Statistics
| Branch: | Revision:

root / hw / lance.c @ 977d5710

History | View | Annotate | Download (14.3 kB)

1 420557e8 bellard
/*
2 420557e8 bellard
 * QEMU Lance emulation
3 420557e8 bellard
 * 
4 420557e8 bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 420557e8 bellard
 * 
6 420557e8 bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 420557e8 bellard
 * of this software and associated documentation files (the "Software"), to deal
8 420557e8 bellard
 * in the Software without restriction, including without limitation the rights
9 420557e8 bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 420557e8 bellard
 * copies of the Software, and to permit persons to whom the Software is
11 420557e8 bellard
 * furnished to do so, subject to the following conditions:
12 420557e8 bellard
 *
13 420557e8 bellard
 * The above copyright notice and this permission notice shall be included in
14 420557e8 bellard
 * all copies or substantial portions of the Software.
15 420557e8 bellard
 *
16 420557e8 bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 420557e8 bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 420557e8 bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 420557e8 bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 420557e8 bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 420557e8 bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 420557e8 bellard
 * THE SOFTWARE.
23 420557e8 bellard
 */
24 420557e8 bellard
#include "vl.h"
25 420557e8 bellard
26 420557e8 bellard
/* debug LANCE card */
27 8d5f07fa bellard
//#define DEBUG_LANCE
28 420557e8 bellard
29 420557e8 bellard
#ifndef LANCE_LOG_TX_BUFFERS
30 420557e8 bellard
#define LANCE_LOG_TX_BUFFERS 4
31 420557e8 bellard
#define LANCE_LOG_RX_BUFFERS 4
32 420557e8 bellard
#endif
33 420557e8 bellard
34 420557e8 bellard
#define CRC_POLYNOMIAL_BE 0x04c11db7UL  /* Ethernet CRC, big endian */
35 420557e8 bellard
#define CRC_POLYNOMIAL_LE 0xedb88320UL  /* Ethernet CRC, little endian */
36 420557e8 bellard
37 420557e8 bellard
38 420557e8 bellard
#define LE_CSR0 0
39 420557e8 bellard
#define LE_CSR1 1
40 420557e8 bellard
#define LE_CSR2 2
41 420557e8 bellard
#define LE_CSR3 3
42 420557e8 bellard
#define LE_MAXREG (LE_CSR3 + 1)
43 420557e8 bellard
44 420557e8 bellard
#define LE_RDP  0
45 420557e8 bellard
#define LE_RAP  1
46 420557e8 bellard
47 420557e8 bellard
#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */
48 420557e8 bellard
49 420557e8 bellard
#define        LE_C0_ERR        0x8000        /* Error: set if BAB, SQE, MISS or ME is set */
50 420557e8 bellard
#define        LE_C0_BABL        0x4000        /* BAB:  Babble: tx timeout. */
51 420557e8 bellard
#define        LE_C0_CERR        0x2000        /* SQE:  Signal quality error */
52 420557e8 bellard
#define        LE_C0_MISS        0x1000        /* MISS: Missed a packet */
53 420557e8 bellard
#define        LE_C0_MERR        0x0800        /* ME:   Memory error */
54 420557e8 bellard
#define        LE_C0_RINT        0x0400        /* Received interrupt */
55 420557e8 bellard
#define        LE_C0_TINT        0x0200        /* Transmitter Interrupt */
56 420557e8 bellard
#define        LE_C0_IDON        0x0100        /* IFIN: Init finished. */
57 420557e8 bellard
#define        LE_C0_INTR        0x0080        /* Interrupt or error */
58 420557e8 bellard
#define        LE_C0_INEA        0x0040        /* Interrupt enable */
59 420557e8 bellard
#define        LE_C0_RXON        0x0020        /* Receiver on */
60 420557e8 bellard
#define        LE_C0_TXON        0x0010        /* Transmitter on */
61 420557e8 bellard
#define        LE_C0_TDMD        0x0008        /* Transmitter demand */
62 420557e8 bellard
#define        LE_C0_STOP        0x0004        /* Stop the card */
63 420557e8 bellard
#define        LE_C0_STRT        0x0002        /* Start the card */
64 420557e8 bellard
#define        LE_C0_INIT        0x0001        /* Init the card */
65 420557e8 bellard
66 420557e8 bellard
#define        LE_C3_BSWP        0x4     /* SWAP */
67 420557e8 bellard
#define        LE_C3_ACON        0x2        /* ALE Control */
68 420557e8 bellard
#define        LE_C3_BCON        0x1        /* Byte control */
69 420557e8 bellard
70 420557e8 bellard
/* Receive message descriptor 1 */
71 420557e8 bellard
#define LE_R1_OWN       0x80    /* Who owns the entry */
72 420557e8 bellard
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
73 420557e8 bellard
#define LE_R1_FRA       0x20    /* FRA: Frame error */
74 420557e8 bellard
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
75 420557e8 bellard
#define LE_R1_CRC       0x08    /* CRC error */
76 420557e8 bellard
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
77 420557e8 bellard
#define LE_R1_SOP       0x02    /* Start of packet */
78 420557e8 bellard
#define LE_R1_EOP       0x01    /* End of packet */
79 420557e8 bellard
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */
80 420557e8 bellard
81 420557e8 bellard
#define LE_T1_OWN       0x80    /* Lance owns the packet */
82 420557e8 bellard
#define LE_T1_ERR       0x40    /* Error summary */
83 420557e8 bellard
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
84 420557e8 bellard
#define LE_T1_EONE      0x08    /* Error: one retry needed */
85 420557e8 bellard
#define LE_T1_EDEF      0x04    /* Error: deferred */
86 420557e8 bellard
#define LE_T1_SOP       0x02    /* Start of packet */
87 420557e8 bellard
#define LE_T1_EOP       0x01    /* End of packet */
88 420557e8 bellard
#define LE_T1_POK        0x03        /* Packet is complete: SOP + EOP */
89 420557e8 bellard
90 420557e8 bellard
#define LE_T3_BUF       0x8000  /* Buffer error */
91 420557e8 bellard
#define LE_T3_UFL       0x4000  /* Error underflow */
92 420557e8 bellard
#define LE_T3_LCOL      0x1000  /* Error late collision */
93 420557e8 bellard
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
94 420557e8 bellard
#define LE_T3_RTY       0x0400  /* Error retry */
95 420557e8 bellard
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */
96 420557e8 bellard
97 420557e8 bellard
#define TX_RING_SIZE                        (1 << (LANCE_LOG_TX_BUFFERS))
98 420557e8 bellard
#define TX_RING_MOD_MASK                (TX_RING_SIZE - 1)
99 420557e8 bellard
#define TX_RING_LEN_BITS                ((LANCE_LOG_TX_BUFFERS) << 29)
100 420557e8 bellard
101 420557e8 bellard
#define RX_RING_SIZE                        (1 << (LANCE_LOG_RX_BUFFERS))
102 420557e8 bellard
#define RX_RING_MOD_MASK                (RX_RING_SIZE - 1)
103 420557e8 bellard
#define RX_RING_LEN_BITS                ((LANCE_LOG_RX_BUFFERS) << 29)
104 420557e8 bellard
105 420557e8 bellard
#define PKT_BUF_SZ                1544
106 420557e8 bellard
#define RX_BUFF_SIZE            PKT_BUF_SZ
107 420557e8 bellard
#define TX_BUFF_SIZE            PKT_BUF_SZ
108 420557e8 bellard
109 420557e8 bellard
struct lance_rx_desc {
110 420557e8 bellard
        unsigned short rmd0;        /* low address of packet */
111 420557e8 bellard
        unsigned char  rmd1_bits;   /* descriptor bits */
112 420557e8 bellard
        unsigned char  rmd1_hadr;   /* high address of packet */
113 420557e8 bellard
        short    length;                /* This length is 2s complement (negative)!
114 420557e8 bellard
                                     * Buffer length
115 420557e8 bellard
                                     */
116 420557e8 bellard
        unsigned short mblength;    /* This is the actual number of bytes received */
117 420557e8 bellard
};
118 420557e8 bellard
119 420557e8 bellard
struct lance_tx_desc {
120 420557e8 bellard
        unsigned short tmd0;        /* low address of packet */
121 420557e8 bellard
        unsigned char  tmd1_bits;   /* descriptor bits */
122 420557e8 bellard
        unsigned char  tmd1_hadr;   /* high address of packet */
123 420557e8 bellard
        short length;                      /* Length is 2s complement (negative)! */
124 420557e8 bellard
        unsigned short misc;
125 420557e8 bellard
};
126 420557e8 bellard
127 420557e8 bellard
/* The LANCE initialization block, described in databook. */
128 420557e8 bellard
/* On the Sparc, this block should be on a DMA region     */
129 420557e8 bellard
struct lance_init_block {
130 420557e8 bellard
        unsigned short mode;                /* Pre-set mode (reg. 15) */
131 420557e8 bellard
        unsigned char phys_addr[6];     /* Physical ethernet address */
132 420557e8 bellard
        unsigned filter[2];                /* Multicast filter. */
133 420557e8 bellard
134 420557e8 bellard
        /* Receive and transmit ring base, along with extra bits. */
135 420557e8 bellard
        unsigned short rx_ptr;                /* receive descriptor addr */
136 420557e8 bellard
        unsigned short rx_len;                /* receive len and high addr */
137 420557e8 bellard
        unsigned short tx_ptr;                /* transmit descriptor addr */
138 420557e8 bellard
        unsigned short tx_len;                /* transmit len and high addr */
139 420557e8 bellard
    
140 420557e8 bellard
        /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
141 420557e8 bellard
        struct lance_rx_desc brx_ring[RX_RING_SIZE];
142 420557e8 bellard
        struct lance_tx_desc btx_ring[TX_RING_SIZE];
143 420557e8 bellard
    
144 420557e8 bellard
        char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
145 420557e8 bellard
        char   pad[2];                        /* align rx_buf for copy_and_sum(). */
146 420557e8 bellard
        char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
147 420557e8 bellard
};
148 420557e8 bellard
149 420557e8 bellard
#define LEDMA_REGS 4
150 e80cfcfc bellard
#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)
151 420557e8 bellard
#if 0
152 420557e8 bellard
/* Structure to describe the current status of DMA registers on the Sparc */
153 420557e8 bellard
struct sparc_dma_registers {
154 420557e8 bellard
    uint32_t cond_reg;        /* DMA condition register */
155 420557e8 bellard
    uint32_t st_addr;        /* Start address of this transfer */
156 420557e8 bellard
    uint32_t cnt;        /* How many bytes to transfer */
157 420557e8 bellard
    uint32_t dma_test;        /* DMA test register */
158 420557e8 bellard
};
159 420557e8 bellard
#endif
160 420557e8 bellard
161 420557e8 bellard
typedef struct LANCEState {
162 420557e8 bellard
    NetDriverState *nd;
163 420557e8 bellard
    uint32_t leptr;
164 420557e8 bellard
    uint16_t addr;
165 420557e8 bellard
    uint16_t regs[LE_MAXREG];
166 420557e8 bellard
    uint8_t phys[6]; /* mac address */
167 420557e8 bellard
    int irq;
168 e80cfcfc bellard
    unsigned int rxptr, txptr;
169 e80cfcfc bellard
    uint32_t ledmaregs[LEDMA_REGS];
170 420557e8 bellard
} LANCEState;
171 420557e8 bellard
172 420557e8 bellard
static void lance_send(void *opaque);
173 420557e8 bellard
174 e80cfcfc bellard
static void lance_reset(void *opaque)
175 420557e8 bellard
{
176 e80cfcfc bellard
    LANCEState *s = opaque;
177 420557e8 bellard
    memcpy(s->phys, s->nd->macaddr, 6);
178 e80cfcfc bellard
    s->rxptr = 0;
179 e80cfcfc bellard
    s->txptr = 0;
180 e80cfcfc bellard
    memset(s->regs, 0, LE_MAXREG * 2);
181 420557e8 bellard
    s->regs[LE_CSR0] = LE_C0_STOP;
182 e80cfcfc bellard
    memset(s->ledmaregs, 0, LEDMA_REGS * 4);
183 420557e8 bellard
}
184 420557e8 bellard
185 420557e8 bellard
static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
186 420557e8 bellard
{
187 420557e8 bellard
    LANCEState *s = opaque;
188 420557e8 bellard
    uint32_t saddr;
189 420557e8 bellard
190 e80cfcfc bellard
    saddr = addr & LE_MAXREG;
191 420557e8 bellard
    switch (saddr >> 1) {
192 420557e8 bellard
    case LE_RDP:
193 420557e8 bellard
        return s->regs[s->addr];
194 420557e8 bellard
    case LE_RAP:
195 420557e8 bellard
        return s->addr;
196 420557e8 bellard
    default:
197 420557e8 bellard
        break;
198 420557e8 bellard
    }
199 420557e8 bellard
    return 0;
200 420557e8 bellard
}
201 420557e8 bellard
202 420557e8 bellard
static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
203 420557e8 bellard
{
204 420557e8 bellard
    LANCEState *s = opaque;
205 420557e8 bellard
    uint32_t saddr;
206 8d5f07fa bellard
    uint16_t reg;
207 420557e8 bellard
208 e80cfcfc bellard
    saddr = addr & LE_MAXREG;
209 420557e8 bellard
    switch (saddr >> 1) {
210 420557e8 bellard
    case LE_RDP:
211 420557e8 bellard
        switch(s->addr) {
212 420557e8 bellard
        case LE_CSR0:
213 420557e8 bellard
            if (val & LE_C0_STOP) {
214 420557e8 bellard
                s->regs[LE_CSR0] = LE_C0_STOP;
215 420557e8 bellard
                break;
216 420557e8 bellard
            }
217 420557e8 bellard
218 420557e8 bellard
            reg = s->regs[LE_CSR0];
219 420557e8 bellard
220 420557e8 bellard
            // 1 = clear for some bits
221 420557e8 bellard
            reg &= ~(val & 0x7f00);
222 420557e8 bellard
223 420557e8 bellard
            // generated bits
224 420557e8 bellard
            reg &= ~(LE_C0_ERR | LE_C0_INTR);
225 420557e8 bellard
            if (reg & 0x7100)
226 420557e8 bellard
                reg |= LE_C0_ERR;
227 420557e8 bellard
            if (reg & 0x7f00)
228 420557e8 bellard
                reg |= LE_C0_INTR;
229 420557e8 bellard
230 420557e8 bellard
            // direct bit
231 420557e8 bellard
            reg &= ~LE_C0_INEA;
232 420557e8 bellard
            reg |= val & LE_C0_INEA;
233 420557e8 bellard
234 420557e8 bellard
            // exclusive bits
235 420557e8 bellard
            if (val & LE_C0_INIT) {
236 420557e8 bellard
                reg |= LE_C0_IDON | LE_C0_INIT;
237 420557e8 bellard
                reg &= ~LE_C0_STOP;
238 420557e8 bellard
            }
239 420557e8 bellard
            else if (val & LE_C0_STRT) {
240 420557e8 bellard
                reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
241 420557e8 bellard
                reg &= ~LE_C0_STOP;
242 420557e8 bellard
            }
243 420557e8 bellard
244 420557e8 bellard
            s->regs[LE_CSR0] = reg;
245 420557e8 bellard
246 420557e8 bellard
            // trigger bits
247 420557e8 bellard
            //if (val & LE_C0_TDMD)
248 420557e8 bellard
249 420557e8 bellard
            if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
250 420557e8 bellard
                pic_set_irq(s->irq, 1);
251 420557e8 bellard
            break;
252 420557e8 bellard
        case LE_CSR1:
253 420557e8 bellard
            s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
254 420557e8 bellard
            s->regs[s->addr] = val;
255 420557e8 bellard
            break;
256 420557e8 bellard
        case LE_CSR2:
257 420557e8 bellard
            s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
258 420557e8 bellard
            s->regs[s->addr] = val;
259 420557e8 bellard
            break;
260 420557e8 bellard
        case LE_CSR3:
261 420557e8 bellard
            s->regs[s->addr] = val;
262 420557e8 bellard
            break;
263 420557e8 bellard
        }
264 420557e8 bellard
        break;
265 420557e8 bellard
    case LE_RAP:
266 420557e8 bellard
        if (val < LE_MAXREG)
267 420557e8 bellard
            s->addr = val;
268 420557e8 bellard
        break;
269 420557e8 bellard
    default:
270 420557e8 bellard
        break;
271 420557e8 bellard
    }
272 420557e8 bellard
    lance_send(s);
273 420557e8 bellard
}
274 420557e8 bellard
275 420557e8 bellard
static CPUReadMemoryFunc *lance_mem_read[3] = {
276 420557e8 bellard
    lance_mem_readw,
277 420557e8 bellard
    lance_mem_readw,
278 420557e8 bellard
    lance_mem_readw,
279 420557e8 bellard
};
280 420557e8 bellard
281 420557e8 bellard
static CPUWriteMemoryFunc *lance_mem_write[3] = {
282 420557e8 bellard
    lance_mem_writew,
283 420557e8 bellard
    lance_mem_writew,
284 420557e8 bellard
    lance_mem_writew,
285 420557e8 bellard
};
286 420557e8 bellard
287 420557e8 bellard
288 420557e8 bellard
/* return the max buffer size if the LANCE can receive more data */
289 420557e8 bellard
static int lance_can_receive(void *opaque)
290 420557e8 bellard
{
291 420557e8 bellard
    LANCEState *s = opaque;
292 e80cfcfc bellard
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
293 420557e8 bellard
    struct lance_init_block *ib;
294 420557e8 bellard
    int i;
295 420557e8 bellard
    uint16_t temp;
296 420557e8 bellard
297 420557e8 bellard
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
298 420557e8 bellard
        return 0;
299 420557e8 bellard
300 420557e8 bellard
    ib = (void *) iommu_translate(dmaptr);
301 420557e8 bellard
302 420557e8 bellard
    for (i = 0; i < RX_RING_SIZE; i++) {
303 e80cfcfc bellard
        cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
304 420557e8 bellard
        temp &= 0xff;
305 420557e8 bellard
        if (temp == (LE_R1_OWN)) {
306 420557e8 bellard
#ifdef DEBUG_LANCE
307 420557e8 bellard
            fprintf(stderr, "lance: can receive %d\n", RX_BUFF_SIZE);
308 420557e8 bellard
#endif
309 420557e8 bellard
            return RX_BUFF_SIZE;
310 420557e8 bellard
        }
311 420557e8 bellard
    }
312 420557e8 bellard
#ifdef DEBUG_LANCE
313 420557e8 bellard
    fprintf(stderr, "lance: cannot receive\n");
314 420557e8 bellard
#endif
315 420557e8 bellard
    return 0;
316 420557e8 bellard
}
317 420557e8 bellard
318 420557e8 bellard
#define MIN_BUF_SIZE 60
319 420557e8 bellard
320 420557e8 bellard
static void lance_receive(void *opaque, const uint8_t *buf, int size)
321 420557e8 bellard
{
322 420557e8 bellard
    LANCEState *s = opaque;
323 e80cfcfc bellard
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
324 420557e8 bellard
    struct lance_init_block *ib;
325 420557e8 bellard
    unsigned int i, old_rxptr, j;
326 420557e8 bellard
    uint16_t temp;
327 420557e8 bellard
328 420557e8 bellard
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
329 420557e8 bellard
        return;
330 420557e8 bellard
331 420557e8 bellard
    ib = (void *) iommu_translate(dmaptr);
332 420557e8 bellard
333 e80cfcfc bellard
    old_rxptr = s->rxptr;
334 e80cfcfc bellard
    for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
335 e80cfcfc bellard
        cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
336 420557e8 bellard
        if (temp == (LE_R1_OWN)) {
337 e80cfcfc bellard
            s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
338 420557e8 bellard
            temp = size;
339 420557e8 bellard
            bswap16s(&temp);
340 e80cfcfc bellard
            cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp, 2);
341 420557e8 bellard
#if 0
342 e80cfcfc bellard
            cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);
343 420557e8 bellard
#else
344 420557e8 bellard
            for (j = 0; j < size; j++) {
345 e80cfcfc bellard
                cpu_physical_memory_write(((uint32_t)&ib->rx_buf[i]) + j, &buf[j], 1);
346 420557e8 bellard
            }
347 420557e8 bellard
#endif
348 420557e8 bellard
            temp = LE_R1_POK;
349 e80cfcfc bellard
            cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
350 420557e8 bellard
            s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
351 420557e8 bellard
            if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
352 420557e8 bellard
                pic_set_irq(s->irq, 1);
353 420557e8 bellard
#ifdef DEBUG_LANCE
354 420557e8 bellard
            fprintf(stderr, "lance: got packet, len %d\n", size);
355 420557e8 bellard
#endif
356 420557e8 bellard
            return;
357 420557e8 bellard
        }
358 420557e8 bellard
    }
359 420557e8 bellard
}
360 420557e8 bellard
361 420557e8 bellard
static void lance_send(void *opaque)
362 420557e8 bellard
{
363 420557e8 bellard
    LANCEState *s = opaque;
364 e80cfcfc bellard
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
365 420557e8 bellard
    struct lance_init_block *ib;
366 420557e8 bellard
    unsigned int i, old_txptr, j;
367 420557e8 bellard
    uint16_t temp;
368 420557e8 bellard
    char pkt_buf[PKT_BUF_SZ];
369 420557e8 bellard
370 420557e8 bellard
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
371 420557e8 bellard
        return;
372 420557e8 bellard
373 420557e8 bellard
    ib = (void *) iommu_translate(dmaptr);
374 420557e8 bellard
375 e80cfcfc bellard
    old_txptr = s->txptr;
376 e80cfcfc bellard
    for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
377 e80cfcfc bellard
        cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
378 420557e8 bellard
        if (temp == (LE_T1_POK|LE_T1_OWN)) {
379 e80cfcfc bellard
            cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp, 2);
380 420557e8 bellard
            bswap16s(&temp);
381 420557e8 bellard
            temp = (~temp) + 1;
382 420557e8 bellard
#if 0
383 e80cfcfc bellard
            cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp);
384 420557e8 bellard
#else
385 420557e8 bellard
            for (j = 0; j < temp; j++) {
386 e80cfcfc bellard
                cpu_physical_memory_read((uint32_t)&ib->tx_buf[i] + j, &pkt_buf[j], 1);
387 420557e8 bellard
            }
388 420557e8 bellard
#endif
389 420557e8 bellard
390 420557e8 bellard
#ifdef DEBUG_LANCE
391 420557e8 bellard
            fprintf(stderr, "lance: sending packet, len %d\n", temp);
392 420557e8 bellard
#endif
393 420557e8 bellard
            qemu_send_packet(s->nd, pkt_buf, temp);
394 420557e8 bellard
            temp = LE_T1_POK;
395 e80cfcfc bellard
            cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
396 e80cfcfc bellard
            s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
397 420557e8 bellard
            s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
398 420557e8 bellard
        }
399 420557e8 bellard
    }
400 420557e8 bellard
}
401 420557e8 bellard
402 420557e8 bellard
static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
403 420557e8 bellard
{
404 e80cfcfc bellard
    LANCEState *s = opaque;
405 420557e8 bellard
    uint32_t saddr;
406 420557e8 bellard
407 e80cfcfc bellard
    saddr = (addr & LEDMA_MAXADDR) >> 2;
408 e80cfcfc bellard
    return s->ledmaregs[saddr];
409 420557e8 bellard
}
410 420557e8 bellard
411 420557e8 bellard
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
412 420557e8 bellard
{
413 e80cfcfc bellard
    LANCEState *s = opaque;
414 420557e8 bellard
    uint32_t saddr;
415 420557e8 bellard
416 e80cfcfc bellard
    saddr = (addr & LEDMA_MAXADDR) >> 2;
417 e80cfcfc bellard
    s->ledmaregs[saddr] = val;
418 420557e8 bellard
}
419 420557e8 bellard
420 420557e8 bellard
static CPUReadMemoryFunc *ledma_mem_read[3] = {
421 420557e8 bellard
    ledma_mem_readl,
422 420557e8 bellard
    ledma_mem_readl,
423 420557e8 bellard
    ledma_mem_readl,
424 420557e8 bellard
};
425 420557e8 bellard
426 420557e8 bellard
static CPUWriteMemoryFunc *ledma_mem_write[3] = {
427 420557e8 bellard
    ledma_mem_writel,
428 420557e8 bellard
    ledma_mem_writel,
429 420557e8 bellard
    ledma_mem_writel,
430 420557e8 bellard
};
431 420557e8 bellard
432 e80cfcfc bellard
static void lance_save(QEMUFile *f, void *opaque)
433 e80cfcfc bellard
{
434 e80cfcfc bellard
    LANCEState *s = opaque;
435 e80cfcfc bellard
    int i;
436 e80cfcfc bellard
    
437 e80cfcfc bellard
    qemu_put_be32s(f, &s->leptr);
438 e80cfcfc bellard
    qemu_put_be16s(f, &s->addr);
439 e80cfcfc bellard
    for (i = 0; i < LE_MAXREG; i ++)
440 e80cfcfc bellard
        qemu_put_be16s(f, &s->regs[i]);
441 e80cfcfc bellard
    qemu_put_buffer(f, s->phys, 6);
442 e80cfcfc bellard
    qemu_put_be32s(f, &s->irq);
443 e80cfcfc bellard
    for (i = 0; i < LEDMA_REGS; i ++)
444 e80cfcfc bellard
        qemu_put_be32s(f, &s->ledmaregs[i]);
445 e80cfcfc bellard
}
446 e80cfcfc bellard
447 e80cfcfc bellard
static int lance_load(QEMUFile *f, void *opaque, int version_id)
448 e80cfcfc bellard
{
449 e80cfcfc bellard
    LANCEState *s = opaque;
450 e80cfcfc bellard
    int i;
451 e80cfcfc bellard
    
452 e80cfcfc bellard
    if (version_id != 1)
453 e80cfcfc bellard
        return -EINVAL;
454 e80cfcfc bellard
455 e80cfcfc bellard
    qemu_get_be32s(f, &s->leptr);
456 e80cfcfc bellard
    qemu_get_be16s(f, &s->addr);
457 e80cfcfc bellard
    for (i = 0; i < LE_MAXREG; i ++)
458 e80cfcfc bellard
        qemu_get_be16s(f, &s->regs[i]);
459 e80cfcfc bellard
    qemu_get_buffer(f, s->phys, 6);
460 e80cfcfc bellard
    qemu_get_be32s(f, &s->irq);
461 e80cfcfc bellard
    for (i = 0; i < LEDMA_REGS; i ++)
462 e80cfcfc bellard
        qemu_get_be32s(f, &s->ledmaregs[i]);
463 e80cfcfc bellard
    return 0;
464 e80cfcfc bellard
}
465 e80cfcfc bellard
466 8d5f07fa bellard
void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
467 420557e8 bellard
{
468 420557e8 bellard
    LANCEState *s;
469 8d5f07fa bellard
    int lance_io_memory, ledma_io_memory;
470 420557e8 bellard
471 420557e8 bellard
    s = qemu_mallocz(sizeof(LANCEState));
472 420557e8 bellard
    if (!s)
473 420557e8 bellard
        return;
474 420557e8 bellard
475 8d5f07fa bellard
    s->nd = nd;
476 8d5f07fa bellard
    s->irq = irq;
477 8d5f07fa bellard
478 420557e8 bellard
    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
479 8d5f07fa bellard
    cpu_register_physical_memory(leaddr, 8, lance_io_memory);
480 8d5f07fa bellard
481 e80cfcfc bellard
    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
482 8d5f07fa bellard
    cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
483 420557e8 bellard
484 420557e8 bellard
    lance_reset(s);
485 420557e8 bellard
    qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
486 e80cfcfc bellard
    register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
487 e80cfcfc bellard
    qemu_register_reset(lance_reset, s);
488 420557e8 bellard
}