FRDP3            0x48C
473
#define MP_ETH_CRDP0            0x4A0
474
#define MP_ETH_CRDP1            0x4A4
475
#define MP_ETH_CRDP2            0x4A8
476
#define MP_ETH_CRDP3            0x4AC
477
#define MP_ETH_CTDP0            0x4E0
478
#define MP_ETH_CTDP1            0x4E4
479
#define MP_ETH_CTDP2            0x4E8
480
#define MP_ETH_CTDP3            0x4EC
481

    
482
/* MII PHY access */
483
#define MP_ETH_SMIR_DATA        0x0000FFFF
484
#define MP_ETH_SMIR_ADDR        0x03FF0000
485
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
486
#define MP_ETH_SMIR_RDVALID     (1 << 27)
487

    
488
/* PHY registers */
489
#define MP_ETH_PHY1_BMSR        0x00210000
490
#define MP_ETH_PHY1_PHYSID1     0x00410000
491
#define MP_ETH_PHY1_PHYSID2     0x00610000
492

    
493
#define MP_PHY_BMSR_LINK        0x0004
494
#define MP_PHY_BMSR_AUTONEG     0x0008
495

    
496
#define MP_PHY_88E3015          0x01410E20
497

    
498
/* TX descriptor status */
499
#define MP_ETH_TX_OWN           (1 << 31)
500

    
501
/* RX descriptor status */
502
#define MP_ETH_RX_OWN           (1 << 31)
503

    
504
/* Interrupt cause/mask bits */
505
#define MP_ETH_IRQ_RX_BIT       0
506
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
507
#define MP_ETH_IRQ_TXHI_BIT     2
508
#define MP_ETH_IRQ_TXLO_BIT     3
509

    
510
/* Port config bits */
511
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
512

    
513
/* SDMA command bits */
514
#define MP_ETH_CMD_TXHI         (1 << 23)
515
#define MP_ETH_CMD_TXLO         (1 << 22)
516

    
517
typedef struct mv88w8618_tx_desc {
518
    uint32_t cmdstat;
519
    uint16_t res;
520
    uint16_t bytes;
521
    uint32_t buffer;
522
    uint32_t next;
523
} mv88w8618_tx_desc;
524

    
525
typedef struct mv88w8618_rx_desc {
526
    uint32_t cmdstat;
527
    uint16_t bytes;
528
    uint16_t buffer_size;
529
    uint32_t buffer;
530
    uint32_t next;
531
} mv88w8618_rx_desc;
532

    
533
typedef struct mv88w8618_eth_state {
534
    uint32_t base;
535
    qemu_irq irq;
536
    uint32_t smir;
537
    uint32_t icr;
538
    uint32_t imr;
539
    int vlan_header;
540
    mv88w8618_tx_desc *tx_queue[2];
541
    mv88w8618_rx_desc *rx_queue[4];
542
    mv88w8618_rx_desc *frx_queue[4];
543
    mv88w8618_rx_desc *cur_rx[4];
544
    VLANClientState *vc;
545
} mv88w8618_eth_state;
546

    
547
static int eth_can_receive(void *opaque)
548
{
549
    return 1;
550
}
551

    
552
static void eth_receive(void *opaque, const uint8_t *buf, int size)
553
{
554
    mv88w8618_eth_state *s = opaque;
555
    mv88w8618_rx_desc *desc;
556
    int i;
557

    
558
    for (i = 0; i < 4; i++) {
559
        desc = s->cur_rx[i];
560
        if (!desc)
561
            continue;
562
        do {
563
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
564
                le16_to_cpu(desc->buffer_size) >= size) {
565
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
566
                                        s->vlan_header),
567
                       buf, size);
568
                desc->bytes = cpu_to_le16(size + s->vlan_header);
569
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
570
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
571

    
572
                s->icr |= MP_ETH_IRQ_RX;
573
                if (s->icr & s->imr)
574
                    qemu_irq_raise(s->irq);
575
                return;
576
            }
577
            desc = target2host_addr(le32_to_cpu(desc->next));
578
        } while (desc != s->rx_queue[i]);
579
    }
580
}
581

    
582
static void eth_send(mv88w8618_eth_state *s, int queue_index)
583
{
584
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
585

    
586
    do {
587
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
588
            qemu_send_packet(s->vc,
589
                             target2host_addr(le32_to_cpu(desc->buffer)),
590
                             le16_to_cpu(desc->bytes));
591
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
592
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
593
        }
594
        desc = target2host_addr(le32_to_cpu(desc->next));
595
    } while (desc != s->tx_queue[queue_index]);
596
}
597

    
598
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
599
{
600
    mv88w8618_eth_state *s = opaque;
601

    
602
    offset -= s->base;
603
    switch (offset) {
604
    case MP_ETH_SMIR:
605
        if (s->smir & MP_ETH_SMIR_OPCODE) {
606
            switch (s->smir & MP_ETH_SMIR_ADDR) {
607
            case MP_ETH_PHY1_BMSR:
608
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
609
                       MP_ETH_SMIR_RDVALID;
610
            case MP_ETH_PHY1_PHYSID1:
611
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
612
            case MP_ETH_PHY1_PHYSID2:
613
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
614
            default:
615
                return MP_ETH_SMIR_RDVALID;
616
            }
617
        }
618
        return 0;
619

    
620
    case MP_ETH_ICR:
621
        return s->icr;
622

    
623
    case MP_ETH_IMR:
624
        return s->imr;
625

    
626
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
627
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
628

    
629
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
630
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
631

    
632
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
633
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
634

    
635
    default:
636
        return 0;
637
    }
638
}
639

    
640
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
641
                                uint32_t value)
642
{
643
    mv88w8618_eth_state *s = opaque;
644

    
645
    offset -= s->base;
646
    switch (offset) {
647
    case MP_ETH_SMIR:
648
        s->smir = value;
649
        break;
650

    
651
    case MP_ETH_PCXR:
652
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
653
        break;
654

    
655
    case MP_ETH_SDCMR:
656
        if (value & MP_ETH_CMD_TXHI)
657
            eth_send(s, 1);
658
        if (value & MP_ETH_CMD_TXLO)
659
            eth_send(s, 0);
660
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
661
            qemu_irq_raise(s->irq);
662
        break;
663

    
664
    case MP_ETH_ICR:
665
        s->icr &= value;
666
        break;
667

    
668
    case MP_ETH_IMR:
669
        s->imr = value;
670
        if (s->icr & s->imr)
671
            qemu_irq_raise(s->irq);
672
        break;
673

    
674
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
675
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
676
        break;
677

    
678
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
679
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
680
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
681
        break;
682

    
683
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
684
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
685
        break;
686
    }
687
}
688

    
689
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
690
    mv88w8618_eth_read,
691
    mv88w8618_eth_read,
692
    mv88w8618_eth_read
693
};
694

    
695
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
696
    mv88w8618_eth_write,
697
    mv88w8618_eth_write,
698
    mv88w8618_eth_write
699
};
700

    
701
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
702
{
703
    mv88w8618_eth_state *s;
704
    int iomemtype;
705

    
706
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
707
    if (!s)
708
        return;
709
    s->base = base;
710
    s->irq = irq;
711
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
712
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
713
                                       mv88w8618_eth_writefn, s);
714
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
715
}
716

    
717
/* LCD register offsets */
718
#define MP_LCD_IRQCTRL          0x180
719
#define MP_LCD_IRQSTAT          0x184
720
#define MP_LCD_SPICTRL          0x1ac
721
#define MP_LCD_INST             0x1bc
722
#define MP_LCD_DATA             0x1c0
723

    
724
/* Mode magics */
725
#define MP_LCD_SPI_DATA         0x00100011
726
#define MP_LCD_SPI_CMD          0x00104011
727
#define MP_LCD_SPI_INVALID      0x00000000
728

    
729
/* Commmands */
730
#define MP_LCD_INST_SETPAGE0    0xB0
731
/* ... */
732
#define MP_LCD_INST_SETPAGE7    0xB7
733

    
734
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
735

    
736
typedef struct musicpal_lcd_state {
737
    uint32_t base;
738
    uint32_t mode;
739
    uint32_t irqctrl;
740
    int page;
741
    int page_off;
742
    DisplayState *ds;
743
    uint8_t video_ram[128*64/8];
744
} musicpal_lcd_state;
745

    
746
static uint32_t lcd_brightness;
747

    
748
static uint8_t scale_lcd_color(uint8_t col)
749
{
750
    int tmp = col;
751

    
752
    switch (lcd_brightness) {
753
    case 0x00000007: /* 0 */
754
        return 0;
755

    
756
    case 0x00020000: /* 1 */
757
        return (tmp * 1) / 7;
758

    
759
    case 0x00020001: /* 2 */
760
        return (tmp * 2) / 7;
761

    
762
    case 0x00040000: /* 3 */
763
        return (tmp * 3) / 7;
764

    
765
    case 0x00010006: /* 4 */
766
        return (tmp * 4) / 7;
767

    
768
    case 0x00020005: /* 5 */
769
        return (tmp * 5) / 7;
770

    
771
    case 0x00040003: /* 6 */
772
        return (tmp * 6) / 7;
773

    
774
    case 0x00030004: /* 7 */
775
    default:
776
        return col;
777
    }
778
}
779

    
780
#define SET_LCD_PIXEL(depth, type) \
781
static inline void glue(set_lcd_pixel, depth) \
782
        (musicpal_lcd_state *s, int x, int y, type col) \
783
{ \
784
    int dx, dy; \
785
    type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
786
\
787
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
788
        for (dx = 0; dx < 3; dx++, pixel++) \
789
            *pixel = col; \
790
}
791
SET_LCD_PIXEL(8, uint8_t)
792
SET_LCD_PIXEL(16, uint16_t)
793
SET_LCD_PIXEL(32, uint32_t)
794

    
795
#include "pixel_ops.h"
796

    
797
static void lcd_refresh(void *opaque)
798
{
799
    musicpal_lcd_state *s = opaque;
800
    int x, y, col;
801

    
802
    switch (s->ds->depth) {
803
    case 0:
804
        return;
805
#define LCD_REFRESH(depth, func) \
806
    case depth: \
807
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
808
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
809
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
810
        for (x = 0; x < 128; x++) \
811
            for (y = 0; y < 64; y++) \
812
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
813
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
814
                else \
815
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
816
        break;
817
    LCD_REFRESH(8, rgb_to_pixel8)
818
    LCD_REFRESH(16, rgb_to_pixel16)
819
    LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
820
    default:
821
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
822
                  s->ds->depth);
823
    }
824

    
825
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
826
}
827

    
828
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
829
{
830
    musicpal_lcd_state *s = opaque;
831

    
832
    offset -= s->base;
833
    switch (offset) {
834
    case MP_LCD_IRQCTRL:
835
        return s->irqctrl;
836

    
837
    default:
838
        return 0;
839
    }
840
}
841

    
842
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
843
                               uint32_t value)
844
{
845
    musicpal_lcd_state *s = opaque;
846

    
847
    offset -= s->base;
848
    switch (offset) {
849
    case MP_LCD_IRQCTRL:
850
        s->irqctrl = value;
851
        break;
852

    
853
    case MP_LCD_SPICTRL:
854
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
855
            s->mode = value;
856
        else
857
            s->mode = MP_LCD_SPI_INVALID;
858
        break;
859

    
860
    case MP_LCD_INST:
861
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
862
            s->page = value - MP_LCD_INST_SETPAGE0;
863
            s->page_off = 0;
864
        }
865
        break;
866

    
867
    case MP_LCD_DATA:
868
        if (s->mode == MP_LCD_SPI_CMD) {
869
            if (value >= MP_LCD_INST_SETPAGE0 &&
870
                value <= MP_LCD_INST_SETPAGE7) {
871
                s->page = value - MP_LCD_INST_SETPAGE0;
872
                s->page_off = 0;
873
            }
874
        } else if (s->mode == MP_LCD_SPI_DATA) {
875
            s->video_ram[s->page*128 + s->page_off] = value;
876
            s->page_off = (s->page_off + 1) & 127;
877
        }
878
        break;
879
    }
880
}
881

    
882
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
883
    musicpal_lcd_read,
884
    musicpal_lcd_read,
885
    musicpal_lcd_read
886
};
887

    
888
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
889
    musicpal_lcd_write,
890
    musicpal_lcd_write,
891
    musicpal_lcd_write
892
};
893

    
894
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
895
{
896
    musicpal_lcd_state *s;
897
    int iomemtype;
898

    
899
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
900
    if (!s)
901
        return;
902
    s->base = base;
903
    s->ds = ds;
904
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
905
                                       musicpal_lcd_writefn, s);
906
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
907

    
908
    graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
909
    dpy_resize(ds, 128*3, 64*3);
910
}
911

    
912
/* PIC register offsets */
913
#define MP_PIC_STATUS           0x00
914
#define MP_PIC_ENABLE_SET       0x08
915
#define MP_PIC_ENABLE_CLR       0x0C
916

    
917
typedef struct mv88w8618_pic_state
918
{
919
    uint32_t base;
920
    uint32_t level;
921
    uint32_t enabled;
922
    qemu_irq parent_irq;
923
} mv88w8618_pic_state;
924

    
925
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
926
{
927
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
928
}
929

    
930
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
931
{
932
    mv88w8618_pic_state *s = opaque;
933

    
934
    if (level)
935
        s->level |= 1 << irq;
936
    else
937
        s->level &= ~(1 << irq);
938
    mv88w8618_pic_update(s);
939
}
940

    
941
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
942
{
943
    mv88w8618_pic_state *s = opaque;
944

    
945
    offset -= s->base;
946
    switch (offset) {
947
    case MP_PIC_STATUS:
948
        return s->level & s->enabled;
949

    
950
    default:
951
        return 0;
952
    }
953
}
954

    
955
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
956
                                uint32_t value)
957
{
958
    mv88w8618_pic_state *s = opaque;
959

    
960
    offset -= s->base;
961
    switch (offset) {
962
    case MP_PIC_ENABLE_SET:
963
        s->enabled |= value;
964
        break;
965

    
966
    case MP_PIC_ENABLE_CLR:
967
        s->enabled &= ~value;
968
        s->level &= ~value;
969
        break;
970
    }
971
    mv88w8618_pic_update(s);
972
}
973

    
974
static void mv88w8618_pic_reset(void *opaque)
975
{
976
    mv88w8618_pic_state *s = opaque;
977

    
978
    s->level = 0;
979
    s->enabled = 0;
980
}
981

    
982
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
983
    mv88w8618_pic_read,
984
    mv88w8618_pic_read,
985
    mv88w8618_pic_read
986
};
987

    
988
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
989
    mv88w8618_pic_write,
990
    mv88w8618_pic_write,
991
    mv88w8618_pic_write
992
};
993

    
994
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
995
{
996
    mv88w8618_pic_state *s;
997
    int iomemtype;
998
    qemu_irq *qi;
999

    
1000
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1001
    if (!s)
1002
        return NULL;
1003
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1004
    s->base = base;
1005
    s->parent_irq = parent_irq;
1006
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1007
                                       mv88w8618_pic_writefn, s);
1008
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1009

    
1010
    qemu_register_reset(mv88w8618_pic_reset, s);
1011

    
1012
    return qi;
1013
}
1014

    
1015
/* PIT register offsets */
1016
#define MP_PIT_TIMER1_LENGTH    0x00
1017
/* ... */
1018
#define MP_PIT_TIMER4_LENGTH    0x0C
1019
#define MP_PIT_CONTROL          0x10
1020
#define MP_PIT_TIMER1_VALUE     0x14
1021
/* ... */
1022
#define MP_PIT_TIMER4_VALUE     0x20
1023
#define MP_BOARD_RESET          0x34
1024

    
1025
/* Magic board reset value (probably some watchdog behind it) */
1026
#define MP_BOARD_RESET_MAGIC    0x10000
1027

    
1028
typedef struct mv88w8618_timer_state {
1029
    ptimer_state *timer;
1030
    uint32_t limit;
1031
    int freq;
1032
    qemu_irq irq;
1033
} mv88w8618_timer_state;
1034

    
1035
typedef struct mv88w8618_pit_state {
1036
    void *timer[4];
1037
    uint32_t control;
1038
    uint32_t base;
1039
} mv88w8618_pit_state;
1040

    
1041
static void mv88w8618_timer_tick(void *opaque)
1042
{
1043
    mv88w8618_timer_state *s = opaque;
1044

    
1045
    qemu_irq_raise(s->irq);
1046
}
1047

    
1048
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1049
{
1050
    mv88w8618_timer_state *s;
1051
    QEMUBH *bh;
1052

    
1053
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1054
    s->irq = irq;
1055
    s->freq = freq;
1056

    
1057
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1058
    s->timer = ptimer_init(bh);
1059

    
1060
    return s;
1061
}
1062

    
1063
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1064
{
1065
    mv88w8618_pit_state *s = opaque;
1066
    mv88w8618_timer_state *t;
1067

    
1068
    offset -= s->base;
1069
    switch (offset) {
1070
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1071
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1072
        return ptimer_get_count(t->timer);
1073

    
1074
    default:
1075
        return 0;
1076
    }
1077
}
1078

    
1079
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1080
                                uint32_t value)
1081
{
1082
    mv88w8618_pit_state *s = opaque;
1083
    mv88w8618_timer_state *t;
1084
    int i;
1085

    
1086
    offset -= s->base;
1087
    switch (offset) {
1088
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1089
        t = s->timer[offset >> 2];
1090
        t->limit = value;
1091
        ptimer_set_limit(t->timer, t->limit, 1);
1092
        break;
1093

    
1094
    case MP_PIT_CONTROL:
1095
        for (i = 0; i < 4; i++) {
1096
            if (value & 0xf) {
1097
                t = s->timer[i];
1098
                ptimer_set_limit(t->timer, t->limit, 0);
1099
                ptimer_set_freq(t->timer, t->freq);
1100
                ptimer_run(t->timer, 0);
1101
            }
1102
            value >>= 4;
1103
        }
1104
        break;
1105

    
1106
    case MP_BOARD_RESET:
1107
        if (value == MP_BOARD_RESET_MAGIC)
1108
            qemu_system_reset_request();
1109
        break;
1110
    }
1111
}
1112

    
1113
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1114
    mv88w8618_pit_read,
1115
    mv88w8618_pit_read,
1116
    mv88w8618_pit_read
1117
};
1118

    
1119
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1120
    mv88w8618_pit_write,
1121
    mv88w8618_pit_write,
1122
    mv88w8618_pit_write
1123
};
1124

    
1125
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1126
{
1127
    int iomemtype;
1128
    mv88w8618_pit_state *s;
1129

    
1130
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1131
    if (!s)
1132
        return;
1133

    
1134
    s->base = base;
1135
    /* Letting them all run at 1 MHz is likely just a pragmatic
1136
     * simplification. */
1137
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1138
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1139
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1140
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1141

    
1142
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1143
                                       mv88w8618_pit_writefn, s);
1144
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1145
}
1146

    
1147
/* Flash config register offsets */
1148
#define MP_FLASHCFG_CFGR0    0x04
1149

    
1150
typedef struct mv88w8618_flashcfg_state {
1151
    uint32_t base;
1152
    uint32_t cfgr0;
1153
} mv88w8618_flashcfg_state;
1154

    
1155
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1156
                                        target_phys_addr_t offset)
1157
{
1158
    mv88w8618_flashcfg_state *s = opaque;
1159

    
1160
    offset -= s->base;
1161
    switch (offset) {
1162
    case MP_FLASHCFG_CFGR0:
1163
        return s->cfgr0;
1164

    
1165
    default:
1166
        return 0;
1167
    }
1168
}
1169

    
1170
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1171
                                     uint32_t value)
1172
{
1173
    mv88w8618_flashcfg_state *s = opaque;
1174

    
1175
    offset -= s->base;
1176
    switch (offset) {
1177
    case MP_FLASHCFG_CFGR0:
1178
        s->cfgr0 = value;
1179
        break;
1180
    }
1181
}
1182

    
1183
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1184
    mv88w8618_flashcfg_read,
1185
    mv88w8618_flashcfg_read,
1186
    mv88w8618_flashcfg_read
1187
};
1188

    
1189
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1190
    mv88w8618_flashcfg_write,
1191
    mv88w8618_flashcfg_write,
1192
    mv88w8618_flashcfg_write
1193
};
1194

    
1195
static void mv88w8618_flashcfg_init(uint32_t base)
1196
{
1197
    int iomemtype;
1198
    mv88w8618_flashcfg_state *s;
1199

    
1200
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1201
    if (!s)
1202
        return;
1203

    
1204
    s->base = base;
1205
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1206
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1207
                       mv88w8618_flashcfg_writefn, s);
1208
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1209
}
1210

    
1211
/* Various registers in the 0x80000000 domain */
1212
#define MP_BOARD_REVISION       0x2018
1213

    
1214
#define MP_WLAN_MAGIC1          0xc11c
1215
#define MP_WLAN_MAGIC2          0xc124
1216

    
1217
#define MP_GPIO_OE_LO           0xd008
1218
#define MP_GPIO_OUT_LO          0xd00c
1219
#define MP_GPIO_IN_LO           0xd010
1220
#define MP_GPIO_ISR_LO          0xd020
1221
#define MP_GPIO_OE_HI           0xd508
1222
#define MP_GPIO_OUT_HI          0xd50c
1223
#define MP_GPIO_IN_HI           0xd510
1224
#define MP_GPIO_ISR_HI          0xd520
1225

    
1226
/* GPIO bits & masks */
1227
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1228
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1229
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1230
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1231
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1232
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1233
#define MP_GPIO_BTN_MENU        (1 << 20)
1234
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1235
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1236
#define MP_GPIO_I2C_DATA_BIT    29
1237
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1238
#define MP_GPIO_I2C_CLOCK_BIT   30
1239

    
1240
/* LCD brightness bits in GPIO_OE_HI */
1241
#define MP_OE_LCD_BRIGHTNESS    0x0007
1242

    
1243
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1244
{
1245
    offset -= 0x80000000;
1246
    switch (offset) {
1247
    case MP_BOARD_REVISION:
1248
        return 0x0031;
1249

    
1250
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1251
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1252

    
1253
    case MP_GPIO_OUT_LO:
1254
        return gpio_out_state & 0xFFFF;
1255
    case MP_GPIO_OUT_HI:
1256
        return gpio_out_state >> 16;
1257

    
1258
    case MP_GPIO_IN_LO:
1259
        return gpio_in_state & 0xFFFF;
1260
    case MP_GPIO_IN_HI:
1261
        /* Update received I2C data */
1262
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1263
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1264
        return gpio_in_state >> 16;
1265

    
1266
    /* This is a simplification of reality */
1267
    case MP_GPIO_ISR_LO:
1268
        return ~gpio_in_state & 0xFFFF;
1269
    case MP_GPIO_ISR_HI:
1270
        return ~gpio_in_state >> 16;
1271

    
1272
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1273
     * from the original Freecom firmware. */
1274
    case MP_WLAN_MAGIC1:
1275
        return ~3;
1276
    case MP_WLAN_MAGIC2:
1277
        return -1;
1278

    
1279
    default:
1280
        return 0;
1281
    }
1282
}
1283

    
1284
static void musicpal_write(void *opaque, target_phys_addr_t offset,
1285
                           uint32_t value)
1286
{
1287
    offset -= 0x80000000;
1288
    switch (offset) {
1289
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1290
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1291
                         (value & MP_OE_LCD_BRIGHTNESS);
1292
        break;
1293

    
1294
    case MP_GPIO_OUT_LO:
1295
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1296
        break;
1297
    case MP_GPIO_OUT_HI:
1298
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1299
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1300
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1301
        i2c_state_update(mixer_i2c,
1302
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1303
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1304
        break;
1305

    
1306
    }
1307
}
1308

    
1309
/* Keyboard codes & masks */
1310
#define KEY_PRESSED             0x80
1311
#define KEY_CODE                0x7f
1312

    
1313
#define KEYCODE_TAB             0x0f
1314
#define KEYCODE_ENTER           0x1c
1315
#define KEYCODE_F               0x21
1316
#define KEYCODE_M               0x32
1317

    
1318
#define KEYCODE_EXTENDED        0xe0
1319
#define KEYCODE_UP              0x48
1320
#define KEYCODE_DOWN            0x50
1321
#define KEYCODE_LEFT            0x4b
1322
#define KEYCODE_RIGHT           0x4d
1323

    
1324
static void musicpal_key_event(void *opaque, int keycode)
1325
{
1326
    qemu_irq irq = opaque;
1327
    uint32_t event = 0;
1328
    static int kbd_extended;
1329

    
1330
    if (keycode == KEYCODE_EXTENDED) {
1331
        kbd_extended = 1;
1332
        return;
1333
    }
1334

    
1335
    if (kbd_extended)
1336
        switch (keycode & KEY_CODE) {
1337
        case KEYCODE_UP:
1338
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1339
            break;
1340

    
1341
        case KEYCODE_DOWN:
1342
            event = MP_GPIO_WHEEL_NAV;
1343
            break;
1344

    
1345
        case KEYCODE_LEFT:
1346
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1347
            break;
1348

    
1349
        case KEYCODE_RIGHT:
1350
            event = MP_GPIO_WHEEL_VOL;
1351
            break;
1352
        }
1353
    else
1354
        switch (keycode & KEY_CODE) {
1355
        case KEYCODE_F:
1356
            event = MP_GPIO_BTN_FAVORITS;
1357
            break;
1358

    
1359
        case KEYCODE_TAB:
1360
            event = MP_GPIO_BTN_VOLUME;
1361
            break;
1362

    
1363
        case KEYCODE_ENTER:
1364
            event = MP_GPIO_BTN_NAVIGATION;
1365
            break;
1366

    
1367
        case KEYCODE_M:
1368
            event = MP_GPIO_BTN_MENU;
1369
            break;
1370
        }
1371

    
1372
    if (keycode & KEY_PRESSED)
1373
        gpio_in_state |= event;
1374
    else if (gpio_in_state & event) {
1375
        gpio_in_state &= ~event;
1376
        qemu_irq_raise(irq);
1377
    }
1378

    
1379
    kbd_extended = 0;
1380
}
1381

    
1382
static CPUReadMemoryFunc *musicpal_readfn[] = {
1383
    musicpal_read,
1384
    musicpal_read,
1385
    musicpal_read,
1386
};
1387

    
1388
static CPUWriteMemoryFunc *musicpal_writefn[] = {
1389
    musicpal_write,
1390
    musicpal_write,
1391
    musicpal_write,
1392
};
1393

    
1394
static struct arm_boot_info musicpal_binfo = {
1395
    .loader_start = 0x0,
1396
    .board_id = 0x20e,
1397
};
1398

    
1399
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1400
               const char *boot_device, DisplayState *ds,
1401
               const char *kernel_filename, const char *kernel_cmdline,
1402
               const char *initrd_filename, const char *cpu_model)
1403
{
1404
    CPUState *env;
1405
    qemu_irq *pic;
1406
    int index;
1407
    int iomemtype;
1408
    unsigned long flash_size;
1409

    
1410
    if (!cpu_model)
1411
        cpu_model = "arm926";
1412

    
1413
    env = cpu_init(cpu_model);
1414
    if (!env) {
1415
        fprintf(stderr, "Unable to find CPU definition\n");
1416
        exit(1);
1417
    }
1418
    pic = arm_pic_init_cpu(env);
1419

    
1420
    /* For now we use a fixed - the original - RAM size */
1421
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1422
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1423

    
1424
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1425
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1426

    
1427
    /* Catch various stuff not handled by separate subsystems */
1428
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1429
                                       musicpal_writefn, env);
1430
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1431

    
1432
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1433
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1434

    
1435
    if (serial_hds[0])
1436
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], /*1825000,*/
1437
                   serial_hds[0], 1);
1438
    if (serial_hds[1])
1439
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], /*1825000,*/
1440
                   serial_hds[1], 1);
1441

    
1442
    /* Register flash */
1443
    index = drive_get_index(IF_PFLASH, 0, 0);
1444
    if (index != -1) {
1445
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1446
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1447
            flash_size != 32*1024*1024) {
1448
            fprintf(stderr, "Invalid flash image size\n");
1449
            exit(1);
1450
        }
1451

    
1452
        /*
1453
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1454
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1455
         * image is smaller than 32 MB.
1456
         */
1457
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1458
                              drives_table[index].bdrv, 0x10000,
1459
                              (flash_size + 0xffff) >> 16,
1460
                              MP_FLASH_SIZE_MAX / flash_size,
1461
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1462
                              0x5555, 0x2AAA);
1463
    }
1464
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1465

    
1466
    musicpal_lcd_init(ds, MP_LCD_BASE);
1467

    
1468
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1469

    
1470
    /*
1471
     * Wait a bit to catch menu button during U-Boot start-up
1472
     * (to trigger emergency update).
1473
     */
1474
    sleep(1);
1475

    
1476
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1477

    
1478
    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1479

    
1480
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1481
    musicpal_binfo.kernel_filename = kernel_filename;
1482
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1483
    musicpal_binfo.initrd_filename = initrd_filename;
1484
    arm_load_kernel(env, &musicpal_binfo);
1485
}
1486

    
1487
QEMUMachine musicpal_machine = {
1488
    "musicpal",
1489
    "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1490
    musicpal_init,
1491
    MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1492
};