Statistics
| Branch: | Revision:

root / memory.c @ 95d2994a

History | View | Annotate | Download (52.8 kB)

1
/*
2
 * Physical memory management
3
 *
4
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5
 *
6
 * Authors:
7
 *  Avi Kivity <avi@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2.  See
10
 * the COPYING file in the top-level directory.
11
 *
12
 * Contributions after 2012-01-13 are licensed under the terms of the
13
 * GNU GPL, version 2 or (at your option) any later version.
14
 */
15

    
16
#include "memory.h"
17
#include "exec-memory.h"
18
#include "ioport.h"
19
#include "bitops.h"
20
#include "kvm.h"
21
#include <assert.h>
22

    
23
#include "memory-internal.h"
24

    
25
unsigned memory_region_transaction_depth = 0;
26
static bool global_dirty_log = false;
27

    
28
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
29
    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
30

    
31
static QTAILQ_HEAD(, AddressSpace) address_spaces
32
    = QTAILQ_HEAD_INITIALIZER(address_spaces);
33

    
34
typedef struct AddrRange AddrRange;
35

    
36
/*
37
 * Note using signed integers limits us to physical addresses at most
38
 * 63 bits wide.  They are needed for negative offsetting in aliases
39
 * (large MemoryRegion::alias_offset).
40
 */
41
struct AddrRange {
42
    Int128 start;
43
    Int128 size;
44
};
45

    
46
static AddrRange addrrange_make(Int128 start, Int128 size)
47
{
48
    return (AddrRange) { start, size };
49
}
50

    
51
static bool addrrange_equal(AddrRange r1, AddrRange r2)
52
{
53
    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
54
}
55

    
56
static Int128 addrrange_end(AddrRange r)
57
{
58
    return int128_add(r.start, r.size);
59
}
60

    
61
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
62
{
63
    int128_addto(&range.start, delta);
64
    return range;
65
}
66

    
67
static bool addrrange_contains(AddrRange range, Int128 addr)
68
{
69
    return int128_ge(addr, range.start)
70
        && int128_lt(addr, addrrange_end(range));
71
}
72

    
73
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
74
{
75
    return addrrange_contains(r1, r2.start)
76
        || addrrange_contains(r2, r1.start);
77
}
78

    
79
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
80
{
81
    Int128 start = int128_max(r1.start, r2.start);
82
    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
83
    return addrrange_make(start, int128_sub(end, start));
84
}
85

    
86
enum ListenerDirection { Forward, Reverse };
87

    
88
static bool memory_listener_match(MemoryListener *listener,
89
                                  MemoryRegionSection *section)
90
{
91
    return !listener->address_space_filter
92
        || listener->address_space_filter == section->address_space;
93
}
94

    
95
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
96
    do {                                                                \
97
        MemoryListener *_listener;                                      \
98
                                                                        \
99
        switch (_direction) {                                           \
100
        case Forward:                                                   \
101
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
102
                if (_listener->_callback) {                             \
103
                    _listener->_callback(_listener, ##_args);           \
104
                }                                                       \
105
            }                                                           \
106
            break;                                                      \
107
        case Reverse:                                                   \
108
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
109
                                   memory_listeners, link) {            \
110
                if (_listener->_callback) {                             \
111
                    _listener->_callback(_listener, ##_args);           \
112
                }                                                       \
113
            }                                                           \
114
            break;                                                      \
115
        default:                                                        \
116
            abort();                                                    \
117
        }                                                               \
118
    } while (0)
119

    
120
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
121
    do {                                                                \
122
        MemoryListener *_listener;                                      \
123
                                                                        \
124
        switch (_direction) {                                           \
125
        case Forward:                                                   \
126
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
127
                if (_listener->_callback                                \
128
                    && memory_listener_match(_listener, _section)) {    \
129
                    _listener->_callback(_listener, _section, ##_args); \
130
                }                                                       \
131
            }                                                           \
132
            break;                                                      \
133
        case Reverse:                                                   \
134
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
135
                                   memory_listeners, link) {            \
136
                if (_listener->_callback                                \
137
                    && memory_listener_match(_listener, _section)) {    \
138
                    _listener->_callback(_listener, _section, ##_args); \
139
                }                                                       \
140
            }                                                           \
141
            break;                                                      \
142
        default:                                                        \
143
            abort();                                                    \
144
        }                                                               \
145
    } while (0)
146

    
147
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
148
    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
149
        .mr = (fr)->mr,                                                 \
150
        .address_space = (as)->root,                                    \
151
        .offset_within_region = (fr)->offset_in_region,                 \
152
        .size = int128_get64((fr)->addr.size),                          \
153
        .offset_within_address_space = int128_get64((fr)->addr.start),  \
154
        .readonly = (fr)->readonly,                                     \
155
              }))
156

    
157
struct CoalescedMemoryRange {
158
    AddrRange addr;
159
    QTAILQ_ENTRY(CoalescedMemoryRange) link;
160
};
161

    
162
struct MemoryRegionIoeventfd {
163
    AddrRange addr;
164
    bool match_data;
165
    uint64_t data;
166
    EventNotifier *e;
167
};
168

    
169
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
170
                                           MemoryRegionIoeventfd b)
171
{
172
    if (int128_lt(a.addr.start, b.addr.start)) {
173
        return true;
174
    } else if (int128_gt(a.addr.start, b.addr.start)) {
175
        return false;
176
    } else if (int128_lt(a.addr.size, b.addr.size)) {
177
        return true;
178
    } else if (int128_gt(a.addr.size, b.addr.size)) {
179
        return false;
180
    } else if (a.match_data < b.match_data) {
181
        return true;
182
    } else  if (a.match_data > b.match_data) {
183
        return false;
184
    } else if (a.match_data) {
185
        if (a.data < b.data) {
186
            return true;
187
        } else if (a.data > b.data) {
188
            return false;
189
        }
190
    }
191
    if (a.e < b.e) {
192
        return true;
193
    } else if (a.e > b.e) {
194
        return false;
195
    }
196
    return false;
197
}
198

    
199
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
200
                                          MemoryRegionIoeventfd b)
201
{
202
    return !memory_region_ioeventfd_before(a, b)
203
        && !memory_region_ioeventfd_before(b, a);
204
}
205

    
206
typedef struct FlatRange FlatRange;
207
typedef struct FlatView FlatView;
208

    
209
/* Range of memory in the global map.  Addresses are absolute. */
210
struct FlatRange {
211
    MemoryRegion *mr;
212
    target_phys_addr_t offset_in_region;
213
    AddrRange addr;
214
    uint8_t dirty_log_mask;
215
    bool readable;
216
    bool readonly;
217
};
218

    
219
/* Flattened global view of current active memory hierarchy.  Kept in sorted
220
 * order.
221
 */
222
struct FlatView {
223
    FlatRange *ranges;
224
    unsigned nr;
225
    unsigned nr_allocated;
226
};
227

    
228
typedef struct AddressSpaceOps AddressSpaceOps;
229

    
230
#define FOR_EACH_FLAT_RANGE(var, view)          \
231
    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232

    
233
static bool flatrange_equal(FlatRange *a, FlatRange *b)
234
{
235
    return a->mr == b->mr
236
        && addrrange_equal(a->addr, b->addr)
237
        && a->offset_in_region == b->offset_in_region
238
        && a->readable == b->readable
239
        && a->readonly == b->readonly;
240
}
241

    
242
static void flatview_init(FlatView *view)
243
{
244
    view->ranges = NULL;
245
    view->nr = 0;
246
    view->nr_allocated = 0;
247
}
248

    
249
/* Insert a range into a given position.  Caller is responsible for maintaining
250
 * sorting order.
251
 */
252
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
253
{
254
    if (view->nr == view->nr_allocated) {
255
        view->nr_allocated = MAX(2 * view->nr, 10);
256
        view->ranges = g_realloc(view->ranges,
257
                                    view->nr_allocated * sizeof(*view->ranges));
258
    }
259
    memmove(view->ranges + pos + 1, view->ranges + pos,
260
            (view->nr - pos) * sizeof(FlatRange));
261
    view->ranges[pos] = *range;
262
    ++view->nr;
263
}
264

    
265
static void flatview_destroy(FlatView *view)
266
{
267
    g_free(view->ranges);
268
}
269

    
270
static bool can_merge(FlatRange *r1, FlatRange *r2)
271
{
272
    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
273
        && r1->mr == r2->mr
274
        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
275
                                r1->addr.size),
276
                     int128_make64(r2->offset_in_region))
277
        && r1->dirty_log_mask == r2->dirty_log_mask
278
        && r1->readable == r2->readable
279
        && r1->readonly == r2->readonly;
280
}
281

    
282
/* Attempt to simplify a view by merging ajacent ranges */
283
static void flatview_simplify(FlatView *view)
284
{
285
    unsigned i, j;
286

    
287
    i = 0;
288
    while (i < view->nr) {
289
        j = i + 1;
290
        while (j < view->nr
291
               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
292
            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
293
            ++j;
294
        }
295
        ++i;
296
        memmove(&view->ranges[i], &view->ranges[j],
297
                (view->nr - j) * sizeof(view->ranges[j]));
298
        view->nr -= j - i;
299
    }
300
}
301

    
302
static void memory_region_read_accessor(void *opaque,
303
                                        target_phys_addr_t addr,
304
                                        uint64_t *value,
305
                                        unsigned size,
306
                                        unsigned shift,
307
                                        uint64_t mask)
308
{
309
    MemoryRegion *mr = opaque;
310
    uint64_t tmp;
311

    
312
    if (mr->flush_coalesced_mmio) {
313
        qemu_flush_coalesced_mmio_buffer();
314
    }
315
    tmp = mr->ops->read(mr->opaque, addr, size);
316
    *value |= (tmp & mask) << shift;
317
}
318

    
319
static void memory_region_write_accessor(void *opaque,
320
                                         target_phys_addr_t addr,
321
                                         uint64_t *value,
322
                                         unsigned size,
323
                                         unsigned shift,
324
                                         uint64_t mask)
325
{
326
    MemoryRegion *mr = opaque;
327
    uint64_t tmp;
328

    
329
    if (mr->flush_coalesced_mmio) {
330
        qemu_flush_coalesced_mmio_buffer();
331
    }
332
    tmp = (*value >> shift) & mask;
333
    mr->ops->write(mr->opaque, addr, tmp, size);
334
}
335

    
336
static void access_with_adjusted_size(target_phys_addr_t addr,
337
                                      uint64_t *value,
338
                                      unsigned size,
339
                                      unsigned access_size_min,
340
                                      unsigned access_size_max,
341
                                      void (*access)(void *opaque,
342
                                                     target_phys_addr_t addr,
343
                                                     uint64_t *value,
344
                                                     unsigned size,
345
                                                     unsigned shift,
346
                                                     uint64_t mask),
347
                                      void *opaque)
348
{
349
    uint64_t access_mask;
350
    unsigned access_size;
351
    unsigned i;
352

    
353
    if (!access_size_min) {
354
        access_size_min = 1;
355
    }
356
    if (!access_size_max) {
357
        access_size_max = 4;
358
    }
359
    access_size = MAX(MIN(size, access_size_max), access_size_min);
360
    access_mask = -1ULL >> (64 - access_size * 8);
361
    for (i = 0; i < size; i += access_size) {
362
        /* FIXME: big-endian support */
363
        access(opaque, addr + i, value, access_size, i * 8, access_mask);
364
    }
365
}
366

    
367
static AddressSpace address_space_memory;
368

    
369
static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
370
                                             unsigned width, bool write)
371
{
372
    const MemoryRegionPortio *mrp;
373

    
374
    for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
375
        if (offset >= mrp->offset && offset < mrp->offset + mrp->len
376
            && width == mrp->size
377
            && (write ? (bool)mrp->write : (bool)mrp->read)) {
378
            return mrp;
379
        }
380
    }
381
    return NULL;
382
}
383

    
384
static void memory_region_iorange_read(IORange *iorange,
385
                                       uint64_t offset,
386
                                       unsigned width,
387
                                       uint64_t *data)
388
{
389
    MemoryRegionIORange *mrio
390
        = container_of(iorange, MemoryRegionIORange, iorange);
391
    MemoryRegion *mr = mrio->mr;
392

    
393
    offset += mrio->offset;
394
    if (mr->ops->old_portio) {
395
        const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
396
                                                    width, false);
397

    
398
        *data = ((uint64_t)1 << (width * 8)) - 1;
399
        if (mrp) {
400
            *data = mrp->read(mr->opaque, offset);
401
        } else if (width == 2) {
402
            mrp = find_portio(mr, offset - mrio->offset, 1, false);
403
            assert(mrp);
404
            *data = mrp->read(mr->opaque, offset) |
405
                    (mrp->read(mr->opaque, offset + 1) << 8);
406
        }
407
        return;
408
    }
409
    *data = 0;
410
    access_with_adjusted_size(offset, data, width,
411
                              mr->ops->impl.min_access_size,
412
                              mr->ops->impl.max_access_size,
413
                              memory_region_read_accessor, mr);
414
}
415

    
416
static void memory_region_iorange_write(IORange *iorange,
417
                                        uint64_t offset,
418
                                        unsigned width,
419
                                        uint64_t data)
420
{
421
    MemoryRegionIORange *mrio
422
        = container_of(iorange, MemoryRegionIORange, iorange);
423
    MemoryRegion *mr = mrio->mr;
424

    
425
    offset += mrio->offset;
426
    if (mr->ops->old_portio) {
427
        const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
428
                                                    width, true);
429

    
430
        if (mrp) {
431
            mrp->write(mr->opaque, offset, data);
432
        } else if (width == 2) {
433
            mrp = find_portio(mr, offset - mrio->offset, 1, true);
434
            assert(mrp);
435
            mrp->write(mr->opaque, offset, data & 0xff);
436
            mrp->write(mr->opaque, offset + 1, data >> 8);
437
        }
438
        return;
439
    }
440
    access_with_adjusted_size(offset, &data, width,
441
                              mr->ops->impl.min_access_size,
442
                              mr->ops->impl.max_access_size,
443
                              memory_region_write_accessor, mr);
444
}
445

    
446
static void memory_region_iorange_destructor(IORange *iorange)
447
{
448
    g_free(container_of(iorange, MemoryRegionIORange, iorange));
449
}
450

    
451
const IORangeOps memory_region_iorange_ops = {
452
    .read = memory_region_iorange_read,
453
    .write = memory_region_iorange_write,
454
    .destructor = memory_region_iorange_destructor,
455
};
456

    
457
static AddressSpace address_space_io;
458

    
459
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
460
{
461
    AddressSpace *as;
462

    
463
    while (mr->parent) {
464
        mr = mr->parent;
465
    }
466
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
467
        if (mr == as->root) {
468
            return as;
469
        }
470
    }
471
    abort();
472
}
473

    
474
/* Render a memory region into the global view.  Ranges in @view obscure
475
 * ranges in @mr.
476
 */
477
static void render_memory_region(FlatView *view,
478
                                 MemoryRegion *mr,
479
                                 Int128 base,
480
                                 AddrRange clip,
481
                                 bool readonly)
482
{
483
    MemoryRegion *subregion;
484
    unsigned i;
485
    target_phys_addr_t offset_in_region;
486
    Int128 remain;
487
    Int128 now;
488
    FlatRange fr;
489
    AddrRange tmp;
490

    
491
    if (!mr->enabled) {
492
        return;
493
    }
494

    
495
    int128_addto(&base, int128_make64(mr->addr));
496
    readonly |= mr->readonly;
497

    
498
    tmp = addrrange_make(base, mr->size);
499

    
500
    if (!addrrange_intersects(tmp, clip)) {
501
        return;
502
    }
503

    
504
    clip = addrrange_intersection(tmp, clip);
505

    
506
    if (mr->alias) {
507
        int128_subfrom(&base, int128_make64(mr->alias->addr));
508
        int128_subfrom(&base, int128_make64(mr->alias_offset));
509
        render_memory_region(view, mr->alias, base, clip, readonly);
510
        return;
511
    }
512

    
513
    /* Render subregions in priority order. */
514
    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
515
        render_memory_region(view, subregion, base, clip, readonly);
516
    }
517

    
518
    if (!mr->terminates) {
519
        return;
520
    }
521

    
522
    offset_in_region = int128_get64(int128_sub(clip.start, base));
523
    base = clip.start;
524
    remain = clip.size;
525

    
526
    /* Render the region itself into any gaps left by the current view. */
527
    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
528
        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
529
            continue;
530
        }
531
        if (int128_lt(base, view->ranges[i].addr.start)) {
532
            now = int128_min(remain,
533
                             int128_sub(view->ranges[i].addr.start, base));
534
            fr.mr = mr;
535
            fr.offset_in_region = offset_in_region;
536
            fr.addr = addrrange_make(base, now);
537
            fr.dirty_log_mask = mr->dirty_log_mask;
538
            fr.readable = mr->readable;
539
            fr.readonly = readonly;
540
            flatview_insert(view, i, &fr);
541
            ++i;
542
            int128_addto(&base, now);
543
            offset_in_region += int128_get64(now);
544
            int128_subfrom(&remain, now);
545
        }
546
        if (int128_eq(base, view->ranges[i].addr.start)) {
547
            now = int128_min(remain, view->ranges[i].addr.size);
548
            int128_addto(&base, now);
549
            offset_in_region += int128_get64(now);
550
            int128_subfrom(&remain, now);
551
        }
552
    }
553
    if (int128_nz(remain)) {
554
        fr.mr = mr;
555
        fr.offset_in_region = offset_in_region;
556
        fr.addr = addrrange_make(base, remain);
557
        fr.dirty_log_mask = mr->dirty_log_mask;
558
        fr.readable = mr->readable;
559
        fr.readonly = readonly;
560
        flatview_insert(view, i, &fr);
561
    }
562
}
563

    
564
/* Render a memory topology into a list of disjoint absolute ranges. */
565
static FlatView generate_memory_topology(MemoryRegion *mr)
566
{
567
    FlatView view;
568

    
569
    flatview_init(&view);
570

    
571
    render_memory_region(&view, mr, int128_zero(),
572
                         addrrange_make(int128_zero(), int128_2_64()), false);
573
    flatview_simplify(&view);
574

    
575
    return view;
576
}
577

    
578
static void address_space_add_del_ioeventfds(AddressSpace *as,
579
                                             MemoryRegionIoeventfd *fds_new,
580
                                             unsigned fds_new_nb,
581
                                             MemoryRegionIoeventfd *fds_old,
582
                                             unsigned fds_old_nb)
583
{
584
    unsigned iold, inew;
585
    MemoryRegionIoeventfd *fd;
586
    MemoryRegionSection section;
587

    
588
    /* Generate a symmetric difference of the old and new fd sets, adding
589
     * and deleting as necessary.
590
     */
591

    
592
    iold = inew = 0;
593
    while (iold < fds_old_nb || inew < fds_new_nb) {
594
        if (iold < fds_old_nb
595
            && (inew == fds_new_nb
596
                || memory_region_ioeventfd_before(fds_old[iold],
597
                                                  fds_new[inew]))) {
598
            fd = &fds_old[iold];
599
            section = (MemoryRegionSection) {
600
                .address_space = as->root,
601
                .offset_within_address_space = int128_get64(fd->addr.start),
602
                .size = int128_get64(fd->addr.size),
603
            };
604
            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
605
                                 fd->match_data, fd->data, fd->e);
606
            ++iold;
607
        } else if (inew < fds_new_nb
608
                   && (iold == fds_old_nb
609
                       || memory_region_ioeventfd_before(fds_new[inew],
610
                                                         fds_old[iold]))) {
611
            fd = &fds_new[inew];
612
            section = (MemoryRegionSection) {
613
                .address_space = as->root,
614
                .offset_within_address_space = int128_get64(fd->addr.start),
615
                .size = int128_get64(fd->addr.size),
616
            };
617
            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
618
                                 fd->match_data, fd->data, fd->e);
619
            ++inew;
620
        } else {
621
            ++iold;
622
            ++inew;
623
        }
624
    }
625
}
626

    
627
static void address_space_update_ioeventfds(AddressSpace *as)
628
{
629
    FlatRange *fr;
630
    unsigned ioeventfd_nb = 0;
631
    MemoryRegionIoeventfd *ioeventfds = NULL;
632
    AddrRange tmp;
633
    unsigned i;
634

    
635
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
636
        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
637
            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
638
                                  int128_sub(fr->addr.start,
639
                                             int128_make64(fr->offset_in_region)));
640
            if (addrrange_intersects(fr->addr, tmp)) {
641
                ++ioeventfd_nb;
642
                ioeventfds = g_realloc(ioeventfds,
643
                                          ioeventfd_nb * sizeof(*ioeventfds));
644
                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
645
                ioeventfds[ioeventfd_nb-1].addr = tmp;
646
            }
647
        }
648
    }
649

    
650
    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
651
                                     as->ioeventfds, as->ioeventfd_nb);
652

    
653
    g_free(as->ioeventfds);
654
    as->ioeventfds = ioeventfds;
655
    as->ioeventfd_nb = ioeventfd_nb;
656
}
657

    
658
static void address_space_update_topology_pass(AddressSpace *as,
659
                                               FlatView old_view,
660
                                               FlatView new_view,
661
                                               bool adding)
662
{
663
    unsigned iold, inew;
664
    FlatRange *frold, *frnew;
665

    
666
    /* Generate a symmetric difference of the old and new memory maps.
667
     * Kill ranges in the old map, and instantiate ranges in the new map.
668
     */
669
    iold = inew = 0;
670
    while (iold < old_view.nr || inew < new_view.nr) {
671
        if (iold < old_view.nr) {
672
            frold = &old_view.ranges[iold];
673
        } else {
674
            frold = NULL;
675
        }
676
        if (inew < new_view.nr) {
677
            frnew = &new_view.ranges[inew];
678
        } else {
679
            frnew = NULL;
680
        }
681

    
682
        if (frold
683
            && (!frnew
684
                || int128_lt(frold->addr.start, frnew->addr.start)
685
                || (int128_eq(frold->addr.start, frnew->addr.start)
686
                    && !flatrange_equal(frold, frnew)))) {
687
            /* In old, but (not in new, or in new but attributes changed). */
688

    
689
            if (!adding) {
690
                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
691
            }
692

    
693
            ++iold;
694
        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
695
            /* In both (logging may have changed) */
696

    
697
            if (adding) {
698
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
699
                if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
700
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
701
                } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
702
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
703
                }
704
            }
705

    
706
            ++iold;
707
            ++inew;
708
        } else {
709
            /* In new */
710

    
711
            if (adding) {
712
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
713
            }
714

    
715
            ++inew;
716
        }
717
    }
718
}
719

    
720

    
721
static void address_space_update_topology(AddressSpace *as)
722
{
723
    FlatView old_view = *as->current_map;
724
    FlatView new_view = generate_memory_topology(as->root);
725

    
726
    address_space_update_topology_pass(as, old_view, new_view, false);
727
    address_space_update_topology_pass(as, old_view, new_view, true);
728

    
729
    *as->current_map = new_view;
730
    flatview_destroy(&old_view);
731
    address_space_update_ioeventfds(as);
732
}
733

    
734
void memory_region_transaction_begin(void)
735
{
736
    qemu_flush_coalesced_mmio_buffer();
737
    ++memory_region_transaction_depth;
738
}
739

    
740
void memory_region_transaction_commit(void)
741
{
742
    AddressSpace *as;
743

    
744
    assert(memory_region_transaction_depth);
745
    --memory_region_transaction_depth;
746
    if (!memory_region_transaction_depth) {
747
        MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
748

    
749
        QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
750
            address_space_update_topology(as);
751
        }
752

    
753
        MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
754
    }
755
}
756

    
757
static void memory_region_destructor_none(MemoryRegion *mr)
758
{
759
}
760

    
761
static void memory_region_destructor_ram(MemoryRegion *mr)
762
{
763
    qemu_ram_free(mr->ram_addr);
764
}
765

    
766
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
767
{
768
    qemu_ram_free_from_ptr(mr->ram_addr);
769
}
770

    
771
static void memory_region_destructor_iomem(MemoryRegion *mr)
772
{
773
}
774

    
775
static void memory_region_destructor_rom_device(MemoryRegion *mr)
776
{
777
    qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
778
}
779

    
780
static bool memory_region_wrong_endianness(MemoryRegion *mr)
781
{
782
#ifdef TARGET_WORDS_BIGENDIAN
783
    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
784
#else
785
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
786
#endif
787
}
788

    
789
void memory_region_init(MemoryRegion *mr,
790
                        const char *name,
791
                        uint64_t size)
792
{
793
    mr->ops = NULL;
794
    mr->parent = NULL;
795
    mr->size = int128_make64(size);
796
    if (size == UINT64_MAX) {
797
        mr->size = int128_2_64();
798
    }
799
    mr->addr = 0;
800
    mr->subpage = false;
801
    mr->enabled = true;
802
    mr->terminates = false;
803
    mr->ram = false;
804
    mr->readable = true;
805
    mr->readonly = false;
806
    mr->rom_device = false;
807
    mr->destructor = memory_region_destructor_none;
808
    mr->priority = 0;
809
    mr->may_overlap = false;
810
    mr->alias = NULL;
811
    QTAILQ_INIT(&mr->subregions);
812
    memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
813
    QTAILQ_INIT(&mr->coalesced);
814
    mr->name = g_strdup(name);
815
    mr->dirty_log_mask = 0;
816
    mr->ioeventfd_nb = 0;
817
    mr->ioeventfds = NULL;
818
    mr->flush_coalesced_mmio = false;
819
}
820

    
821
static bool memory_region_access_valid(MemoryRegion *mr,
822
                                       target_phys_addr_t addr,
823
                                       unsigned size,
824
                                       bool is_write)
825
{
826
    if (mr->ops->valid.accepts
827
        && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
828
        return false;
829
    }
830

    
831
    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
832
        return false;
833
    }
834

    
835
    /* Treat zero as compatibility all valid */
836
    if (!mr->ops->valid.max_access_size) {
837
        return true;
838
    }
839

    
840
    if (size > mr->ops->valid.max_access_size
841
        || size < mr->ops->valid.min_access_size) {
842
        return false;
843
    }
844
    return true;
845
}
846

    
847
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
848
                                             target_phys_addr_t addr,
849
                                             unsigned size)
850
{
851
    uint64_t data = 0;
852

    
853
    if (!memory_region_access_valid(mr, addr, size, false)) {
854
        return -1U; /* FIXME: better signalling */
855
    }
856

    
857
    if (!mr->ops->read) {
858
        return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
859
    }
860

    
861
    /* FIXME: support unaligned access */
862
    access_with_adjusted_size(addr, &data, size,
863
                              mr->ops->impl.min_access_size,
864
                              mr->ops->impl.max_access_size,
865
                              memory_region_read_accessor, mr);
866

    
867
    return data;
868
}
869

    
870
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
871
{
872
    if (memory_region_wrong_endianness(mr)) {
873
        switch (size) {
874
        case 1:
875
            break;
876
        case 2:
877
            *data = bswap16(*data);
878
            break;
879
        case 4:
880
            *data = bswap32(*data);
881
            break;
882
        default:
883
            abort();
884
        }
885
    }
886
}
887

    
888
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
889
                                            target_phys_addr_t addr,
890
                                            unsigned size)
891
{
892
    uint64_t ret;
893

    
894
    ret = memory_region_dispatch_read1(mr, addr, size);
895
    adjust_endianness(mr, &ret, size);
896
    return ret;
897
}
898

    
899
static void memory_region_dispatch_write(MemoryRegion *mr,
900
                                         target_phys_addr_t addr,
901
                                         uint64_t data,
902
                                         unsigned size)
903
{
904
    if (!memory_region_access_valid(mr, addr, size, true)) {
905
        return; /* FIXME: better signalling */
906
    }
907

    
908
    adjust_endianness(mr, &data, size);
909

    
910
    if (!mr->ops->write) {
911
        mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
912
        return;
913
    }
914

    
915
    /* FIXME: support unaligned access */
916
    access_with_adjusted_size(addr, &data, size,
917
                              mr->ops->impl.min_access_size,
918
                              mr->ops->impl.max_access_size,
919
                              memory_region_write_accessor, mr);
920
}
921

    
922
void memory_region_init_io(MemoryRegion *mr,
923
                           const MemoryRegionOps *ops,
924
                           void *opaque,
925
                           const char *name,
926
                           uint64_t size)
927
{
928
    memory_region_init(mr, name, size);
929
    mr->ops = ops;
930
    mr->opaque = opaque;
931
    mr->terminates = true;
932
    mr->destructor = memory_region_destructor_iomem;
933
    mr->ram_addr = ~(ram_addr_t)0;
934
}
935

    
936
void memory_region_init_ram(MemoryRegion *mr,
937
                            const char *name,
938
                            uint64_t size)
939
{
940
    memory_region_init(mr, name, size);
941
    mr->ram = true;
942
    mr->terminates = true;
943
    mr->destructor = memory_region_destructor_ram;
944
    mr->ram_addr = qemu_ram_alloc(size, mr);
945
}
946

    
947
void memory_region_init_ram_ptr(MemoryRegion *mr,
948
                                const char *name,
949
                                uint64_t size,
950
                                void *ptr)
951
{
952
    memory_region_init(mr, name, size);
953
    mr->ram = true;
954
    mr->terminates = true;
955
    mr->destructor = memory_region_destructor_ram_from_ptr;
956
    mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
957
}
958

    
959
void memory_region_init_alias(MemoryRegion *mr,
960
                              const char *name,
961
                              MemoryRegion *orig,
962
                              target_phys_addr_t offset,
963
                              uint64_t size)
964
{
965
    memory_region_init(mr, name, size);
966
    mr->alias = orig;
967
    mr->alias_offset = offset;
968
}
969

    
970
void memory_region_init_rom_device(MemoryRegion *mr,
971
                                   const MemoryRegionOps *ops,
972
                                   void *opaque,
973
                                   const char *name,
974
                                   uint64_t size)
975
{
976
    memory_region_init(mr, name, size);
977
    mr->ops = ops;
978
    mr->opaque = opaque;
979
    mr->terminates = true;
980
    mr->rom_device = true;
981
    mr->destructor = memory_region_destructor_rom_device;
982
    mr->ram_addr = qemu_ram_alloc(size, mr);
983
}
984

    
985
static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
986
                             unsigned size)
987
{
988
    MemoryRegion *mr = opaque;
989

    
990
    if (!mr->warning_printed) {
991
        fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
992
        mr->warning_printed = true;
993
    }
994
    return -1U;
995
}
996

    
997
static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
998
                          unsigned size)
999
{
1000
    MemoryRegion *mr = opaque;
1001

    
1002
    if (!mr->warning_printed) {
1003
        fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1004
        mr->warning_printed = true;
1005
    }
1006
}
1007

    
1008
static const MemoryRegionOps reservation_ops = {
1009
    .read = invalid_read,
1010
    .write = invalid_write,
1011
    .endianness = DEVICE_NATIVE_ENDIAN,
1012
};
1013

    
1014
void memory_region_init_reservation(MemoryRegion *mr,
1015
                                    const char *name,
1016
                                    uint64_t size)
1017
{
1018
    memory_region_init_io(mr, &reservation_ops, mr, name, size);
1019
}
1020

    
1021
void memory_region_destroy(MemoryRegion *mr)
1022
{
1023
    assert(QTAILQ_EMPTY(&mr->subregions));
1024
    mr->destructor(mr);
1025
    memory_region_clear_coalescing(mr);
1026
    g_free((char *)mr->name);
1027
    g_free(mr->ioeventfds);
1028
}
1029

    
1030
uint64_t memory_region_size(MemoryRegion *mr)
1031
{
1032
    if (int128_eq(mr->size, int128_2_64())) {
1033
        return UINT64_MAX;
1034
    }
1035
    return int128_get64(mr->size);
1036
}
1037

    
1038
const char *memory_region_name(MemoryRegion *mr)
1039
{
1040
    return mr->name;
1041
}
1042

    
1043
bool memory_region_is_ram(MemoryRegion *mr)
1044
{
1045
    return mr->ram;
1046
}
1047

    
1048
bool memory_region_is_logging(MemoryRegion *mr)
1049
{
1050
    return mr->dirty_log_mask;
1051
}
1052

    
1053
bool memory_region_is_rom(MemoryRegion *mr)
1054
{
1055
    return mr->ram && mr->readonly;
1056
}
1057

    
1058
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1059
{
1060
    uint8_t mask = 1 << client;
1061

    
1062
    memory_region_transaction_begin();
1063
    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1064
    memory_region_transaction_commit();
1065
}
1066

    
1067
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1068
                             target_phys_addr_t size, unsigned client)
1069
{
1070
    assert(mr->terminates);
1071
    return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1072
                                         1 << client);
1073
}
1074

    
1075
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1076
                             target_phys_addr_t size)
1077
{
1078
    assert(mr->terminates);
1079
    return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1080
}
1081

    
1082
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1083
{
1084
    AddressSpace *as;
1085
    FlatRange *fr;
1086

    
1087
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1088
        FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1089
            if (fr->mr == mr) {
1090
                MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1091
            }
1092
        }
1093
    }
1094
}
1095

    
1096
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1097
{
1098
    if (mr->readonly != readonly) {
1099
        memory_region_transaction_begin();
1100
        mr->readonly = readonly;
1101
        memory_region_transaction_commit();
1102
    }
1103
}
1104

    
1105
void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1106
{
1107
    if (mr->readable != readable) {
1108
        memory_region_transaction_begin();
1109
        mr->readable = readable;
1110
        memory_region_transaction_commit();
1111
    }
1112
}
1113

    
1114
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1115
                               target_phys_addr_t size, unsigned client)
1116
{
1117
    assert(mr->terminates);
1118
    cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1119
                                    mr->ram_addr + addr + size,
1120
                                    1 << client);
1121
}
1122

    
1123
void *memory_region_get_ram_ptr(MemoryRegion *mr)
1124
{
1125
    if (mr->alias) {
1126
        return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1127
    }
1128

    
1129
    assert(mr->terminates);
1130

    
1131
    return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1132
}
1133

    
1134
static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1135
{
1136
    FlatRange *fr;
1137
    CoalescedMemoryRange *cmr;
1138
    AddrRange tmp;
1139
    MemoryRegionSection section;
1140

    
1141
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1142
        if (fr->mr == mr) {
1143
            section = (MemoryRegionSection) {
1144
                .address_space = as->root,
1145
                .offset_within_address_space = int128_get64(fr->addr.start),
1146
                .size = int128_get64(fr->addr.size),
1147
            };
1148

    
1149
            MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1150
                                 int128_get64(fr->addr.start),
1151
                                 int128_get64(fr->addr.size));
1152
            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1153
                tmp = addrrange_shift(cmr->addr,
1154
                                      int128_sub(fr->addr.start,
1155
                                                 int128_make64(fr->offset_in_region)));
1156
                if (!addrrange_intersects(tmp, fr->addr)) {
1157
                    continue;
1158
                }
1159
                tmp = addrrange_intersection(tmp, fr->addr);
1160
                MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1161
                                     int128_get64(tmp.start),
1162
                                     int128_get64(tmp.size));
1163
            }
1164
        }
1165
    }
1166
}
1167

    
1168
static void memory_region_update_coalesced_range(MemoryRegion *mr)
1169
{
1170
    AddressSpace *as;
1171

    
1172
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1173
        memory_region_update_coalesced_range_as(mr, as);
1174
    }
1175
}
1176

    
1177
void memory_region_set_coalescing(MemoryRegion *mr)
1178
{
1179
    memory_region_clear_coalescing(mr);
1180
    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1181
}
1182

    
1183
void memory_region_add_coalescing(MemoryRegion *mr,
1184
                                  target_phys_addr_t offset,
1185
                                  uint64_t size)
1186
{
1187
    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1188

    
1189
    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1190
    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1191
    memory_region_update_coalesced_range(mr);
1192
    memory_region_set_flush_coalesced(mr);
1193
}
1194

    
1195
void memory_region_clear_coalescing(MemoryRegion *mr)
1196
{
1197
    CoalescedMemoryRange *cmr;
1198

    
1199
    qemu_flush_coalesced_mmio_buffer();
1200
    mr->flush_coalesced_mmio = false;
1201

    
1202
    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1203
        cmr = QTAILQ_FIRST(&mr->coalesced);
1204
        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1205
        g_free(cmr);
1206
    }
1207
    memory_region_update_coalesced_range(mr);
1208
}
1209

    
1210
void memory_region_set_flush_coalesced(MemoryRegion *mr)
1211
{
1212
    mr->flush_coalesced_mmio = true;
1213
}
1214

    
1215
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1216
{
1217
    qemu_flush_coalesced_mmio_buffer();
1218
    if (QTAILQ_EMPTY(&mr->coalesced)) {
1219
        mr->flush_coalesced_mmio = false;
1220
    }
1221
}
1222

    
1223
void memory_region_add_eventfd(MemoryRegion *mr,
1224
                               target_phys_addr_t addr,
1225
                               unsigned size,
1226
                               bool match_data,
1227
                               uint64_t data,
1228
                               EventNotifier *e)
1229
{
1230
    MemoryRegionIoeventfd mrfd = {
1231
        .addr.start = int128_make64(addr),
1232
        .addr.size = int128_make64(size),
1233
        .match_data = match_data,
1234
        .data = data,
1235
        .e = e,
1236
    };
1237
    unsigned i;
1238

    
1239
    memory_region_transaction_begin();
1240
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1241
        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1242
            break;
1243
        }
1244
    }
1245
    ++mr->ioeventfd_nb;
1246
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1247
                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1248
    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1249
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1250
    mr->ioeventfds[i] = mrfd;
1251
    memory_region_transaction_commit();
1252
}
1253

    
1254
void memory_region_del_eventfd(MemoryRegion *mr,
1255
                               target_phys_addr_t addr,
1256
                               unsigned size,
1257
                               bool match_data,
1258
                               uint64_t data,
1259
                               EventNotifier *e)
1260
{
1261
    MemoryRegionIoeventfd mrfd = {
1262
        .addr.start = int128_make64(addr),
1263
        .addr.size = int128_make64(size),
1264
        .match_data = match_data,
1265
        .data = data,
1266
        .e = e,
1267
    };
1268
    unsigned i;
1269

    
1270
    memory_region_transaction_begin();
1271
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1272
        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1273
            break;
1274
        }
1275
    }
1276
    assert(i != mr->ioeventfd_nb);
1277
    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1278
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1279
    --mr->ioeventfd_nb;
1280
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1281
                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1282
    memory_region_transaction_commit();
1283
}
1284

    
1285
static void memory_region_add_subregion_common(MemoryRegion *mr,
1286
                                               target_phys_addr_t offset,
1287
                                               MemoryRegion *subregion)
1288
{
1289
    MemoryRegion *other;
1290

    
1291
    memory_region_transaction_begin();
1292

    
1293
    assert(!subregion->parent);
1294
    subregion->parent = mr;
1295
    subregion->addr = offset;
1296
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1297
        if (subregion->may_overlap || other->may_overlap) {
1298
            continue;
1299
        }
1300
        if (int128_gt(int128_make64(offset),
1301
                      int128_add(int128_make64(other->addr), other->size))
1302
            || int128_le(int128_add(int128_make64(offset), subregion->size),
1303
                         int128_make64(other->addr))) {
1304
            continue;
1305
        }
1306
#if 0
1307
        printf("warning: subregion collision %llx/%llx (%s) "
1308
               "vs %llx/%llx (%s)\n",
1309
               (unsigned long long)offset,
1310
               (unsigned long long)int128_get64(subregion->size),
1311
               subregion->name,
1312
               (unsigned long long)other->addr,
1313
               (unsigned long long)int128_get64(other->size),
1314
               other->name);
1315
#endif
1316
    }
1317
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1318
        if (subregion->priority >= other->priority) {
1319
            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1320
            goto done;
1321
        }
1322
    }
1323
    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1324
done:
1325
    memory_region_transaction_commit();
1326
}
1327

    
1328

    
1329
void memory_region_add_subregion(MemoryRegion *mr,
1330
                                 target_phys_addr_t offset,
1331
                                 MemoryRegion *subregion)
1332
{
1333
    subregion->may_overlap = false;
1334
    subregion->priority = 0;
1335
    memory_region_add_subregion_common(mr, offset, subregion);
1336
}
1337

    
1338
void memory_region_add_subregion_overlap(MemoryRegion *mr,
1339
                                         target_phys_addr_t offset,
1340
                                         MemoryRegion *subregion,
1341
                                         unsigned priority)
1342
{
1343
    subregion->may_overlap = true;
1344
    subregion->priority = priority;
1345
    memory_region_add_subregion_common(mr, offset, subregion);
1346
}
1347

    
1348
void memory_region_del_subregion(MemoryRegion *mr,
1349
                                 MemoryRegion *subregion)
1350
{
1351
    memory_region_transaction_begin();
1352
    assert(subregion->parent == mr);
1353
    subregion->parent = NULL;
1354
    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1355
    memory_region_transaction_commit();
1356
}
1357

    
1358
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1359
{
1360
    if (enabled == mr->enabled) {
1361
        return;
1362
    }
1363
    memory_region_transaction_begin();
1364
    mr->enabled = enabled;
1365
    memory_region_transaction_commit();
1366
}
1367

    
1368
void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1369
{
1370
    MemoryRegion *parent = mr->parent;
1371
    unsigned priority = mr->priority;
1372
    bool may_overlap = mr->may_overlap;
1373

    
1374
    if (addr == mr->addr || !parent) {
1375
        mr->addr = addr;
1376
        return;
1377
    }
1378

    
1379
    memory_region_transaction_begin();
1380
    memory_region_del_subregion(parent, mr);
1381
    if (may_overlap) {
1382
        memory_region_add_subregion_overlap(parent, addr, mr, priority);
1383
    } else {
1384
        memory_region_add_subregion(parent, addr, mr);
1385
    }
1386
    memory_region_transaction_commit();
1387
}
1388

    
1389
void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1390
{
1391
    assert(mr->alias);
1392

    
1393
    if (offset == mr->alias_offset) {
1394
        return;
1395
    }
1396

    
1397
    memory_region_transaction_begin();
1398
    mr->alias_offset = offset;
1399
    memory_region_transaction_commit();
1400
}
1401

    
1402
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1403
{
1404
    return mr->ram_addr;
1405
}
1406

    
1407
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1408
{
1409
    const AddrRange *addr = addr_;
1410
    const FlatRange *fr = fr_;
1411

    
1412
    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1413
        return -1;
1414
    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1415
        return 1;
1416
    }
1417
    return 0;
1418
}
1419

    
1420
static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1421
{
1422
    return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1423
                   sizeof(FlatRange), cmp_flatrange_addr);
1424
}
1425

    
1426
MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1427
                                       target_phys_addr_t addr, uint64_t size)
1428
{
1429
    AddressSpace *as = memory_region_to_address_space(address_space);
1430
    AddrRange range = addrrange_make(int128_make64(addr),
1431
                                     int128_make64(size));
1432
    FlatRange *fr = address_space_lookup(as, range);
1433
    MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1434

    
1435
    if (!fr) {
1436
        return ret;
1437
    }
1438

    
1439
    while (fr > as->current_map->ranges
1440
           && addrrange_intersects(fr[-1].addr, range)) {
1441
        --fr;
1442
    }
1443

    
1444
    ret.mr = fr->mr;
1445
    range = addrrange_intersection(range, fr->addr);
1446
    ret.offset_within_region = fr->offset_in_region;
1447
    ret.offset_within_region += int128_get64(int128_sub(range.start,
1448
                                                        fr->addr.start));
1449
    ret.size = int128_get64(range.size);
1450
    ret.offset_within_address_space = int128_get64(range.start);
1451
    ret.readonly = fr->readonly;
1452
    return ret;
1453
}
1454

    
1455
void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1456
{
1457
    AddressSpace *as = memory_region_to_address_space(address_space);
1458
    FlatRange *fr;
1459

    
1460
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1461
        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1462
    }
1463
}
1464

    
1465
void memory_global_dirty_log_start(void)
1466
{
1467
    global_dirty_log = true;
1468
    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1469
}
1470

    
1471
void memory_global_dirty_log_stop(void)
1472
{
1473
    global_dirty_log = false;
1474
    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1475
}
1476

    
1477
static void listener_add_address_space(MemoryListener *listener,
1478
                                       AddressSpace *as)
1479
{
1480
    FlatRange *fr;
1481

    
1482
    if (listener->address_space_filter
1483
        && listener->address_space_filter != as->root) {
1484
        return;
1485
    }
1486

    
1487
    if (global_dirty_log) {
1488
        if (listener->log_global_start) {
1489
            listener->log_global_start(listener);
1490
        }
1491
    }
1492

    
1493
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1494
        MemoryRegionSection section = {
1495
            .mr = fr->mr,
1496
            .address_space = as->root,
1497
            .offset_within_region = fr->offset_in_region,
1498
            .size = int128_get64(fr->addr.size),
1499
            .offset_within_address_space = int128_get64(fr->addr.start),
1500
            .readonly = fr->readonly,
1501
        };
1502
        if (listener->region_add) {
1503
            listener->region_add(listener, &section);
1504
        }
1505
    }
1506
}
1507

    
1508
void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1509
{
1510
    MemoryListener *other = NULL;
1511
    AddressSpace *as;
1512

    
1513
    listener->address_space_filter = filter;
1514
    if (QTAILQ_EMPTY(&memory_listeners)
1515
        || listener->priority >= QTAILQ_LAST(&memory_listeners,
1516
                                             memory_listeners)->priority) {
1517
        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1518
    } else {
1519
        QTAILQ_FOREACH(other, &memory_listeners, link) {
1520
            if (listener->priority < other->priority) {
1521
                break;
1522
            }
1523
        }
1524
        QTAILQ_INSERT_BEFORE(other, listener, link);
1525
    }
1526

    
1527
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1528
        listener_add_address_space(listener, as);
1529
    }
1530
}
1531

    
1532
void memory_listener_unregister(MemoryListener *listener)
1533
{
1534
    QTAILQ_REMOVE(&memory_listeners, listener, link);
1535
}
1536

    
1537
void address_space_init(AddressSpace *as, MemoryRegion *root)
1538
{
1539
    memory_region_transaction_begin();
1540
    as->root = root;
1541
    as->current_map = g_new(FlatView, 1);
1542
    flatview_init(as->current_map);
1543
    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1544
    as->name = NULL;
1545
    memory_region_transaction_commit();
1546
}
1547

    
1548
void set_system_memory_map(MemoryRegion *mr)
1549
{
1550
    address_space_init(&address_space_memory, mr);
1551
    address_space_memory.name = "memory";
1552
}
1553

    
1554
void set_system_io_map(MemoryRegion *mr)
1555
{
1556
    address_space_init(&address_space_io, mr);
1557
    address_space_io.name = "I/O";
1558
}
1559

    
1560
uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1561
{
1562
    return memory_region_dispatch_read(mr, addr, size);
1563
}
1564

    
1565
void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1566
                  uint64_t val, unsigned size)
1567
{
1568
    memory_region_dispatch_write(mr, addr, val, size);
1569
}
1570

    
1571
typedef struct MemoryRegionList MemoryRegionList;
1572

    
1573
struct MemoryRegionList {
1574
    const MemoryRegion *mr;
1575
    bool printed;
1576
    QTAILQ_ENTRY(MemoryRegionList) queue;
1577
};
1578

    
1579
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1580

    
1581
static void mtree_print_mr(fprintf_function mon_printf, void *f,
1582
                           const MemoryRegion *mr, unsigned int level,
1583
                           target_phys_addr_t base,
1584
                           MemoryRegionListHead *alias_print_queue)
1585
{
1586
    MemoryRegionList *new_ml, *ml, *next_ml;
1587
    MemoryRegionListHead submr_print_queue;
1588
    const MemoryRegion *submr;
1589
    unsigned int i;
1590

    
1591
    if (!mr) {
1592
        return;
1593
    }
1594

    
1595
    for (i = 0; i < level; i++) {
1596
        mon_printf(f, "  ");
1597
    }
1598

    
1599
    if (mr->alias) {
1600
        MemoryRegionList *ml;
1601
        bool found = false;
1602

    
1603
        /* check if the alias is already in the queue */
1604
        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1605
            if (ml->mr == mr->alias && !ml->printed) {
1606
                found = true;
1607
            }
1608
        }
1609

    
1610
        if (!found) {
1611
            ml = g_new(MemoryRegionList, 1);
1612
            ml->mr = mr->alias;
1613
            ml->printed = false;
1614
            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1615
        }
1616
        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1617
                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1618
                   "-" TARGET_FMT_plx "\n",
1619
                   base + mr->addr,
1620
                   base + mr->addr
1621
                   + (target_phys_addr_t)int128_get64(mr->size) - 1,
1622
                   mr->priority,
1623
                   mr->readable ? 'R' : '-',
1624
                   !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1625
                                                                      : '-',
1626
                   mr->name,
1627
                   mr->alias->name,
1628
                   mr->alias_offset,
1629
                   mr->alias_offset
1630
                   + (target_phys_addr_t)int128_get64(mr->size) - 1);
1631
    } else {
1632
        mon_printf(f,
1633
                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1634
                   base + mr->addr,
1635
                   base + mr->addr
1636
                   + (target_phys_addr_t)int128_get64(mr->size) - 1,
1637
                   mr->priority,
1638
                   mr->readable ? 'R' : '-',
1639
                   !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1640
                                                                      : '-',
1641
                   mr->name);
1642
    }
1643

    
1644
    QTAILQ_INIT(&submr_print_queue);
1645

    
1646
    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1647
        new_ml = g_new(MemoryRegionList, 1);
1648
        new_ml->mr = submr;
1649
        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1650
            if (new_ml->mr->addr < ml->mr->addr ||
1651
                (new_ml->mr->addr == ml->mr->addr &&
1652
                 new_ml->mr->priority > ml->mr->priority)) {
1653
                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1654
                new_ml = NULL;
1655
                break;
1656
            }
1657
        }
1658
        if (new_ml) {
1659
            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1660
        }
1661
    }
1662

    
1663
    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1664
        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1665
                       alias_print_queue);
1666
    }
1667

    
1668
    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1669
        g_free(ml);
1670
    }
1671
}
1672

    
1673
void mtree_info(fprintf_function mon_printf, void *f)
1674
{
1675
    MemoryRegionListHead ml_head;
1676
    MemoryRegionList *ml, *ml2;
1677
    AddressSpace *as;
1678

    
1679
    QTAILQ_INIT(&ml_head);
1680

    
1681
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1682
        if (!as->name) {
1683
            continue;
1684
        }
1685
        mon_printf(f, "%s\n", as->name);
1686
        mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1687
    }
1688

    
1689
    mon_printf(f, "aliases\n");
1690
    /* print aliased regions */
1691
    QTAILQ_FOREACH(ml, &ml_head, queue) {
1692
        if (!ml->printed) {
1693
            mon_printf(f, "%s\n", ml->mr->name);
1694
            mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1695
        }
1696
    }
1697

    
1698
    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1699
        g_free(ml);
1700
    }
1701
}