Statistics
| Branch: | Revision:

root / kvm-all.c @ 96c1606b

History | View | Annotate | Download (27.3 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    target_phys_addr_t start_addr;
45
    ram_addr_t memory_size;
46
    ram_addr_t phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int coalesced_mmio;
61
    int broken_set_mem_region;
62
    int migration_log;
63
#ifdef KVM_CAP_SET_GUEST_DEBUG
64
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65
#endif
66
    int irqchip_in_kernel;
67
    int pit_in_kernel;
68
};
69

    
70
static KVMState *kvm_state;
71

    
72
static KVMSlot *kvm_alloc_slot(KVMState *s)
73
{
74
    int i;
75

    
76
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77
        /* KVM private memory slots */
78
        if (i >= 8 && i < 12)
79
            continue;
80
        if (s->slots[i].memory_size == 0)
81
            return &s->slots[i];
82
    }
83

    
84
    fprintf(stderr, "%s: no free slot available\n", __func__);
85
    abort();
86
}
87

    
88
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89
                                         target_phys_addr_t start_addr,
90
                                         target_phys_addr_t end_addr)
91
{
92
    int i;
93

    
94
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95
        KVMSlot *mem = &s->slots[i];
96

    
97
        if (start_addr == mem->start_addr &&
98
            end_addr == mem->start_addr + mem->memory_size) {
99
            return mem;
100
        }
101
    }
102

    
103
    return NULL;
104
}
105

    
106
/*
107
 * Find overlapping slot with lowest start address
108
 */
109
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110
                                            target_phys_addr_t start_addr,
111
                                            target_phys_addr_t end_addr)
112
{
113
    KVMSlot *found = NULL;
114
    int i;
115

    
116
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117
        KVMSlot *mem = &s->slots[i];
118

    
119
        if (mem->memory_size == 0 ||
120
            (found && found->start_addr < mem->start_addr)) {
121
            continue;
122
        }
123

    
124
        if (end_addr > mem->start_addr &&
125
            start_addr < mem->start_addr + mem->memory_size) {
126
            found = mem;
127
        }
128
    }
129

    
130
    return found;
131
}
132

    
133
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
134
{
135
    struct kvm_userspace_memory_region mem;
136

    
137
    mem.slot = slot->slot;
138
    mem.guest_phys_addr = slot->start_addr;
139
    mem.memory_size = slot->memory_size;
140
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141
    mem.flags = slot->flags;
142
    if (s->migration_log) {
143
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
144
    }
145
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
146
}
147

    
148
static void kvm_reset_vcpu(void *opaque)
149
{
150
    CPUState *env = opaque;
151

    
152
    if (kvm_arch_put_registers(env)) {
153
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154
        abort();
155
    }
156
}
157

    
158
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
159
{
160
    if (env == cpu_single_env) {
161
        func(data);
162
        return;
163
    }
164
    abort();
165
}
166

    
167
int kvm_irqchip_in_kernel(void)
168
{
169
    return kvm_state->irqchip_in_kernel;
170
}
171

    
172
int kvm_pit_in_kernel(void)
173
{
174
    return kvm_state->pit_in_kernel;
175
}
176

    
177

    
178
int kvm_init_vcpu(CPUState *env)
179
{
180
    KVMState *s = kvm_state;
181
    long mmap_size;
182
    int ret;
183

    
184
    dprintf("kvm_init_vcpu\n");
185

    
186
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
187
    if (ret < 0) {
188
        dprintf("kvm_create_vcpu failed\n");
189
        goto err;
190
    }
191

    
192
    env->kvm_fd = ret;
193
    env->kvm_state = s;
194

    
195
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
196
    if (mmap_size < 0) {
197
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
198
        goto err;
199
    }
200

    
201
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
202
                        env->kvm_fd, 0);
203
    if (env->kvm_run == MAP_FAILED) {
204
        ret = -errno;
205
        dprintf("mmap'ing vcpu state failed\n");
206
        goto err;
207
    }
208

    
209
    ret = kvm_arch_init_vcpu(env);
210
    if (ret == 0) {
211
        qemu_register_reset(kvm_reset_vcpu, env);
212
        ret = kvm_arch_put_registers(env);
213
    }
214
err:
215
    return ret;
216
}
217

    
218
int kvm_put_mp_state(CPUState *env)
219
{
220
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
221

    
222
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
223
}
224

    
225
int kvm_get_mp_state(CPUState *env)
226
{
227
    struct kvm_mp_state mp_state;
228
    int ret;
229

    
230
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
231
    if (ret < 0) {
232
        return ret;
233
    }
234
    env->mp_state = mp_state.mp_state;
235
    return 0;
236
}
237

    
238
/*
239
 * dirty pages logging control
240
 */
241
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
242
                                      ram_addr_t size, int flags, int mask)
243
{
244
    KVMState *s = kvm_state;
245
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
246
    int old_flags;
247

    
248
    if (mem == NULL)  {
249
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
250
                    TARGET_FMT_plx "\n", __func__, phys_addr,
251
                    (target_phys_addr_t)(phys_addr + size - 1));
252
            return -EINVAL;
253
    }
254

    
255
    old_flags = mem->flags;
256

    
257
    flags = (mem->flags & ~mask) | flags;
258
    mem->flags = flags;
259

    
260
    /* If nothing changed effectively, no need to issue ioctl */
261
    if (s->migration_log) {
262
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
263
    }
264
    if (flags == old_flags) {
265
            return 0;
266
    }
267

    
268
    return kvm_set_user_memory_region(s, mem);
269
}
270

    
271
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
272
{
273
        return kvm_dirty_pages_log_change(phys_addr, size,
274
                                          KVM_MEM_LOG_DIRTY_PAGES,
275
                                          KVM_MEM_LOG_DIRTY_PAGES);
276
}
277

    
278
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
279
{
280
        return kvm_dirty_pages_log_change(phys_addr, size,
281
                                          0,
282
                                          KVM_MEM_LOG_DIRTY_PAGES);
283
}
284

    
285
int kvm_set_migration_log(int enable)
286
{
287
    KVMState *s = kvm_state;
288
    KVMSlot *mem;
289
    int i, err;
290

    
291
    s->migration_log = enable;
292

    
293
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
294
        mem = &s->slots[i];
295

    
296
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
297
            continue;
298
        }
299
        err = kvm_set_user_memory_region(s, mem);
300
        if (err) {
301
            return err;
302
        }
303
    }
304
    return 0;
305
}
306

    
307
static int test_le_bit(unsigned long nr, unsigned char *addr)
308
{
309
    return (addr[nr >> 3] >> (nr & 7)) & 1;
310
}
311

    
312
/**
313
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
314
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
315
 * This means all bits are set to dirty.
316
 *
317
 * @start_add: start of logged region.
318
 * @end_addr: end of logged region.
319
 */
320
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
321
                                   target_phys_addr_t end_addr)
322
{
323
    KVMState *s = kvm_state;
324
    unsigned long size, allocated_size = 0;
325
    target_phys_addr_t phys_addr;
326
    ram_addr_t addr;
327
    KVMDirtyLog d;
328
    KVMSlot *mem;
329
    int ret = 0;
330
    int r;
331

    
332
    d.dirty_bitmap = NULL;
333
    while (start_addr < end_addr) {
334
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
335
        if (mem == NULL) {
336
            break;
337
        }
338

    
339
        /* We didn't activate dirty logging? Don't care then. */
340
        if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
341
            continue;
342
        }
343

    
344
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
345
        if (!d.dirty_bitmap) {
346
            d.dirty_bitmap = qemu_malloc(size);
347
        } else if (size > allocated_size) {
348
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
349
        }
350
        allocated_size = size;
351
        memset(d.dirty_bitmap, 0, allocated_size);
352

    
353
        d.slot = mem->slot;
354

    
355
        r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
356
        if (r == -EINVAL) {
357
            dprintf("ioctl failed %d\n", errno);
358
            ret = -1;
359
            break;
360
        }
361

    
362
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
363
             phys_addr < mem->start_addr + mem->memory_size;
364
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
365
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
366
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
367

    
368
            if (test_le_bit(nr, bitmap)) {
369
                cpu_physical_memory_set_dirty(addr);
370
            } else if (r < 0) {
371
                /* When our KVM implementation doesn't know about dirty logging
372
                 * we can just assume it's always dirty and be fine. */
373
                cpu_physical_memory_set_dirty(addr);
374
            }
375
        }
376
        start_addr = phys_addr;
377
    }
378
    qemu_free(d.dirty_bitmap);
379

    
380
    return ret;
381
}
382

    
383
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
384
{
385
    int ret = -ENOSYS;
386
#ifdef KVM_CAP_COALESCED_MMIO
387
    KVMState *s = kvm_state;
388

    
389
    if (s->coalesced_mmio) {
390
        struct kvm_coalesced_mmio_zone zone;
391

    
392
        zone.addr = start;
393
        zone.size = size;
394

    
395
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
396
    }
397
#endif
398

    
399
    return ret;
400
}
401

    
402
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
403
{
404
    int ret = -ENOSYS;
405
#ifdef KVM_CAP_COALESCED_MMIO
406
    KVMState *s = kvm_state;
407

    
408
    if (s->coalesced_mmio) {
409
        struct kvm_coalesced_mmio_zone zone;
410

    
411
        zone.addr = start;
412
        zone.size = size;
413

    
414
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
415
    }
416
#endif
417

    
418
    return ret;
419
}
420

    
421
int kvm_check_extension(KVMState *s, unsigned int extension)
422
{
423
    int ret;
424

    
425
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
426
    if (ret < 0) {
427
        ret = 0;
428
    }
429

    
430
    return ret;
431
}
432

    
433
int kvm_init(int smp_cpus)
434
{
435
    static const char upgrade_note[] =
436
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
437
        "(see http://sourceforge.net/projects/kvm).\n";
438
    KVMState *s;
439
    int ret;
440
    int i;
441

    
442
    if (smp_cpus > 1) {
443
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
444
        return -EINVAL;
445
    }
446

    
447
    s = qemu_mallocz(sizeof(KVMState));
448

    
449
#ifdef KVM_CAP_SET_GUEST_DEBUG
450
    TAILQ_INIT(&s->kvm_sw_breakpoints);
451
#endif
452
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
453
        s->slots[i].slot = i;
454

    
455
    s->vmfd = -1;
456
    s->fd = open("/dev/kvm", O_RDWR);
457
    if (s->fd == -1) {
458
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
459
        ret = -errno;
460
        goto err;
461
    }
462

    
463
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
464
    if (ret < KVM_API_VERSION) {
465
        if (ret > 0)
466
            ret = -EINVAL;
467
        fprintf(stderr, "kvm version too old\n");
468
        goto err;
469
    }
470

    
471
    if (ret > KVM_API_VERSION) {
472
        ret = -EINVAL;
473
        fprintf(stderr, "kvm version not supported\n");
474
        goto err;
475
    }
476

    
477
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
478
    if (s->vmfd < 0)
479
        goto err;
480

    
481
    /* initially, KVM allocated its own memory and we had to jump through
482
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
483
     * just use a user allocated buffer so we can use regular pages
484
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
485
     */
486
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
487
        ret = -EINVAL;
488
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
489
                upgrade_note);
490
        goto err;
491
    }
492

    
493
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
494
     * destroyed properly.  Since we rely on this capability, refuse to work
495
     * with any kernel without this capability. */
496
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
497
        ret = -EINVAL;
498

    
499
        fprintf(stderr,
500
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
501
                upgrade_note);
502
        goto err;
503
    }
504

    
505
#ifdef KVM_CAP_COALESCED_MMIO
506
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
507
#else
508
    s->coalesced_mmio = 0;
509
#endif
510

    
511
    s->broken_set_mem_region = 1;
512
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
513
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
514
    if (ret > 0) {
515
        s->broken_set_mem_region = 0;
516
    }
517
#endif
518

    
519
    ret = kvm_arch_init(s, smp_cpus);
520
    if (ret < 0)
521
        goto err;
522

    
523
    kvm_state = s;
524

    
525
    return 0;
526

    
527
err:
528
    if (s) {
529
        if (s->vmfd != -1)
530
            close(s->vmfd);
531
        if (s->fd != -1)
532
            close(s->fd);
533
    }
534
    qemu_free(s);
535

    
536
    return ret;
537
}
538

    
539
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
540
                         int direction, int size, uint32_t count)
541
{
542
    int i;
543
    uint8_t *ptr = data;
544

    
545
    for (i = 0; i < count; i++) {
546
        if (direction == KVM_EXIT_IO_IN) {
547
            switch (size) {
548
            case 1:
549
                stb_p(ptr, cpu_inb(env, port));
550
                break;
551
            case 2:
552
                stw_p(ptr, cpu_inw(env, port));
553
                break;
554
            case 4:
555
                stl_p(ptr, cpu_inl(env, port));
556
                break;
557
            }
558
        } else {
559
            switch (size) {
560
            case 1:
561
                cpu_outb(env, port, ldub_p(ptr));
562
                break;
563
            case 2:
564
                cpu_outw(env, port, lduw_p(ptr));
565
                break;
566
            case 4:
567
                cpu_outl(env, port, ldl_p(ptr));
568
                break;
569
            }
570
        }
571

    
572
        ptr += size;
573
    }
574

    
575
    return 1;
576
}
577

    
578
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
579
{
580
#ifdef KVM_CAP_COALESCED_MMIO
581
    KVMState *s = kvm_state;
582
    if (s->coalesced_mmio) {
583
        struct kvm_coalesced_mmio_ring *ring;
584

    
585
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
586
        while (ring->first != ring->last) {
587
            struct kvm_coalesced_mmio *ent;
588

    
589
            ent = &ring->coalesced_mmio[ring->first];
590

    
591
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
592
            /* FIXME smp_wmb() */
593
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
594
        }
595
    }
596
#endif
597
}
598

    
599
int kvm_cpu_exec(CPUState *env)
600
{
601
    struct kvm_run *run = env->kvm_run;
602
    int ret;
603

    
604
    dprintf("kvm_cpu_exec()\n");
605

    
606
    do {
607
        if (env->exit_request) {
608
            dprintf("interrupt exit requested\n");
609
            ret = 0;
610
            break;
611
        }
612

    
613
        kvm_arch_pre_run(env, run);
614
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
615
        kvm_arch_post_run(env, run);
616

    
617
        if (ret == -EINTR || ret == -EAGAIN) {
618
            dprintf("io window exit\n");
619
            ret = 0;
620
            break;
621
        }
622

    
623
        if (ret < 0) {
624
            dprintf("kvm run failed %s\n", strerror(-ret));
625
            abort();
626
        }
627

    
628
        kvm_run_coalesced_mmio(env, run);
629

    
630
        ret = 0; /* exit loop */
631
        switch (run->exit_reason) {
632
        case KVM_EXIT_IO:
633
            dprintf("handle_io\n");
634
            ret = kvm_handle_io(env, run->io.port,
635
                                (uint8_t *)run + run->io.data_offset,
636
                                run->io.direction,
637
                                run->io.size,
638
                                run->io.count);
639
            break;
640
        case KVM_EXIT_MMIO:
641
            dprintf("handle_mmio\n");
642
            cpu_physical_memory_rw(run->mmio.phys_addr,
643
                                   run->mmio.data,
644
                                   run->mmio.len,
645
                                   run->mmio.is_write);
646
            ret = 1;
647
            break;
648
        case KVM_EXIT_IRQ_WINDOW_OPEN:
649
            dprintf("irq_window_open\n");
650
            break;
651
        case KVM_EXIT_SHUTDOWN:
652
            dprintf("shutdown\n");
653
            qemu_system_reset_request();
654
            ret = 1;
655
            break;
656
        case KVM_EXIT_UNKNOWN:
657
            dprintf("kvm_exit_unknown\n");
658
            break;
659
        case KVM_EXIT_FAIL_ENTRY:
660
            dprintf("kvm_exit_fail_entry\n");
661
            break;
662
        case KVM_EXIT_EXCEPTION:
663
            dprintf("kvm_exit_exception\n");
664
            break;
665
        case KVM_EXIT_DEBUG:
666
            dprintf("kvm_exit_debug\n");
667
#ifdef KVM_CAP_SET_GUEST_DEBUG
668
            if (kvm_arch_debug(&run->debug.arch)) {
669
                gdb_set_stop_cpu(env);
670
                vm_stop(EXCP_DEBUG);
671
                env->exception_index = EXCP_DEBUG;
672
                return 0;
673
            }
674
            /* re-enter, this exception was guest-internal */
675
            ret = 1;
676
#endif /* KVM_CAP_SET_GUEST_DEBUG */
677
            break;
678
        default:
679
            dprintf("kvm_arch_handle_exit\n");
680
            ret = kvm_arch_handle_exit(env, run);
681
            break;
682
        }
683
    } while (ret > 0);
684

    
685
    if (env->exit_request) {
686
        env->exit_request = 0;
687
        env->exception_index = EXCP_INTERRUPT;
688
    }
689

    
690
    return ret;
691
}
692

    
693
void kvm_set_phys_mem(target_phys_addr_t start_addr,
694
                      ram_addr_t size,
695
                      ram_addr_t phys_offset)
696
{
697
    KVMState *s = kvm_state;
698
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
699
    KVMSlot *mem, old;
700
    int err;
701

    
702
    if (start_addr & ~TARGET_PAGE_MASK) {
703
        if (flags >= IO_MEM_UNASSIGNED) {
704
            if (!kvm_lookup_overlapping_slot(s, start_addr,
705
                                             start_addr + size)) {
706
                return;
707
            }
708
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
709
        } else {
710
            fprintf(stderr, "Only page-aligned memory slots supported\n");
711
        }
712
        abort();
713
    }
714

    
715
    /* KVM does not support read-only slots */
716
    phys_offset &= ~IO_MEM_ROM;
717

    
718
    while (1) {
719
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
720
        if (!mem) {
721
            break;
722
        }
723

    
724
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
725
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
726
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
727
            /* The new slot fits into the existing one and comes with
728
             * identical parameters - nothing to be done. */
729
            return;
730
        }
731

    
732
        old = *mem;
733

    
734
        /* unregister the overlapping slot */
735
        mem->memory_size = 0;
736
        err = kvm_set_user_memory_region(s, mem);
737
        if (err) {
738
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
739
                    __func__, strerror(-err));
740
            abort();
741
        }
742

    
743
        /* Workaround for older KVM versions: we can't join slots, even not by
744
         * unregistering the previous ones and then registering the larger
745
         * slot. We have to maintain the existing fragmentation. Sigh.
746
         *
747
         * This workaround assumes that the new slot starts at the same
748
         * address as the first existing one. If not or if some overlapping
749
         * slot comes around later, we will fail (not seen in practice so far)
750
         * - and actually require a recent KVM version. */
751
        if (s->broken_set_mem_region &&
752
            old.start_addr == start_addr && old.memory_size < size &&
753
            flags < IO_MEM_UNASSIGNED) {
754
            mem = kvm_alloc_slot(s);
755
            mem->memory_size = old.memory_size;
756
            mem->start_addr = old.start_addr;
757
            mem->phys_offset = old.phys_offset;
758
            mem->flags = 0;
759

    
760
            err = kvm_set_user_memory_region(s, mem);
761
            if (err) {
762
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
763
                        strerror(-err));
764
                abort();
765
            }
766

    
767
            start_addr += old.memory_size;
768
            phys_offset += old.memory_size;
769
            size -= old.memory_size;
770
            continue;
771
        }
772

    
773
        /* register prefix slot */
774
        if (old.start_addr < start_addr) {
775
            mem = kvm_alloc_slot(s);
776
            mem->memory_size = start_addr - old.start_addr;
777
            mem->start_addr = old.start_addr;
778
            mem->phys_offset = old.phys_offset;
779
            mem->flags = 0;
780

    
781
            err = kvm_set_user_memory_region(s, mem);
782
            if (err) {
783
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
784
                        __func__, strerror(-err));
785
                abort();
786
            }
787
        }
788

    
789
        /* register suffix slot */
790
        if (old.start_addr + old.memory_size > start_addr + size) {
791
            ram_addr_t size_delta;
792

    
793
            mem = kvm_alloc_slot(s);
794
            mem->start_addr = start_addr + size;
795
            size_delta = mem->start_addr - old.start_addr;
796
            mem->memory_size = old.memory_size - size_delta;
797
            mem->phys_offset = old.phys_offset + size_delta;
798
            mem->flags = 0;
799

    
800
            err = kvm_set_user_memory_region(s, mem);
801
            if (err) {
802
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
803
                        __func__, strerror(-err));
804
                abort();
805
            }
806
        }
807
    }
808

    
809
    /* in case the KVM bug workaround already "consumed" the new slot */
810
    if (!size)
811
        return;
812

    
813
    /* KVM does not need to know about this memory */
814
    if (flags >= IO_MEM_UNASSIGNED)
815
        return;
816

    
817
    mem = kvm_alloc_slot(s);
818
    mem->memory_size = size;
819
    mem->start_addr = start_addr;
820
    mem->phys_offset = phys_offset;
821
    mem->flags = 0;
822

    
823
    err = kvm_set_user_memory_region(s, mem);
824
    if (err) {
825
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
826
                strerror(-err));
827
        abort();
828
    }
829
}
830

    
831
int kvm_ioctl(KVMState *s, int type, ...)
832
{
833
    int ret;
834
    void *arg;
835
    va_list ap;
836

    
837
    va_start(ap, type);
838
    arg = va_arg(ap, void *);
839
    va_end(ap);
840

    
841
    ret = ioctl(s->fd, type, arg);
842
    if (ret == -1)
843
        ret = -errno;
844

    
845
    return ret;
846
}
847

    
848
int kvm_vm_ioctl(KVMState *s, int type, ...)
849
{
850
    int ret;
851
    void *arg;
852
    va_list ap;
853

    
854
    va_start(ap, type);
855
    arg = va_arg(ap, void *);
856
    va_end(ap);
857

    
858
    ret = ioctl(s->vmfd, type, arg);
859
    if (ret == -1)
860
        ret = -errno;
861

    
862
    return ret;
863
}
864

    
865
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
866
{
867
    int ret;
868
    void *arg;
869
    va_list ap;
870

    
871
    va_start(ap, type);
872
    arg = va_arg(ap, void *);
873
    va_end(ap);
874

    
875
    ret = ioctl(env->kvm_fd, type, arg);
876
    if (ret == -1)
877
        ret = -errno;
878

    
879
    return ret;
880
}
881

    
882
int kvm_has_sync_mmu(void)
883
{
884
#ifdef KVM_CAP_SYNC_MMU
885
    KVMState *s = kvm_state;
886

    
887
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
888
#else
889
    return 0;
890
#endif
891
}
892

    
893
void kvm_setup_guest_memory(void *start, size_t size)
894
{
895
    if (!kvm_has_sync_mmu()) {
896
#ifdef MADV_DONTFORK
897
        int ret = madvise(start, size, MADV_DONTFORK);
898

    
899
        if (ret) {
900
            perror("madvice");
901
            exit(1);
902
        }
903
#else
904
        fprintf(stderr,
905
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
906
        exit(1);
907
#endif
908
    }
909
}
910

    
911
#ifdef KVM_CAP_SET_GUEST_DEBUG
912
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
913
                                                 target_ulong pc)
914
{
915
    struct kvm_sw_breakpoint *bp;
916

    
917
    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
918
        if (bp->pc == pc)
919
            return bp;
920
    }
921
    return NULL;
922
}
923

    
924
int kvm_sw_breakpoints_active(CPUState *env)
925
{
926
    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
927
}
928

    
929
struct kvm_set_guest_debug_data {
930
    struct kvm_guest_debug dbg;
931
    CPUState *env;
932
    int err;
933
};
934

    
935
static void kvm_invoke_set_guest_debug(void *data)
936
{
937
    struct kvm_set_guest_debug_data *dbg_data = data;
938
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
939
}
940

    
941
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
942
{
943
    struct kvm_set_guest_debug_data data;
944

    
945
    data.dbg.control = 0;
946
    if (env->singlestep_enabled)
947
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
948

    
949
    kvm_arch_update_guest_debug(env, &data.dbg);
950
    data.dbg.control |= reinject_trap;
951
    data.env = env;
952

    
953
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
954
    return data.err;
955
}
956

    
957
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
958
                          target_ulong len, int type)
959
{
960
    struct kvm_sw_breakpoint *bp;
961
    CPUState *env;
962
    int err;
963

    
964
    if (type == GDB_BREAKPOINT_SW) {
965
        bp = kvm_find_sw_breakpoint(current_env, addr);
966
        if (bp) {
967
            bp->use_count++;
968
            return 0;
969
        }
970

    
971
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
972
        if (!bp)
973
            return -ENOMEM;
974

    
975
        bp->pc = addr;
976
        bp->use_count = 1;
977
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
978
        if (err) {
979
            free(bp);
980
            return err;
981
        }
982

    
983
        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
984
                          bp, entry);
985
    } else {
986
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
987
        if (err)
988
            return err;
989
    }
990

    
991
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
992
        err = kvm_update_guest_debug(env, 0);
993
        if (err)
994
            return err;
995
    }
996
    return 0;
997
}
998

    
999
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1000
                          target_ulong len, int type)
1001
{
1002
    struct kvm_sw_breakpoint *bp;
1003
    CPUState *env;
1004
    int err;
1005

    
1006
    if (type == GDB_BREAKPOINT_SW) {
1007
        bp = kvm_find_sw_breakpoint(current_env, addr);
1008
        if (!bp)
1009
            return -ENOENT;
1010

    
1011
        if (bp->use_count > 1) {
1012
            bp->use_count--;
1013
            return 0;
1014
        }
1015

    
1016
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1017
        if (err)
1018
            return err;
1019

    
1020
        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1021
        qemu_free(bp);
1022
    } else {
1023
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1024
        if (err)
1025
            return err;
1026
    }
1027

    
1028
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1029
        err = kvm_update_guest_debug(env, 0);
1030
        if (err)
1031
            return err;
1032
    }
1033
    return 0;
1034
}
1035

    
1036
void kvm_remove_all_breakpoints(CPUState *current_env)
1037
{
1038
    struct kvm_sw_breakpoint *bp, *next;
1039
    KVMState *s = current_env->kvm_state;
1040
    CPUState *env;
1041

    
1042
    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1043
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1044
            /* Try harder to find a CPU that currently sees the breakpoint. */
1045
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1046
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1047
                    break;
1048
            }
1049
        }
1050
    }
1051
    kvm_arch_remove_all_hw_breakpoints();
1052

    
1053
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1054
        kvm_update_guest_debug(env, 0);
1055
}
1056

    
1057
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1058

    
1059
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1060
{
1061
    return -EINVAL;
1062
}
1063

    
1064
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1065
                          target_ulong len, int type)
1066
{
1067
    return -EINVAL;
1068
}
1069

    
1070
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1071
                          target_ulong len, int type)
1072
{
1073
    return -EINVAL;
1074
}
1075

    
1076
void kvm_remove_all_breakpoints(CPUState *current_env)
1077
{
1078
}
1079
#endif /* !KVM_CAP_SET_GUEST_DEBUG */