Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 93b66569

History | View | Annotate | Download (20.4 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "isa.h"
29
#include "hpet_emul.h"
30

    
31
//#define DEBUG_CMOS
32

    
33
#define RTC_SECONDS             0
34
#define RTC_SECONDS_ALARM       1
35
#define RTC_MINUTES             2
36
#define RTC_MINUTES_ALARM       3
37
#define RTC_HOURS               4
38
#define RTC_HOURS_ALARM         5
39
#define RTC_ALARM_DONT_CARE    0xC0
40

    
41
#define RTC_DAY_OF_WEEK         6
42
#define RTC_DAY_OF_MONTH        7
43
#define RTC_MONTH               8
44
#define RTC_YEAR                9
45

    
46
#define RTC_REG_A               10
47
#define RTC_REG_B               11
48
#define RTC_REG_C               12
49
#define RTC_REG_D               13
50

    
51
#define REG_A_UIP 0x80
52

    
53
#define REG_B_SET  0x80
54
#define REG_B_PIE  0x40
55
#define REG_B_AIE  0x20
56
#define REG_B_UIE  0x10
57
#define REG_B_SQWE 0x08
58
#define REG_B_DM   0x04
59

    
60
struct RTCState {
61
    uint8_t cmos_data[128];
62
    uint8_t cmos_index;
63
    struct tm current_tm;
64
    int base_year;
65
    qemu_irq irq;
66
    qemu_irq sqw_irq;
67
    int it_shift;
68
    /* periodic timer */
69
    QEMUTimer *periodic_timer;
70
    int64_t next_periodic_time;
71
    /* second update */
72
    int64_t next_second_time;
73
#ifdef TARGET_I386
74
    uint32_t irq_coalesced;
75
    uint32_t period;
76
    QEMUTimer *coalesced_timer;
77
#endif
78
    QEMUTimer *second_timer;
79
    QEMUTimer *second_timer2;
80
};
81

    
82
static void rtc_irq_raise(qemu_irq irq) {
83
    /* When HPET is operating in legacy mode, RTC interrupts are disabled
84
     * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
85
     * mode is established while interrupt is raised. We want it to
86
     * be lowered in any case
87
     */
88
#if defined TARGET_I386 || defined TARGET_X86_64
89
    if (!hpet_in_legacy_mode())
90
#endif
91
        qemu_irq_raise(irq);
92
}
93

    
94
static void rtc_set_time(RTCState *s);
95
static void rtc_copy_date(RTCState *s);
96

    
97
#ifdef TARGET_I386
98
static void rtc_coalesced_timer_update(RTCState *s)
99
{
100
    if (s->irq_coalesced == 0) {
101
        qemu_del_timer(s->coalesced_timer);
102
    } else {
103
        /* divide each RTC interval to 2 - 8 smaller intervals */
104
        int c = MIN(s->irq_coalesced, 7) + 1; 
105
        int64_t next_clock = qemu_get_clock(vm_clock) +
106
                muldiv64(s->period / c, ticks_per_sec, 32768);
107
        qemu_mod_timer(s->coalesced_timer, next_clock);
108
    }
109
}
110

    
111
static void rtc_coalesced_timer(void *opaque)
112
{
113
    RTCState *s = opaque;
114

    
115
    if (s->irq_coalesced != 0) {
116
        apic_reset_irq_delivered();
117
        s->cmos_data[RTC_REG_C] |= 0xc0;
118
        rtc_irq_raise(s->irq);
119
        if (apic_get_irq_delivered()) {
120
            s->irq_coalesced--;
121
        }
122
    }
123

    
124
    rtc_coalesced_timer_update(s);
125
}
126
#endif
127

    
128
static void rtc_timer_update(RTCState *s, int64_t current_time)
129
{
130
    int period_code, period;
131
    int64_t cur_clock, next_irq_clock;
132
    int enable_pie;
133

    
134
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
135
#if defined TARGET_I386 || defined TARGET_X86_64
136
    /* disable periodic timer if hpet is in legacy mode, since interrupts are
137
     * disabled anyway.
138
     */
139
    enable_pie = !hpet_in_legacy_mode();
140
#else
141
    enable_pie = 1;
142
#endif
143
    if (period_code != 0
144
        && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
145
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
146
        if (period_code <= 2)
147
            period_code += 7;
148
        /* period in 32 Khz cycles */
149
        period = 1 << (period_code - 1);
150
#ifdef TARGET_I386
151
        if(period != s->period)
152
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
153
        s->period = period;
154
#endif
155
        /* compute 32 khz clock */
156
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
157
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
158
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
159
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
160
    } else {
161
#ifdef TARGET_I386
162
        s->irq_coalesced = 0;
163
#endif
164
        qemu_del_timer(s->periodic_timer);
165
    }
166
}
167

    
168
static void rtc_periodic_timer(void *opaque)
169
{
170
    RTCState *s = opaque;
171

    
172
    rtc_timer_update(s, s->next_periodic_time);
173
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
174
        s->cmos_data[RTC_REG_C] |= 0xc0;
175
#ifdef TARGET_I386
176
        if(rtc_td_hack) {
177
            apic_reset_irq_delivered();
178
            rtc_irq_raise(s->irq);
179
            if (!apic_get_irq_delivered()) {
180
                s->irq_coalesced++;
181
                rtc_coalesced_timer_update(s);
182
            }
183
        } else
184
#endif
185
        rtc_irq_raise(s->irq);
186
    }
187
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
188
        /* Not square wave at all but we don't want 2048Hz interrupts!
189
           Must be seen as a pulse.  */
190
        qemu_irq_raise(s->sqw_irq);
191
    }
192
}
193

    
194
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
195
{
196
    RTCState *s = opaque;
197

    
198
    if ((addr & 1) == 0) {
199
        s->cmos_index = data & 0x7f;
200
    } else {
201
#ifdef DEBUG_CMOS
202
        printf("cmos: write index=0x%02x val=0x%02x\n",
203
               s->cmos_index, data);
204
#endif
205
        switch(s->cmos_index) {
206
        case RTC_SECONDS_ALARM:
207
        case RTC_MINUTES_ALARM:
208
        case RTC_HOURS_ALARM:
209
            /* XXX: not supported */
210
            s->cmos_data[s->cmos_index] = data;
211
            break;
212
        case RTC_SECONDS:
213
        case RTC_MINUTES:
214
        case RTC_HOURS:
215
        case RTC_DAY_OF_WEEK:
216
        case RTC_DAY_OF_MONTH:
217
        case RTC_MONTH:
218
        case RTC_YEAR:
219
            s->cmos_data[s->cmos_index] = data;
220
            /* if in set mode, do not update the time */
221
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
222
                rtc_set_time(s);
223
            }
224
            break;
225
        case RTC_REG_A:
226
            /* UIP bit is read only */
227
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
228
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
229
            rtc_timer_update(s, qemu_get_clock(vm_clock));
230
            break;
231
        case RTC_REG_B:
232
            if (data & REG_B_SET) {
233
                /* set mode: reset UIP mode */
234
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
235
                data &= ~REG_B_UIE;
236
            } else {
237
                /* if disabling set mode, update the time */
238
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
239
                    rtc_set_time(s);
240
                }
241
            }
242
            s->cmos_data[RTC_REG_B] = data;
243
            rtc_timer_update(s, qemu_get_clock(vm_clock));
244
            break;
245
        case RTC_REG_C:
246
        case RTC_REG_D:
247
            /* cannot write to them */
248
            break;
249
        default:
250
            s->cmos_data[s->cmos_index] = data;
251
            break;
252
        }
253
    }
254
}
255

    
256
static inline int to_bcd(RTCState *s, int a)
257
{
258
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
259
        return a;
260
    } else {
261
        return ((a / 10) << 4) | (a % 10);
262
    }
263
}
264

    
265
static inline int from_bcd(RTCState *s, int a)
266
{
267
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
268
        return a;
269
    } else {
270
        return ((a >> 4) * 10) + (a & 0x0f);
271
    }
272
}
273

    
274
static void rtc_set_time(RTCState *s)
275
{
276
    struct tm *tm = &s->current_tm;
277

    
278
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
279
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
280
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
281
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
282
        (s->cmos_data[RTC_HOURS] & 0x80)) {
283
        tm->tm_hour += 12;
284
    }
285
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
286
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
287
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
288
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
289
}
290

    
291
static void rtc_copy_date(RTCState *s)
292
{
293
    const struct tm *tm = &s->current_tm;
294
    int year;
295

    
296
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
297
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
298
    if (s->cmos_data[RTC_REG_B] & 0x02) {
299
        /* 24 hour format */
300
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
301
    } else {
302
        /* 12 hour format */
303
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
304
        if (tm->tm_hour >= 12)
305
            s->cmos_data[RTC_HOURS] |= 0x80;
306
    }
307
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
308
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
309
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
310
    year = (tm->tm_year - s->base_year) % 100;
311
    if (year < 0)
312
        year += 100;
313
    s->cmos_data[RTC_YEAR] = to_bcd(s, year);
314
}
315

    
316
/* month is between 0 and 11. */
317
static int get_days_in_month(int month, int year)
318
{
319
    static const int days_tab[12] = {
320
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
321
    };
322
    int d;
323
    if ((unsigned )month >= 12)
324
        return 31;
325
    d = days_tab[month];
326
    if (month == 1) {
327
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
328
            d++;
329
    }
330
    return d;
331
}
332

    
333
/* update 'tm' to the next second */
334
static void rtc_next_second(struct tm *tm)
335
{
336
    int days_in_month;
337

    
338
    tm->tm_sec++;
339
    if ((unsigned)tm->tm_sec >= 60) {
340
        tm->tm_sec = 0;
341
        tm->tm_min++;
342
        if ((unsigned)tm->tm_min >= 60) {
343
            tm->tm_min = 0;
344
            tm->tm_hour++;
345
            if ((unsigned)tm->tm_hour >= 24) {
346
                tm->tm_hour = 0;
347
                /* next day */
348
                tm->tm_wday++;
349
                if ((unsigned)tm->tm_wday >= 7)
350
                    tm->tm_wday = 0;
351
                days_in_month = get_days_in_month(tm->tm_mon,
352
                                                  tm->tm_year + 1900);
353
                tm->tm_mday++;
354
                if (tm->tm_mday < 1) {
355
                    tm->tm_mday = 1;
356
                } else if (tm->tm_mday > days_in_month) {
357
                    tm->tm_mday = 1;
358
                    tm->tm_mon++;
359
                    if (tm->tm_mon >= 12) {
360
                        tm->tm_mon = 0;
361
                        tm->tm_year++;
362
                    }
363
                }
364
            }
365
        }
366
    }
367
}
368

    
369

    
370
static void rtc_update_second(void *opaque)
371
{
372
    RTCState *s = opaque;
373
    int64_t delay;
374

    
375
    /* if the oscillator is not in normal operation, we do not update */
376
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
377
        s->next_second_time += ticks_per_sec;
378
        qemu_mod_timer(s->second_timer, s->next_second_time);
379
    } else {
380
        rtc_next_second(&s->current_tm);
381

    
382
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
383
            /* update in progress bit */
384
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
385
        }
386
        /* should be 244 us = 8 / 32768 seconds, but currently the
387
           timers do not have the necessary resolution. */
388
        delay = (ticks_per_sec * 1) / 100;
389
        if (delay < 1)
390
            delay = 1;
391
        qemu_mod_timer(s->second_timer2,
392
                       s->next_second_time + delay);
393
    }
394
}
395

    
396
static void rtc_update_second2(void *opaque)
397
{
398
    RTCState *s = opaque;
399

    
400
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
401
        rtc_copy_date(s);
402
    }
403

    
404
    /* check alarm */
405
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
406
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
407
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
408
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
409
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
410
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
411
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
412

    
413
            s->cmos_data[RTC_REG_C] |= 0xa0;
414
            rtc_irq_raise(s->irq);
415
        }
416
    }
417

    
418
    /* update ended interrupt */
419
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
420
        s->cmos_data[RTC_REG_C] |= 0x90;
421
        rtc_irq_raise(s->irq);
422
    }
423

    
424
    /* clear update in progress bit */
425
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
426

    
427
    s->next_second_time += ticks_per_sec;
428
    qemu_mod_timer(s->second_timer, s->next_second_time);
429
}
430

    
431
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
432
{
433
    RTCState *s = opaque;
434
    int ret;
435
    if ((addr & 1) == 0) {
436
        return 0xff;
437
    } else {
438
        switch(s->cmos_index) {
439
        case RTC_SECONDS:
440
        case RTC_MINUTES:
441
        case RTC_HOURS:
442
        case RTC_DAY_OF_WEEK:
443
        case RTC_DAY_OF_MONTH:
444
        case RTC_MONTH:
445
        case RTC_YEAR:
446
            ret = s->cmos_data[s->cmos_index];
447
            break;
448
        case RTC_REG_A:
449
            ret = s->cmos_data[s->cmos_index];
450
            break;
451
        case RTC_REG_C:
452
            ret = s->cmos_data[s->cmos_index];
453
            qemu_irq_lower(s->irq);
454
            s->cmos_data[RTC_REG_C] = 0x00;
455
            break;
456
        default:
457
            ret = s->cmos_data[s->cmos_index];
458
            break;
459
        }
460
#ifdef DEBUG_CMOS
461
        printf("cmos: read index=0x%02x val=0x%02x\n",
462
               s->cmos_index, ret);
463
#endif
464
        return ret;
465
    }
466
}
467

    
468
void rtc_set_memory(RTCState *s, int addr, int val)
469
{
470
    if (addr >= 0 && addr <= 127)
471
        s->cmos_data[addr] = val;
472
}
473

    
474
void rtc_set_date(RTCState *s, const struct tm *tm)
475
{
476
    s->current_tm = *tm;
477
    rtc_copy_date(s);
478
}
479

    
480
/* PC cmos mappings */
481
#define REG_IBM_CENTURY_BYTE        0x32
482
#define REG_IBM_PS2_CENTURY_BYTE    0x37
483

    
484
static void rtc_set_date_from_host(RTCState *s)
485
{
486
    struct tm tm;
487
    int val;
488

    
489
    /* set the CMOS date */
490
    qemu_get_timedate(&tm, 0);
491
    rtc_set_date(s, &tm);
492

    
493
    val = to_bcd(s, (tm.tm_year / 100) + 19);
494
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
495
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
496
}
497

    
498
static void rtc_save(QEMUFile *f, void *opaque)
499
{
500
    RTCState *s = opaque;
501

    
502
    qemu_put_buffer(f, s->cmos_data, 128);
503
    qemu_put_8s(f, &s->cmos_index);
504

    
505
    qemu_put_be32(f, s->current_tm.tm_sec);
506
    qemu_put_be32(f, s->current_tm.tm_min);
507
    qemu_put_be32(f, s->current_tm.tm_hour);
508
    qemu_put_be32(f, s->current_tm.tm_wday);
509
    qemu_put_be32(f, s->current_tm.tm_mday);
510
    qemu_put_be32(f, s->current_tm.tm_mon);
511
    qemu_put_be32(f, s->current_tm.tm_year);
512

    
513
    qemu_put_timer(f, s->periodic_timer);
514
    qemu_put_be64(f, s->next_periodic_time);
515

    
516
    qemu_put_be64(f, s->next_second_time);
517
    qemu_put_timer(f, s->second_timer);
518
    qemu_put_timer(f, s->second_timer2);
519
}
520

    
521
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
522
{
523
    RTCState *s = opaque;
524

    
525
    if (version_id != 1)
526
        return -EINVAL;
527

    
528
    qemu_get_buffer(f, s->cmos_data, 128);
529
    qemu_get_8s(f, &s->cmos_index);
530

    
531
    s->current_tm.tm_sec=qemu_get_be32(f);
532
    s->current_tm.tm_min=qemu_get_be32(f);
533
    s->current_tm.tm_hour=qemu_get_be32(f);
534
    s->current_tm.tm_wday=qemu_get_be32(f);
535
    s->current_tm.tm_mday=qemu_get_be32(f);
536
    s->current_tm.tm_mon=qemu_get_be32(f);
537
    s->current_tm.tm_year=qemu_get_be32(f);
538

    
539
    qemu_get_timer(f, s->periodic_timer);
540
    s->next_periodic_time=qemu_get_be64(f);
541

    
542
    s->next_second_time=qemu_get_be64(f);
543
    qemu_get_timer(f, s->second_timer);
544
    qemu_get_timer(f, s->second_timer2);
545
    return 0;
546
}
547

    
548
#ifdef TARGET_I386
549
static void rtc_save_td(QEMUFile *f, void *opaque)
550
{
551
    RTCState *s = opaque;
552

    
553
    qemu_put_be32(f, s->irq_coalesced);
554
    qemu_put_be32(f, s->period);
555
}
556

    
557
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
558
{
559
    RTCState *s = opaque;
560

    
561
    if (version_id != 1)
562
        return -EINVAL;
563

    
564
    s->irq_coalesced = qemu_get_be32(f);
565
    s->period = qemu_get_be32(f);
566
    rtc_coalesced_timer_update(s);
567
    return 0;
568
}
569
#endif
570

    
571
RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
572
{
573
    RTCState *s;
574

    
575
    s = qemu_mallocz(sizeof(RTCState));
576

    
577
    s->irq = irq;
578
    s->sqw_irq = sqw_irq;
579
    s->cmos_data[RTC_REG_A] = 0x26;
580
    s->cmos_data[RTC_REG_B] = 0x02;
581
    s->cmos_data[RTC_REG_C] = 0x00;
582
    s->cmos_data[RTC_REG_D] = 0x80;
583

    
584
    s->base_year = base_year;
585
    rtc_set_date_from_host(s);
586

    
587
    s->periodic_timer = qemu_new_timer(vm_clock,
588
                                       rtc_periodic_timer, s);
589
#ifdef TARGET_I386
590
    if (rtc_td_hack)
591
        s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
592
#endif
593
    s->second_timer = qemu_new_timer(vm_clock,
594
                                     rtc_update_second, s);
595
    s->second_timer2 = qemu_new_timer(vm_clock,
596
                                      rtc_update_second2, s);
597

    
598
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
599
    qemu_mod_timer(s->second_timer2, s->next_second_time);
600

    
601
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
602
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
603

    
604
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
605
#ifdef TARGET_I386
606
    if (rtc_td_hack)
607
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
608
#endif
609
    return s;
610
}
611

    
612
RTCState *rtc_init(int base, qemu_irq irq, int base_year)
613
{
614
    return rtc_init_sqw(base, irq, NULL, base_year);
615
}
616

    
617
/* Memory mapped interface */
618
static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
619
{
620
    RTCState *s = opaque;
621

    
622
    return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
623
}
624

    
625
static void cmos_mm_writeb (void *opaque,
626
                            target_phys_addr_t addr, uint32_t value)
627
{
628
    RTCState *s = opaque;
629

    
630
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
631
}
632

    
633
static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
634
{
635
    RTCState *s = opaque;
636
    uint32_t val;
637

    
638
    val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
639
#ifdef TARGET_WORDS_BIGENDIAN
640
    val = bswap16(val);
641
#endif
642
    return val;
643
}
644

    
645
static void cmos_mm_writew (void *opaque,
646
                            target_phys_addr_t addr, uint32_t value)
647
{
648
    RTCState *s = opaque;
649
#ifdef TARGET_WORDS_BIGENDIAN
650
    value = bswap16(value);
651
#endif
652
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
653
}
654

    
655
static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
656
{
657
    RTCState *s = opaque;
658
    uint32_t val;
659

    
660
    val = cmos_ioport_read(s, addr >> s->it_shift);
661
#ifdef TARGET_WORDS_BIGENDIAN
662
    val = bswap32(val);
663
#endif
664
    return val;
665
}
666

    
667
static void cmos_mm_writel (void *opaque,
668
                            target_phys_addr_t addr, uint32_t value)
669
{
670
    RTCState *s = opaque;
671
#ifdef TARGET_WORDS_BIGENDIAN
672
    value = bswap32(value);
673
#endif
674
    cmos_ioport_write(s, addr >> s->it_shift, value);
675
}
676

    
677
static CPUReadMemoryFunc *rtc_mm_read[] = {
678
    &cmos_mm_readb,
679
    &cmos_mm_readw,
680
    &cmos_mm_readl,
681
};
682

    
683
static CPUWriteMemoryFunc *rtc_mm_write[] = {
684
    &cmos_mm_writeb,
685
    &cmos_mm_writew,
686
    &cmos_mm_writel,
687
};
688

    
689
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
690
                      int base_year)
691
{
692
    RTCState *s;
693
    int io_memory;
694

    
695
    s = qemu_mallocz(sizeof(RTCState));
696

    
697
    s->irq = irq;
698
    s->cmos_data[RTC_REG_A] = 0x26;
699
    s->cmos_data[RTC_REG_B] = 0x02;
700
    s->cmos_data[RTC_REG_C] = 0x00;
701
    s->cmos_data[RTC_REG_D] = 0x80;
702

    
703
    s->base_year = base_year;
704
    rtc_set_date_from_host(s);
705

    
706
    s->periodic_timer = qemu_new_timer(vm_clock,
707
                                       rtc_periodic_timer, s);
708
    s->second_timer = qemu_new_timer(vm_clock,
709
                                     rtc_update_second, s);
710
    s->second_timer2 = qemu_new_timer(vm_clock,
711
                                      rtc_update_second2, s);
712

    
713
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
714
    qemu_mod_timer(s->second_timer2, s->next_second_time);
715

    
716
    io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
717
    cpu_register_physical_memory(base, 2 << it_shift, io_memory);
718

    
719
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
720
#ifdef TARGET_I386
721
    if (rtc_td_hack)
722
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
723
#endif
724
    return s;
725
}