Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 977d5710

History | View | Annotate | Download (7.9 kB)

1 e80cfcfc bellard
/*
2 e80cfcfc bellard
 * QEMU Sparc SLAVIO timer controller emulation
3 e80cfcfc bellard
 *
4 e80cfcfc bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 e80cfcfc bellard
 * 
6 e80cfcfc bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 e80cfcfc bellard
 * of this software and associated documentation files (the "Software"), to deal
8 e80cfcfc bellard
 * in the Software without restriction, including without limitation the rights
9 e80cfcfc bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 e80cfcfc bellard
 * copies of the Software, and to permit persons to whom the Software is
11 e80cfcfc bellard
 * furnished to do so, subject to the following conditions:
12 e80cfcfc bellard
 *
13 e80cfcfc bellard
 * The above copyright notice and this permission notice shall be included in
14 e80cfcfc bellard
 * all copies or substantial portions of the Software.
15 e80cfcfc bellard
 *
16 e80cfcfc bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 e80cfcfc bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 e80cfcfc bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 e80cfcfc bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 e80cfcfc bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 e80cfcfc bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 e80cfcfc bellard
 * THE SOFTWARE.
23 e80cfcfc bellard
 */
24 e80cfcfc bellard
#include "vl.h"
25 e80cfcfc bellard
26 e80cfcfc bellard
//#define DEBUG_TIMER
27 e80cfcfc bellard
28 e80cfcfc bellard
/*
29 e80cfcfc bellard
 * Registers of hardware timer in sun4m.
30 e80cfcfc bellard
 *
31 e80cfcfc bellard
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
32 e80cfcfc bellard
 * produced as NCR89C105. See
33 e80cfcfc bellard
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
34 e80cfcfc bellard
 * 
35 e80cfcfc bellard
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
36 e80cfcfc bellard
 * are zero. Bit 31 is 1 when count has been reached.
37 e80cfcfc bellard
 *
38 e80cfcfc bellard
 */
39 e80cfcfc bellard
40 e80cfcfc bellard
typedef struct SLAVIO_TIMERState {
41 e80cfcfc bellard
    uint32_t limit, count, counthigh;
42 e80cfcfc bellard
    int64_t count_load_time;
43 e80cfcfc bellard
    int64_t expire_time;
44 e80cfcfc bellard
    int64_t stop_time, tick_offset;
45 e80cfcfc bellard
    QEMUTimer *irq_timer;
46 e80cfcfc bellard
    int irq;
47 e80cfcfc bellard
    int reached, stopped;
48 e80cfcfc bellard
    int mode; // 0 = processor, 1 = user, 2 = system
49 e80cfcfc bellard
} SLAVIO_TIMERState;
50 e80cfcfc bellard
51 e80cfcfc bellard
#define TIMER_MAXADDR 0x1f
52 e80cfcfc bellard
#define CNT_FREQ 2000000
53 e80cfcfc bellard
#define MAX_CPUS 16
54 e80cfcfc bellard
55 e80cfcfc bellard
// Update count, set irq, update expire_time
56 e80cfcfc bellard
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
57 e80cfcfc bellard
{
58 e80cfcfc bellard
    int out;
59 e80cfcfc bellard
    int64_t diff, ticks, count;
60 e80cfcfc bellard
    uint32_t limit;
61 e80cfcfc bellard
62 e80cfcfc bellard
    // There are three clock tick units: CPU ticks, register units
63 e80cfcfc bellard
    // (nanoseconds), and counter ticks (500 ns).
64 e80cfcfc bellard
    if (s->mode == 1 && s->stopped)
65 e80cfcfc bellard
        ticks = s->stop_time;
66 e80cfcfc bellard
    else
67 e80cfcfc bellard
        ticks = qemu_get_clock(vm_clock) - s->tick_offset;
68 e80cfcfc bellard
69 e80cfcfc bellard
    out = (ticks >= s->expire_time);
70 e80cfcfc bellard
    if (out)
71 e80cfcfc bellard
        s->reached = 0x80000000;
72 e80cfcfc bellard
    if (!s->limit)
73 e80cfcfc bellard
        limit = 0x7fffffff;
74 e80cfcfc bellard
    else
75 e80cfcfc bellard
        limit = s->limit;
76 e80cfcfc bellard
77 e80cfcfc bellard
    // Convert register units to counter ticks
78 e80cfcfc bellard
    limit = limit >> 9;
79 e80cfcfc bellard
80 e80cfcfc bellard
    // Convert cpu ticks to counter ticks
81 e80cfcfc bellard
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
82 e80cfcfc bellard
83 e80cfcfc bellard
    // Calculate what the counter should be, convert to register
84 e80cfcfc bellard
    // units
85 e80cfcfc bellard
    count = diff % limit;
86 e80cfcfc bellard
    s->count = count << 9;
87 e80cfcfc bellard
    s->counthigh = count >> 22;
88 e80cfcfc bellard
89 e80cfcfc bellard
    // Expire time: CPU ticks left to next interrupt
90 e80cfcfc bellard
    // Convert remaining counter ticks to CPU ticks
91 e80cfcfc bellard
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
92 e80cfcfc bellard
93 e80cfcfc bellard
#ifdef DEBUG_TIMER
94 e80cfcfc bellard
    term_printf("timer: irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
95 e80cfcfc bellard
#endif
96 e80cfcfc bellard
    if (s->mode != 1)
97 e80cfcfc bellard
        pic_set_irq(s->irq, out);
98 e80cfcfc bellard
}
99 e80cfcfc bellard
100 e80cfcfc bellard
// timer callback
101 e80cfcfc bellard
static void slavio_timer_irq(void *opaque)
102 e80cfcfc bellard
{
103 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
104 e80cfcfc bellard
105 e80cfcfc bellard
    if (!s->irq_timer)
106 e80cfcfc bellard
        return;
107 e80cfcfc bellard
    slavio_timer_get_out(s);
108 e80cfcfc bellard
    if (s->mode != 1)
109 e80cfcfc bellard
        qemu_mod_timer(s->irq_timer, s->expire_time);
110 e80cfcfc bellard
}
111 e80cfcfc bellard
112 e80cfcfc bellard
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
113 e80cfcfc bellard
{
114 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
115 e80cfcfc bellard
    uint32_t saddr;
116 e80cfcfc bellard
117 e80cfcfc bellard
    saddr = (addr & TIMER_MAXADDR) >> 2;
118 e80cfcfc bellard
    switch (saddr) {
119 e80cfcfc bellard
    case 0:
120 e80cfcfc bellard
        // read limit (system counter mode) or read most signifying
121 e80cfcfc bellard
        // part of counter (user mode)
122 e80cfcfc bellard
        if (s->mode != 1) {
123 e80cfcfc bellard
            // clear irq
124 e80cfcfc bellard
            pic_set_irq(s->irq, 0);
125 e80cfcfc bellard
            s->count_load_time = qemu_get_clock(vm_clock);
126 e80cfcfc bellard
            s->reached = 0;
127 e80cfcfc bellard
            return s->limit;
128 e80cfcfc bellard
        }
129 e80cfcfc bellard
        else {
130 e80cfcfc bellard
            slavio_timer_get_out(s);
131 e80cfcfc bellard
            return s->counthigh & 0x7fffffff;
132 e80cfcfc bellard
        }
133 e80cfcfc bellard
    case 1:
134 e80cfcfc bellard
        // read counter and reached bit (system mode) or read lsbits
135 e80cfcfc bellard
        // of counter (user mode)
136 e80cfcfc bellard
        slavio_timer_get_out(s);
137 e80cfcfc bellard
        if (s->mode != 1)
138 e80cfcfc bellard
            return (s->count & 0x7fffffff) | s->reached;
139 e80cfcfc bellard
        else
140 e80cfcfc bellard
            return s->count;
141 e80cfcfc bellard
    case 3:
142 e80cfcfc bellard
        // read start/stop status
143 e80cfcfc bellard
        return s->stopped;
144 e80cfcfc bellard
    case 4:
145 e80cfcfc bellard
        // read user/system mode
146 e80cfcfc bellard
        return s->mode & 1;
147 e80cfcfc bellard
    default:
148 e80cfcfc bellard
        return 0;
149 e80cfcfc bellard
    }
150 e80cfcfc bellard
}
151 e80cfcfc bellard
152 e80cfcfc bellard
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
153 e80cfcfc bellard
{
154 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
155 e80cfcfc bellard
    uint32_t saddr;
156 e80cfcfc bellard
157 e80cfcfc bellard
    saddr = (addr & TIMER_MAXADDR) >> 2;
158 e80cfcfc bellard
    switch (saddr) {
159 e80cfcfc bellard
    case 0:
160 e80cfcfc bellard
        // set limit, reset counter
161 e80cfcfc bellard
        s->count_load_time = qemu_get_clock(vm_clock);
162 e80cfcfc bellard
        // fall through
163 e80cfcfc bellard
    case 2:
164 e80cfcfc bellard
        // set limit without resetting counter
165 e80cfcfc bellard
        if (!val)
166 e80cfcfc bellard
            s->limit = 0x7fffffff;
167 e80cfcfc bellard
        else
168 e80cfcfc bellard
            s->limit = val & 0x7fffffff;
169 e80cfcfc bellard
        slavio_timer_irq(s);
170 e80cfcfc bellard
        break;
171 e80cfcfc bellard
    case 3:
172 e80cfcfc bellard
        // start/stop user counter
173 e80cfcfc bellard
        if (s->mode == 1) {
174 e80cfcfc bellard
            if (val & 1) {
175 e80cfcfc bellard
                s->stop_time = qemu_get_clock(vm_clock);
176 e80cfcfc bellard
                s->stopped = 1;
177 e80cfcfc bellard
            }
178 e80cfcfc bellard
            else {
179 e80cfcfc bellard
                if (s->stopped)
180 e80cfcfc bellard
                    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
181 e80cfcfc bellard
                s->stopped = 0;
182 e80cfcfc bellard
            }
183 e80cfcfc bellard
        }
184 e80cfcfc bellard
        break;
185 e80cfcfc bellard
    case 4:
186 e80cfcfc bellard
        // bit 0: user (1) or system (0) counter mode
187 e80cfcfc bellard
        if (s->mode == 0 || s->mode == 1)
188 e80cfcfc bellard
            s->mode = val & 1;
189 e80cfcfc bellard
        break;
190 e80cfcfc bellard
    default:
191 e80cfcfc bellard
        break;
192 e80cfcfc bellard
    }
193 e80cfcfc bellard
}
194 e80cfcfc bellard
195 e80cfcfc bellard
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
196 e80cfcfc bellard
    slavio_timer_mem_readl,
197 e80cfcfc bellard
    slavio_timer_mem_readl,
198 e80cfcfc bellard
    slavio_timer_mem_readl,
199 e80cfcfc bellard
};
200 e80cfcfc bellard
201 e80cfcfc bellard
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
202 e80cfcfc bellard
    slavio_timer_mem_writel,
203 e80cfcfc bellard
    slavio_timer_mem_writel,
204 e80cfcfc bellard
    slavio_timer_mem_writel,
205 e80cfcfc bellard
};
206 e80cfcfc bellard
207 e80cfcfc bellard
static void slavio_timer_save(QEMUFile *f, void *opaque)
208 e80cfcfc bellard
{
209 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
210 e80cfcfc bellard
211 e80cfcfc bellard
    qemu_put_be32s(f, &s->limit);
212 e80cfcfc bellard
    qemu_put_be32s(f, &s->count);
213 e80cfcfc bellard
    qemu_put_be32s(f, &s->counthigh);
214 e80cfcfc bellard
    qemu_put_be64s(f, &s->count_load_time);
215 e80cfcfc bellard
    qemu_put_be64s(f, &s->expire_time);
216 e80cfcfc bellard
    qemu_put_be64s(f, &s->stop_time);
217 e80cfcfc bellard
    qemu_put_be64s(f, &s->tick_offset);
218 e80cfcfc bellard
    qemu_put_be32s(f, &s->irq);
219 e80cfcfc bellard
    qemu_put_be32s(f, &s->reached);
220 e80cfcfc bellard
    qemu_put_be32s(f, &s->stopped);
221 e80cfcfc bellard
    qemu_put_be32s(f, &s->mode);
222 e80cfcfc bellard
}
223 e80cfcfc bellard
224 e80cfcfc bellard
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
225 e80cfcfc bellard
{
226 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
227 e80cfcfc bellard
    
228 e80cfcfc bellard
    if (version_id != 1)
229 e80cfcfc bellard
        return -EINVAL;
230 e80cfcfc bellard
231 e80cfcfc bellard
    qemu_get_be32s(f, &s->limit);
232 e80cfcfc bellard
    qemu_get_be32s(f, &s->count);
233 e80cfcfc bellard
    qemu_get_be32s(f, &s->counthigh);
234 e80cfcfc bellard
    qemu_get_be64s(f, &s->count_load_time);
235 e80cfcfc bellard
    qemu_get_be64s(f, &s->expire_time);
236 e80cfcfc bellard
    qemu_get_be64s(f, &s->stop_time);
237 e80cfcfc bellard
    qemu_get_be64s(f, &s->tick_offset);
238 e80cfcfc bellard
    qemu_get_be32s(f, &s->irq);
239 e80cfcfc bellard
    qemu_get_be32s(f, &s->reached);
240 e80cfcfc bellard
    qemu_get_be32s(f, &s->stopped);
241 e80cfcfc bellard
    qemu_get_be32s(f, &s->mode);
242 e80cfcfc bellard
    return 0;
243 e80cfcfc bellard
}
244 e80cfcfc bellard
245 e80cfcfc bellard
static void slavio_timer_reset(void *opaque)
246 e80cfcfc bellard
{
247 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
248 e80cfcfc bellard
249 e80cfcfc bellard
    s->limit = 0;
250 e80cfcfc bellard
    s->count = 0;
251 e80cfcfc bellard
    s->count_load_time = qemu_get_clock(vm_clock);;
252 e80cfcfc bellard
    s->stop_time = s->count_load_time;
253 e80cfcfc bellard
    s->tick_offset = 0;
254 e80cfcfc bellard
    s->reached = 0;
255 e80cfcfc bellard
    s->mode &= 2;
256 e80cfcfc bellard
    s->stopped = 1;
257 e80cfcfc bellard
    slavio_timer_get_out(s);
258 e80cfcfc bellard
}
259 e80cfcfc bellard
260 e80cfcfc bellard
static void slavio_timer_init_internal(uint32_t addr, int irq, int mode)
261 e80cfcfc bellard
{
262 e80cfcfc bellard
    int slavio_timer_io_memory;
263 e80cfcfc bellard
    SLAVIO_TIMERState *s;
264 e80cfcfc bellard
265 e80cfcfc bellard
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
266 e80cfcfc bellard
    if (!s)
267 e80cfcfc bellard
        return;
268 e80cfcfc bellard
    s->irq = irq;
269 e80cfcfc bellard
    s->mode = mode;
270 e80cfcfc bellard
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
271 e80cfcfc bellard
272 e80cfcfc bellard
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
273 e80cfcfc bellard
                                                    slavio_timer_mem_write, s);
274 e80cfcfc bellard
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
275 e80cfcfc bellard
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
276 e80cfcfc bellard
    qemu_register_reset(slavio_timer_reset, s);
277 e80cfcfc bellard
    slavio_timer_reset(s);
278 e80cfcfc bellard
}
279 e80cfcfc bellard
280 e80cfcfc bellard
void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2)
281 e80cfcfc bellard
{
282 e80cfcfc bellard
    int i;
283 e80cfcfc bellard
284 e80cfcfc bellard
    for (i = 0; i < MAX_CPUS; i++) {
285 e80cfcfc bellard
        slavio_timer_init_internal(addr1 + i * TARGET_PAGE_SIZE, irq1, 0);
286 e80cfcfc bellard
    }
287 e80cfcfc bellard
288 e80cfcfc bellard
    slavio_timer_init_internal(addr2, irq2, 2);
289 e80cfcfc bellard
}