Statistics
| Branch: | Revision:

root / alpha-dis.c @ 9793212b

History | View | Annotate | Download (79.9 kB)

1
/* alpha-dis.c -- Disassemble Alpha AXP instructions
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Richard Henderson <rth@tamu.edu>,
4
   patterned after the PPC opcode handling written by Ian Lance Taylor.
5

6
This file is part of GDB, GAS, and the GNU binutils.
7

8
GDB, GAS, and the GNU binutils are free software; you can redistribute
9
them and/or modify them under the terms of the GNU General Public
10
License as published by the Free Software Foundation; either version
11
2, or (at your option) any later version.
12

13
GDB, GAS, and the GNU binutils are distributed in the hope that they
14
will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
the GNU General Public License for more details.
17

18
You should have received a copy of the GNU General Public License
19
along with this file; see the file COPYING.  If not, see
20
<http://www.gnu.org/licenses/>. */
21

    
22
#include <stdio.h>
23
#include "dis-asm.h"
24

    
25
/* MAX is redefined below, so remove any previous definition. */
26
#undef MAX
27

    
28
/* The opcode table is an array of struct alpha_opcode.  */
29

    
30
struct alpha_opcode
31
{
32
  /* The opcode name.  */
33
  const char *name;
34

    
35
  /* The opcode itself.  Those bits which will be filled in with
36
     operands are zeroes.  */
37
  unsigned opcode;
38

    
39
  /* The opcode mask.  This is used by the disassembler.  This is a
40
     mask containing ones indicating those bits which must match the
41
     opcode field, and zeroes indicating those bits which need not
42
     match (and are presumably filled in by operands).  */
43
  unsigned mask;
44

    
45
  /* One bit flags for the opcode.  These are primarily used to
46
     indicate specific processors and environments support the
47
     instructions.  The defined values are listed below. */
48
  unsigned flags;
49

    
50
  /* An array of operand codes.  Each code is an index into the
51
     operand table.  They appear in the order which the operands must
52
     appear in assembly code, and are terminated by a zero.  */
53
  unsigned char operands[4];
54
};
55

    
56
/* The table itself is sorted by major opcode number, and is otherwise
57
   in the order in which the disassembler should consider
58
   instructions.  */
59
extern const struct alpha_opcode alpha_opcodes[];
60
extern const unsigned alpha_num_opcodes;
61

    
62
/* Values defined for the flags field of a struct alpha_opcode.  */
63

    
64
/* CPU Availability */
65
#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
66
#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
67
#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
68
#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
69
#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
70
#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
71
#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
72

    
73
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
74

    
75
/* A macro to extract the major opcode from an instruction.  */
76
#define AXP_OP(i)        (((i) >> 26) & 0x3F)
77

    
78
/* The total number of major opcodes. */
79
#define AXP_NOPS        0x40
80

    
81
 
82
/* The operands table is an array of struct alpha_operand.  */
83

    
84
struct alpha_operand
85
{
86
  /* The number of bits in the operand.  */
87
  unsigned int bits : 5;
88

    
89
  /* How far the operand is left shifted in the instruction.  */
90
  unsigned int shift : 5;
91

    
92
  /* The default relocation type for this operand.  */
93
  signed int default_reloc : 16;
94

    
95
  /* One bit syntax flags.  */
96
  unsigned int flags : 16;
97

    
98
  /* Insertion function.  This is used by the assembler.  To insert an
99
     operand value into an instruction, check this field.
100

101
     If it is NULL, execute
102
         i |= (op & ((1 << o->bits) - 1)) << o->shift;
103
     (i is the instruction which we are filling in, o is a pointer to
104
     this structure, and op is the opcode value; this assumes twos
105
     complement arithmetic).
106

107
     If this field is not NULL, then simply call it with the
108
     instruction and the operand value.  It will return the new value
109
     of the instruction.  If the ERRMSG argument is not NULL, then if
110
     the operand value is illegal, *ERRMSG will be set to a warning
111
     string (the operand will be inserted in any case).  If the
112
     operand value is legal, *ERRMSG will be unchanged (most operands
113
     can accept any value).  */
114
  unsigned (*insert) (unsigned instruction, int op,
115
                      const char **errmsg);
116

    
117
  /* Extraction function.  This is used by the disassembler.  To
118
     extract this operand type from an instruction, check this field.
119

120
     If it is NULL, compute
121
         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
122
         if ((o->flags & AXP_OPERAND_SIGNED) != 0
123
             && (op & (1 << (o->bits - 1))) != 0)
124
           op -= 1 << o->bits;
125
     (i is the instruction, o is a pointer to this structure, and op
126
     is the result; this assumes twos complement arithmetic).
127

128
     If this field is not NULL, then simply call it with the
129
     instruction value.  It will return the value of the operand.  If
130
     the INVALID argument is not NULL, *INVALID will be set to
131
     non-zero if this operand type can not actually be extracted from
132
     this operand (i.e., the instruction does not match).  If the
133
     operand is valid, *INVALID will not be changed.  */
134
  int (*extract) (unsigned instruction, int *invalid);
135
};
136

    
137
/* Elements in the table are retrieved by indexing with values from
138
   the operands field of the alpha_opcodes table.  */
139

    
140
extern const struct alpha_operand alpha_operands[];
141
extern const unsigned alpha_num_operands;
142

    
143
/* Values defined for the flags field of a struct alpha_operand.  */
144

    
145
/* Mask for selecting the type for typecheck purposes */
146
#define AXP_OPERAND_TYPECHECK_MASK                                        \
147
  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |                \
148
   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |         \
149
   AXP_OPERAND_UNSIGNED)
150

    
151
/* This operand does not actually exist in the assembler input.  This
152
   is used to support extended mnemonics, for which two operands fields
153
   are identical.  The assembler should call the insert function with
154
   any op value.  The disassembler should call the extract function,
155
   ignore the return value, and check the value placed in the invalid
156
   argument.  */
157
#define AXP_OPERAND_FAKE        01
158

    
159
/* The operand should be wrapped in parentheses rather than separated
160
   from the previous by a comma.  This is used for the load and store
161
   instructions which want their operands to look like "Ra,disp(Rb)".  */
162
#define AXP_OPERAND_PARENS        02
163

    
164
/* Used in combination with PARENS, this suppresses the suppression of
165
   the comma.  This is used for "jmp Ra,(Rb),hint".  */
166
#define AXP_OPERAND_COMMA        04
167

    
168
/* This operand names an integer register.  */
169
#define AXP_OPERAND_IR                010
170

    
171
/* This operand names a floating point register.  */
172
#define AXP_OPERAND_FPR                020
173

    
174
/* This operand is a relative branch displacement.  The disassembler
175
   prints these symbolically if possible.  */
176
#define AXP_OPERAND_RELATIVE        040
177

    
178
/* This operand takes signed values.  */
179
#define AXP_OPERAND_SIGNED        0100
180

    
181
/* This operand takes unsigned values.  This exists primarily so that
182
   a flags value of 0 can be treated as end-of-arguments.  */
183
#define AXP_OPERAND_UNSIGNED        0200
184

    
185
/* Suppress overflow detection on this field.  This is used for hints. */
186
#define AXP_OPERAND_NOOVERFLOW        0400
187

    
188
/* Mask for optional argument default value.  */
189
#define AXP_OPERAND_OPTIONAL_MASK 07000
190

    
191
/* This operand defaults to zero.  This is used for jump hints.  */
192
#define AXP_OPERAND_DEFAULT_ZERO 01000
193

    
194
/* This operand should default to the first (real) operand and is used
195
   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
196
   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
197
   it, but it's what DEC does.  */
198
#define AXP_OPERAND_DEFAULT_FIRST 02000
199

    
200
/* Similarly, this operand should default to the second (real) operand.
201
   This allows "negl $0" instead of "negl $0,$0".  */
202
#define AXP_OPERAND_DEFAULT_SECOND 04000
203

    
204
 
205
/* Register common names */
206

    
207
#define AXP_REG_V0        0
208
#define AXP_REG_T0        1
209
#define AXP_REG_T1        2
210
#define AXP_REG_T2        3
211
#define AXP_REG_T3        4
212
#define AXP_REG_T4        5
213
#define AXP_REG_T5        6
214
#define AXP_REG_T6        7
215
#define AXP_REG_T7        8
216
#define AXP_REG_S0        9
217
#define AXP_REG_S1        10
218
#define AXP_REG_S2        11
219
#define AXP_REG_S3        12
220
#define AXP_REG_S4        13
221
#define AXP_REG_S5        14
222
#define AXP_REG_FP        15
223
#define AXP_REG_A0        16
224
#define AXP_REG_A1        17
225
#define AXP_REG_A2        18
226
#define AXP_REG_A3        19
227
#define AXP_REG_A4        20
228
#define AXP_REG_A5        21
229
#define AXP_REG_T8        22
230
#define AXP_REG_T9        23
231
#define AXP_REG_T10        24
232
#define AXP_REG_T11        25
233
#define AXP_REG_RA        26
234
#define AXP_REG_PV        27
235
#define AXP_REG_T12        27
236
#define AXP_REG_AT        28
237
#define AXP_REG_GP        29
238
#define AXP_REG_SP        30
239
#define AXP_REG_ZERO        31
240

    
241
#define bfd_mach_alpha_ev4  0x10
242
#define bfd_mach_alpha_ev5  0x20
243
#define bfd_mach_alpha_ev6  0x30
244

    
245
enum bfd_reloc_code_real {
246
    BFD_RELOC_23_PCREL_S2,
247
    BFD_RELOC_ALPHA_HINT
248
};
249

    
250
/* This file holds the Alpha AXP opcode table.  The opcode table includes
251
   almost all of the extended instruction mnemonics.  This permits the
252
   disassembler to use them, and simplifies the assembler logic, at the
253
   cost of increasing the table size.  The table is strictly constant
254
   data, so the compiler should be able to put it in the text segment.
255

256
   This file also holds the operand table.  All knowledge about inserting
257
   and extracting operands from instructions is kept in this file.
258

259
   The information for the base instruction set was compiled from the
260
   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
261
   version 2.
262

263
   The information for the post-ev5 architecture extensions BWX, CIX and
264
   MAX came from version 3 of this same document, which is also available
265
   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
266
   /literature/alphahb2.pdf
267

268
   The information for the EV4 PALcode instructions was compiled from
269
   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
270
   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
271
   revision dated June 1994.
272

273
   The information for the EV5 PALcode instructions was compiled from
274
   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
275
   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
276
 
277
/* Local insertion and extraction functions */
278

    
279
static unsigned insert_rba (unsigned, int, const char **);
280
static unsigned insert_rca (unsigned, int, const char **);
281
static unsigned insert_za (unsigned, int, const char **);
282
static unsigned insert_zb (unsigned, int, const char **);
283
static unsigned insert_zc (unsigned, int, const char **);
284
static unsigned insert_bdisp (unsigned, int, const char **);
285
static unsigned insert_jhint (unsigned, int, const char **);
286
static unsigned insert_ev6hwjhint (unsigned, int, const char **);
287

    
288
static int extract_rba (unsigned, int *);
289
static int extract_rca (unsigned, int *);
290
static int extract_za (unsigned, int *);
291
static int extract_zb (unsigned, int *);
292
static int extract_zc (unsigned, int *);
293
static int extract_bdisp (unsigned, int *);
294
static int extract_jhint (unsigned, int *);
295
static int extract_ev6hwjhint (unsigned, int *);
296

    
297
 
298
/* The operands table  */
299

    
300
const struct alpha_operand alpha_operands[] =
301
{
302
  /* The fields are bits, shift, insert, extract, flags */
303
  /* The zero index is used to indicate end-of-list */
304
#define UNUSED                0
305
  { 0, 0, 0, 0, 0, 0 },
306

    
307
  /* The plain integer register fields */
308
#define RA                (UNUSED + 1)
309
  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
310
#define RB                (RA + 1)
311
  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
312
#define RC                (RB + 1)
313
  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
314

    
315
  /* The plain fp register fields */
316
#define FA                (RC + 1)
317
  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
318
#define FB                (FA + 1)
319
  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
320
#define FC                (FB + 1)
321
  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
322

    
323
  /* The integer registers when they are ZERO */
324
#define ZA                (FC + 1)
325
  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
326
#define ZB                (ZA + 1)
327
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
328
#define ZC                (ZB + 1)
329
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
330

    
331
  /* The RB field when it needs parentheses */
332
#define PRB                (ZC + 1)
333
  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
334

    
335
  /* The RB field when it needs parentheses _and_ a preceding comma */
336
#define CPRB                (PRB + 1)
337
  { 5, 16, 0,
338
    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
339

    
340
  /* The RB field when it must be the same as the RA field */
341
#define RBA                (CPRB + 1)
342
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
343

    
344
  /* The RC field when it must be the same as the RB field */
345
#define RCA                (RBA + 1)
346
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
347

    
348
  /* The RC field when it can *default* to RA */
349
#define DRC1                (RCA + 1)
350
  { 5, 0, 0,
351
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
352

    
353
  /* The RC field when it can *default* to RB */
354
#define DRC2                (DRC1 + 1)
355
  { 5, 0, 0,
356
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
357

    
358
  /* The FC field when it can *default* to RA */
359
#define DFC1                (DRC2 + 1)
360
  { 5, 0, 0,
361
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
362

    
363
  /* The FC field when it can *default* to RB */
364
#define DFC2                (DFC1 + 1)
365
  { 5, 0, 0,
366
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
367

    
368
  /* The unsigned 8-bit literal of Operate format insns */
369
#define LIT                (DFC2 + 1)
370
  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
371

    
372
  /* The signed 16-bit displacement of Memory format insns.  From here
373
     we can't tell what relocation should be used, so don't use a default. */
374
#define MDISP                (LIT + 1)
375
  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
376

    
377
  /* The signed "23-bit" aligned displacement of Branch format insns */
378
#define BDISP                (MDISP + 1)
379
  { 21, 0, BFD_RELOC_23_PCREL_S2,
380
    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
381

    
382
  /* The 26-bit PALcode function */
383
#define PALFN                (BDISP + 1)
384
  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
385

    
386
  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
387
#define JMPHINT                (PALFN + 1)
388
  { 14, 0, BFD_RELOC_ALPHA_HINT,
389
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
390
    insert_jhint, extract_jhint },
391

    
392
  /* The optional hint to RET/JSR_COROUTINE */
393
#define RETHINT                (JMPHINT + 1)
394
  { 14, 0, -RETHINT,
395
    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
396

    
397
  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
398
#define EV4HWDISP        (RETHINT + 1)
399
#define EV6HWDISP        (EV4HWDISP)
400
  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
401

    
402
  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
403
#define EV4HWINDEX        (EV4HWDISP + 1)
404
  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
405

    
406
  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
407
     that occur in DEC PALcode.  */
408
#define EV4EXTHWINDEX        (EV4HWINDEX + 1)
409
  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
410

    
411
  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
412
#define EV5HWDISP        (EV4EXTHWINDEX + 1)
413
  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
414

    
415
  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
416
#define EV5HWINDEX        (EV5HWDISP + 1)
417
  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
418

    
419
  /* The 16-bit combined index/scoreboard mask for the ev6
420
     hw_m[ft]pr (pal19/pal1d) insns */
421
#define EV6HWINDEX        (EV5HWINDEX + 1)
422
  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
423

    
424
  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
425
#define EV6HWJMPHINT        (EV6HWINDEX+ 1)
426
  { 8, 0, -EV6HWJMPHINT,
427
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
428
    insert_ev6hwjhint, extract_ev6hwjhint }
429
};
430

    
431
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
432

    
433
/* The RB field when it is the same as the RA field in the same insn.
434
   This operand is marked fake.  The insertion function just copies
435
   the RA field into the RB field, and the extraction function just
436
   checks that the fields are the same. */
437

    
438
/*ARGSUSED*/
439
static unsigned
440
insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
441
{
442
  return insn | (((insn >> 21) & 0x1f) << 16);
443
}
444

    
445
static int
446
extract_rba(unsigned insn, int *invalid)
447
{
448
  if (invalid != (int *) NULL
449
      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
450
    *invalid = 1;
451
  return 0;
452
}
453

    
454

    
455
/* The same for the RC field */
456

    
457
/*ARGSUSED*/
458
static unsigned
459
insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
460
{
461
  return insn | ((insn >> 21) & 0x1f);
462
}
463

    
464
static int
465
extract_rca(unsigned insn, int *invalid)
466
{
467
  if (invalid != (int *) NULL
468
      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
469
    *invalid = 1;
470
  return 0;
471
}
472

    
473

    
474
/* Fake arguments in which the registers must be set to ZERO */
475

    
476
/*ARGSUSED*/
477
static unsigned
478
insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
479
{
480
  return insn | (31 << 21);
481
}
482

    
483
static int
484
extract_za(unsigned insn, int *invalid)
485
{
486
  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
487
    *invalid = 1;
488
  return 0;
489
}
490

    
491
/*ARGSUSED*/
492
static unsigned
493
insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
494
{
495
  return insn | (31 << 16);
496
}
497

    
498
static int
499
extract_zb(unsigned insn, int *invalid)
500
{
501
  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
502
    *invalid = 1;
503
  return 0;
504
}
505

    
506
/*ARGSUSED*/
507
static unsigned
508
insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
509
{
510
  return insn | 31;
511
}
512

    
513
static int
514
extract_zc(unsigned insn, int *invalid)
515
{
516
  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
517
    *invalid = 1;
518
  return 0;
519
}
520

    
521

    
522
/* The displacement field of a Branch format insn.  */
523

    
524
static unsigned
525
insert_bdisp(unsigned insn, int value, const char **errmsg)
526
{
527
  if (errmsg != (const char **)NULL && (value & 3))
528
    *errmsg = _("branch operand unaligned");
529
  return insn | ((value / 4) & 0x1FFFFF);
530
}
531

    
532
/*ARGSUSED*/
533
static int
534
extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
535
{
536
  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
537
}
538

    
539

    
540
/* The hint field of a JMP/JSR insn.  */
541

    
542
static unsigned
543
insert_jhint(unsigned insn, int value, const char **errmsg)
544
{
545
  if (errmsg != (const char **)NULL && (value & 3))
546
    *errmsg = _("jump hint unaligned");
547
  return insn | ((value / 4) & 0x3FFF);
548
}
549

    
550
/*ARGSUSED*/
551
static int
552
extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
553
{
554
  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
555
}
556

    
557
/* The hint field of an EV6 HW_JMP/JSR insn.  */
558

    
559
static unsigned
560
insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
561
{
562
  if (errmsg != (const char **)NULL && (value & 3))
563
    *errmsg = _("jump hint unaligned");
564
  return insn | ((value / 4) & 0x1FFF);
565
}
566

    
567
/*ARGSUSED*/
568
static int
569
extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
570
{
571
  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
572
}
573

    
574
 
575
/* Macros used to form opcodes */
576

    
577
/* The main opcode */
578
#define OP(x)                (((x) & 0x3F) << 26)
579
#define OP_MASK                0xFC000000
580

    
581
/* Branch format instructions */
582
#define BRA_(oo)        OP(oo)
583
#define BRA_MASK        OP_MASK
584
#define BRA(oo)                BRA_(oo), BRA_MASK
585

    
586
/* Floating point format instructions */
587
#define FP_(oo,fff)        (OP(oo) | (((fff) & 0x7FF) << 5))
588
#define FP_MASK                (OP_MASK | 0xFFE0)
589
#define FP(oo,fff)        FP_(oo,fff), FP_MASK
590

    
591
/* Memory format instructions */
592
#define MEM_(oo)        OP(oo)
593
#define MEM_MASK        OP_MASK
594
#define MEM(oo)                MEM_(oo), MEM_MASK
595

    
596
/* Memory/Func Code format instructions */
597
#define MFC_(oo,ffff)        (OP(oo) | ((ffff) & 0xFFFF))
598
#define MFC_MASK        (OP_MASK | 0xFFFF)
599
#define MFC(oo,ffff)        MFC_(oo,ffff), MFC_MASK
600

    
601
/* Memory/Branch format instructions */
602
#define MBR_(oo,h)        (OP(oo) | (((h) & 3) << 14))
603
#define MBR_MASK        (OP_MASK | 0xC000)
604
#define MBR(oo,h)        MBR_(oo,h), MBR_MASK
605

    
606
/* Operate format instructions.  The OPRL variant specifies a
607
   literal second argument. */
608
#define OPR_(oo,ff)        (OP(oo) | (((ff) & 0x7F) << 5))
609
#define OPRL_(oo,ff)        (OPR_((oo),(ff)) | 0x1000)
610
#define OPR_MASK        (OP_MASK | 0x1FE0)
611
#define OPR(oo,ff)        OPR_(oo,ff), OPR_MASK
612
#define OPRL(oo,ff)        OPRL_(oo,ff), OPR_MASK
613

    
614
/* Generic PALcode format instructions */
615
#define PCD_(oo)        OP(oo)
616
#define PCD_MASK        OP_MASK
617
#define PCD(oo)                PCD_(oo), PCD_MASK
618

    
619
/* Specific PALcode instructions */
620
#define SPCD_(oo,ffff)        (OP(oo) | ((ffff) & 0x3FFFFFF))
621
#define SPCD_MASK        0xFFFFFFFF
622
#define SPCD(oo,ffff)        SPCD_(oo,ffff), SPCD_MASK
623

    
624
/* Hardware memory (hw_{ld,st}) instructions */
625
#define EV4HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
626
#define EV4HWMEM_MASK        (OP_MASK | 0xF000)
627
#define EV4HWMEM(oo,f)        EV4HWMEM_(oo,f), EV4HWMEM_MASK
628

    
629
#define EV5HWMEM_(oo,f)        (OP(oo) | (((f) & 0x3F) << 10))
630
#define EV5HWMEM_MASK        (OP_MASK | 0xF800)
631
#define EV5HWMEM(oo,f)        EV5HWMEM_(oo,f), EV5HWMEM_MASK
632

    
633
#define EV6HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
634
#define EV6HWMEM_MASK        (OP_MASK | 0xF000)
635
#define EV6HWMEM(oo,f)        EV6HWMEM_(oo,f), EV6HWMEM_MASK
636

    
637
#define EV6HWMBR_(oo,h)        (OP(oo) | (((h) & 7) << 13))
638
#define EV6HWMBR_MASK        (OP_MASK | 0xE000)
639
#define EV6HWMBR(oo,h)        EV6HWMBR_(oo,h), EV6HWMBR_MASK
640

    
641
/* Abbreviations for instruction subsets.  */
642
#define BASE                        AXP_OPCODE_BASE
643
#define EV4                        AXP_OPCODE_EV4
644
#define EV5                        AXP_OPCODE_EV5
645
#define EV6                        AXP_OPCODE_EV6
646
#define BWX                        AXP_OPCODE_BWX
647
#define CIX                        AXP_OPCODE_CIX
648
#define MAX                        AXP_OPCODE_MAX
649

    
650
/* Common combinations of arguments */
651
#define ARG_NONE                { 0 }
652
#define ARG_BRA                        { RA, BDISP }
653
#define ARG_FBRA                { FA, BDISP }
654
#define ARG_FP                        { FA, FB, DFC1 }
655
#define ARG_FPZ1                { ZA, FB, DFC1 }
656
#define ARG_MEM                        { RA, MDISP, PRB }
657
#define ARG_FMEM                { FA, MDISP, PRB }
658
#define ARG_OPR                        { RA, RB, DRC1 }
659
#define ARG_OPRL                { RA, LIT, DRC1 }
660
#define ARG_OPRZ1                { ZA, RB, DRC1 }
661
#define ARG_OPRLZ1                { ZA, LIT, RC }
662
#define ARG_PCD                        { PALFN }
663
#define ARG_EV4HWMEM                { RA, EV4HWDISP, PRB }
664
#define ARG_EV4HWMPR                { RA, RBA, EV4HWINDEX }
665
#define ARG_EV5HWMEM                { RA, EV5HWDISP, PRB }
666
#define ARG_EV6HWMEM                { RA, EV6HWDISP, PRB }
667
 
668
/* The opcode table.
669

670
   The format of the opcode table is:
671

672
   NAME OPCODE MASK { OPERANDS }
673

674
   NAME                is the name of the instruction.
675

676
   OPCODE        is the instruction opcode.
677

678
   MASK                is the opcode mask; this is used to tell the disassembler
679
                    which bits in the actual opcode must match OPCODE.
680

681
   OPERANDS        is the list of operands.
682

683
   The preceding macros merge the text of the OPCODE and MASK fields.
684

685
   The disassembler reads the table in order and prints the first
686
   instruction which matches, so this table is sorted to put more
687
   specific instructions before more general instructions.
688

689
   Otherwise, it is sorted by major opcode and minor function code.
690

691
   There are three classes of not-really-instructions in this table:
692

693
   ALIAS        is another name for another instruction.  Some of
694
                these come from the Architecture Handbook, some
695
                come from the original gas opcode tables.  In all
696
                cases, the functionality of the opcode is unchanged.
697

698
   PSEUDO        a stylized code form endorsed by Chapter A.4 of the
699
                Architecture Handbook.
700

701
   EXTRA        a stylized code form found in the original gas tables.
702

703
   And two annotations:
704

705
   EV56 BUT        opcodes that are officially introduced as of the ev56,
706
                   but with defined results on previous implementations.
707

708
   EV56 UNA        opcodes that were introduced as of the ev56 with
709
                   presumably undefined results on previous implementations
710
                that were not assigned to a particular extension.
711
*/
712

    
713
const struct alpha_opcode alpha_opcodes[] = {
714
  { "halt",                SPCD(0x00,0x0000), BASE, ARG_NONE },
715
  { "draina",                SPCD(0x00,0x0002), BASE, ARG_NONE },
716
  { "bpt",                SPCD(0x00,0x0080), BASE, ARG_NONE },
717
  { "bugchk",                SPCD(0x00,0x0081), BASE, ARG_NONE },
718
  { "callsys",                SPCD(0x00,0x0083), BASE, ARG_NONE },
719
  { "chmk",                 SPCD(0x00,0x0083), BASE, ARG_NONE },
720
  { "imb",                SPCD(0x00,0x0086), BASE, ARG_NONE },
721
  { "rduniq",                SPCD(0x00,0x009e), BASE, ARG_NONE },
722
  { "wruniq",                SPCD(0x00,0x009f), BASE, ARG_NONE },
723
  { "gentrap",                SPCD(0x00,0x00aa), BASE, ARG_NONE },
724
  { "call_pal",                PCD(0x00), BASE, ARG_PCD },
725
  { "pal",                PCD(0x00), BASE, ARG_PCD },                /* alias */
726

    
727
  { "lda",                MEM(0x08), BASE, { RA, MDISP, ZB } },        /* pseudo */
728
  { "lda",                MEM(0x08), BASE, ARG_MEM },
729
  { "ldah",                MEM(0x09), BASE, { RA, MDISP, ZB } },        /* pseudo */
730
  { "ldah",                MEM(0x09), BASE, ARG_MEM },
731
  { "ldbu",                MEM(0x0A), BWX, ARG_MEM },
732
  { "unop",                MEM_(0x0B) | (30 << 16),
733
                        MEM_MASK, BASE, { ZA } },                /* pseudo */
734
  { "ldq_u",                MEM(0x0B), BASE, ARG_MEM },
735
  { "ldwu",                MEM(0x0C), BWX, ARG_MEM },
736
  { "stw",                MEM(0x0D), BWX, ARG_MEM },
737
  { "stb",                MEM(0x0E), BWX, ARG_MEM },
738
  { "stq_u",                MEM(0x0F), BASE, ARG_MEM },
739

    
740
  { "sextl",                OPR(0x10,0x00), BASE, ARG_OPRZ1 },        /* pseudo */
741
  { "sextl",                OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },        /* pseudo */
742
  { "addl",                OPR(0x10,0x00), BASE, ARG_OPR },
743
  { "addl",                OPRL(0x10,0x00), BASE, ARG_OPRL },
744
  { "s4addl",                OPR(0x10,0x02), BASE, ARG_OPR },
745
  { "s4addl",                OPRL(0x10,0x02), BASE, ARG_OPRL },
746
  { "negl",                OPR(0x10,0x09), BASE, ARG_OPRZ1 },        /* pseudo */
747
  { "negl",                OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },        /* pseudo */
748
  { "subl",                OPR(0x10,0x09), BASE, ARG_OPR },
749
  { "subl",                OPRL(0x10,0x09), BASE, ARG_OPRL },
750
  { "s4subl",                OPR(0x10,0x0B), BASE, ARG_OPR },
751
  { "s4subl",                OPRL(0x10,0x0B), BASE, ARG_OPRL },
752
  { "cmpbge",                OPR(0x10,0x0F), BASE, ARG_OPR },
753
  { "cmpbge",                OPRL(0x10,0x0F), BASE, ARG_OPRL },
754
  { "s8addl",                OPR(0x10,0x12), BASE, ARG_OPR },
755
  { "s8addl",                OPRL(0x10,0x12), BASE, ARG_OPRL },
756
  { "s8subl",                OPR(0x10,0x1B), BASE, ARG_OPR },
757
  { "s8subl",                OPRL(0x10,0x1B), BASE, ARG_OPRL },
758
  { "cmpult",                OPR(0x10,0x1D), BASE, ARG_OPR },
759
  { "cmpult",                OPRL(0x10,0x1D), BASE, ARG_OPRL },
760
  { "addq",                OPR(0x10,0x20), BASE, ARG_OPR },
761
  { "addq",                OPRL(0x10,0x20), BASE, ARG_OPRL },
762
  { "s4addq",                OPR(0x10,0x22), BASE, ARG_OPR },
763
  { "s4addq",                OPRL(0x10,0x22), BASE, ARG_OPRL },
764
  { "negq",                 OPR(0x10,0x29), BASE, ARG_OPRZ1 },        /* pseudo */
765
  { "negq",                 OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },        /* pseudo */
766
  { "subq",                OPR(0x10,0x29), BASE, ARG_OPR },
767
  { "subq",                OPRL(0x10,0x29), BASE, ARG_OPRL },
768
  { "s4subq",                OPR(0x10,0x2B), BASE, ARG_OPR },
769
  { "s4subq",                OPRL(0x10,0x2B), BASE, ARG_OPRL },
770
  { "cmpeq",                OPR(0x10,0x2D), BASE, ARG_OPR },
771
  { "cmpeq",                OPRL(0x10,0x2D), BASE, ARG_OPRL },
772
  { "s8addq",                OPR(0x10,0x32), BASE, ARG_OPR },
773
  { "s8addq",                OPRL(0x10,0x32), BASE, ARG_OPRL },
774
  { "s8subq",                OPR(0x10,0x3B), BASE, ARG_OPR },
775
  { "s8subq",                OPRL(0x10,0x3B), BASE, ARG_OPRL },
776
  { "cmpule",                OPR(0x10,0x3D), BASE, ARG_OPR },
777
  { "cmpule",                OPRL(0x10,0x3D), BASE, ARG_OPRL },
778
  { "addl/v",                OPR(0x10,0x40), BASE, ARG_OPR },
779
  { "addl/v",                OPRL(0x10,0x40), BASE, ARG_OPRL },
780
  { "negl/v",                OPR(0x10,0x49), BASE, ARG_OPRZ1 },        /* pseudo */
781
  { "negl/v",                OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },        /* pseudo */
782
  { "subl/v",                OPR(0x10,0x49), BASE, ARG_OPR },
783
  { "subl/v",                OPRL(0x10,0x49), BASE, ARG_OPRL },
784
  { "cmplt",                OPR(0x10,0x4D), BASE, ARG_OPR },
785
  { "cmplt",                OPRL(0x10,0x4D), BASE, ARG_OPRL },
786
  { "addq/v",                OPR(0x10,0x60), BASE, ARG_OPR },
787
  { "addq/v",                OPRL(0x10,0x60), BASE, ARG_OPRL },
788
  { "negq/v",                OPR(0x10,0x69), BASE, ARG_OPRZ1 },        /* pseudo */
789
  { "negq/v",                OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },        /* pseudo */
790
  { "subq/v",                OPR(0x10,0x69), BASE, ARG_OPR },
791
  { "subq/v",                OPRL(0x10,0x69), BASE, ARG_OPRL },
792
  { "cmple",                OPR(0x10,0x6D), BASE, ARG_OPR },
793
  { "cmple",                OPRL(0x10,0x6D), BASE, ARG_OPRL },
794

    
795
  { "and",                OPR(0x11,0x00), BASE, ARG_OPR },
796
  { "and",                OPRL(0x11,0x00), BASE, ARG_OPRL },
797
  { "andnot",                OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
798
  { "andnot",                OPRL(0x11,0x08), BASE, ARG_OPRL },        /* alias */
799
  { "bic",                OPR(0x11,0x08), BASE, ARG_OPR },
800
  { "bic",                OPRL(0x11,0x08), BASE, ARG_OPRL },
801
  { "cmovlbs",                OPR(0x11,0x14), BASE, ARG_OPR },
802
  { "cmovlbs",                OPRL(0x11,0x14), BASE, ARG_OPRL },
803
  { "cmovlbc",                OPR(0x11,0x16), BASE, ARG_OPR },
804
  { "cmovlbc",                OPRL(0x11,0x16), BASE, ARG_OPRL },
805
  { "nop",                OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
806
  { "clr",                OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
807
  { "mov",                OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
808
  { "mov",                OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
809
  { "mov",                OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
810
  { "or",                OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
811
  { "or",                OPRL(0x11,0x20), BASE, ARG_OPRL },        /* alias */
812
  { "bis",                OPR(0x11,0x20), BASE, ARG_OPR },
813
  { "bis",                OPRL(0x11,0x20), BASE, ARG_OPRL },
814
  { "cmoveq",                OPR(0x11,0x24), BASE, ARG_OPR },
815
  { "cmoveq",                OPRL(0x11,0x24), BASE, ARG_OPRL },
816
  { "cmovne",                OPR(0x11,0x26), BASE, ARG_OPR },
817
  { "cmovne",                OPRL(0x11,0x26), BASE, ARG_OPRL },
818
  { "not",                OPR(0x11,0x28), BASE, ARG_OPRZ1 },        /* pseudo */
819
  { "not",                OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },        /* pseudo */
820
  { "ornot",                OPR(0x11,0x28), BASE, ARG_OPR },
821
  { "ornot",                OPRL(0x11,0x28), BASE, ARG_OPRL },
822
  { "xor",                OPR(0x11,0x40), BASE, ARG_OPR },
823
  { "xor",                OPRL(0x11,0x40), BASE, ARG_OPRL },
824
  { "cmovlt",                OPR(0x11,0x44), BASE, ARG_OPR },
825
  { "cmovlt",                OPRL(0x11,0x44), BASE, ARG_OPRL },
826
  { "cmovge",                OPR(0x11,0x46), BASE, ARG_OPR },
827
  { "cmovge",                OPRL(0x11,0x46), BASE, ARG_OPRL },
828
  { "eqv",                OPR(0x11,0x48), BASE, ARG_OPR },
829
  { "eqv",                OPRL(0x11,0x48), BASE, ARG_OPRL },
830
  { "xornot",                OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
831
  { "xornot",                OPRL(0x11,0x48), BASE, ARG_OPRL },        /* alias */
832
  { "amask",                OPR(0x11,0x61), BASE, ARG_OPRZ1 },        /* ev56 but */
833
  { "amask",                OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },        /* ev56 but */
834
  { "cmovle",                OPR(0x11,0x64), BASE, ARG_OPR },
835
  { "cmovle",                OPRL(0x11,0x64), BASE, ARG_OPRL },
836
  { "cmovgt",                OPR(0x11,0x66), BASE, ARG_OPR },
837
  { "cmovgt",                OPRL(0x11,0x66), BASE, ARG_OPRL },
838
  { "implver",                OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
839
                            0xFFFFFFE0, BASE, { RC } },                /* ev56 but */
840

    
841
  { "mskbl",                OPR(0x12,0x02), BASE, ARG_OPR },
842
  { "mskbl",                OPRL(0x12,0x02), BASE, ARG_OPRL },
843
  { "extbl",                OPR(0x12,0x06), BASE, ARG_OPR },
844
  { "extbl",                OPRL(0x12,0x06), BASE, ARG_OPRL },
845
  { "insbl",                OPR(0x12,0x0B), BASE, ARG_OPR },
846
  { "insbl",                OPRL(0x12,0x0B), BASE, ARG_OPRL },
847
  { "mskwl",                OPR(0x12,0x12), BASE, ARG_OPR },
848
  { "mskwl",                OPRL(0x12,0x12), BASE, ARG_OPRL },
849
  { "extwl",                OPR(0x12,0x16), BASE, ARG_OPR },
850
  { "extwl",                OPRL(0x12,0x16), BASE, ARG_OPRL },
851
  { "inswl",                OPR(0x12,0x1B), BASE, ARG_OPR },
852
  { "inswl",                OPRL(0x12,0x1B), BASE, ARG_OPRL },
853
  { "mskll",                OPR(0x12,0x22), BASE, ARG_OPR },
854
  { "mskll",                OPRL(0x12,0x22), BASE, ARG_OPRL },
855
  { "extll",                OPR(0x12,0x26), BASE, ARG_OPR },
856
  { "extll",                OPRL(0x12,0x26), BASE, ARG_OPRL },
857
  { "insll",                OPR(0x12,0x2B), BASE, ARG_OPR },
858
  { "insll",                OPRL(0x12,0x2B), BASE, ARG_OPRL },
859
  { "zap",                OPR(0x12,0x30), BASE, ARG_OPR },
860
  { "zap",                OPRL(0x12,0x30), BASE, ARG_OPRL },
861
  { "zapnot",                OPR(0x12,0x31), BASE, ARG_OPR },
862
  { "zapnot",                OPRL(0x12,0x31), BASE, ARG_OPRL },
863
  { "mskql",                OPR(0x12,0x32), BASE, ARG_OPR },
864
  { "mskql",                OPRL(0x12,0x32), BASE, ARG_OPRL },
865
  { "srl",                OPR(0x12,0x34), BASE, ARG_OPR },
866
  { "srl",                OPRL(0x12,0x34), BASE, ARG_OPRL },
867
  { "extql",                OPR(0x12,0x36), BASE, ARG_OPR },
868
  { "extql",                OPRL(0x12,0x36), BASE, ARG_OPRL },
869
  { "sll",                OPR(0x12,0x39), BASE, ARG_OPR },
870
  { "sll",                OPRL(0x12,0x39), BASE, ARG_OPRL },
871
  { "insql",                OPR(0x12,0x3B), BASE, ARG_OPR },
872
  { "insql",                OPRL(0x12,0x3B), BASE, ARG_OPRL },
873
  { "sra",                OPR(0x12,0x3C), BASE, ARG_OPR },
874
  { "sra",                OPRL(0x12,0x3C), BASE, ARG_OPRL },
875
  { "mskwh",                OPR(0x12,0x52), BASE, ARG_OPR },
876
  { "mskwh",                OPRL(0x12,0x52), BASE, ARG_OPRL },
877
  { "inswh",                OPR(0x12,0x57), BASE, ARG_OPR },
878
  { "inswh",                OPRL(0x12,0x57), BASE, ARG_OPRL },
879
  { "extwh",                OPR(0x12,0x5A), BASE, ARG_OPR },
880
  { "extwh",                OPRL(0x12,0x5A), BASE, ARG_OPRL },
881
  { "msklh",                OPR(0x12,0x62), BASE, ARG_OPR },
882
  { "msklh",                OPRL(0x12,0x62), BASE, ARG_OPRL },
883
  { "inslh",                OPR(0x12,0x67), BASE, ARG_OPR },
884
  { "inslh",                OPRL(0x12,0x67), BASE, ARG_OPRL },
885
  { "extlh",                OPR(0x12,0x6A), BASE, ARG_OPR },
886
  { "extlh",                OPRL(0x12,0x6A), BASE, ARG_OPRL },
887
  { "mskqh",                OPR(0x12,0x72), BASE, ARG_OPR },
888
  { "mskqh",                OPRL(0x12,0x72), BASE, ARG_OPRL },
889
  { "insqh",                OPR(0x12,0x77), BASE, ARG_OPR },
890
  { "insqh",                OPRL(0x12,0x77), BASE, ARG_OPRL },
891
  { "extqh",                OPR(0x12,0x7A), BASE, ARG_OPR },
892
  { "extqh",                OPRL(0x12,0x7A), BASE, ARG_OPRL },
893

    
894
  { "mull",                OPR(0x13,0x00), BASE, ARG_OPR },
895
  { "mull",                OPRL(0x13,0x00), BASE, ARG_OPRL },
896
  { "mulq",                OPR(0x13,0x20), BASE, ARG_OPR },
897
  { "mulq",                OPRL(0x13,0x20), BASE, ARG_OPRL },
898
  { "umulh",                OPR(0x13,0x30), BASE, ARG_OPR },
899
  { "umulh",                OPRL(0x13,0x30), BASE, ARG_OPRL },
900
  { "mull/v",                OPR(0x13,0x40), BASE, ARG_OPR },
901
  { "mull/v",                OPRL(0x13,0x40), BASE, ARG_OPRL },
902
  { "mulq/v",                OPR(0x13,0x60), BASE, ARG_OPR },
903
  { "mulq/v",                OPRL(0x13,0x60), BASE, ARG_OPRL },
904

    
905
  { "itofs",                FP(0x14,0x004), CIX, { RA, ZB, FC } },
906
  { "sqrtf/c",                FP(0x14,0x00A), CIX, ARG_FPZ1 },
907
  { "sqrts/c",                FP(0x14,0x00B), CIX, ARG_FPZ1 },
908
  { "itoff",                FP(0x14,0x014), CIX, { RA, ZB, FC } },
909
  { "itoft",                FP(0x14,0x024), CIX, { RA, ZB, FC } },
910
  { "sqrtg/c",                FP(0x14,0x02A), CIX, ARG_FPZ1 },
911
  { "sqrtt/c",                FP(0x14,0x02B), CIX, ARG_FPZ1 },
912
  { "sqrts/m",                FP(0x14,0x04B), CIX, ARG_FPZ1 },
913
  { "sqrtt/m",                FP(0x14,0x06B), CIX, ARG_FPZ1 },
914
  { "sqrtf",                FP(0x14,0x08A), CIX, ARG_FPZ1 },
915
  { "sqrts",                FP(0x14,0x08B), CIX, ARG_FPZ1 },
916
  { "sqrtg",                FP(0x14,0x0AA), CIX, ARG_FPZ1 },
917
  { "sqrtt",                FP(0x14,0x0AB), CIX, ARG_FPZ1 },
918
  { "sqrts/d",                FP(0x14,0x0CB), CIX, ARG_FPZ1 },
919
  { "sqrtt/d",                FP(0x14,0x0EB), CIX, ARG_FPZ1 },
920
  { "sqrtf/uc",                FP(0x14,0x10A), CIX, ARG_FPZ1 },
921
  { "sqrts/uc",                FP(0x14,0x10B), CIX, ARG_FPZ1 },
922
  { "sqrtg/uc",                FP(0x14,0x12A), CIX, ARG_FPZ1 },
923
  { "sqrtt/uc",                FP(0x14,0x12B), CIX, ARG_FPZ1 },
924
  { "sqrts/um",                FP(0x14,0x14B), CIX, ARG_FPZ1 },
925
  { "sqrtt/um",                FP(0x14,0x16B), CIX, ARG_FPZ1 },
926
  { "sqrtf/u",                FP(0x14,0x18A), CIX, ARG_FPZ1 },
927
  { "sqrts/u",                FP(0x14,0x18B), CIX, ARG_FPZ1 },
928
  { "sqrtg/u",                FP(0x14,0x1AA), CIX, ARG_FPZ1 },
929
  { "sqrtt/u",                FP(0x14,0x1AB), CIX, ARG_FPZ1 },
930
  { "sqrts/ud",                FP(0x14,0x1CB), CIX, ARG_FPZ1 },
931
  { "sqrtt/ud",                FP(0x14,0x1EB), CIX, ARG_FPZ1 },
932
  { "sqrtf/sc",                FP(0x14,0x40A), CIX, ARG_FPZ1 },
933
  { "sqrtg/sc",                FP(0x14,0x42A), CIX, ARG_FPZ1 },
934
  { "sqrtf/s",                FP(0x14,0x48A), CIX, ARG_FPZ1 },
935
  { "sqrtg/s",                FP(0x14,0x4AA), CIX, ARG_FPZ1 },
936
  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
937
  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
938
  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
939
  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
940
  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
941
  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
942
  { "sqrtf/su",                FP(0x14,0x58A), CIX, ARG_FPZ1 },
943
  { "sqrts/su",                FP(0x14,0x58B), CIX, ARG_FPZ1 },
944
  { "sqrtg/su",                FP(0x14,0x5AA), CIX, ARG_FPZ1 },
945
  { "sqrtt/su",                FP(0x14,0x5AB), CIX, ARG_FPZ1 },
946
  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
947
  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
948
  { "sqrts/suic",        FP(0x14,0x70B), CIX, ARG_FPZ1 },
949
  { "sqrtt/suic",        FP(0x14,0x72B), CIX, ARG_FPZ1 },
950
  { "sqrts/suim",        FP(0x14,0x74B), CIX, ARG_FPZ1 },
951
  { "sqrtt/suim",        FP(0x14,0x76B), CIX, ARG_FPZ1 },
952
  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
953
  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
954
  { "sqrts/suid",        FP(0x14,0x7CB), CIX, ARG_FPZ1 },
955
  { "sqrtt/suid",        FP(0x14,0x7EB), CIX, ARG_FPZ1 },
956

    
957
  { "addf/c",                FP(0x15,0x000), BASE, ARG_FP },
958
  { "subf/c",                FP(0x15,0x001), BASE, ARG_FP },
959
  { "mulf/c",                FP(0x15,0x002), BASE, ARG_FP },
960
  { "divf/c",                FP(0x15,0x003), BASE, ARG_FP },
961
  { "cvtdg/c",                FP(0x15,0x01E), BASE, ARG_FPZ1 },
962
  { "addg/c",                FP(0x15,0x020), BASE, ARG_FP },
963
  { "subg/c",                FP(0x15,0x021), BASE, ARG_FP },
964
  { "mulg/c",                FP(0x15,0x022), BASE, ARG_FP },
965
  { "divg/c",                FP(0x15,0x023), BASE, ARG_FP },
966
  { "cvtgf/c",                FP(0x15,0x02C), BASE, ARG_FPZ1 },
967
  { "cvtgd/c",                FP(0x15,0x02D), BASE, ARG_FPZ1 },
968
  { "cvtgq/c",                FP(0x15,0x02F), BASE, ARG_FPZ1 },
969
  { "cvtqf/c",                FP(0x15,0x03C), BASE, ARG_FPZ1 },
970
  { "cvtqg/c",                FP(0x15,0x03E), BASE, ARG_FPZ1 },
971
  { "addf",                FP(0x15,0x080), BASE, ARG_FP },
972
  { "negf",                FP(0x15,0x081), BASE, ARG_FPZ1 },        /* pseudo */
973
  { "subf",                FP(0x15,0x081), BASE, ARG_FP },
974
  { "mulf",                FP(0x15,0x082), BASE, ARG_FP },
975
  { "divf",                FP(0x15,0x083), BASE, ARG_FP },
976
  { "cvtdg",                FP(0x15,0x09E), BASE, ARG_FPZ1 },
977
  { "addg",                FP(0x15,0x0A0), BASE, ARG_FP },
978
  { "negg",                FP(0x15,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
979
  { "subg",                FP(0x15,0x0A1), BASE, ARG_FP },
980
  { "mulg",                FP(0x15,0x0A2), BASE, ARG_FP },
981
  { "divg",                FP(0x15,0x0A3), BASE, ARG_FP },
982
  { "cmpgeq",                FP(0x15,0x0A5), BASE, ARG_FP },
983
  { "cmpglt",                FP(0x15,0x0A6), BASE, ARG_FP },
984
  { "cmpgle",                FP(0x15,0x0A7), BASE, ARG_FP },
985
  { "cvtgf",                FP(0x15,0x0AC), BASE, ARG_FPZ1 },
986
  { "cvtgd",                FP(0x15,0x0AD), BASE, ARG_FPZ1 },
987
  { "cvtgq",                FP(0x15,0x0AF), BASE, ARG_FPZ1 },
988
  { "cvtqf",                FP(0x15,0x0BC), BASE, ARG_FPZ1 },
989
  { "cvtqg",                FP(0x15,0x0BE), BASE, ARG_FPZ1 },
990
  { "addf/uc",                FP(0x15,0x100), BASE, ARG_FP },
991
  { "subf/uc",                FP(0x15,0x101), BASE, ARG_FP },
992
  { "mulf/uc",                FP(0x15,0x102), BASE, ARG_FP },
993
  { "divf/uc",                FP(0x15,0x103), BASE, ARG_FP },
994
  { "cvtdg/uc",                FP(0x15,0x11E), BASE, ARG_FPZ1 },
995
  { "addg/uc",                FP(0x15,0x120), BASE, ARG_FP },
996
  { "subg/uc",                FP(0x15,0x121), BASE, ARG_FP },
997
  { "mulg/uc",                FP(0x15,0x122), BASE, ARG_FP },
998
  { "divg/uc",                FP(0x15,0x123), BASE, ARG_FP },
999
  { "cvtgf/uc",                FP(0x15,0x12C), BASE, ARG_FPZ1 },
1000
  { "cvtgd/uc",                FP(0x15,0x12D), BASE, ARG_FPZ1 },
1001
  { "cvtgq/vc",                FP(0x15,0x12F), BASE, ARG_FPZ1 },
1002
  { "addf/u",                FP(0x15,0x180), BASE, ARG_FP },
1003
  { "subf/u",                FP(0x15,0x181), BASE, ARG_FP },
1004
  { "mulf/u",                FP(0x15,0x182), BASE, ARG_FP },
1005
  { "divf/u",                FP(0x15,0x183), BASE, ARG_FP },
1006
  { "cvtdg/u",                FP(0x15,0x19E), BASE, ARG_FPZ1 },
1007
  { "addg/u",                FP(0x15,0x1A0), BASE, ARG_FP },
1008
  { "subg/u",                FP(0x15,0x1A1), BASE, ARG_FP },
1009
  { "mulg/u",                FP(0x15,0x1A2), BASE, ARG_FP },
1010
  { "divg/u",                FP(0x15,0x1A3), BASE, ARG_FP },
1011
  { "cvtgf/u",                FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1012
  { "cvtgd/u",                FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1013
  { "cvtgq/v",                FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1014
  { "addf/sc",                FP(0x15,0x400), BASE, ARG_FP },
1015
  { "subf/sc",                FP(0x15,0x401), BASE, ARG_FP },
1016
  { "mulf/sc",                FP(0x15,0x402), BASE, ARG_FP },
1017
  { "divf/sc",                FP(0x15,0x403), BASE, ARG_FP },
1018
  { "cvtdg/sc",                FP(0x15,0x41E), BASE, ARG_FPZ1 },
1019
  { "addg/sc",                FP(0x15,0x420), BASE, ARG_FP },
1020
  { "subg/sc",                FP(0x15,0x421), BASE, ARG_FP },
1021
  { "mulg/sc",                FP(0x15,0x422), BASE, ARG_FP },
1022
  { "divg/sc",                FP(0x15,0x423), BASE, ARG_FP },
1023
  { "cvtgf/sc",                FP(0x15,0x42C), BASE, ARG_FPZ1 },
1024
  { "cvtgd/sc",                FP(0x15,0x42D), BASE, ARG_FPZ1 },
1025
  { "cvtgq/sc",                FP(0x15,0x42F), BASE, ARG_FPZ1 },
1026
  { "addf/s",                FP(0x15,0x480), BASE, ARG_FP },
1027
  { "negf/s",                FP(0x15,0x481), BASE, ARG_FPZ1 },        /* pseudo */
1028
  { "subf/s",                FP(0x15,0x481), BASE, ARG_FP },
1029
  { "mulf/s",                FP(0x15,0x482), BASE, ARG_FP },
1030
  { "divf/s",                FP(0x15,0x483), BASE, ARG_FP },
1031
  { "cvtdg/s",                FP(0x15,0x49E), BASE, ARG_FPZ1 },
1032
  { "addg/s",                FP(0x15,0x4A0), BASE, ARG_FP },
1033
  { "negg/s",                FP(0x15,0x4A1), BASE, ARG_FPZ1 },        /* pseudo */
1034
  { "subg/s",                FP(0x15,0x4A1), BASE, ARG_FP },
1035
  { "mulg/s",                FP(0x15,0x4A2), BASE, ARG_FP },
1036
  { "divg/s",                FP(0x15,0x4A3), BASE, ARG_FP },
1037
  { "cmpgeq/s",                FP(0x15,0x4A5), BASE, ARG_FP },
1038
  { "cmpglt/s",                FP(0x15,0x4A6), BASE, ARG_FP },
1039
  { "cmpgle/s",                FP(0x15,0x4A7), BASE, ARG_FP },
1040
  { "cvtgf/s",                FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1041
  { "cvtgd/s",                FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1042
  { "cvtgq/s",                FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1043
  { "addf/suc",                FP(0x15,0x500), BASE, ARG_FP },
1044
  { "subf/suc",                FP(0x15,0x501), BASE, ARG_FP },
1045
  { "mulf/suc",                FP(0x15,0x502), BASE, ARG_FP },
1046
  { "divf/suc",                FP(0x15,0x503), BASE, ARG_FP },
1047
  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1048
  { "addg/suc",                FP(0x15,0x520), BASE, ARG_FP },
1049
  { "subg/suc",                FP(0x15,0x521), BASE, ARG_FP },
1050
  { "mulg/suc",                FP(0x15,0x522), BASE, ARG_FP },
1051
  { "divg/suc",                FP(0x15,0x523), BASE, ARG_FP },
1052
  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1053
  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1054
  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1055
  { "addf/su",                FP(0x15,0x580), BASE, ARG_FP },
1056
  { "subf/su",                FP(0x15,0x581), BASE, ARG_FP },
1057
  { "mulf/su",                FP(0x15,0x582), BASE, ARG_FP },
1058
  { "divf/su",                FP(0x15,0x583), BASE, ARG_FP },
1059
  { "cvtdg/su",                FP(0x15,0x59E), BASE, ARG_FPZ1 },
1060
  { "addg/su",                FP(0x15,0x5A0), BASE, ARG_FP },
1061
  { "subg/su",                FP(0x15,0x5A1), BASE, ARG_FP },
1062
  { "mulg/su",                FP(0x15,0x5A2), BASE, ARG_FP },
1063
  { "divg/su",                FP(0x15,0x5A3), BASE, ARG_FP },
1064
  { "cvtgf/su",                FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1065
  { "cvtgd/su",                FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1066
  { "cvtgq/sv",                FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1067

    
1068
  { "adds/c",                FP(0x16,0x000), BASE, ARG_FP },
1069
  { "subs/c",                FP(0x16,0x001), BASE, ARG_FP },
1070
  { "muls/c",                FP(0x16,0x002), BASE, ARG_FP },
1071
  { "divs/c",                FP(0x16,0x003), BASE, ARG_FP },
1072
  { "addt/c",                FP(0x16,0x020), BASE, ARG_FP },
1073
  { "subt/c",                FP(0x16,0x021), BASE, ARG_FP },
1074
  { "mult/c",                FP(0x16,0x022), BASE, ARG_FP },
1075
  { "divt/c",                FP(0x16,0x023), BASE, ARG_FP },
1076
  { "cvtts/c",                FP(0x16,0x02C), BASE, ARG_FPZ1 },
1077
  { "cvttq/c",                FP(0x16,0x02F), BASE, ARG_FPZ1 },
1078
  { "cvtqs/c",                FP(0x16,0x03C), BASE, ARG_FPZ1 },
1079
  { "cvtqt/c",                FP(0x16,0x03E), BASE, ARG_FPZ1 },
1080
  { "adds/m",                FP(0x16,0x040), BASE, ARG_FP },
1081
  { "subs/m",                FP(0x16,0x041), BASE, ARG_FP },
1082
  { "muls/m",                FP(0x16,0x042), BASE, ARG_FP },
1083
  { "divs/m",                FP(0x16,0x043), BASE, ARG_FP },
1084
  { "addt/m",                FP(0x16,0x060), BASE, ARG_FP },
1085
  { "subt/m",                FP(0x16,0x061), BASE, ARG_FP },
1086
  { "mult/m",                FP(0x16,0x062), BASE, ARG_FP },
1087
  { "divt/m",                FP(0x16,0x063), BASE, ARG_FP },
1088
  { "cvtts/m",                FP(0x16,0x06C), BASE, ARG_FPZ1 },
1089
  { "cvttq/m",                FP(0x16,0x06F), BASE, ARG_FPZ1 },
1090
  { "cvtqs/m",                FP(0x16,0x07C), BASE, ARG_FPZ1 },
1091
  { "cvtqt/m",                FP(0x16,0x07E), BASE, ARG_FPZ1 },
1092
  { "adds",                FP(0x16,0x080), BASE, ARG_FP },
1093
  { "negs",                 FP(0x16,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1094
  { "subs",                FP(0x16,0x081), BASE, ARG_FP },
1095
  { "muls",                FP(0x16,0x082), BASE, ARG_FP },
1096
  { "divs",                FP(0x16,0x083), BASE, ARG_FP },
1097
  { "addt",                FP(0x16,0x0A0), BASE, ARG_FP },
1098
  { "negt",                 FP(0x16,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1099
  { "subt",                FP(0x16,0x0A1), BASE, ARG_FP },
1100
  { "mult",                FP(0x16,0x0A2), BASE, ARG_FP },
1101
  { "divt",                FP(0x16,0x0A3), BASE, ARG_FP },
1102
  { "cmptun",                FP(0x16,0x0A4), BASE, ARG_FP },
1103
  { "cmpteq",                FP(0x16,0x0A5), BASE, ARG_FP },
1104
  { "cmptlt",                FP(0x16,0x0A6), BASE, ARG_FP },
1105
  { "cmptle",                FP(0x16,0x0A7), BASE, ARG_FP },
1106
  { "cvtts",                FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1107
  { "cvttq",                FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1108
  { "cvtqs",                FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1109
  { "cvtqt",                FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1110
  { "adds/d",                FP(0x16,0x0C0), BASE, ARG_FP },
1111
  { "subs/d",                FP(0x16,0x0C1), BASE, ARG_FP },
1112
  { "muls/d",                FP(0x16,0x0C2), BASE, ARG_FP },
1113
  { "divs/d",                FP(0x16,0x0C3), BASE, ARG_FP },
1114
  { "addt/d",                FP(0x16,0x0E0), BASE, ARG_FP },
1115
  { "subt/d",                FP(0x16,0x0E1), BASE, ARG_FP },
1116
  { "mult/d",                FP(0x16,0x0E2), BASE, ARG_FP },
1117
  { "divt/d",                FP(0x16,0x0E3), BASE, ARG_FP },
1118
  { "cvtts/d",                FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1119
  { "cvttq/d",                FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1120
  { "cvtqs/d",                FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1121
  { "cvtqt/d",                FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1122
  { "adds/uc",                FP(0x16,0x100), BASE, ARG_FP },
1123
  { "subs/uc",                FP(0x16,0x101), BASE, ARG_FP },
1124
  { "muls/uc",                FP(0x16,0x102), BASE, ARG_FP },
1125
  { "divs/uc",                FP(0x16,0x103), BASE, ARG_FP },
1126
  { "addt/uc",                FP(0x16,0x120), BASE, ARG_FP },
1127
  { "subt/uc",                FP(0x16,0x121), BASE, ARG_FP },
1128
  { "mult/uc",                FP(0x16,0x122), BASE, ARG_FP },
1129
  { "divt/uc",                FP(0x16,0x123), BASE, ARG_FP },
1130
  { "cvtts/uc",                FP(0x16,0x12C), BASE, ARG_FPZ1 },
1131
  { "cvttq/vc",                FP(0x16,0x12F), BASE, ARG_FPZ1 },
1132
  { "adds/um",                FP(0x16,0x140), BASE, ARG_FP },
1133
  { "subs/um",                FP(0x16,0x141), BASE, ARG_FP },
1134
  { "muls/um",                FP(0x16,0x142), BASE, ARG_FP },
1135
  { "divs/um",                FP(0x16,0x143), BASE, ARG_FP },
1136
  { "addt/um",                FP(0x16,0x160), BASE, ARG_FP },
1137
  { "subt/um",                FP(0x16,0x161), BASE, ARG_FP },
1138
  { "mult/um",                FP(0x16,0x162), BASE, ARG_FP },
1139
  { "divt/um",                FP(0x16,0x163), BASE, ARG_FP },
1140
  { "cvtts/um",                FP(0x16,0x16C), BASE, ARG_FPZ1 },
1141
  { "cvttq/vm",                FP(0x16,0x16F), BASE, ARG_FPZ1 },
1142
  { "adds/u",                FP(0x16,0x180), BASE, ARG_FP },
1143
  { "subs/u",                FP(0x16,0x181), BASE, ARG_FP },
1144
  { "muls/u",                FP(0x16,0x182), BASE, ARG_FP },
1145
  { "divs/u",                FP(0x16,0x183), BASE, ARG_FP },
1146
  { "addt/u",                FP(0x16,0x1A0), BASE, ARG_FP },
1147
  { "subt/u",                FP(0x16,0x1A1), BASE, ARG_FP },
1148
  { "mult/u",                FP(0x16,0x1A2), BASE, ARG_FP },
1149
  { "divt/u",                FP(0x16,0x1A3), BASE, ARG_FP },
1150
  { "cvtts/u",                FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1151
  { "cvttq/v",                FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1152
  { "adds/ud",                FP(0x16,0x1C0), BASE, ARG_FP },
1153
  { "subs/ud",                FP(0x16,0x1C1), BASE, ARG_FP },
1154
  { "muls/ud",                FP(0x16,0x1C2), BASE, ARG_FP },
1155
  { "divs/ud",                FP(0x16,0x1C3), BASE, ARG_FP },
1156
  { "addt/ud",                FP(0x16,0x1E0), BASE, ARG_FP },
1157
  { "subt/ud",                FP(0x16,0x1E1), BASE, ARG_FP },
1158
  { "mult/ud",                FP(0x16,0x1E2), BASE, ARG_FP },
1159
  { "divt/ud",                FP(0x16,0x1E3), BASE, ARG_FP },
1160
  { "cvtts/ud",                FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1161
  { "cvttq/vd",                FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1162
  { "cvtst",                FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1163
  { "adds/suc",                FP(0x16,0x500), BASE, ARG_FP },
1164
  { "subs/suc",                FP(0x16,0x501), BASE, ARG_FP },
1165
  { "muls/suc",                FP(0x16,0x502), BASE, ARG_FP },
1166
  { "divs/suc",                FP(0x16,0x503), BASE, ARG_FP },
1167
  { "addt/suc",                FP(0x16,0x520), BASE, ARG_FP },
1168
  { "subt/suc",                FP(0x16,0x521), BASE, ARG_FP },
1169
  { "mult/suc",                FP(0x16,0x522), BASE, ARG_FP },
1170
  { "divt/suc",                FP(0x16,0x523), BASE, ARG_FP },
1171
  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1172
  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1173
  { "adds/sum",                FP(0x16,0x540), BASE, ARG_FP },
1174
  { "subs/sum",                FP(0x16,0x541), BASE, ARG_FP },
1175
  { "muls/sum",                FP(0x16,0x542), BASE, ARG_FP },
1176
  { "divs/sum",                FP(0x16,0x543), BASE, ARG_FP },
1177
  { "addt/sum",                FP(0x16,0x560), BASE, ARG_FP },
1178
  { "subt/sum",                FP(0x16,0x561), BASE, ARG_FP },
1179
  { "mult/sum",                FP(0x16,0x562), BASE, ARG_FP },
1180
  { "divt/sum",                FP(0x16,0x563), BASE, ARG_FP },
1181
  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1182
  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1183
  { "adds/su",                FP(0x16,0x580), BASE, ARG_FP },
1184
  { "negs/su",                FP(0x16,0x581), BASE, ARG_FPZ1 },        /* pseudo */
1185
  { "subs/su",                FP(0x16,0x581), BASE, ARG_FP },
1186
  { "muls/su",                FP(0x16,0x582), BASE, ARG_FP },
1187
  { "divs/su",                FP(0x16,0x583), BASE, ARG_FP },
1188
  { "addt/su",                FP(0x16,0x5A0), BASE, ARG_FP },
1189
  { "negt/su",                FP(0x16,0x5A1), BASE, ARG_FPZ1 },        /* pseudo */
1190
  { "subt/su",                FP(0x16,0x5A1), BASE, ARG_FP },
1191
  { "mult/su",                FP(0x16,0x5A2), BASE, ARG_FP },
1192
  { "divt/su",                FP(0x16,0x5A3), BASE, ARG_FP },
1193
  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1194
  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1195
  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1196
  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1197
  { "cvtts/su",                FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1198
  { "cvttq/sv",                FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1199
  { "adds/sud",                FP(0x16,0x5C0), BASE, ARG_FP },
1200
  { "subs/sud",                FP(0x16,0x5C1), BASE, ARG_FP },
1201
  { "muls/sud",                FP(0x16,0x5C2), BASE, ARG_FP },
1202
  { "divs/sud",                FP(0x16,0x5C3), BASE, ARG_FP },
1203
  { "addt/sud",                FP(0x16,0x5E0), BASE, ARG_FP },
1204
  { "subt/sud",                FP(0x16,0x5E1), BASE, ARG_FP },
1205
  { "mult/sud",                FP(0x16,0x5E2), BASE, ARG_FP },
1206
  { "divt/sud",                FP(0x16,0x5E3), BASE, ARG_FP },
1207
  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1208
  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1209
  { "cvtst/s",                FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1210
  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1211
  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1212
  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1213
  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1214
  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1215
  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1216
  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1217
  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1218
  { "cvtts/suic",        FP(0x16,0x72C), BASE, ARG_FPZ1 },
1219
  { "cvttq/svic",        FP(0x16,0x72F), BASE, ARG_FPZ1 },
1220
  { "cvtqs/suic",        FP(0x16,0x73C), BASE, ARG_FPZ1 },
1221
  { "cvtqt/suic",        FP(0x16,0x73E), BASE, ARG_FPZ1 },
1222
  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1223
  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1224
  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1225
  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1226
  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1227
  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1228
  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1229
  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1230
  { "cvtts/suim",        FP(0x16,0x76C), BASE, ARG_FPZ1 },
1231
  { "cvttq/svim",        FP(0x16,0x76F), BASE, ARG_FPZ1 },
1232
  { "cvtqs/suim",        FP(0x16,0x77C), BASE, ARG_FPZ1 },
1233
  { "cvtqt/suim",        FP(0x16,0x77E), BASE, ARG_FPZ1 },
1234
  { "adds/sui",                FP(0x16,0x780), BASE, ARG_FP },
1235
  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },        /* pseudo */
1236
  { "subs/sui",                FP(0x16,0x781), BASE, ARG_FP },
1237
  { "muls/sui",                FP(0x16,0x782), BASE, ARG_FP },
1238
  { "divs/sui",                FP(0x16,0x783), BASE, ARG_FP },
1239
  { "addt/sui",                FP(0x16,0x7A0), BASE, ARG_FP },
1240
  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },        /* pseudo */
1241
  { "subt/sui",                FP(0x16,0x7A1), BASE, ARG_FP },
1242
  { "mult/sui",                FP(0x16,0x7A2), BASE, ARG_FP },
1243
  { "divt/sui",                FP(0x16,0x7A3), BASE, ARG_FP },
1244
  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1245
  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1246
  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1247
  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1248
  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1249
  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1250
  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1251
  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1252
  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1253
  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1254
  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1255
  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1256
  { "cvtts/suid",        FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1257
  { "cvttq/svid",        FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1258
  { "cvtqs/suid",        FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1259
  { "cvtqt/suid",        FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1260

    
1261
  { "cvtlq",                FP(0x17,0x010), BASE, ARG_FPZ1 },
1262
  { "fnop",                FP(0x17,0x020), BASE, { ZA, ZB, ZC } },        /* pseudo */
1263
  { "fclr",                FP(0x17,0x020), BASE, { ZA, ZB, FC } },        /* pseudo */
1264
  { "fabs",                FP(0x17,0x020), BASE, ARG_FPZ1 },        /* pseudo */
1265
  { "fmov",                FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1266
  { "cpys",                FP(0x17,0x020), BASE, ARG_FP },
1267
  { "fneg",                FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1268
  { "cpysn",                FP(0x17,0x021), BASE, ARG_FP },
1269
  { "cpyse",                FP(0x17,0x022), BASE, ARG_FP },
1270
  { "mt_fpcr",                FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1271
  { "mf_fpcr",                FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1272
  { "fcmoveq",                FP(0x17,0x02A), BASE, ARG_FP },
1273
  { "fcmovne",                FP(0x17,0x02B), BASE, ARG_FP },
1274
  { "fcmovlt",                FP(0x17,0x02C), BASE, ARG_FP },
1275
  { "fcmovge",                FP(0x17,0x02D), BASE, ARG_FP },
1276
  { "fcmovle",                FP(0x17,0x02E), BASE, ARG_FP },
1277
  { "fcmovgt",                FP(0x17,0x02F), BASE, ARG_FP },
1278
  { "cvtql",                FP(0x17,0x030), BASE, ARG_FPZ1 },
1279
  { "cvtql/v",                FP(0x17,0x130), BASE, ARG_FPZ1 },
1280
  { "cvtql/sv",                FP(0x17,0x530), BASE, ARG_FPZ1 },
1281

    
1282
  { "trapb",                MFC(0x18,0x0000), BASE, ARG_NONE },
1283
  { "draint",                MFC(0x18,0x0000), BASE, ARG_NONE },        /* alias */
1284
  { "excb",                MFC(0x18,0x0400), BASE, ARG_NONE },
1285
  { "mb",                MFC(0x18,0x4000), BASE, ARG_NONE },
1286
  { "wmb",                MFC(0x18,0x4400), BASE, ARG_NONE },
1287
  { "fetch",                MFC(0x18,0x8000), BASE, { ZA, PRB } },
1288
  { "fetch_m",                MFC(0x18,0xA000), BASE, { ZA, PRB } },
1289
  { "rpcc",                MFC(0x18,0xC000), BASE, { RA } },
1290
  { "rc",                MFC(0x18,0xE000), BASE, { RA } },
1291
  { "ecb",                MFC(0x18,0xE800), BASE, { ZA, PRB } },        /* ev56 una */
1292
  { "rs",                MFC(0x18,0xF000), BASE, { RA } },
1293
  { "wh64",                MFC(0x18,0xF800), BASE, { ZA, PRB } },        /* ev56 una */
1294
  { "wh64en",                MFC(0x18,0xFC00), BASE, { ZA, PRB } },        /* ev7 una */
1295

    
1296
  { "hw_mfpr",                OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1297
  { "hw_mfpr",                OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1298
  { "hw_mfpr",                OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1299
  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1300
  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1301
  { "hw_mfpr/ai",        OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1302
  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1303
  { "hw_mfpr/pi",        OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1304
  { "hw_mfpr/pa",        OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1305
  { "hw_mfpr/pai",        OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1306
  { "pal19",                PCD(0x19), BASE, ARG_PCD },
1307

    
1308
  { "jmp",                MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1309
                        BASE, { ZA, CPRB } },
1310
  { "jmp",                MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1311
  { "jsr",                MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1312
  { "ret",                MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1313
                        0xFFFFFFFF, BASE, { 0 } },
1314
  { "ret",                MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1315
  { "jcr",                MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1316
  { "jsr_coroutine",        MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1317

    
1318
  { "hw_ldl",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1319
  { "hw_ldl",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1320
  { "hw_ldl",                EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1321
  { "hw_ldl/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1322
  { "hw_ldl/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1323
  { "hw_ldl/a",                EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1324
  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1325
  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1326
  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1327
  { "hw_ldl/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1328
  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1329
  { "hw_ldl/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1330
  { "hw_ldl/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1331
  { "hw_ldl/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1332
  { "hw_ldl/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1333
  { "hw_ldl/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1334
  { "hw_ldl/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1335
  { "hw_ldl/p",                EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1336
  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1337
  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1338
  { "hw_ldl/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1339
  { "hw_ldl/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1340
  { "hw_ldl/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1341
  { "hw_ldl/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1342
  { "hw_ldl/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1343
  { "hw_ldl/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1344
  { "hw_ldl/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1345
  { "hw_ldl/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1346
  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1347
  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1348
  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1349
  { "hw_ldl/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1350
  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1351
  { "hw_ldl/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1352
  { "hw_ldl/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1353
  { "hw_ldl/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1354
  { "hw_ldl/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1355
  { "hw_ldl/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1356
  { "hw_ldl/v",                EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1357
  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1358
  { "hw_ldl/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1359
  { "hw_ldl/w",                EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1360
  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1361
  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1362
  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1363
  { "hw_ldl/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1364
  { "hw_ldl_l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1365
  { "hw_ldl_l/a",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1366
  { "hw_ldl_l/av",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1367
  { "hw_ldl_l/aw",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1368
  { "hw_ldl_l/awv",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1369
  { "hw_ldl_l/p",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1370
  { "hw_ldl_l/p",        EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1371
  { "hw_ldl_l/pa",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1372
  { "hw_ldl_l/pav",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1373
  { "hw_ldl_l/paw",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1374
  { "hw_ldl_l/pawv",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1375
  { "hw_ldl_l/pv",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1376
  { "hw_ldl_l/pw",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1377
  { "hw_ldl_l/pwv",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1378
  { "hw_ldl_l/v",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1379
  { "hw_ldl_l/w",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1380
  { "hw_ldl_l/wv",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1381
  { "hw_ldq",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1382
  { "hw_ldq",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1383
  { "hw_ldq",                EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1384
  { "hw_ldq/a",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1385
  { "hw_ldq/a",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1386
  { "hw_ldq/a",                EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1387
  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1388
  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1389
  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1390
  { "hw_ldq/avl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1391
  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1392
  { "hw_ldq/awl",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1393
  { "hw_ldq/awv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1394
  { "hw_ldq/awvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1395
  { "hw_ldq/l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1396
  { "hw_ldq/p",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1397
  { "hw_ldq/p",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1398
  { "hw_ldq/p",                EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1399
  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1400
  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1401
  { "hw_ldq/pal",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1402
  { "hw_ldq/par",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1403
  { "hw_ldq/pav",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1404
  { "hw_ldq/pavl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1405
  { "hw_ldq/paw",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1406
  { "hw_ldq/pawl",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1407
  { "hw_ldq/pawv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1408
  { "hw_ldq/pawvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1409
  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1410
  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1411
  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1412
  { "hw_ldq/pvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1413
  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1414
  { "hw_ldq/pwl",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1415
  { "hw_ldq/pwv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1416
  { "hw_ldq/pwvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1417
  { "hw_ldq/r",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1418
  { "hw_ldq/v",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1419
  { "hw_ldq/v",                EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1420
  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1421
  { "hw_ldq/w",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1422
  { "hw_ldq/w",                EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1423
  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1424
  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1425
  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1426
  { "hw_ldq/wvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1427
  { "hw_ldq_l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1428
  { "hw_ldq_l/a",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1429
  { "hw_ldq_l/av",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1430
  { "hw_ldq_l/aw",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1431
  { "hw_ldq_l/awv",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1432
  { "hw_ldq_l/p",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1433
  { "hw_ldq_l/p",        EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1434
  { "hw_ldq_l/pa",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1435
  { "hw_ldq_l/pav",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1436
  { "hw_ldq_l/paw",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1437
  { "hw_ldq_l/pawv",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1438
  { "hw_ldq_l/pv",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1439
  { "hw_ldq_l/pw",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1440
  { "hw_ldq_l/pwv",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1441
  { "hw_ldq_l/v",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1442
  { "hw_ldq_l/w",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1443
  { "hw_ldq_l/wv",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1444
  { "hw_ld",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1445
  { "hw_ld",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1446
  { "hw_ld/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1447
  { "hw_ld/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1448
  { "hw_ld/al",                EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1449
  { "hw_ld/aq",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1450
  { "hw_ld/aq",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1451
  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1452
  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1453
  { "hw_ld/aqvl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1454
  { "hw_ld/ar",                EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1455
  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1456
  { "hw_ld/av",                EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1457
  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1458
  { "hw_ld/aw",                EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1459
  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1460
  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1461
  { "hw_ld/awql",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1462
  { "hw_ld/awqv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1463
  { "hw_ld/awqvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1464
  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1465
  { "hw_ld/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1466
  { "hw_ld/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1467
  { "hw_ld/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1468
  { "hw_ld/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1469
  { "hw_ld/pa",                EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1470
  { "hw_ld/pa",                EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1471
  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1472
  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1473
  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1474
  { "hw_ld/paql",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1475
  { "hw_ld/paqv",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1476
  { "hw_ld/paqvl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1477
  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1478
  { "hw_ld/parq",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1479
  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1480
  { "hw_ld/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1481
  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1482
  { "hw_ld/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1483
  { "hw_ld/pawq",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1484
  { "hw_ld/pawql",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1485
  { "hw_ld/pawqv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1486
  { "hw_ld/pawqvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1487
  { "hw_ld/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1488
  { "hw_ld/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1489
  { "hw_ld/pl",                EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1490
  { "hw_ld/pq",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1491
  { "hw_ld/pq",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1492
  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1493
  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1494
  { "hw_ld/pqvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1495
  { "hw_ld/pr",                EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1496
  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1497
  { "hw_ld/pv",                EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1498
  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1499
  { "hw_ld/pw",                EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1500
  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1501
  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1502
  { "hw_ld/pwql",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1503
  { "hw_ld/pwqv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1504
  { "hw_ld/pwqvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1505
  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1506
  { "hw_ld/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1507
  { "hw_ld/q",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1508
  { "hw_ld/q",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1509
  { "hw_ld/ql",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1510
  { "hw_ld/qv",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1511
  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1512
  { "hw_ld/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1513
  { "hw_ld/rq",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1514
  { "hw_ld/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1515
  { "hw_ld/vl",                EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1516
  { "hw_ld/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1517
  { "hw_ld/wl",                EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1518
  { "hw_ld/wq",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1519
  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1520
  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1521
  { "hw_ld/wqvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1522
  { "hw_ld/wv",                EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1523
  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1524
  { "pal1b",                PCD(0x1B), BASE, ARG_PCD },
1525

    
1526
  { "sextb",                OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1527
  { "sextw",                OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1528
  { "ctpop",                OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1529
  { "perr",                OPR(0x1C, 0x31), MAX, ARG_OPR },
1530
  { "ctlz",                OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1531
  { "cttz",                OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1532
  { "unpkbw",                OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1533
  { "unpkbl",                OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1534
  { "pkwb",                OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1535
  { "pklb",                OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1536
  { "minsb8",                 OPR(0x1C, 0x38), MAX, ARG_OPR },
1537
  { "minsb8",                 OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1538
  { "minsw4",                 OPR(0x1C, 0x39), MAX, ARG_OPR },
1539
  { "minsw4",                 OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1540
  { "minub8",                 OPR(0x1C, 0x3A), MAX, ARG_OPR },
1541
  { "minub8",                 OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1542
  { "minuw4",                 OPR(0x1C, 0x3B), MAX, ARG_OPR },
1543
  { "minuw4",                 OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1544
  { "maxub8",                OPR(0x1C, 0x3C), MAX, ARG_OPR },
1545
  { "maxub8",                OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1546
  { "maxuw4",                OPR(0x1C, 0x3D), MAX, ARG_OPR },
1547
  { "maxuw4",                OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1548
  { "maxsb8",                OPR(0x1C, 0x3E), MAX, ARG_OPR },
1549
  { "maxsb8",                OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1550
  { "maxsw4",                OPR(0x1C, 0x3F), MAX, ARG_OPR },
1551
  { "maxsw4",                OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1552
  { "ftoit",                FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1553
  { "ftois",                FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1554

    
1555
  { "hw_mtpr",                OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1556
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1557
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1558
  { "hw_mtpr/i",         OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1559
  { "hw_mtpr/a",         OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1560
  { "hw_mtpr/ai",        OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1561
  { "hw_mtpr/p",         OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1562
  { "hw_mtpr/pi",        OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1563
  { "hw_mtpr/pa",        OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1564
  { "hw_mtpr/pai",        OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1565
  { "pal1d",                PCD(0x1D), BASE, ARG_PCD },
1566

    
1567
  { "hw_rei",                SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1568
  { "hw_rei_stall",        SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1569
  { "hw_jmp",                 EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1570
  { "hw_jsr",                 EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571
  { "hw_ret",                 EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1572
  { "hw_jcr",                 EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1573
  { "hw_coroutine",        EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1574
  { "hw_jmp/stall",        EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1575
  { "hw_jsr/stall",         EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1576
  { "hw_ret/stall",        EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1577
  { "hw_jcr/stall",         EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1578
  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1579
  { "pal1e",                PCD(0x1E), BASE, ARG_PCD },
1580

    
1581
  { "hw_stl",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1582
  { "hw_stl",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1583
  { "hw_stl",                EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1584
  { "hw_stl/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1585
  { "hw_stl/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1586
  { "hw_stl/a",                EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1587
  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1588
  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1589
  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1590
  { "hw_stl/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1591
  { "hw_stl/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1592
  { "hw_stl/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1593
  { "hw_stl/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1594
  { "hw_stl/p",                EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1595
  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1596
  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1597
  { "hw_stl/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1598
  { "hw_stl/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1599
  { "hw_stl/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1600
  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1601
  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1602
  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1603
  { "hw_stl/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1604
  { "hw_stl/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1605
  { "hw_stl/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1606
  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1607
  { "hw_stl_c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1608
  { "hw_stl_c/a",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1609
  { "hw_stl_c/av",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1610
  { "hw_stl_c/p",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1611
  { "hw_stl_c/p",        EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1612
  { "hw_stl_c/pa",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1613
  { "hw_stl_c/pav",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1614
  { "hw_stl_c/pv",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1615
  { "hw_stl_c/v",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1616
  { "hw_stq",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1617
  { "hw_stq",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1618
  { "hw_stq",                EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1619
  { "hw_stq/a",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1620
  { "hw_stq/a",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1621
  { "hw_stq/a",                EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1622
  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1623
  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1624
  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1625
  { "hw_stq/avc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1626
  { "hw_stq/c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1627
  { "hw_stq/p",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1628
  { "hw_stq/p",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1629
  { "hw_stq/p",                EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1630
  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1631
  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1632
  { "hw_stq/pac",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1633
  { "hw_stq/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1634
  { "hw_stq/par",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1635
  { "hw_stq/pav",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1636
  { "hw_stq/pavc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1637
  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1638
  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1639
  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1640
  { "hw_stq/pvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1641
  { "hw_stq/r",                EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1642
  { "hw_stq/v",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1643
  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1644
  { "hw_stq_c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1645
  { "hw_stq_c/a",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1646
  { "hw_stq_c/av",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1647
  { "hw_stq_c/p",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1648
  { "hw_stq_c/p",        EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1649
  { "hw_stq_c/pa",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1650
  { "hw_stq_c/pav",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1651
  { "hw_stq_c/pv",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1652
  { "hw_stq_c/v",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1653
  { "hw_st",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1654
  { "hw_st",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1655
  { "hw_st/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1656
  { "hw_st/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1657
  { "hw_st/ac",                EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1658
  { "hw_st/aq",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1659
  { "hw_st/aq",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1660
  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1661
  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1662
  { "hw_st/aqvc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1663
  { "hw_st/ar",                EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1664
  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1665
  { "hw_st/av",                EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1666
  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1667
  { "hw_st/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1668
  { "hw_st/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1669
  { "hw_st/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1670
  { "hw_st/pa",                EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1671
  { "hw_st/pa",                EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1672
  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1673
  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1674
  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1675
  { "hw_st/paqc",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1676
  { "hw_st/paqv",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1677
  { "hw_st/paqvc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1678
  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1679
  { "hw_st/parq",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1680
  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1681
  { "hw_st/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1682
  { "hw_st/pc",                EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1683
  { "hw_st/pq",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1684
  { "hw_st/pq",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1685
  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1686
  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1687
  { "hw_st/pqvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1688
  { "hw_st/pr",                EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1689
  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1690
  { "hw_st/pv",                EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1691
  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1692
  { "hw_st/q",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1693
  { "hw_st/q",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1694
  { "hw_st/qc",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1695
  { "hw_st/qv",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1696
  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1697
  { "hw_st/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1698
  { "hw_st/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1699
  { "hw_st/vc",                EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1700
  { "pal1f",                PCD(0x1F), BASE, ARG_PCD },
1701

    
1702
  { "ldf",                MEM(0x20), BASE, ARG_FMEM },
1703
  { "ldg",                MEM(0x21), BASE, ARG_FMEM },
1704
  { "lds",                MEM(0x22), BASE, ARG_FMEM },
1705
  { "ldt",                MEM(0x23), BASE, ARG_FMEM },
1706
  { "stf",                MEM(0x24), BASE, ARG_FMEM },
1707
  { "stg",                MEM(0x25), BASE, ARG_FMEM },
1708
  { "sts",                MEM(0x26), BASE, ARG_FMEM },
1709
  { "stt",                MEM(0x27), BASE, ARG_FMEM },
1710

    
1711
  { "ldl",                MEM(0x28), BASE, ARG_MEM },
1712
  { "ldq",                MEM(0x29), BASE, ARG_MEM },
1713
  { "ldl_l",                MEM(0x2A), BASE, ARG_MEM },
1714
  { "ldq_l",                MEM(0x2B), BASE, ARG_MEM },
1715
  { "stl",                MEM(0x2C), BASE, ARG_MEM },
1716
  { "stq",                MEM(0x2D), BASE, ARG_MEM },
1717
  { "stl_c",                MEM(0x2E), BASE, ARG_MEM },
1718
  { "stq_c",                MEM(0x2F), BASE, ARG_MEM },
1719

    
1720
  { "br",                BRA(0x30), BASE, { ZA, BDISP } },        /* pseudo */
1721
  { "br",                BRA(0x30), BASE, ARG_BRA },
1722
  { "fbeq",                BRA(0x31), BASE, ARG_FBRA },
1723
  { "fblt",                BRA(0x32), BASE, ARG_FBRA },
1724
  { "fble",                BRA(0x33), BASE, ARG_FBRA },
1725
  { "bsr",                BRA(0x34), BASE, ARG_BRA },
1726
  { "fbne",                BRA(0x35), BASE, ARG_FBRA },
1727
  { "fbge",                BRA(0x36), BASE, ARG_FBRA },
1728
  { "fbgt",                BRA(0x37), BASE, ARG_FBRA },
1729
  { "blbc",                BRA(0x38), BASE, ARG_BRA },
1730
  { "beq",                BRA(0x39), BASE, ARG_BRA },
1731
  { "blt",                BRA(0x3A), BASE, ARG_BRA },
1732
  { "ble",                BRA(0x3B), BASE, ARG_BRA },
1733
  { "blbs",                BRA(0x3C), BASE, ARG_BRA },
1734
  { "bne",                BRA(0x3D), BASE, ARG_BRA },
1735
  { "bge",                BRA(0x3E), BASE, ARG_BRA },
1736
  { "bgt",                BRA(0x3F), BASE, ARG_BRA },
1737
};
1738

    
1739
const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1740

    
1741
/* OSF register names.  */
1742

    
1743
static const char * const osf_regnames[64] = {
1744
  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1745
  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1746
  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1747
  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1748
  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1749
  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1750
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1751
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1752
};
1753

    
1754
/* VMS register names.  */
1755

    
1756
static const char * const vms_regnames[64] = {
1757
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1758
  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1759
  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1760
  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1761
  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1762
  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1763
  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1764
  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1765
};
1766

    
1767
/* Disassemble Alpha instructions.  */
1768

    
1769
int
1770
print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1771
{
1772
  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1773
  const char * const * regnames;
1774
  const struct alpha_opcode *opcode, *opcode_end;
1775
  const unsigned char *opindex;
1776
  unsigned insn, op, isa_mask;
1777
  int need_comma;
1778

    
1779
  /* Initialize the majorop table the first time through */
1780
  if (!opcode_index[0])
1781
    {
1782
      opcode = alpha_opcodes;
1783
      opcode_end = opcode + alpha_num_opcodes;
1784

    
1785
      for (op = 0; op < AXP_NOPS; ++op)
1786
        {
1787
          opcode_index[op] = opcode;
1788
          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1789
            ++opcode;
1790
        }
1791
      opcode_index[op] = opcode;
1792
    }
1793

    
1794
  if (info->flavour == bfd_target_evax_flavour)
1795
    regnames = vms_regnames;
1796
  else
1797
    regnames = osf_regnames;
1798

    
1799
  isa_mask = AXP_OPCODE_NOPAL;
1800
  switch (info->mach)
1801
    {
1802
    case bfd_mach_alpha_ev4:
1803
      isa_mask |= AXP_OPCODE_EV4;
1804
      break;
1805
    case bfd_mach_alpha_ev5:
1806
      isa_mask |= AXP_OPCODE_EV5;
1807
      break;
1808
    case bfd_mach_alpha_ev6:
1809
      isa_mask |= AXP_OPCODE_EV6;
1810
      break;
1811
    }
1812

    
1813
  /* Read the insn into a host word */
1814
  {
1815
    bfd_byte buffer[4];
1816
    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1817
    if (status != 0)
1818
      {
1819
        (*info->memory_error_func) (status, memaddr, info);
1820
        return -1;
1821
      }
1822
    insn = bfd_getl32 (buffer);
1823
  }
1824

    
1825
  /* Get the major opcode of the instruction.  */
1826
  op = AXP_OP (insn);
1827

    
1828
  /* Find the first match in the opcode table.  */
1829
  opcode_end = opcode_index[op + 1];
1830
  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1831
    {
1832
      if ((insn ^ opcode->opcode) & opcode->mask)
1833
        continue;
1834

    
1835
      if (!(opcode->flags & isa_mask))
1836
        continue;
1837

    
1838
      /* Make two passes over the operands.  First see if any of them
1839
         have extraction functions, and, if they do, make sure the
1840
         instruction is valid.  */
1841
      {
1842
        int invalid = 0;
1843
        for (opindex = opcode->operands; *opindex != 0; opindex++)
1844
          {
1845
            const struct alpha_operand *operand = alpha_operands + *opindex;
1846
            if (operand->extract)
1847
              (*operand->extract) (insn, &invalid);
1848
          }
1849
        if (invalid)
1850
          continue;
1851
      }
1852

    
1853
      /* The instruction is valid.  */
1854
      goto found;
1855
    }
1856

    
1857
  /* No instruction found */
1858
  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1859

    
1860
  return 4;
1861

    
1862
found:
1863
  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1864
  if (opcode->operands[0] != 0)
1865
    (*info->fprintf_func) (info->stream, "\t");
1866

    
1867
  /* Now extract and print the operands.  */
1868
  need_comma = 0;
1869
  for (opindex = opcode->operands; *opindex != 0; opindex++)
1870
    {
1871
      const struct alpha_operand *operand = alpha_operands + *opindex;
1872
      int value;
1873

    
1874
      /* Operands that are marked FAKE are simply ignored.  We
1875
         already made sure that the extract function considered
1876
         the instruction to be valid.  */
1877
      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1878
        continue;
1879

    
1880
      /* Extract the value from the instruction.  */
1881
      if (operand->extract)
1882
        value = (*operand->extract) (insn, (int *) NULL);
1883
      else
1884
        {
1885
          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1886
          if (operand->flags & AXP_OPERAND_SIGNED)
1887
            {
1888
              int signbit = 1 << (operand->bits - 1);
1889
              value = (value ^ signbit) - signbit;
1890
            }
1891
        }
1892

    
1893
      if (need_comma &&
1894
          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1895
           != AXP_OPERAND_PARENS))
1896
        {
1897
          (*info->fprintf_func) (info->stream, ",");
1898
        }
1899
      if (operand->flags & AXP_OPERAND_PARENS)
1900
        (*info->fprintf_func) (info->stream, "(");
1901

    
1902
      /* Print the operand as directed by the flags.  */
1903
      if (operand->flags & AXP_OPERAND_IR)
1904
        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1905
      else if (operand->flags & AXP_OPERAND_FPR)
1906
        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1907
      else if (operand->flags & AXP_OPERAND_RELATIVE)
1908
        (*info->print_address_func) (memaddr + 4 + value, info);
1909
      else if (operand->flags & AXP_OPERAND_SIGNED)
1910
        (*info->fprintf_func) (info->stream, "%d", value);
1911
      else
1912
        (*info->fprintf_func) (info->stream, "%#x", value);
1913

    
1914
      if (operand->flags & AXP_OPERAND_PARENS)
1915
        (*info->fprintf_func) (info->stream, ")");
1916
      need_comma = 1;
1917
    }
1918

    
1919
  return 4;
1920
}