Statistics
| Branch: | Revision:

root / vl.c @ 98448f58

History | View | Annotate | Download (244.9 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "block.h"
40
#include "audio/audio.h"
41

    
42
#include <unistd.h>
43
#include <fcntl.h>
44
#include <signal.h>
45
#include <time.h>
46
#include <errno.h>
47
#include <sys/time.h>
48
#include <zlib.h>
49

    
50
#ifndef _WIN32
51
#include <sys/times.h>
52
#include <sys/wait.h>
53
#include <termios.h>
54
#include <sys/poll.h>
55
#include <sys/mman.h>
56
#include <sys/ioctl.h>
57
#include <sys/socket.h>
58
#include <netinet/in.h>
59
#include <dirent.h>
60
#include <netdb.h>
61
#include <sys/select.h>
62
#include <arpa/inet.h>
63
#ifdef _BSD
64
#include <sys/stat.h>
65
#if !defined(__APPLE__) && !defined(__OpenBSD__)
66
#include <libutil.h>
67
#endif
68
#ifdef __OpenBSD__
69
#include <net/if.h>
70
#endif
71
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
72
#include <freebsd/stdlib.h>
73
#else
74
#ifdef __linux__
75
#include <linux/if.h>
76
#include <linux/if_tun.h>
77
#include <pty.h>
78
#include <malloc.h>
79
#include <linux/rtc.h>
80

    
81
/* For the benefit of older linux systems which don't supply it,
82
   we use a local copy of hpet.h. */
83
/* #include <linux/hpet.h> */
84
#include "hpet.h"
85

    
86
#include <linux/ppdev.h>
87
#include <linux/parport.h>
88
#endif
89
#ifdef __sun__
90
#include <sys/stat.h>
91
#include <sys/ethernet.h>
92
#include <sys/sockio.h>
93
#include <netinet/arp.h>
94
#include <netinet/in.h>
95
#include <netinet/in_systm.h>
96
#include <netinet/ip.h>
97
#include <netinet/ip_icmp.h> // must come after ip.h
98
#include <netinet/udp.h>
99
#include <netinet/tcp.h>
100
#include <net/if.h>
101
#include <syslog.h>
102
#include <stropts.h>
103
#endif
104
#endif
105
#endif
106

    
107
#include "qemu_socket.h"
108

    
109
#if defined(CONFIG_SLIRP)
110
#include "libslirp.h"
111
#endif
112

    
113
#if defined(__OpenBSD__)
114
#include <util.h>
115
#endif
116

    
117
#if defined(CONFIG_VDE)
118
#include <libvdeplug.h>
119
#endif
120

    
121
#ifdef _WIN32
122
#include <malloc.h>
123
#include <sys/timeb.h>
124
#include <mmsystem.h>
125
#define getopt_long_only getopt_long
126
#define memalign(align, size) malloc(size)
127
#endif
128

    
129
#ifdef CONFIG_SDL
130
#ifdef __APPLE__
131
#include <SDL/SDL.h>
132
#endif
133
#endif /* CONFIG_SDL */
134

    
135
#ifdef CONFIG_COCOA
136
#undef main
137
#define main qemu_main
138
#endif /* CONFIG_COCOA */
139

    
140
#include "disas.h"
141

    
142
#include "exec-all.h"
143

    
144
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
145
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
146
#ifdef __sun__
147
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
148
#else
149
#define SMBD_COMMAND "/usr/sbin/smbd"
150
#endif
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154

    
155
#ifdef TARGET_PPC
156
#define DEFAULT_RAM_SIZE 144
157
#else
158
#define DEFAULT_RAM_SIZE 128
159
#endif
160

    
161
/* Max number of USB devices that can be specified on the commandline.  */
162
#define MAX_USB_CMDLINE 8
163

    
164
/* XXX: use a two level table to limit memory usage */
165
#define MAX_IOPORTS 65536
166

    
167
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
168
const char *bios_name = NULL;
169
void *ioport_opaque[MAX_IOPORTS];
170
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
171
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
172
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
173
   to store the VM snapshots */
174
DriveInfo drives_table[MAX_DRIVES+1];
175
int nb_drives;
176
/* point to the block driver where the snapshots are managed */
177
BlockDriverState *bs_snapshots;
178
int vga_ram_size;
179
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
180
static DisplayState display_state;
181
int nographic;
182
int curses;
183
const char* keyboard_layout = NULL;
184
int64_t ticks_per_sec;
185
ram_addr_t ram_size;
186
int pit_min_timer_count = 0;
187
int nb_nics;
188
NICInfo nd_table[MAX_NICS];
189
int vm_running;
190
static int rtc_utc = 1;
191
static int rtc_date_offset = -1; /* -1 means no change */
192
int cirrus_vga_enabled = 1;
193
int vmsvga_enabled = 0;
194
#ifdef TARGET_SPARC
195
int graphic_width = 1024;
196
int graphic_height = 768;
197
int graphic_depth = 8;
198
#else
199
int graphic_width = 800;
200
int graphic_height = 600;
201
int graphic_depth = 15;
202
#endif
203
int full_screen = 0;
204
int no_frame = 0;
205
int no_quit = 0;
206
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
207
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
208
#ifdef TARGET_I386
209
int win2k_install_hack = 0;
210
#endif
211
int usb_enabled = 0;
212
static VLANState *first_vlan;
213
int smp_cpus = 1;
214
const char *vnc_display;
215
#if defined(TARGET_SPARC)
216
#define MAX_CPUS 16
217
#elif defined(TARGET_I386)
218
#define MAX_CPUS 255
219
#else
220
#define MAX_CPUS 1
221
#endif
222
int acpi_enabled = 1;
223
int fd_bootchk = 1;
224
int no_reboot = 0;
225
int no_shutdown = 0;
226
int cursor_hide = 1;
227
int graphic_rotate = 0;
228
int daemonize = 0;
229
const char *option_rom[MAX_OPTION_ROMS];
230
int nb_option_roms;
231
int semihosting_enabled = 0;
232
int autostart = 1;
233
#ifdef TARGET_ARM
234
int old_param = 0;
235
#endif
236
const char *qemu_name;
237
int alt_grab = 0;
238
#ifdef TARGET_SPARC
239
unsigned int nb_prom_envs = 0;
240
const char *prom_envs[MAX_PROM_ENVS];
241
#endif
242
int nb_drives_opt;
243
struct drive_opt {
244
    const char *file;
245
    char opt[1024];
246
} drives_opt[MAX_DRIVES];
247

    
248
static CPUState *cur_cpu;
249
static CPUState *next_cpu;
250
static int event_pending = 1;
251
/* Conversion factor from emulated instructions to virtual clock ticks.  */
252
static int icount_time_shift;
253
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
254
#define MAX_ICOUNT_SHIFT 10
255
/* Compensate for varying guest execution speed.  */
256
static int64_t qemu_icount_bias;
257
QEMUTimer *icount_rt_timer;
258
QEMUTimer *icount_vm_timer;
259

    
260
uint8_t qemu_uuid[16];
261

    
262
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
263

    
264
/***********************************************************/
265
/* x86 ISA bus support */
266

    
267
target_phys_addr_t isa_mem_base = 0;
268
PicState2 *isa_pic;
269

    
270
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
271
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
272

    
273
static uint32_t ioport_read(int index, uint32_t address)
274
{
275
    static IOPortReadFunc *default_func[3] = {
276
        default_ioport_readb,
277
        default_ioport_readw,
278
        default_ioport_readl
279
    };
280
    IOPortReadFunc *func = ioport_read_table[index][address];
281
    if (!func)
282
        func = default_func[index];
283
    return func(ioport_opaque[address], address);
284
}
285

    
286
static void ioport_write(int index, uint32_t address, uint32_t data)
287
{
288
    static IOPortWriteFunc *default_func[3] = {
289
        default_ioport_writeb,
290
        default_ioport_writew,
291
        default_ioport_writel
292
    };
293
    IOPortWriteFunc *func = ioport_write_table[index][address];
294
    if (!func)
295
        func = default_func[index];
296
    func(ioport_opaque[address], address, data);
297
}
298

    
299
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
300
{
301
#ifdef DEBUG_UNUSED_IOPORT
302
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
303
#endif
304
    return 0xff;
305
}
306

    
307
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
308
{
309
#ifdef DEBUG_UNUSED_IOPORT
310
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
311
#endif
312
}
313

    
314
/* default is to make two byte accesses */
315
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
316
{
317
    uint32_t data;
318
    data = ioport_read(0, address);
319
    address = (address + 1) & (MAX_IOPORTS - 1);
320
    data |= ioport_read(0, address) << 8;
321
    return data;
322
}
323

    
324
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
325
{
326
    ioport_write(0, address, data & 0xff);
327
    address = (address + 1) & (MAX_IOPORTS - 1);
328
    ioport_write(0, address, (data >> 8) & 0xff);
329
}
330

    
331
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
332
{
333
#ifdef DEBUG_UNUSED_IOPORT
334
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
335
#endif
336
    return 0xffffffff;
337
}
338

    
339
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
340
{
341
#ifdef DEBUG_UNUSED_IOPORT
342
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
343
#endif
344
}
345

    
346
/* size is the word size in byte */
347
int register_ioport_read(int start, int length, int size,
348
                         IOPortReadFunc *func, void *opaque)
349
{
350
    int i, bsize;
351

    
352
    if (size == 1) {
353
        bsize = 0;
354
    } else if (size == 2) {
355
        bsize = 1;
356
    } else if (size == 4) {
357
        bsize = 2;
358
    } else {
359
        hw_error("register_ioport_read: invalid size");
360
        return -1;
361
    }
362
    for(i = start; i < start + length; i += size) {
363
        ioport_read_table[bsize][i] = func;
364
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
365
            hw_error("register_ioport_read: invalid opaque");
366
        ioport_opaque[i] = opaque;
367
    }
368
    return 0;
369
}
370

    
371
/* size is the word size in byte */
372
int register_ioport_write(int start, int length, int size,
373
                          IOPortWriteFunc *func, void *opaque)
374
{
375
    int i, bsize;
376

    
377
    if (size == 1) {
378
        bsize = 0;
379
    } else if (size == 2) {
380
        bsize = 1;
381
    } else if (size == 4) {
382
        bsize = 2;
383
    } else {
384
        hw_error("register_ioport_write: invalid size");
385
        return -1;
386
    }
387
    for(i = start; i < start + length; i += size) {
388
        ioport_write_table[bsize][i] = func;
389
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390
            hw_error("register_ioport_write: invalid opaque");
391
        ioport_opaque[i] = opaque;
392
    }
393
    return 0;
394
}
395

    
396
void isa_unassign_ioport(int start, int length)
397
{
398
    int i;
399

    
400
    for(i = start; i < start + length; i++) {
401
        ioport_read_table[0][i] = default_ioport_readb;
402
        ioport_read_table[1][i] = default_ioport_readw;
403
        ioport_read_table[2][i] = default_ioport_readl;
404

    
405
        ioport_write_table[0][i] = default_ioport_writeb;
406
        ioport_write_table[1][i] = default_ioport_writew;
407
        ioport_write_table[2][i] = default_ioport_writel;
408
    }
409
}
410

    
411
/***********************************************************/
412

    
413
void cpu_outb(CPUState *env, int addr, int val)
414
{
415
#ifdef DEBUG_IOPORT
416
    if (loglevel & CPU_LOG_IOPORT)
417
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
418
#endif
419
    ioport_write(0, addr, val);
420
#ifdef USE_KQEMU
421
    if (env)
422
        env->last_io_time = cpu_get_time_fast();
423
#endif
424
}
425

    
426
void cpu_outw(CPUState *env, int addr, int val)
427
{
428
#ifdef DEBUG_IOPORT
429
    if (loglevel & CPU_LOG_IOPORT)
430
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
431
#endif
432
    ioport_write(1, addr, val);
433
#ifdef USE_KQEMU
434
    if (env)
435
        env->last_io_time = cpu_get_time_fast();
436
#endif
437
}
438

    
439
void cpu_outl(CPUState *env, int addr, int val)
440
{
441
#ifdef DEBUG_IOPORT
442
    if (loglevel & CPU_LOG_IOPORT)
443
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
444
#endif
445
    ioport_write(2, addr, val);
446
#ifdef USE_KQEMU
447
    if (env)
448
        env->last_io_time = cpu_get_time_fast();
449
#endif
450
}
451

    
452
int cpu_inb(CPUState *env, int addr)
453
{
454
    int val;
455
    val = ioport_read(0, addr);
456
#ifdef DEBUG_IOPORT
457
    if (loglevel & CPU_LOG_IOPORT)
458
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
459
#endif
460
#ifdef USE_KQEMU
461
    if (env)
462
        env->last_io_time = cpu_get_time_fast();
463
#endif
464
    return val;
465
}
466

    
467
int cpu_inw(CPUState *env, int addr)
468
{
469
    int val;
470
    val = ioport_read(1, addr);
471
#ifdef DEBUG_IOPORT
472
    if (loglevel & CPU_LOG_IOPORT)
473
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
474
#endif
475
#ifdef USE_KQEMU
476
    if (env)
477
        env->last_io_time = cpu_get_time_fast();
478
#endif
479
    return val;
480
}
481

    
482
int cpu_inl(CPUState *env, int addr)
483
{
484
    int val;
485
    val = ioport_read(2, addr);
486
#ifdef DEBUG_IOPORT
487
    if (loglevel & CPU_LOG_IOPORT)
488
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
489
#endif
490
#ifdef USE_KQEMU
491
    if (env)
492
        env->last_io_time = cpu_get_time_fast();
493
#endif
494
    return val;
495
}
496

    
497
/***********************************************************/
498
void hw_error(const char *fmt, ...)
499
{
500
    va_list ap;
501
    CPUState *env;
502

    
503
    va_start(ap, fmt);
504
    fprintf(stderr, "qemu: hardware error: ");
505
    vfprintf(stderr, fmt, ap);
506
    fprintf(stderr, "\n");
507
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
508
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
509
#ifdef TARGET_I386
510
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
511
#else
512
        cpu_dump_state(env, stderr, fprintf, 0);
513
#endif
514
    }
515
    va_end(ap);
516
    abort();
517
}
518

    
519
/***********************************************************/
520
/* keyboard/mouse */
521

    
522
static QEMUPutKBDEvent *qemu_put_kbd_event;
523
static void *qemu_put_kbd_event_opaque;
524
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
525
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
526

    
527
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
528
{
529
    qemu_put_kbd_event_opaque = opaque;
530
    qemu_put_kbd_event = func;
531
}
532

    
533
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
534
                                                void *opaque, int absolute,
535
                                                const char *name)
536
{
537
    QEMUPutMouseEntry *s, *cursor;
538

    
539
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
540
    if (!s)
541
        return NULL;
542

    
543
    s->qemu_put_mouse_event = func;
544
    s->qemu_put_mouse_event_opaque = opaque;
545
    s->qemu_put_mouse_event_absolute = absolute;
546
    s->qemu_put_mouse_event_name = qemu_strdup(name);
547
    s->next = NULL;
548

    
549
    if (!qemu_put_mouse_event_head) {
550
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
551
        return s;
552
    }
553

    
554
    cursor = qemu_put_mouse_event_head;
555
    while (cursor->next != NULL)
556
        cursor = cursor->next;
557

    
558
    cursor->next = s;
559
    qemu_put_mouse_event_current = s;
560

    
561
    return s;
562
}
563

    
564
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
565
{
566
    QEMUPutMouseEntry *prev = NULL, *cursor;
567

    
568
    if (!qemu_put_mouse_event_head || entry == NULL)
569
        return;
570

    
571
    cursor = qemu_put_mouse_event_head;
572
    while (cursor != NULL && cursor != entry) {
573
        prev = cursor;
574
        cursor = cursor->next;
575
    }
576

    
577
    if (cursor == NULL) // does not exist or list empty
578
        return;
579
    else if (prev == NULL) { // entry is head
580
        qemu_put_mouse_event_head = cursor->next;
581
        if (qemu_put_mouse_event_current == entry)
582
            qemu_put_mouse_event_current = cursor->next;
583
        qemu_free(entry->qemu_put_mouse_event_name);
584
        qemu_free(entry);
585
        return;
586
    }
587

    
588
    prev->next = entry->next;
589

    
590
    if (qemu_put_mouse_event_current == entry)
591
        qemu_put_mouse_event_current = prev;
592

    
593
    qemu_free(entry->qemu_put_mouse_event_name);
594
    qemu_free(entry);
595
}
596

    
597
void kbd_put_keycode(int keycode)
598
{
599
    if (qemu_put_kbd_event) {
600
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
601
    }
602
}
603

    
604
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
605
{
606
    QEMUPutMouseEvent *mouse_event;
607
    void *mouse_event_opaque;
608
    int width;
609

    
610
    if (!qemu_put_mouse_event_current) {
611
        return;
612
    }
613

    
614
    mouse_event =
615
        qemu_put_mouse_event_current->qemu_put_mouse_event;
616
    mouse_event_opaque =
617
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
618

    
619
    if (mouse_event) {
620
        if (graphic_rotate) {
621
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
622
                width = 0x7fff;
623
            else
624
                width = graphic_width - 1;
625
            mouse_event(mouse_event_opaque,
626
                                 width - dy, dx, dz, buttons_state);
627
        } else
628
            mouse_event(mouse_event_opaque,
629
                                 dx, dy, dz, buttons_state);
630
    }
631
}
632

    
633
int kbd_mouse_is_absolute(void)
634
{
635
    if (!qemu_put_mouse_event_current)
636
        return 0;
637

    
638
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
639
}
640

    
641
void do_info_mice(void)
642
{
643
    QEMUPutMouseEntry *cursor;
644
    int index = 0;
645

    
646
    if (!qemu_put_mouse_event_head) {
647
        term_printf("No mouse devices connected\n");
648
        return;
649
    }
650

    
651
    term_printf("Mouse devices available:\n");
652
    cursor = qemu_put_mouse_event_head;
653
    while (cursor != NULL) {
654
        term_printf("%c Mouse #%d: %s\n",
655
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
656
                    index, cursor->qemu_put_mouse_event_name);
657
        index++;
658
        cursor = cursor->next;
659
    }
660
}
661

    
662
void do_mouse_set(int index)
663
{
664
    QEMUPutMouseEntry *cursor;
665
    int i = 0;
666

    
667
    if (!qemu_put_mouse_event_head) {
668
        term_printf("No mouse devices connected\n");
669
        return;
670
    }
671

    
672
    cursor = qemu_put_mouse_event_head;
673
    while (cursor != NULL && index != i) {
674
        i++;
675
        cursor = cursor->next;
676
    }
677

    
678
    if (cursor != NULL)
679
        qemu_put_mouse_event_current = cursor;
680
    else
681
        term_printf("Mouse at given index not found\n");
682
}
683

    
684
/* compute with 96 bit intermediate result: (a*b)/c */
685
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
686
{
687
    union {
688
        uint64_t ll;
689
        struct {
690
#ifdef WORDS_BIGENDIAN
691
            uint32_t high, low;
692
#else
693
            uint32_t low, high;
694
#endif
695
        } l;
696
    } u, res;
697
    uint64_t rl, rh;
698

    
699
    u.ll = a;
700
    rl = (uint64_t)u.l.low * (uint64_t)b;
701
    rh = (uint64_t)u.l.high * (uint64_t)b;
702
    rh += (rl >> 32);
703
    res.l.high = rh / c;
704
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
705
    return res.ll;
706
}
707

    
708
/***********************************************************/
709
/* real time host monotonic timer */
710

    
711
#define QEMU_TIMER_BASE 1000000000LL
712

    
713
#ifdef WIN32
714

    
715
static int64_t clock_freq;
716

    
717
static void init_get_clock(void)
718
{
719
    LARGE_INTEGER freq;
720
    int ret;
721
    ret = QueryPerformanceFrequency(&freq);
722
    if (ret == 0) {
723
        fprintf(stderr, "Could not calibrate ticks\n");
724
        exit(1);
725
    }
726
    clock_freq = freq.QuadPart;
727
}
728

    
729
static int64_t get_clock(void)
730
{
731
    LARGE_INTEGER ti;
732
    QueryPerformanceCounter(&ti);
733
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
734
}
735

    
736
#else
737

    
738
static int use_rt_clock;
739

    
740
static void init_get_clock(void)
741
{
742
    use_rt_clock = 0;
743
#if defined(__linux__)
744
    {
745
        struct timespec ts;
746
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
747
            use_rt_clock = 1;
748
        }
749
    }
750
#endif
751
}
752

    
753
static int64_t get_clock(void)
754
{
755
#if defined(__linux__)
756
    if (use_rt_clock) {
757
        struct timespec ts;
758
        clock_gettime(CLOCK_MONOTONIC, &ts);
759
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
760
    } else
761
#endif
762
    {
763
        /* XXX: using gettimeofday leads to problems if the date
764
           changes, so it should be avoided. */
765
        struct timeval tv;
766
        gettimeofday(&tv, NULL);
767
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
768
    }
769
}
770
#endif
771

    
772
/* Return the virtual CPU time, based on the instruction counter.  */
773
static int64_t cpu_get_icount(void)
774
{
775
    int64_t icount;
776
    CPUState *env = cpu_single_env;;
777
    icount = qemu_icount;
778
    if (env) {
779
        if (!can_do_io(env))
780
            fprintf(stderr, "Bad clock read\n");
781
        icount -= (env->icount_decr.u16.low + env->icount_extra);
782
    }
783
    return qemu_icount_bias + (icount << icount_time_shift);
784
}
785

    
786
/***********************************************************/
787
/* guest cycle counter */
788

    
789
static int64_t cpu_ticks_prev;
790
static int64_t cpu_ticks_offset;
791
static int64_t cpu_clock_offset;
792
static int cpu_ticks_enabled;
793

    
794
/* return the host CPU cycle counter and handle stop/restart */
795
int64_t cpu_get_ticks(void)
796
{
797
    if (use_icount) {
798
        return cpu_get_icount();
799
    }
800
    if (!cpu_ticks_enabled) {
801
        return cpu_ticks_offset;
802
    } else {
803
        int64_t ticks;
804
        ticks = cpu_get_real_ticks();
805
        if (cpu_ticks_prev > ticks) {
806
            /* Note: non increasing ticks may happen if the host uses
807
               software suspend */
808
            cpu_ticks_offset += cpu_ticks_prev - ticks;
809
        }
810
        cpu_ticks_prev = ticks;
811
        return ticks + cpu_ticks_offset;
812
    }
813
}
814

    
815
/* return the host CPU monotonic timer and handle stop/restart */
816
static int64_t cpu_get_clock(void)
817
{
818
    int64_t ti;
819
    if (!cpu_ticks_enabled) {
820
        return cpu_clock_offset;
821
    } else {
822
        ti = get_clock();
823
        return ti + cpu_clock_offset;
824
    }
825
}
826

    
827
/* enable cpu_get_ticks() */
828
void cpu_enable_ticks(void)
829
{
830
    if (!cpu_ticks_enabled) {
831
        cpu_ticks_offset -= cpu_get_real_ticks();
832
        cpu_clock_offset -= get_clock();
833
        cpu_ticks_enabled = 1;
834
    }
835
}
836

    
837
/* disable cpu_get_ticks() : the clock is stopped. You must not call
838
   cpu_get_ticks() after that.  */
839
void cpu_disable_ticks(void)
840
{
841
    if (cpu_ticks_enabled) {
842
        cpu_ticks_offset = cpu_get_ticks();
843
        cpu_clock_offset = cpu_get_clock();
844
        cpu_ticks_enabled = 0;
845
    }
846
}
847

    
848
/***********************************************************/
849
/* timers */
850

    
851
#define QEMU_TIMER_REALTIME 0
852
#define QEMU_TIMER_VIRTUAL  1
853

    
854
struct QEMUClock {
855
    int type;
856
    /* XXX: add frequency */
857
};
858

    
859
struct QEMUTimer {
860
    QEMUClock *clock;
861
    int64_t expire_time;
862
    QEMUTimerCB *cb;
863
    void *opaque;
864
    struct QEMUTimer *next;
865
};
866

    
867
struct qemu_alarm_timer {
868
    char const *name;
869
    unsigned int flags;
870

    
871
    int (*start)(struct qemu_alarm_timer *t);
872
    void (*stop)(struct qemu_alarm_timer *t);
873
    void (*rearm)(struct qemu_alarm_timer *t);
874
    void *priv;
875
};
876

    
877
#define ALARM_FLAG_DYNTICKS  0x1
878
#define ALARM_FLAG_EXPIRED   0x2
879

    
880
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
881
{
882
    return t->flags & ALARM_FLAG_DYNTICKS;
883
}
884

    
885
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
886
{
887
    if (!alarm_has_dynticks(t))
888
        return;
889

    
890
    t->rearm(t);
891
}
892

    
893
/* TODO: MIN_TIMER_REARM_US should be optimized */
894
#define MIN_TIMER_REARM_US 250
895

    
896
static struct qemu_alarm_timer *alarm_timer;
897

    
898
#ifdef _WIN32
899

    
900
struct qemu_alarm_win32 {
901
    MMRESULT timerId;
902
    HANDLE host_alarm;
903
    unsigned int period;
904
} alarm_win32_data = {0, NULL, -1};
905

    
906
static int win32_start_timer(struct qemu_alarm_timer *t);
907
static void win32_stop_timer(struct qemu_alarm_timer *t);
908
static void win32_rearm_timer(struct qemu_alarm_timer *t);
909

    
910
#else
911

    
912
static int unix_start_timer(struct qemu_alarm_timer *t);
913
static void unix_stop_timer(struct qemu_alarm_timer *t);
914

    
915
#ifdef __linux__
916

    
917
static int dynticks_start_timer(struct qemu_alarm_timer *t);
918
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
919
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
920

    
921
static int hpet_start_timer(struct qemu_alarm_timer *t);
922
static void hpet_stop_timer(struct qemu_alarm_timer *t);
923

    
924
static int rtc_start_timer(struct qemu_alarm_timer *t);
925
static void rtc_stop_timer(struct qemu_alarm_timer *t);
926

    
927
#endif /* __linux__ */
928

    
929
#endif /* _WIN32 */
930

    
931
/* Correlation between real and virtual time is always going to be
932
   fairly approximate, so ignore small variation.
933
   When the guest is idle real and virtual time will be aligned in
934
   the IO wait loop.  */
935
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
936

    
937
static void icount_adjust(void)
938
{
939
    int64_t cur_time;
940
    int64_t cur_icount;
941
    int64_t delta;
942
    static int64_t last_delta;
943
    /* If the VM is not running, then do nothing.  */
944
    if (!vm_running)
945
        return;
946

    
947
    cur_time = cpu_get_clock();
948
    cur_icount = qemu_get_clock(vm_clock);
949
    delta = cur_icount - cur_time;
950
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
951
    if (delta > 0
952
        && last_delta + ICOUNT_WOBBLE < delta * 2
953
        && icount_time_shift > 0) {
954
        /* The guest is getting too far ahead.  Slow time down.  */
955
        icount_time_shift--;
956
    }
957
    if (delta < 0
958
        && last_delta - ICOUNT_WOBBLE > delta * 2
959
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
960
        /* The guest is getting too far behind.  Speed time up.  */
961
        icount_time_shift++;
962
    }
963
    last_delta = delta;
964
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
965
}
966

    
967
static void icount_adjust_rt(void * opaque)
968
{
969
    qemu_mod_timer(icount_rt_timer,
970
                   qemu_get_clock(rt_clock) + 1000);
971
    icount_adjust();
972
}
973

    
974
static void icount_adjust_vm(void * opaque)
975
{
976
    qemu_mod_timer(icount_vm_timer,
977
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
978
    icount_adjust();
979
}
980

    
981
static void init_icount_adjust(void)
982
{
983
    /* Have both realtime and virtual time triggers for speed adjustment.
984
       The realtime trigger catches emulated time passing too slowly,
985
       the virtual time trigger catches emulated time passing too fast.
986
       Realtime triggers occur even when idle, so use them less frequently
987
       than VM triggers.  */
988
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
989
    qemu_mod_timer(icount_rt_timer,
990
                   qemu_get_clock(rt_clock) + 1000);
991
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
992
    qemu_mod_timer(icount_vm_timer,
993
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
994
}
995

    
996
static struct qemu_alarm_timer alarm_timers[] = {
997
#ifndef _WIN32
998
#ifdef __linux__
999
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1000
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1001
    /* HPET - if available - is preferred */
1002
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1003
    /* ...otherwise try RTC */
1004
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1005
#endif
1006
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1007
#else
1008
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1009
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1010
    {"win32", 0, win32_start_timer,
1011
     win32_stop_timer, NULL, &alarm_win32_data},
1012
#endif
1013
    {NULL, }
1014
};
1015

    
1016
static void show_available_alarms(void)
1017
{
1018
    int i;
1019

    
1020
    printf("Available alarm timers, in order of precedence:\n");
1021
    for (i = 0; alarm_timers[i].name; i++)
1022
        printf("%s\n", alarm_timers[i].name);
1023
}
1024

    
1025
static void configure_alarms(char const *opt)
1026
{
1027
    int i;
1028
    int cur = 0;
1029
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1030
    char *arg;
1031
    char *name;
1032
    struct qemu_alarm_timer tmp;
1033

    
1034
    if (!strcmp(opt, "?")) {
1035
        show_available_alarms();
1036
        exit(0);
1037
    }
1038

    
1039
    arg = strdup(opt);
1040

    
1041
    /* Reorder the array */
1042
    name = strtok(arg, ",");
1043
    while (name) {
1044
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1045
            if (!strcmp(alarm_timers[i].name, name))
1046
                break;
1047
        }
1048

    
1049
        if (i == count) {
1050
            fprintf(stderr, "Unknown clock %s\n", name);
1051
            goto next;
1052
        }
1053

    
1054
        if (i < cur)
1055
            /* Ignore */
1056
            goto next;
1057

    
1058
        /* Swap */
1059
        tmp = alarm_timers[i];
1060
        alarm_timers[i] = alarm_timers[cur];
1061
        alarm_timers[cur] = tmp;
1062

    
1063
        cur++;
1064
next:
1065
        name = strtok(NULL, ",");
1066
    }
1067

    
1068
    free(arg);
1069

    
1070
    if (cur) {
1071
        /* Disable remaining timers */
1072
        for (i = cur; i < count; i++)
1073
            alarm_timers[i].name = NULL;
1074
    } else {
1075
        show_available_alarms();
1076
        exit(1);
1077
    }
1078
}
1079

    
1080
QEMUClock *rt_clock;
1081
QEMUClock *vm_clock;
1082

    
1083
static QEMUTimer *active_timers[2];
1084

    
1085
static QEMUClock *qemu_new_clock(int type)
1086
{
1087
    QEMUClock *clock;
1088
    clock = qemu_mallocz(sizeof(QEMUClock));
1089
    if (!clock)
1090
        return NULL;
1091
    clock->type = type;
1092
    return clock;
1093
}
1094

    
1095
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1096
{
1097
    QEMUTimer *ts;
1098

    
1099
    ts = qemu_mallocz(sizeof(QEMUTimer));
1100
    ts->clock = clock;
1101
    ts->cb = cb;
1102
    ts->opaque = opaque;
1103
    return ts;
1104
}
1105

    
1106
void qemu_free_timer(QEMUTimer *ts)
1107
{
1108
    qemu_free(ts);
1109
}
1110

    
1111
/* stop a timer, but do not dealloc it */
1112
void qemu_del_timer(QEMUTimer *ts)
1113
{
1114
    QEMUTimer **pt, *t;
1115

    
1116
    /* NOTE: this code must be signal safe because
1117
       qemu_timer_expired() can be called from a signal. */
1118
    pt = &active_timers[ts->clock->type];
1119
    for(;;) {
1120
        t = *pt;
1121
        if (!t)
1122
            break;
1123
        if (t == ts) {
1124
            *pt = t->next;
1125
            break;
1126
        }
1127
        pt = &t->next;
1128
    }
1129
}
1130

    
1131
/* modify the current timer so that it will be fired when current_time
1132
   >= expire_time. The corresponding callback will be called. */
1133
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1134
{
1135
    QEMUTimer **pt, *t;
1136

    
1137
    qemu_del_timer(ts);
1138

    
1139
    /* add the timer in the sorted list */
1140
    /* NOTE: this code must be signal safe because
1141
       qemu_timer_expired() can be called from a signal. */
1142
    pt = &active_timers[ts->clock->type];
1143
    for(;;) {
1144
        t = *pt;
1145
        if (!t)
1146
            break;
1147
        if (t->expire_time > expire_time)
1148
            break;
1149
        pt = &t->next;
1150
    }
1151
    ts->expire_time = expire_time;
1152
    ts->next = *pt;
1153
    *pt = ts;
1154

    
1155
    /* Rearm if necessary  */
1156
    if (pt == &active_timers[ts->clock->type]) {
1157
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1158
            qemu_rearm_alarm_timer(alarm_timer);
1159
        }
1160
        /* Interrupt execution to force deadline recalculation.  */
1161
        if (use_icount && cpu_single_env) {
1162
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1163
        }
1164
    }
1165
}
1166

    
1167
int qemu_timer_pending(QEMUTimer *ts)
1168
{
1169
    QEMUTimer *t;
1170
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1171
        if (t == ts)
1172
            return 1;
1173
    }
1174
    return 0;
1175
}
1176

    
1177
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1178
{
1179
    if (!timer_head)
1180
        return 0;
1181
    return (timer_head->expire_time <= current_time);
1182
}
1183

    
1184
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1185
{
1186
    QEMUTimer *ts;
1187

    
1188
    for(;;) {
1189
        ts = *ptimer_head;
1190
        if (!ts || ts->expire_time > current_time)
1191
            break;
1192
        /* remove timer from the list before calling the callback */
1193
        *ptimer_head = ts->next;
1194
        ts->next = NULL;
1195

    
1196
        /* run the callback (the timer list can be modified) */
1197
        ts->cb(ts->opaque);
1198
    }
1199
}
1200

    
1201
int64_t qemu_get_clock(QEMUClock *clock)
1202
{
1203
    switch(clock->type) {
1204
    case QEMU_TIMER_REALTIME:
1205
        return get_clock() / 1000000;
1206
    default:
1207
    case QEMU_TIMER_VIRTUAL:
1208
        if (use_icount) {
1209
            return cpu_get_icount();
1210
        } else {
1211
            return cpu_get_clock();
1212
        }
1213
    }
1214
}
1215

    
1216
static void init_timers(void)
1217
{
1218
    init_get_clock();
1219
    ticks_per_sec = QEMU_TIMER_BASE;
1220
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1221
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1222
}
1223

    
1224
/* save a timer */
1225
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1226
{
1227
    uint64_t expire_time;
1228

    
1229
    if (qemu_timer_pending(ts)) {
1230
        expire_time = ts->expire_time;
1231
    } else {
1232
        expire_time = -1;
1233
    }
1234
    qemu_put_be64(f, expire_time);
1235
}
1236

    
1237
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1238
{
1239
    uint64_t expire_time;
1240

    
1241
    expire_time = qemu_get_be64(f);
1242
    if (expire_time != -1) {
1243
        qemu_mod_timer(ts, expire_time);
1244
    } else {
1245
        qemu_del_timer(ts);
1246
    }
1247
}
1248

    
1249
static void timer_save(QEMUFile *f, void *opaque)
1250
{
1251
    if (cpu_ticks_enabled) {
1252
        hw_error("cannot save state if virtual timers are running");
1253
    }
1254
    qemu_put_be64(f, cpu_ticks_offset);
1255
    qemu_put_be64(f, ticks_per_sec);
1256
    qemu_put_be64(f, cpu_clock_offset);
1257
}
1258

    
1259
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1260
{
1261
    if (version_id != 1 && version_id != 2)
1262
        return -EINVAL;
1263
    if (cpu_ticks_enabled) {
1264
        return -EINVAL;
1265
    }
1266
    cpu_ticks_offset=qemu_get_be64(f);
1267
    ticks_per_sec=qemu_get_be64(f);
1268
    if (version_id == 2) {
1269
        cpu_clock_offset=qemu_get_be64(f);
1270
    }
1271
    return 0;
1272
}
1273

    
1274
#ifdef _WIN32
1275
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1276
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1277
#else
1278
static void host_alarm_handler(int host_signum)
1279
#endif
1280
{
1281
#if 0
1282
#define DISP_FREQ 1000
1283
    {
1284
        static int64_t delta_min = INT64_MAX;
1285
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1286
        static int count;
1287
        ti = qemu_get_clock(vm_clock);
1288
        if (last_clock != 0) {
1289
            delta = ti - last_clock;
1290
            if (delta < delta_min)
1291
                delta_min = delta;
1292
            if (delta > delta_max)
1293
                delta_max = delta;
1294
            delta_cum += delta;
1295
            if (++count == DISP_FREQ) {
1296
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1297
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1298
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1299
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1300
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1301
                count = 0;
1302
                delta_min = INT64_MAX;
1303
                delta_max = 0;
1304
                delta_cum = 0;
1305
            }
1306
        }
1307
        last_clock = ti;
1308
    }
1309
#endif
1310
    if (alarm_has_dynticks(alarm_timer) ||
1311
        (!use_icount &&
1312
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1313
                               qemu_get_clock(vm_clock))) ||
1314
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1315
                           qemu_get_clock(rt_clock))) {
1316
#ifdef _WIN32
1317
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1318
        SetEvent(data->host_alarm);
1319
#endif
1320
        CPUState *env = next_cpu;
1321

    
1322
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1323

    
1324
        if (env) {
1325
            /* stop the currently executing cpu because a timer occured */
1326
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1327
#ifdef USE_KQEMU
1328
            if (env->kqemu_enabled) {
1329
                kqemu_cpu_interrupt(env);
1330
            }
1331
#endif
1332
        }
1333
        event_pending = 1;
1334
    }
1335
}
1336

    
1337
static int64_t qemu_next_deadline(void)
1338
{
1339
    int64_t delta;
1340

    
1341
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1342
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1343
                     qemu_get_clock(vm_clock);
1344
    } else {
1345
        /* To avoid problems with overflow limit this to 2^32.  */
1346
        delta = INT32_MAX;
1347
    }
1348

    
1349
    if (delta < 0)
1350
        delta = 0;
1351

    
1352
    return delta;
1353
}
1354

    
1355
#if defined(__linux__) || defined(_WIN32)
1356
static uint64_t qemu_next_deadline_dyntick(void)
1357
{
1358
    int64_t delta;
1359
    int64_t rtdelta;
1360

    
1361
    if (use_icount)
1362
        delta = INT32_MAX;
1363
    else
1364
        delta = (qemu_next_deadline() + 999) / 1000;
1365

    
1366
    if (active_timers[QEMU_TIMER_REALTIME]) {
1367
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1368
                 qemu_get_clock(rt_clock))*1000;
1369
        if (rtdelta < delta)
1370
            delta = rtdelta;
1371
    }
1372

    
1373
    if (delta < MIN_TIMER_REARM_US)
1374
        delta = MIN_TIMER_REARM_US;
1375

    
1376
    return delta;
1377
}
1378
#endif
1379

    
1380
#ifndef _WIN32
1381

    
1382
#if defined(__linux__)
1383

    
1384
#define RTC_FREQ 1024
1385

    
1386
static void enable_sigio_timer(int fd)
1387
{
1388
    struct sigaction act;
1389

    
1390
    /* timer signal */
1391
    sigfillset(&act.sa_mask);
1392
    act.sa_flags = 0;
1393
    act.sa_handler = host_alarm_handler;
1394

    
1395
    sigaction(SIGIO, &act, NULL);
1396
    fcntl(fd, F_SETFL, O_ASYNC);
1397
    fcntl(fd, F_SETOWN, getpid());
1398
}
1399

    
1400
static int hpet_start_timer(struct qemu_alarm_timer *t)
1401
{
1402
    struct hpet_info info;
1403
    int r, fd;
1404

    
1405
    fd = open("/dev/hpet", O_RDONLY);
1406
    if (fd < 0)
1407
        return -1;
1408

    
1409
    /* Set frequency */
1410
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1411
    if (r < 0) {
1412
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1413
                "error, but for better emulation accuracy type:\n"
1414
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1415
        goto fail;
1416
    }
1417

    
1418
    /* Check capabilities */
1419
    r = ioctl(fd, HPET_INFO, &info);
1420
    if (r < 0)
1421
        goto fail;
1422

    
1423
    /* Enable periodic mode */
1424
    r = ioctl(fd, HPET_EPI, 0);
1425
    if (info.hi_flags && (r < 0))
1426
        goto fail;
1427

    
1428
    /* Enable interrupt */
1429
    r = ioctl(fd, HPET_IE_ON, 0);
1430
    if (r < 0)
1431
        goto fail;
1432

    
1433
    enable_sigio_timer(fd);
1434
    t->priv = (void *)(long)fd;
1435

    
1436
    return 0;
1437
fail:
1438
    close(fd);
1439
    return -1;
1440
}
1441

    
1442
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1443
{
1444
    int fd = (long)t->priv;
1445

    
1446
    close(fd);
1447
}
1448

    
1449
static int rtc_start_timer(struct qemu_alarm_timer *t)
1450
{
1451
    int rtc_fd;
1452
    unsigned long current_rtc_freq = 0;
1453

    
1454
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1455
    if (rtc_fd < 0)
1456
        return -1;
1457
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1458
    if (current_rtc_freq != RTC_FREQ &&
1459
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1460
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1461
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1462
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1463
        goto fail;
1464
    }
1465
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1466
    fail:
1467
        close(rtc_fd);
1468
        return -1;
1469
    }
1470

    
1471
    enable_sigio_timer(rtc_fd);
1472

    
1473
    t->priv = (void *)(long)rtc_fd;
1474

    
1475
    return 0;
1476
}
1477

    
1478
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1479
{
1480
    int rtc_fd = (long)t->priv;
1481

    
1482
    close(rtc_fd);
1483
}
1484

    
1485
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1486
{
1487
    struct sigevent ev;
1488
    timer_t host_timer;
1489
    struct sigaction act;
1490

    
1491
    sigfillset(&act.sa_mask);
1492
    act.sa_flags = 0;
1493
    act.sa_handler = host_alarm_handler;
1494

    
1495
    sigaction(SIGALRM, &act, NULL);
1496

    
1497
    ev.sigev_value.sival_int = 0;
1498
    ev.sigev_notify = SIGEV_SIGNAL;
1499
    ev.sigev_signo = SIGALRM;
1500

    
1501
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1502
        perror("timer_create");
1503

    
1504
        /* disable dynticks */
1505
        fprintf(stderr, "Dynamic Ticks disabled\n");
1506

    
1507
        return -1;
1508
    }
1509

    
1510
    t->priv = (void *)host_timer;
1511

    
1512
    return 0;
1513
}
1514

    
1515
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1516
{
1517
    timer_t host_timer = (timer_t)t->priv;
1518

    
1519
    timer_delete(host_timer);
1520
}
1521

    
1522
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1523
{
1524
    timer_t host_timer = (timer_t)t->priv;
1525
    struct itimerspec timeout;
1526
    int64_t nearest_delta_us = INT64_MAX;
1527
    int64_t current_us;
1528

    
1529
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1530
                !active_timers[QEMU_TIMER_VIRTUAL])
1531
        return;
1532

    
1533
    nearest_delta_us = qemu_next_deadline_dyntick();
1534

    
1535
    /* check whether a timer is already running */
1536
    if (timer_gettime(host_timer, &timeout)) {
1537
        perror("gettime");
1538
        fprintf(stderr, "Internal timer error: aborting\n");
1539
        exit(1);
1540
    }
1541
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1542
    if (current_us && current_us <= nearest_delta_us)
1543
        return;
1544

    
1545
    timeout.it_interval.tv_sec = 0;
1546
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1547
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1548
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1549
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1550
        perror("settime");
1551
        fprintf(stderr, "Internal timer error: aborting\n");
1552
        exit(1);
1553
    }
1554
}
1555

    
1556
#endif /* defined(__linux__) */
1557

    
1558
static int unix_start_timer(struct qemu_alarm_timer *t)
1559
{
1560
    struct sigaction act;
1561
    struct itimerval itv;
1562
    int err;
1563

    
1564
    /* timer signal */
1565
    sigfillset(&act.sa_mask);
1566
    act.sa_flags = 0;
1567
    act.sa_handler = host_alarm_handler;
1568

    
1569
    sigaction(SIGALRM, &act, NULL);
1570

    
1571
    itv.it_interval.tv_sec = 0;
1572
    /* for i386 kernel 2.6 to get 1 ms */
1573
    itv.it_interval.tv_usec = 999;
1574
    itv.it_value.tv_sec = 0;
1575
    itv.it_value.tv_usec = 10 * 1000;
1576

    
1577
    err = setitimer(ITIMER_REAL, &itv, NULL);
1578
    if (err)
1579
        return -1;
1580

    
1581
    return 0;
1582
}
1583

    
1584
static void unix_stop_timer(struct qemu_alarm_timer *t)
1585
{
1586
    struct itimerval itv;
1587

    
1588
    memset(&itv, 0, sizeof(itv));
1589
    setitimer(ITIMER_REAL, &itv, NULL);
1590
}
1591

    
1592
#endif /* !defined(_WIN32) */
1593

    
1594
#ifdef _WIN32
1595

    
1596
static int win32_start_timer(struct qemu_alarm_timer *t)
1597
{
1598
    TIMECAPS tc;
1599
    struct qemu_alarm_win32 *data = t->priv;
1600
    UINT flags;
1601

    
1602
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1603
    if (!data->host_alarm) {
1604
        perror("Failed CreateEvent");
1605
        return -1;
1606
    }
1607

    
1608
    memset(&tc, 0, sizeof(tc));
1609
    timeGetDevCaps(&tc, sizeof(tc));
1610

    
1611
    if (data->period < tc.wPeriodMin)
1612
        data->period = tc.wPeriodMin;
1613

    
1614
    timeBeginPeriod(data->period);
1615

    
1616
    flags = TIME_CALLBACK_FUNCTION;
1617
    if (alarm_has_dynticks(t))
1618
        flags |= TIME_ONESHOT;
1619
    else
1620
        flags |= TIME_PERIODIC;
1621

    
1622
    data->timerId = timeSetEvent(1,         // interval (ms)
1623
                        data->period,       // resolution
1624
                        host_alarm_handler, // function
1625
                        (DWORD)t,           // parameter
1626
                        flags);
1627

    
1628
    if (!data->timerId) {
1629
        perror("Failed to initialize win32 alarm timer");
1630

    
1631
        timeEndPeriod(data->period);
1632
        CloseHandle(data->host_alarm);
1633
        return -1;
1634
    }
1635

    
1636
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1637

    
1638
    return 0;
1639
}
1640

    
1641
static void win32_stop_timer(struct qemu_alarm_timer *t)
1642
{
1643
    struct qemu_alarm_win32 *data = t->priv;
1644

    
1645
    timeKillEvent(data->timerId);
1646
    timeEndPeriod(data->period);
1647

    
1648
    CloseHandle(data->host_alarm);
1649
}
1650

    
1651
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1652
{
1653
    struct qemu_alarm_win32 *data = t->priv;
1654
    uint64_t nearest_delta_us;
1655

    
1656
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1657
                !active_timers[QEMU_TIMER_VIRTUAL])
1658
        return;
1659

    
1660
    nearest_delta_us = qemu_next_deadline_dyntick();
1661
    nearest_delta_us /= 1000;
1662

    
1663
    timeKillEvent(data->timerId);
1664

    
1665
    data->timerId = timeSetEvent(1,
1666
                        data->period,
1667
                        host_alarm_handler,
1668
                        (DWORD)t,
1669
                        TIME_ONESHOT | TIME_PERIODIC);
1670

    
1671
    if (!data->timerId) {
1672
        perror("Failed to re-arm win32 alarm timer");
1673

    
1674
        timeEndPeriod(data->period);
1675
        CloseHandle(data->host_alarm);
1676
        exit(1);
1677
    }
1678
}
1679

    
1680
#endif /* _WIN32 */
1681

    
1682
static void init_timer_alarm(void)
1683
{
1684
    struct qemu_alarm_timer *t = NULL;
1685
    int i, err = -1;
1686

    
1687
    for (i = 0; alarm_timers[i].name; i++) {
1688
        t = &alarm_timers[i];
1689

    
1690
        err = t->start(t);
1691
        if (!err)
1692
            break;
1693
    }
1694

    
1695
    if (err) {
1696
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1697
        fprintf(stderr, "Terminating\n");
1698
        exit(1);
1699
    }
1700

    
1701
    alarm_timer = t;
1702
}
1703

    
1704
static void quit_timers(void)
1705
{
1706
    alarm_timer->stop(alarm_timer);
1707
    alarm_timer = NULL;
1708
}
1709

    
1710
/***********************************************************/
1711
/* host time/date access */
1712
void qemu_get_timedate(struct tm *tm, int offset)
1713
{
1714
    time_t ti;
1715
    struct tm *ret;
1716

    
1717
    time(&ti);
1718
    ti += offset;
1719
    if (rtc_date_offset == -1) {
1720
        if (rtc_utc)
1721
            ret = gmtime(&ti);
1722
        else
1723
            ret = localtime(&ti);
1724
    } else {
1725
        ti -= rtc_date_offset;
1726
        ret = gmtime(&ti);
1727
    }
1728

    
1729
    memcpy(tm, ret, sizeof(struct tm));
1730
}
1731

    
1732
int qemu_timedate_diff(struct tm *tm)
1733
{
1734
    time_t seconds;
1735

    
1736
    if (rtc_date_offset == -1)
1737
        if (rtc_utc)
1738
            seconds = mktimegm(tm);
1739
        else
1740
            seconds = mktime(tm);
1741
    else
1742
        seconds = mktimegm(tm) + rtc_date_offset;
1743

    
1744
    return seconds - time(NULL);
1745
}
1746

    
1747
/***********************************************************/
1748
/* character device */
1749

    
1750
static void qemu_chr_event(CharDriverState *s, int event)
1751
{
1752
    if (!s->chr_event)
1753
        return;
1754
    s->chr_event(s->handler_opaque, event);
1755
}
1756

    
1757
static void qemu_chr_reset_bh(void *opaque)
1758
{
1759
    CharDriverState *s = opaque;
1760
    qemu_chr_event(s, CHR_EVENT_RESET);
1761
    qemu_bh_delete(s->bh);
1762
    s->bh = NULL;
1763
}
1764

    
1765
void qemu_chr_reset(CharDriverState *s)
1766
{
1767
    if (s->bh == NULL) {
1768
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1769
        qemu_bh_schedule(s->bh);
1770
    }
1771
}
1772

    
1773
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1774
{
1775
    return s->chr_write(s, buf, len);
1776
}
1777

    
1778
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1779
{
1780
    if (!s->chr_ioctl)
1781
        return -ENOTSUP;
1782
    return s->chr_ioctl(s, cmd, arg);
1783
}
1784

    
1785
int qemu_chr_can_read(CharDriverState *s)
1786
{
1787
    if (!s->chr_can_read)
1788
        return 0;
1789
    return s->chr_can_read(s->handler_opaque);
1790
}
1791

    
1792
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1793
{
1794
    s->chr_read(s->handler_opaque, buf, len);
1795
}
1796

    
1797
void qemu_chr_accept_input(CharDriverState *s)
1798
{
1799
    if (s->chr_accept_input)
1800
        s->chr_accept_input(s);
1801
}
1802

    
1803
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1804
{
1805
    char buf[4096];
1806
    va_list ap;
1807
    va_start(ap, fmt);
1808
    vsnprintf(buf, sizeof(buf), fmt, ap);
1809
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1810
    va_end(ap);
1811
}
1812

    
1813
void qemu_chr_send_event(CharDriverState *s, int event)
1814
{
1815
    if (s->chr_send_event)
1816
        s->chr_send_event(s, event);
1817
}
1818

    
1819
void qemu_chr_add_handlers(CharDriverState *s,
1820
                           IOCanRWHandler *fd_can_read,
1821
                           IOReadHandler *fd_read,
1822
                           IOEventHandler *fd_event,
1823
                           void *opaque)
1824
{
1825
    s->chr_can_read = fd_can_read;
1826
    s->chr_read = fd_read;
1827
    s->chr_event = fd_event;
1828
    s->handler_opaque = opaque;
1829
    if (s->chr_update_read_handler)
1830
        s->chr_update_read_handler(s);
1831
}
1832

    
1833
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1834
{
1835
    return len;
1836
}
1837

    
1838
static CharDriverState *qemu_chr_open_null(void)
1839
{
1840
    CharDriverState *chr;
1841

    
1842
    chr = qemu_mallocz(sizeof(CharDriverState));
1843
    if (!chr)
1844
        return NULL;
1845
    chr->chr_write = null_chr_write;
1846
    return chr;
1847
}
1848

    
1849
/* MUX driver for serial I/O splitting */
1850
static int term_timestamps;
1851
static int64_t term_timestamps_start;
1852
#define MAX_MUX 4
1853
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1854
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1855
typedef struct {
1856
    IOCanRWHandler *chr_can_read[MAX_MUX];
1857
    IOReadHandler *chr_read[MAX_MUX];
1858
    IOEventHandler *chr_event[MAX_MUX];
1859
    void *ext_opaque[MAX_MUX];
1860
    CharDriverState *drv;
1861
    unsigned char buffer[MUX_BUFFER_SIZE];
1862
    int prod;
1863
    int cons;
1864
    int mux_cnt;
1865
    int term_got_escape;
1866
    int max_size;
1867
} MuxDriver;
1868

    
1869

    
1870
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1871
{
1872
    MuxDriver *d = chr->opaque;
1873
    int ret;
1874
    if (!term_timestamps) {
1875
        ret = d->drv->chr_write(d->drv, buf, len);
1876
    } else {
1877
        int i;
1878

    
1879
        ret = 0;
1880
        for(i = 0; i < len; i++) {
1881
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1882
            if (buf[i] == '\n') {
1883
                char buf1[64];
1884
                int64_t ti;
1885
                int secs;
1886

    
1887
                ti = get_clock();
1888
                if (term_timestamps_start == -1)
1889
                    term_timestamps_start = ti;
1890
                ti -= term_timestamps_start;
1891
                secs = ti / 1000000000;
1892
                snprintf(buf1, sizeof(buf1),
1893
                         "[%02d:%02d:%02d.%03d] ",
1894
                         secs / 3600,
1895
                         (secs / 60) % 60,
1896
                         secs % 60,
1897
                         (int)((ti / 1000000) % 1000));
1898
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1899
            }
1900
        }
1901
    }
1902
    return ret;
1903
}
1904

    
1905
static const char * const mux_help[] = {
1906
    "% h    print this help\n\r",
1907
    "% x    exit emulator\n\r",
1908
    "% s    save disk data back to file (if -snapshot)\n\r",
1909
    "% t    toggle console timestamps\n\r"
1910
    "% b    send break (magic sysrq)\n\r",
1911
    "% c    switch between console and monitor\n\r",
1912
    "% %  sends %\n\r",
1913
    NULL
1914
};
1915

    
1916
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1917
static void mux_print_help(CharDriverState *chr)
1918
{
1919
    int i, j;
1920
    char ebuf[15] = "Escape-Char";
1921
    char cbuf[50] = "\n\r";
1922

    
1923
    if (term_escape_char > 0 && term_escape_char < 26) {
1924
        snprintf(cbuf, sizeof(cbuf), "\n\r");
1925
        snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1926
    } else {
1927
        snprintf(cbuf, sizeof(cbuf),
1928
                 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1929
                 term_escape_char);
1930
    }
1931
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1932
    for (i = 0; mux_help[i] != NULL; i++) {
1933
        for (j=0; mux_help[i][j] != '\0'; j++) {
1934
            if (mux_help[i][j] == '%')
1935
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1936
            else
1937
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1938
        }
1939
    }
1940
}
1941

    
1942
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1943
{
1944
    if (d->term_got_escape) {
1945
        d->term_got_escape = 0;
1946
        if (ch == term_escape_char)
1947
            goto send_char;
1948
        switch(ch) {
1949
        case '?':
1950
        case 'h':
1951
            mux_print_help(chr);
1952
            break;
1953
        case 'x':
1954
            {
1955
                 const char *term =  "QEMU: Terminated\n\r";
1956
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1957
                 exit(0);
1958
                 break;
1959
            }
1960
        case 's':
1961
            {
1962
                int i;
1963
                for (i = 0; i < nb_drives; i++) {
1964
                        bdrv_commit(drives_table[i].bdrv);
1965
                }
1966
            }
1967
            break;
1968
        case 'b':
1969
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1970
            break;
1971
        case 'c':
1972
            /* Switch to the next registered device */
1973
            chr->focus++;
1974
            if (chr->focus >= d->mux_cnt)
1975
                chr->focus = 0;
1976
            break;
1977
       case 't':
1978
           term_timestamps = !term_timestamps;
1979
           term_timestamps_start = -1;
1980
           break;
1981
        }
1982
    } else if (ch == term_escape_char) {
1983
        d->term_got_escape = 1;
1984
    } else {
1985
    send_char:
1986
        return 1;
1987
    }
1988
    return 0;
1989
}
1990

    
1991
static void mux_chr_accept_input(CharDriverState *chr)
1992
{
1993
    int m = chr->focus;
1994
    MuxDriver *d = chr->opaque;
1995

    
1996
    while (d->prod != d->cons &&
1997
           d->chr_can_read[m] &&
1998
           d->chr_can_read[m](d->ext_opaque[m])) {
1999
        d->chr_read[m](d->ext_opaque[m],
2000
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
2001
    }
2002
}
2003

    
2004
static int mux_chr_can_read(void *opaque)
2005
{
2006
    CharDriverState *chr = opaque;
2007
    MuxDriver *d = chr->opaque;
2008

    
2009
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2010
        return 1;
2011
    if (d->chr_can_read[chr->focus])
2012
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2013
    return 0;
2014
}
2015

    
2016
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2017
{
2018
    CharDriverState *chr = opaque;
2019
    MuxDriver *d = chr->opaque;
2020
    int m = chr->focus;
2021
    int i;
2022

    
2023
    mux_chr_accept_input (opaque);
2024

    
2025
    for(i = 0; i < size; i++)
2026
        if (mux_proc_byte(chr, d, buf[i])) {
2027
            if (d->prod == d->cons &&
2028
                d->chr_can_read[m] &&
2029
                d->chr_can_read[m](d->ext_opaque[m]))
2030
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2031
            else
2032
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2033
        }
2034
}
2035

    
2036
static void mux_chr_event(void *opaque, int event)
2037
{
2038
    CharDriverState *chr = opaque;
2039
    MuxDriver *d = chr->opaque;
2040
    int i;
2041

    
2042
    /* Send the event to all registered listeners */
2043
    for (i = 0; i < d->mux_cnt; i++)
2044
        if (d->chr_event[i])
2045
            d->chr_event[i](d->ext_opaque[i], event);
2046
}
2047

    
2048
static void mux_chr_update_read_handler(CharDriverState *chr)
2049
{
2050
    MuxDriver *d = chr->opaque;
2051

    
2052
    if (d->mux_cnt >= MAX_MUX) {
2053
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2054
        return;
2055
    }
2056
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2057
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2058
    d->chr_read[d->mux_cnt] = chr->chr_read;
2059
    d->chr_event[d->mux_cnt] = chr->chr_event;
2060
    /* Fix up the real driver with mux routines */
2061
    if (d->mux_cnt == 0) {
2062
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2063
                              mux_chr_event, chr);
2064
    }
2065
    chr->focus = d->mux_cnt;
2066
    d->mux_cnt++;
2067
}
2068

    
2069
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2070
{
2071
    CharDriverState *chr;
2072
    MuxDriver *d;
2073

    
2074
    chr = qemu_mallocz(sizeof(CharDriverState));
2075
    if (!chr)
2076
        return NULL;
2077
    d = qemu_mallocz(sizeof(MuxDriver));
2078
    if (!d) {
2079
        free(chr);
2080
        return NULL;
2081
    }
2082

    
2083
    chr->opaque = d;
2084
    d->drv = drv;
2085
    chr->focus = -1;
2086
    chr->chr_write = mux_chr_write;
2087
    chr->chr_update_read_handler = mux_chr_update_read_handler;
2088
    chr->chr_accept_input = mux_chr_accept_input;
2089
    return chr;
2090
}
2091

    
2092

    
2093
#ifdef _WIN32
2094

    
2095
static void socket_cleanup(void)
2096
{
2097
    WSACleanup();
2098
}
2099

    
2100
static int socket_init(void)
2101
{
2102
    WSADATA Data;
2103
    int ret, err;
2104

    
2105
    ret = WSAStartup(MAKEWORD(2,2), &Data);
2106
    if (ret != 0) {
2107
        err = WSAGetLastError();
2108
        fprintf(stderr, "WSAStartup: %d\n", err);
2109
        return -1;
2110
    }
2111
    atexit(socket_cleanup);
2112
    return 0;
2113
}
2114

    
2115
static int send_all(int fd, const uint8_t *buf, int len1)
2116
{
2117
    int ret, len;
2118

    
2119
    len = len1;
2120
    while (len > 0) {
2121
        ret = send(fd, buf, len, 0);
2122
        if (ret < 0) {
2123
            int errno;
2124
            errno = WSAGetLastError();
2125
            if (errno != WSAEWOULDBLOCK) {
2126
                return -1;
2127
            }
2128
        } else if (ret == 0) {
2129
            break;
2130
        } else {
2131
            buf += ret;
2132
            len -= ret;
2133
        }
2134
    }
2135
    return len1 - len;
2136
}
2137

    
2138
#else
2139

    
2140
static int unix_write(int fd, const uint8_t *buf, int len1)
2141
{
2142
    int ret, len;
2143

    
2144
    len = len1;
2145
    while (len > 0) {
2146
        ret = write(fd, buf, len);
2147
        if (ret < 0) {
2148
            if (errno != EINTR && errno != EAGAIN)
2149
                return -1;
2150
        } else if (ret == 0) {
2151
            break;
2152
        } else {
2153
            buf += ret;
2154
            len -= ret;
2155
        }
2156
    }
2157
    return len1 - len;
2158
}
2159

    
2160
static inline int send_all(int fd, const uint8_t *buf, int len1)
2161
{
2162
    return unix_write(fd, buf, len1);
2163
}
2164
#endif /* !_WIN32 */
2165

    
2166
#ifndef _WIN32
2167

    
2168
typedef struct {
2169
    int fd_in, fd_out;
2170
    int max_size;
2171
} FDCharDriver;
2172

    
2173
#define STDIO_MAX_CLIENTS 1
2174
static int stdio_nb_clients = 0;
2175

    
2176
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2177
{
2178
    FDCharDriver *s = chr->opaque;
2179
    return unix_write(s->fd_out, buf, len);
2180
}
2181

    
2182
static int fd_chr_read_poll(void *opaque)
2183
{
2184
    CharDriverState *chr = opaque;
2185
    FDCharDriver *s = chr->opaque;
2186

    
2187
    s->max_size = qemu_chr_can_read(chr);
2188
    return s->max_size;
2189
}
2190

    
2191
static void fd_chr_read(void *opaque)
2192
{
2193
    CharDriverState *chr = opaque;
2194
    FDCharDriver *s = chr->opaque;
2195
    int size, len;
2196
    uint8_t buf[1024];
2197

    
2198
    len = sizeof(buf);
2199
    if (len > s->max_size)
2200
        len = s->max_size;
2201
    if (len == 0)
2202
        return;
2203
    size = read(s->fd_in, buf, len);
2204
    if (size == 0) {
2205
        /* FD has been closed. Remove it from the active list.  */
2206
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2207
        return;
2208
    }
2209
    if (size > 0) {
2210
        qemu_chr_read(chr, buf, size);
2211
    }
2212
}
2213

    
2214
static void fd_chr_update_read_handler(CharDriverState *chr)
2215
{
2216
    FDCharDriver *s = chr->opaque;
2217

    
2218
    if (s->fd_in >= 0) {
2219
        if (nographic && s->fd_in == 0) {
2220
        } else {
2221
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2222
                                 fd_chr_read, NULL, chr);
2223
        }
2224
    }
2225
}
2226

    
2227
static void fd_chr_close(struct CharDriverState *chr)
2228
{
2229
    FDCharDriver *s = chr->opaque;
2230

    
2231
    if (s->fd_in >= 0) {
2232
        if (nographic && s->fd_in == 0) {
2233
        } else {
2234
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2235
        }
2236
    }
2237

    
2238
    qemu_free(s);
2239
}
2240

    
2241
/* open a character device to a unix fd */
2242
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2243
{
2244
    CharDriverState *chr;
2245
    FDCharDriver *s;
2246

    
2247
    chr = qemu_mallocz(sizeof(CharDriverState));
2248
    if (!chr)
2249
        return NULL;
2250
    s = qemu_mallocz(sizeof(FDCharDriver));
2251
    if (!s) {
2252
        free(chr);
2253
        return NULL;
2254
    }
2255
    s->fd_in = fd_in;
2256
    s->fd_out = fd_out;
2257
    chr->opaque = s;
2258
    chr->chr_write = fd_chr_write;
2259
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2260
    chr->chr_close = fd_chr_close;
2261

    
2262
    qemu_chr_reset(chr);
2263

    
2264
    return chr;
2265
}
2266

    
2267
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2268
{
2269
    int fd_out;
2270

    
2271
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2272
    if (fd_out < 0)
2273
        return NULL;
2274
    return qemu_chr_open_fd(-1, fd_out);
2275
}
2276

    
2277
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2278
{
2279
    int fd_in, fd_out;
2280
    char filename_in[256], filename_out[256];
2281

    
2282
    snprintf(filename_in, 256, "%s.in", filename);
2283
    snprintf(filename_out, 256, "%s.out", filename);
2284
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2285
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2286
    if (fd_in < 0 || fd_out < 0) {
2287
        if (fd_in >= 0)
2288
            close(fd_in);
2289
        if (fd_out >= 0)
2290
            close(fd_out);
2291
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2292
        if (fd_in < 0)
2293
            return NULL;
2294
    }
2295
    return qemu_chr_open_fd(fd_in, fd_out);
2296
}
2297

    
2298

    
2299
/* for STDIO, we handle the case where several clients use it
2300
   (nographic mode) */
2301

    
2302
#define TERM_FIFO_MAX_SIZE 1
2303

    
2304
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2305
static int term_fifo_size;
2306

    
2307
static int stdio_read_poll(void *opaque)
2308
{
2309
    CharDriverState *chr = opaque;
2310

    
2311
    /* try to flush the queue if needed */
2312
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2313
        qemu_chr_read(chr, term_fifo, 1);
2314
        term_fifo_size = 0;
2315
    }
2316
    /* see if we can absorb more chars */
2317
    if (term_fifo_size == 0)
2318
        return 1;
2319
    else
2320
        return 0;
2321
}
2322

    
2323
static void stdio_read(void *opaque)
2324
{
2325
    int size;
2326
    uint8_t buf[1];
2327
    CharDriverState *chr = opaque;
2328

    
2329
    size = read(0, buf, 1);
2330
    if (size == 0) {
2331
        /* stdin has been closed. Remove it from the active list.  */
2332
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2333
        return;
2334
    }
2335
    if (size > 0) {
2336
        if (qemu_chr_can_read(chr) > 0) {
2337
            qemu_chr_read(chr, buf, 1);
2338
        } else if (term_fifo_size == 0) {
2339
            term_fifo[term_fifo_size++] = buf[0];
2340
        }
2341
    }
2342
}
2343

    
2344
/* init terminal so that we can grab keys */
2345
static struct termios oldtty;
2346
static int old_fd0_flags;
2347
static int term_atexit_done;
2348

    
2349
static void term_exit(void)
2350
{
2351
    tcsetattr (0, TCSANOW, &oldtty);
2352
    fcntl(0, F_SETFL, old_fd0_flags);
2353
}
2354

    
2355
static void term_init(void)
2356
{
2357
    struct termios tty;
2358

    
2359
    tcgetattr (0, &tty);
2360
    oldtty = tty;
2361
    old_fd0_flags = fcntl(0, F_GETFL);
2362

    
2363
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2364
                          |INLCR|IGNCR|ICRNL|IXON);
2365
    tty.c_oflag |= OPOST;
2366
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2367
    /* if graphical mode, we allow Ctrl-C handling */
2368
    if (nographic)
2369
        tty.c_lflag &= ~ISIG;
2370
    tty.c_cflag &= ~(CSIZE|PARENB);
2371
    tty.c_cflag |= CS8;
2372
    tty.c_cc[VMIN] = 1;
2373
    tty.c_cc[VTIME] = 0;
2374

    
2375
    tcsetattr (0, TCSANOW, &tty);
2376

    
2377
    if (!term_atexit_done++)
2378
        atexit(term_exit);
2379

    
2380
    fcntl(0, F_SETFL, O_NONBLOCK);
2381
}
2382

    
2383
static void qemu_chr_close_stdio(struct CharDriverState *chr)
2384
{
2385
    term_exit();
2386
    stdio_nb_clients--;
2387
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2388
    fd_chr_close(chr);
2389
}
2390

    
2391
static CharDriverState *qemu_chr_open_stdio(void)
2392
{
2393
    CharDriverState *chr;
2394

    
2395
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2396
        return NULL;
2397
    chr = qemu_chr_open_fd(0, 1);
2398
    chr->chr_close = qemu_chr_close_stdio;
2399
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2400
    stdio_nb_clients++;
2401
    term_init();
2402

    
2403
    return chr;
2404
}
2405

    
2406
#ifdef __sun__
2407
/* Once Solaris has openpty(), this is going to be removed. */
2408
int openpty(int *amaster, int *aslave, char *name,
2409
            struct termios *termp, struct winsize *winp)
2410
{
2411
        const char *slave;
2412
        int mfd = -1, sfd = -1;
2413

    
2414
        *amaster = *aslave = -1;
2415

    
2416
        mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2417
        if (mfd < 0)
2418
                goto err;
2419

    
2420
        if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2421
                goto err;
2422

    
2423
        if ((slave = ptsname(mfd)) == NULL)
2424
                goto err;
2425

    
2426
        if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2427
                goto err;
2428

    
2429
        if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2430
            (termp != NULL && tcgetattr(sfd, termp) < 0))
2431
                goto err;
2432

    
2433
        if (amaster)
2434
                *amaster = mfd;
2435
        if (aslave)
2436
                *aslave = sfd;
2437
        if (winp)
2438
                ioctl(sfd, TIOCSWINSZ, winp);
2439

    
2440
        return 0;
2441

    
2442
err:
2443
        if (sfd != -1)
2444
                close(sfd);
2445
        close(mfd);
2446
        return -1;
2447
}
2448

    
2449
void cfmakeraw (struct termios *termios_p)
2450
{
2451
        termios_p->c_iflag &=
2452
                ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2453
        termios_p->c_oflag &= ~OPOST;
2454
        termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2455
        termios_p->c_cflag &= ~(CSIZE|PARENB);
2456
        termios_p->c_cflag |= CS8;
2457

    
2458
        termios_p->c_cc[VMIN] = 0;
2459
        termios_p->c_cc[VTIME] = 0;
2460
}
2461
#endif
2462

    
2463
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2464
    || defined(__NetBSD__) || defined(__OpenBSD__)
2465

    
2466
typedef struct {
2467
    int fd;
2468
    int connected;
2469
    int polling;
2470
    int read_bytes;
2471
    QEMUTimer *timer;
2472
} PtyCharDriver;
2473

    
2474
static void pty_chr_update_read_handler(CharDriverState *chr);
2475
static void pty_chr_state(CharDriverState *chr, int connected);
2476

    
2477
static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2478
{
2479
    PtyCharDriver *s = chr->opaque;
2480

    
2481
    if (!s->connected) {
2482
        /* guest sends data, check for (re-)connect */
2483
        pty_chr_update_read_handler(chr);
2484
        return 0;
2485
    }
2486
    return unix_write(s->fd, buf, len);
2487
}
2488

    
2489
static int pty_chr_read_poll(void *opaque)
2490
{
2491
    CharDriverState *chr = opaque;
2492
    PtyCharDriver *s = chr->opaque;
2493

    
2494
    s->read_bytes = qemu_chr_can_read(chr);
2495
    return s->read_bytes;
2496
}
2497

    
2498
static void pty_chr_read(void *opaque)
2499
{
2500
    CharDriverState *chr = opaque;
2501
    PtyCharDriver *s = chr->opaque;
2502
    int size, len;
2503
    uint8_t buf[1024];
2504

    
2505
    len = sizeof(buf);
2506
    if (len > s->read_bytes)
2507
        len = s->read_bytes;
2508
    if (len == 0)
2509
        return;
2510
    size = read(s->fd, buf, len);
2511
    if ((size == -1 && errno == EIO) ||
2512
        (size == 0)) {
2513
        pty_chr_state(chr, 0);
2514
        return;
2515
    }
2516
    if (size > 0) {
2517
        pty_chr_state(chr, 1);
2518
        qemu_chr_read(chr, buf, size);
2519
    }
2520
}
2521

    
2522
static void pty_chr_update_read_handler(CharDriverState *chr)
2523
{
2524
    PtyCharDriver *s = chr->opaque;
2525

    
2526
    qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2527
                         pty_chr_read, NULL, chr);
2528
    s->polling = 1;
2529
    /*
2530
     * Short timeout here: just need wait long enougth that qemu makes
2531
     * it through the poll loop once.  When reconnected we want a
2532
     * short timeout so we notice it almost instantly.  Otherwise
2533
     * read() gives us -EIO instantly, making pty_chr_state() reset the
2534
     * timeout to the normal (much longer) poll interval before the
2535
     * timer triggers.
2536
     */
2537
    qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2538
}
2539

    
2540
static void pty_chr_state(CharDriverState *chr, int connected)
2541
{
2542
    PtyCharDriver *s = chr->opaque;
2543

    
2544
    if (!connected) {
2545
        qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2546
        s->connected = 0;
2547
        s->polling = 0;
2548
        /* (re-)connect poll interval for idle guests: once per second.
2549
         * We check more frequently in case the guests sends data to
2550
         * the virtual device linked to our pty. */
2551
        qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2552
    } else {
2553
        if (!s->connected)
2554
            qemu_chr_reset(chr);
2555
        s->connected = 1;
2556
    }
2557
}
2558

    
2559
static void pty_chr_timer(void *opaque)
2560
{
2561
    struct CharDriverState *chr = opaque;
2562
    PtyCharDriver *s = chr->opaque;
2563

    
2564
    if (s->connected)
2565
        return;
2566
    if (s->polling) {
2567
        /* If we arrive here without polling being cleared due
2568
         * read returning -EIO, then we are (re-)connected */
2569
        pty_chr_state(chr, 1);
2570
        return;
2571
    }
2572

    
2573
    /* Next poll ... */
2574
    pty_chr_update_read_handler(chr);
2575
}
2576

    
2577
static void pty_chr_close(struct CharDriverState *chr)
2578
{
2579
    PtyCharDriver *s = chr->opaque;
2580

    
2581
    qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2582
    close(s->fd);
2583
    qemu_free(s);
2584
}
2585

    
2586
static CharDriverState *qemu_chr_open_pty(void)
2587
{
2588
    CharDriverState *chr;
2589
    PtyCharDriver *s;
2590
    struct termios tty;
2591
    int slave_fd;
2592
#if defined(__OpenBSD__)
2593
    char pty_name[PATH_MAX];
2594
#define q_ptsname(x) pty_name
2595
#else
2596
    char *pty_name = NULL;
2597
#define q_ptsname(x) ptsname(x)
2598
#endif
2599

    
2600
    chr = qemu_mallocz(sizeof(CharDriverState));
2601
    if (!chr)
2602
        return NULL;
2603
    s = qemu_mallocz(sizeof(PtyCharDriver));
2604
    if (!s) {
2605
        qemu_free(chr);
2606
        return NULL;
2607
    }
2608

    
2609
    if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2610
        return NULL;
2611
    }
2612

    
2613
    /* Set raw attributes on the pty. */
2614
    cfmakeraw(&tty);
2615
    tcsetattr(slave_fd, TCSAFLUSH, &tty);
2616
    close(slave_fd);
2617

    
2618
    fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2619

    
2620
    chr->opaque = s;
2621
    chr->chr_write = pty_chr_write;
2622
    chr->chr_update_read_handler = pty_chr_update_read_handler;
2623
    chr->chr_close = pty_chr_close;
2624

    
2625
    s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2626

    
2627
    return chr;
2628
}
2629

    
2630
static void tty_serial_init(int fd, int speed,
2631
                            int parity, int data_bits, int stop_bits)
2632
{
2633
    struct termios tty;
2634
    speed_t spd;
2635

    
2636
#if 0
2637
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2638
           speed, parity, data_bits, stop_bits);
2639
#endif
2640
    tcgetattr (fd, &tty);
2641

    
2642
#define MARGIN 1.1
2643
    if (speed <= 50 * MARGIN)
2644
        spd = B50;
2645
    else if (speed <= 75 * MARGIN)
2646
        spd = B75;
2647
    else if (speed <= 300 * MARGIN)
2648
        spd = B300;
2649
    else if (speed <= 600 * MARGIN)
2650
        spd = B600;
2651
    else if (speed <= 1200 * MARGIN)
2652
        spd = B1200;
2653
    else if (speed <= 2400 * MARGIN)
2654
        spd = B2400;
2655
    else if (speed <= 4800 * MARGIN)
2656
        spd = B4800;
2657
    else if (speed <= 9600 * MARGIN)
2658
        spd = B9600;
2659
    else if (speed <= 19200 * MARGIN)
2660
        spd = B19200;
2661
    else if (speed <= 38400 * MARGIN)
2662
        spd = B38400;
2663
    else if (speed <= 57600 * MARGIN)
2664
        spd = B57600;
2665
    else if (speed <= 115200 * MARGIN)
2666
        spd = B115200;
2667
    else
2668
        spd = B115200;
2669

    
2670
    cfsetispeed(&tty, spd);
2671
    cfsetospeed(&tty, spd);
2672

    
2673
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2674
                          |INLCR|IGNCR|ICRNL|IXON);
2675
    tty.c_oflag |= OPOST;
2676
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2677
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2678
    switch(data_bits) {
2679
    default:
2680
    case 8:
2681
        tty.c_cflag |= CS8;
2682
        break;
2683
    case 7:
2684
        tty.c_cflag |= CS7;
2685
        break;
2686
    case 6:
2687
        tty.c_cflag |= CS6;
2688
        break;
2689
    case 5:
2690
        tty.c_cflag |= CS5;
2691
        break;
2692
    }
2693
    switch(parity) {
2694
    default:
2695
    case 'N':
2696
        break;
2697
    case 'E':
2698
        tty.c_cflag |= PARENB;
2699
        break;
2700
    case 'O':
2701
        tty.c_cflag |= PARENB | PARODD;
2702
        break;
2703
    }
2704
    if (stop_bits == 2)
2705
        tty.c_cflag |= CSTOPB;
2706

    
2707
    tcsetattr (fd, TCSANOW, &tty);
2708
}
2709

    
2710
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2711
{
2712
    FDCharDriver *s = chr->opaque;
2713

    
2714
    switch(cmd) {
2715
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2716
        {
2717
            QEMUSerialSetParams *ssp = arg;
2718
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2719
                            ssp->data_bits, ssp->stop_bits);
2720
        }
2721
        break;
2722
    case CHR_IOCTL_SERIAL_SET_BREAK:
2723
        {
2724
            int enable = *(int *)arg;
2725
            if (enable)
2726
                tcsendbreak(s->fd_in, 1);
2727
        }
2728
        break;
2729
    case CHR_IOCTL_SERIAL_GET_TIOCM:
2730
        {
2731
            int sarg = 0;
2732
            int *targ = (int *)arg;
2733
            ioctl(s->fd_in, TIOCMGET, &sarg);
2734
            *targ = 0;
2735
            if (sarg | TIOCM_CTS)
2736
                *targ |= CHR_TIOCM_CTS;
2737
            if (sarg | TIOCM_CAR)
2738
                *targ |= CHR_TIOCM_CAR;
2739
            if (sarg | TIOCM_DSR)
2740
                *targ |= CHR_TIOCM_DSR;
2741
            if (sarg | TIOCM_RI)
2742
                *targ |= CHR_TIOCM_RI;
2743
            if (sarg | TIOCM_DTR)
2744
                *targ |= CHR_TIOCM_DTR;
2745
            if (sarg | TIOCM_RTS)
2746
                *targ |= CHR_TIOCM_RTS;
2747
        }
2748
        break;
2749
    case CHR_IOCTL_SERIAL_SET_TIOCM:
2750
        {
2751
            int sarg = *(int *)arg;
2752
            int targ = 0;
2753
            if (sarg | CHR_TIOCM_DTR)
2754
                targ |= TIOCM_DTR;
2755
            if (sarg | CHR_TIOCM_RTS)
2756
                targ |= TIOCM_RTS;
2757
            ioctl(s->fd_in, TIOCMSET, &targ);
2758
        }
2759
        break;
2760
    default:
2761
        return -ENOTSUP;
2762
    }
2763
    return 0;
2764
}
2765

    
2766
static CharDriverState *qemu_chr_open_tty(const char *filename)
2767
{
2768
    CharDriverState *chr;
2769
    int fd;
2770

    
2771
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2772
    tty_serial_init(fd, 115200, 'N', 8, 1);
2773
    chr = qemu_chr_open_fd(fd, fd);
2774
    if (!chr) {
2775
        close(fd);
2776
        return NULL;
2777
    }
2778
    chr->chr_ioctl = tty_serial_ioctl;
2779
    qemu_chr_reset(chr);
2780
    return chr;
2781
}
2782
#else  /* ! __linux__ && ! __sun__ */
2783
static CharDriverState *qemu_chr_open_pty(void)
2784
{
2785
    return NULL;
2786
}
2787
#endif /* __linux__ || __sun__ */
2788

    
2789
#if defined(__linux__)
2790
typedef struct {
2791
    int fd;
2792
    int mode;
2793
} ParallelCharDriver;
2794

    
2795
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2796
{
2797
    if (s->mode != mode) {
2798
        int m = mode;
2799
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2800
            return 0;
2801
        s->mode = mode;
2802
    }
2803
    return 1;
2804
}
2805

    
2806
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2807
{
2808
    ParallelCharDriver *drv = chr->opaque;
2809
    int fd = drv->fd;
2810
    uint8_t b;
2811

    
2812
    switch(cmd) {
2813
    case CHR_IOCTL_PP_READ_DATA:
2814
        if (ioctl(fd, PPRDATA, &b) < 0)
2815
            return -ENOTSUP;
2816
        *(uint8_t *)arg = b;
2817
        break;
2818
    case CHR_IOCTL_PP_WRITE_DATA:
2819
        b = *(uint8_t *)arg;
2820
        if (ioctl(fd, PPWDATA, &b) < 0)
2821
            return -ENOTSUP;
2822
        break;
2823
    case CHR_IOCTL_PP_READ_CONTROL:
2824
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2825
            return -ENOTSUP;
2826
        /* Linux gives only the lowest bits, and no way to know data
2827
           direction! For better compatibility set the fixed upper
2828
           bits. */
2829
        *(uint8_t *)arg = b | 0xc0;
2830
        break;
2831
    case CHR_IOCTL_PP_WRITE_CONTROL:
2832
        b = *(uint8_t *)arg;
2833
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2834
            return -ENOTSUP;
2835
        break;
2836
    case CHR_IOCTL_PP_READ_STATUS:
2837
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2838
            return -ENOTSUP;
2839
        *(uint8_t *)arg = b;
2840
        break;
2841
    case CHR_IOCTL_PP_DATA_DIR:
2842
        if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2843
            return -ENOTSUP;
2844
        break;
2845
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2846
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2847
            struct ParallelIOArg *parg = arg;
2848
            int n = read(fd, parg->buffer, parg->count);
2849
            if (n != parg->count) {
2850
                return -EIO;
2851
            }
2852
        }
2853
        break;
2854
    case CHR_IOCTL_PP_EPP_READ:
2855
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2856
            struct ParallelIOArg *parg = arg;
2857
            int n = read(fd, parg->buffer, parg->count);
2858
            if (n != parg->count) {
2859
                return -EIO;
2860
            }
2861
        }
2862
        break;
2863
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2864
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2865
            struct ParallelIOArg *parg = arg;
2866
            int n = write(fd, parg->buffer, parg->count);
2867
            if (n != parg->count) {
2868
                return -EIO;
2869
            }
2870
        }
2871
        break;
2872
    case CHR_IOCTL_PP_EPP_WRITE:
2873
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2874
            struct ParallelIOArg *parg = arg;
2875
            int n = write(fd, parg->buffer, parg->count);
2876
            if (n != parg->count) {
2877
                return -EIO;
2878
            }
2879
        }
2880
        break;
2881
    default:
2882
        return -ENOTSUP;
2883
    }
2884
    return 0;
2885
}
2886

    
2887
static void pp_close(CharDriverState *chr)
2888
{
2889
    ParallelCharDriver *drv = chr->opaque;
2890
    int fd = drv->fd;
2891

    
2892
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2893
    ioctl(fd, PPRELEASE);
2894
    close(fd);
2895
    qemu_free(drv);
2896
}
2897

    
2898
static CharDriverState *qemu_chr_open_pp(const char *filename)
2899
{
2900
    CharDriverState *chr;
2901
    ParallelCharDriver *drv;
2902
    int fd;
2903

    
2904
    TFR(fd = open(filename, O_RDWR));
2905
    if (fd < 0)
2906
        return NULL;
2907

    
2908
    if (ioctl(fd, PPCLAIM) < 0) {
2909
        close(fd);
2910
        return NULL;
2911
    }
2912

    
2913
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2914
    if (!drv) {
2915
        close(fd);
2916
        return NULL;
2917
    }
2918
    drv->fd = fd;
2919
    drv->mode = IEEE1284_MODE_COMPAT;
2920

    
2921
    chr = qemu_mallocz(sizeof(CharDriverState));
2922
    if (!chr) {
2923
        qemu_free(drv);
2924
        close(fd);
2925
        return NULL;
2926
    }
2927
    chr->chr_write = null_chr_write;
2928
    chr->chr_ioctl = pp_ioctl;
2929
    chr->chr_close = pp_close;
2930
    chr->opaque = drv;
2931

    
2932
    qemu_chr_reset(chr);
2933

    
2934
    return chr;
2935
}
2936
#endif /* __linux__ */
2937

    
2938
#else /* _WIN32 */
2939

    
2940
typedef struct {
2941
    int max_size;
2942
    HANDLE hcom, hrecv, hsend;
2943
    OVERLAPPED orecv, osend;
2944
    BOOL fpipe;
2945
    DWORD len;
2946
} WinCharState;
2947

    
2948
#define NSENDBUF 2048
2949
#define NRECVBUF 2048
2950
#define MAXCONNECT 1
2951
#define NTIMEOUT 5000
2952

    
2953
static int win_chr_poll(void *opaque);
2954
static int win_chr_pipe_poll(void *opaque);
2955

    
2956
static void win_chr_close(CharDriverState *chr)
2957
{
2958
    WinCharState *s = chr->opaque;
2959

    
2960
    if (s->hsend) {
2961
        CloseHandle(s->hsend);
2962
        s->hsend = NULL;
2963
    }
2964
    if (s->hrecv) {
2965
        CloseHandle(s->hrecv);
2966
        s->hrecv = NULL;
2967
    }
2968
    if (s->hcom) {
2969
        CloseHandle(s->hcom);
2970
        s->hcom = NULL;
2971
    }
2972
    if (s->fpipe)
2973
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2974
    else
2975
        qemu_del_polling_cb(win_chr_poll, chr);
2976
}
2977

    
2978
static int win_chr_init(CharDriverState *chr, const char *filename)
2979
{
2980
    WinCharState *s = chr->opaque;
2981
    COMMCONFIG comcfg;
2982
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2983
    COMSTAT comstat;
2984
    DWORD size;
2985
    DWORD err;
2986

    
2987
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2988
    if (!s->hsend) {
2989
        fprintf(stderr, "Failed CreateEvent\n");
2990
        goto fail;
2991
    }
2992
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2993
    if (!s->hrecv) {
2994
        fprintf(stderr, "Failed CreateEvent\n");
2995
        goto fail;
2996
    }
2997

    
2998
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2999
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
3000
    if (s->hcom == INVALID_HANDLE_VALUE) {
3001
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
3002
        s->hcom = NULL;
3003
        goto fail;
3004
    }
3005

    
3006
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3007
        fprintf(stderr, "Failed SetupComm\n");
3008
        goto fail;
3009
    }
3010

    
3011
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3012
    size = sizeof(COMMCONFIG);
3013
    GetDefaultCommConfig(filename, &comcfg, &size);
3014
    comcfg.dcb.DCBlength = sizeof(DCB);
3015
    CommConfigDialog(filename, NULL, &comcfg);
3016

    
3017
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
3018
        fprintf(stderr, "Failed SetCommState\n");
3019
        goto fail;
3020
    }
3021

    
3022
    if (!SetCommMask(s->hcom, EV_ERR)) {
3023
        fprintf(stderr, "Failed SetCommMask\n");
3024
        goto fail;
3025
    }
3026

    
3027
    cto.ReadIntervalTimeout = MAXDWORD;
3028
    if (!SetCommTimeouts(s->hcom, &cto)) {
3029
        fprintf(stderr, "Failed SetCommTimeouts\n");
3030
        goto fail;
3031
    }
3032

    
3033
    if (!ClearCommError(s->hcom, &err, &comstat)) {
3034
        fprintf(stderr, "Failed ClearCommError\n");
3035
        goto fail;
3036
    }
3037
    qemu_add_polling_cb(win_chr_poll, chr);
3038
    return 0;
3039

    
3040
 fail:
3041
    win_chr_close(chr);
3042
    return -1;
3043
}
3044

    
3045
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3046
{
3047
    WinCharState *s = chr->opaque;
3048
    DWORD len, ret, size, err;
3049

    
3050
    len = len1;
3051
    ZeroMemory(&s->osend, sizeof(s->osend));
3052
    s->osend.hEvent = s->hsend;
3053
    while (len > 0) {
3054
        if (s->hsend)
3055
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3056
        else
3057
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
3058
        if (!ret) {
3059
            err = GetLastError();
3060
            if (err == ERROR_IO_PENDING) {
3061
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3062
                if (ret) {
3063
                    buf += size;
3064
                    len -= size;
3065
                } else {
3066
                    break;
3067
                }
3068
            } else {
3069
                break;
3070
            }
3071
        } else {
3072
            buf += size;
3073
            len -= size;
3074
        }
3075
    }
3076
    return len1 - len;
3077
}
3078

    
3079
static int win_chr_read_poll(CharDriverState *chr)
3080
{
3081
    WinCharState *s = chr->opaque;
3082

    
3083
    s->max_size = qemu_chr_can_read(chr);
3084
    return s->max_size;
3085
}
3086

    
3087
static void win_chr_readfile(CharDriverState *chr)
3088
{
3089
    WinCharState *s = chr->opaque;
3090
    int ret, err;
3091
    uint8_t buf[1024];
3092
    DWORD size;
3093

    
3094
    ZeroMemory(&s->orecv, sizeof(s->orecv));
3095
    s->orecv.hEvent = s->hrecv;
3096
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3097
    if (!ret) {
3098
        err = GetLastError();
3099
        if (err == ERROR_IO_PENDING) {
3100
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3101
        }
3102
    }
3103

    
3104
    if (size > 0) {
3105
        qemu_chr_read(chr, buf, size);
3106
    }
3107
}
3108

    
3109
static void win_chr_read(CharDriverState *chr)
3110
{
3111
    WinCharState *s = chr->opaque;
3112

    
3113
    if (s->len > s->max_size)
3114
        s->len = s->max_size;
3115
    if (s->len == 0)
3116
        return;
3117

    
3118
    win_chr_readfile(chr);
3119
}
3120

    
3121
static int win_chr_poll(void *opaque)
3122
{
3123
    CharDriverState *chr = opaque;
3124
    WinCharState *s = chr->opaque;
3125
    COMSTAT status;
3126
    DWORD comerr;
3127

    
3128
    ClearCommError(s->hcom, &comerr, &status);
3129
    if (status.cbInQue > 0) {
3130
        s->len = status.cbInQue;
3131
        win_chr_read_poll(chr);
3132
        win_chr_read(chr);
3133
        return 1;
3134
    }
3135
    return 0;
3136
}
3137

    
3138
static CharDriverState *qemu_chr_open_win(const char *filename)
3139
{
3140
    CharDriverState *chr;
3141
    WinCharState *s;
3142

    
3143
    chr = qemu_mallocz(sizeof(CharDriverState));
3144
    if (!chr)
3145
        return NULL;
3146
    s = qemu_mallocz(sizeof(WinCharState));
3147
    if (!s) {
3148
        free(chr);
3149
        return NULL;
3150
    }
3151
    chr->opaque = s;
3152
    chr->chr_write = win_chr_write;
3153
    chr->chr_close = win_chr_close;
3154

    
3155
    if (win_chr_init(chr, filename) < 0) {
3156
        free(s);
3157
        free(chr);
3158
        return NULL;
3159
    }
3160
    qemu_chr_reset(chr);
3161
    return chr;
3162
}
3163

    
3164
static int win_chr_pipe_poll(void *opaque)
3165
{
3166
    CharDriverState *chr = opaque;
3167
    WinCharState *s = chr->opaque;
3168
    DWORD size;
3169

    
3170
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3171
    if (size > 0) {
3172
        s->len = size;
3173
        win_chr_read_poll(chr);
3174
        win_chr_read(chr);
3175
        return 1;
3176
    }
3177
    return 0;
3178
}
3179

    
3180
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3181
{
3182
    WinCharState *s = chr->opaque;
3183
    OVERLAPPED ov;
3184
    int ret;
3185
    DWORD size;
3186
    char openname[256];
3187

    
3188
    s->fpipe = TRUE;
3189

    
3190
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3191
    if (!s->hsend) {
3192
        fprintf(stderr, "Failed CreateEvent\n");
3193
        goto fail;
3194
    }
3195
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3196
    if (!s->hrecv) {
3197
        fprintf(stderr, "Failed CreateEvent\n");
3198
        goto fail;
3199
    }
3200

    
3201
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3202
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3203
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3204
                              PIPE_WAIT,
3205
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3206
    if (s->hcom == INVALID_HANDLE_VALUE) {
3207
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3208
        s->hcom = NULL;
3209
        goto fail;
3210
    }
3211

    
3212
    ZeroMemory(&ov, sizeof(ov));
3213
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3214
    ret = ConnectNamedPipe(s->hcom, &ov);
3215
    if (ret) {
3216
        fprintf(stderr, "Failed ConnectNamedPipe\n");
3217
        goto fail;
3218
    }
3219

    
3220
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3221
    if (!ret) {
3222
        fprintf(stderr, "Failed GetOverlappedResult\n");
3223
        if (ov.hEvent) {
3224
            CloseHandle(ov.hEvent);
3225
            ov.hEvent = NULL;
3226
        }
3227
        goto fail;
3228
    }
3229

    
3230
    if (ov.hEvent) {
3231
        CloseHandle(ov.hEvent);
3232
        ov.hEvent = NULL;
3233
    }
3234
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
3235
    return 0;
3236

    
3237
 fail:
3238
    win_chr_close(chr);
3239
    return -1;
3240
}
3241

    
3242

    
3243
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3244
{
3245
    CharDriverState *chr;
3246
    WinCharState *s;
3247

    
3248
    chr = qemu_mallocz(sizeof(CharDriverState));
3249
    if (!chr)
3250
        return NULL;
3251
    s = qemu_mallocz(sizeof(WinCharState));
3252
    if (!s) {
3253
        free(chr);
3254
        return NULL;
3255
    }
3256
    chr->opaque = s;
3257
    chr->chr_write = win_chr_write;
3258
    chr->chr_close = win_chr_close;
3259

    
3260
    if (win_chr_pipe_init(chr, filename) < 0) {
3261
        free(s);
3262
        free(chr);
3263
        return NULL;
3264
    }
3265
    qemu_chr_reset(chr);
3266
    return chr;
3267
}
3268

    
3269
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3270
{
3271
    CharDriverState *chr;
3272
    WinCharState *s;
3273

    
3274
    chr = qemu_mallocz(sizeof(CharDriverState));
3275
    if (!chr)
3276
        return NULL;
3277
    s = qemu_mallocz(sizeof(WinCharState));
3278
    if (!s) {
3279
        free(chr);
3280
        return NULL;
3281
    }
3282
    s->hcom = fd_out;
3283
    chr->opaque = s;
3284
    chr->chr_write = win_chr_write;
3285
    qemu_chr_reset(chr);
3286
    return chr;
3287
}
3288

    
3289
static CharDriverState *qemu_chr_open_win_con(const char *filename)
3290
{
3291
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3292
}
3293

    
3294
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3295
{
3296
    HANDLE fd_out;
3297

    
3298
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3299
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3300
    if (fd_out == INVALID_HANDLE_VALUE)
3301
        return NULL;
3302

    
3303
    return qemu_chr_open_win_file(fd_out);
3304
}
3305
#endif /* !_WIN32 */
3306

    
3307
/***********************************************************/
3308
/* UDP Net console */
3309

    
3310
typedef struct {
3311
    int fd;
3312
    struct sockaddr_in daddr;
3313
    uint8_t buf[1024];
3314
    int bufcnt;
3315
    int bufptr;
3316
    int max_size;
3317
} NetCharDriver;
3318

    
3319
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3320
{
3321
    NetCharDriver *s = chr->opaque;
3322

    
3323
    return sendto(s->fd, buf, len, 0,
3324
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3325
}
3326

    
3327
static int udp_chr_read_poll(void *opaque)
3328
{
3329
    CharDriverState *chr = opaque;
3330
    NetCharDriver *s = chr->opaque;
3331

    
3332
    s->max_size = qemu_chr_can_read(chr);
3333

    
3334
    /* If there were any stray characters in the queue process them
3335
     * first
3336
     */
3337
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3338
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3339
        s->bufptr++;
3340
        s->max_size = qemu_chr_can_read(chr);
3341
    }
3342
    return s->max_size;
3343
}
3344

    
3345
static void udp_chr_read(void *opaque)
3346
{
3347
    CharDriverState *chr = opaque;
3348
    NetCharDriver *s = chr->opaque;
3349

    
3350
    if (s->max_size == 0)
3351
        return;
3352
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3353
    s->bufptr = s->bufcnt;
3354
    if (s->bufcnt <= 0)
3355
        return;
3356

    
3357
    s->bufptr = 0;
3358
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3359
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3360
        s->bufptr++;
3361
        s->max_size = qemu_chr_can_read(chr);
3362
    }
3363
}
3364

    
3365
static void udp_chr_update_read_handler(CharDriverState *chr)
3366
{
3367
    NetCharDriver *s = chr->opaque;
3368

    
3369
    if (s->fd >= 0) {
3370
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3371
                             udp_chr_read, NULL, chr);
3372
    }
3373
}
3374

    
3375
int parse_host_port(struct sockaddr_in *saddr, const char *str);
3376
#ifndef _WIN32
3377
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3378
#endif
3379
int parse_host_src_port(struct sockaddr_in *haddr,
3380
                        struct sockaddr_in *saddr,
3381
                        const char *str);
3382

    
3383
static CharDriverState *qemu_chr_open_udp(const char *def)
3384
{
3385
    CharDriverState *chr = NULL;
3386
    NetCharDriver *s = NULL;
3387
    int fd = -1;
3388
    struct sockaddr_in saddr;
3389

    
3390
    chr = qemu_mallocz(sizeof(CharDriverState));
3391
    if (!chr)
3392
        goto return_err;
3393
    s = qemu_mallocz(sizeof(NetCharDriver));
3394
    if (!s)
3395
        goto return_err;
3396

    
3397
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3398
    if (fd < 0) {
3399
        perror("socket(PF_INET, SOCK_DGRAM)");
3400
        goto return_err;
3401
    }
3402

    
3403
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3404
        printf("Could not parse: %s\n", def);
3405
        goto return_err;
3406
    }
3407

    
3408
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3409
    {
3410
        perror("bind");
3411
        goto return_err;
3412
    }
3413

    
3414
    s->fd = fd;
3415
    s->bufcnt = 0;
3416
    s->bufptr = 0;
3417
    chr->opaque = s;
3418
    chr->chr_write = udp_chr_write;
3419
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3420
    return chr;
3421

    
3422
return_err:
3423
    if (chr)
3424
        free(chr);
3425
    if (s)
3426
        free(s);
3427
    if (fd >= 0)
3428
        closesocket(fd);
3429
    return NULL;
3430
}
3431

    
3432
/***********************************************************/
3433
/* TCP Net console */
3434

    
3435
typedef struct {
3436
    int fd, listen_fd;
3437
    int connected;
3438
    int max_size;
3439
    int do_telnetopt;
3440
    int do_nodelay;
3441
    int is_unix;
3442
} TCPCharDriver;
3443

    
3444
static void tcp_chr_accept(void *opaque);
3445

    
3446
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3447
{
3448
    TCPCharDriver *s = chr->opaque;
3449
    if (s->connected) {
3450
        return send_all(s->fd, buf, len);
3451
    } else {
3452
        /* XXX: indicate an error ? */
3453
        return len;
3454
    }
3455
}
3456

    
3457
static int tcp_chr_read_poll(void *opaque)
3458
{
3459
    CharDriverState *chr = opaque;
3460
    TCPCharDriver *s = chr->opaque;
3461
    if (!s->connected)
3462
        return 0;
3463
    s->max_size = qemu_chr_can_read(chr);
3464
    return s->max_size;
3465
}
3466

    
3467
#define IAC 255
3468
#define IAC_BREAK 243
3469
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3470
                                      TCPCharDriver *s,
3471
                                      uint8_t *buf, int *size)
3472
{
3473
    /* Handle any telnet client's basic IAC options to satisfy char by
3474
     * char mode with no echo.  All IAC options will be removed from
3475
     * the buf and the do_telnetopt variable will be used to track the
3476
     * state of the width of the IAC information.
3477
     *
3478
     * IAC commands come in sets of 3 bytes with the exception of the
3479
     * "IAC BREAK" command and the double IAC.
3480
     */
3481

    
3482
    int i;
3483
    int j = 0;
3484

    
3485
    for (i = 0; i < *size; i++) {
3486
        if (s->do_telnetopt > 1) {
3487
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3488
                /* Double IAC means send an IAC */
3489
                if (j != i)
3490
                    buf[j] = buf[i];
3491
                j++;
3492
                s->do_telnetopt = 1;
3493
            } else {
3494
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3495
                    /* Handle IAC break commands by sending a serial break */
3496
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3497
                    s->do_telnetopt++;
3498
                }
3499
                s->do_telnetopt++;
3500
            }
3501
            if (s->do_telnetopt >= 4) {
3502
                s->do_telnetopt = 1;
3503
            }
3504
        } else {
3505
            if ((unsigned char)buf[i] == IAC) {
3506
                s->do_telnetopt = 2;
3507
            } else {
3508
                if (j != i)
3509
                    buf[j] = buf[i];
3510
                j++;
3511
            }
3512
        }
3513
    }
3514
    *size = j;
3515
}
3516

    
3517
static void tcp_chr_read(void *opaque)
3518
{
3519
    CharDriverState *chr = opaque;
3520
    TCPCharDriver *s = chr->opaque;
3521
    uint8_t buf[1024];
3522
    int len, size;
3523

    
3524
    if (!s->connected || s->max_size <= 0)
3525
        return;
3526
    len = sizeof(buf);
3527
    if (len > s->max_size)
3528
        len = s->max_size;
3529
    size = recv(s->fd, buf, len, 0);
3530
    if (size == 0) {
3531
        /* connection closed */
3532
        s->connected = 0;
3533
        if (s->listen_fd >= 0) {
3534
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3535
        }
3536
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3537
        closesocket(s->fd);
3538
        s->fd = -1;
3539
    } else if (size > 0) {
3540
        if (s->do_telnetopt)
3541
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3542
        if (size > 0)
3543
            qemu_chr_read(chr, buf, size);
3544
    }
3545
}
3546

    
3547
static void tcp_chr_connect(void *opaque)
3548
{
3549
    CharDriverState *chr = opaque;
3550
    TCPCharDriver *s = chr->opaque;
3551

    
3552
    s->connected = 1;
3553
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3554
                         tcp_chr_read, NULL, chr);
3555
    qemu_chr_reset(chr);
3556
}
3557

    
3558
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3559
static void tcp_chr_telnet_init(int fd)
3560
{
3561
    char buf[3];
3562
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3563
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3564
    send(fd, (char *)buf, 3, 0);
3565
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3566
    send(fd, (char *)buf, 3, 0);
3567
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3568
    send(fd, (char *)buf, 3, 0);
3569
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3570
    send(fd, (char *)buf, 3, 0);
3571
}
3572

    
3573
static void socket_set_nodelay(int fd)
3574
{
3575
    int val = 1;
3576
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3577
}
3578

    
3579
static void tcp_chr_accept(void *opaque)
3580
{
3581
    CharDriverState *chr = opaque;
3582
    TCPCharDriver *s = chr->opaque;
3583
    struct sockaddr_in saddr;
3584
#ifndef _WIN32
3585
    struct sockaddr_un uaddr;
3586
#endif
3587
    struct sockaddr *addr;
3588
    socklen_t len;
3589
    int fd;
3590

    
3591
    for(;;) {
3592
#ifndef _WIN32
3593
        if (s->is_unix) {
3594
            len = sizeof(uaddr);
3595
            addr = (struct sockaddr *)&uaddr;
3596
        } else
3597
#endif
3598
        {
3599
            len = sizeof(saddr);
3600
            addr = (struct sockaddr *)&saddr;
3601
        }
3602
        fd = accept(s->listen_fd, addr, &len);
3603
        if (fd < 0 && errno != EINTR) {
3604
            return;
3605
        } else if (fd >= 0) {
3606
            if (s->do_telnetopt)
3607
                tcp_chr_telnet_init(fd);
3608
            break;
3609
        }
3610
    }
3611
    socket_set_nonblock(fd);
3612
    if (s->do_nodelay)
3613
        socket_set_nodelay(fd);
3614
    s->fd = fd;
3615
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3616
    tcp_chr_connect(chr);
3617
}
3618

    
3619
static void tcp_chr_close(CharDriverState *chr)
3620
{
3621
    TCPCharDriver *s = chr->opaque;
3622
    if (s->fd >= 0)
3623
        closesocket(s->fd);
3624
    if (s->listen_fd >= 0)
3625
        closesocket(s->listen_fd);
3626
    qemu_free(s);
3627
}
3628

    
3629
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3630
                                          int is_telnet,
3631
                                          int is_unix)
3632
{
3633
    CharDriverState *chr = NULL;
3634
    TCPCharDriver *s = NULL;
3635
    int fd = -1, ret, err, val;
3636
    int is_listen = 0;
3637
    int is_waitconnect = 1;
3638
    int do_nodelay = 0;
3639
    const char *ptr;
3640
    struct sockaddr_in saddr;
3641
#ifndef _WIN32
3642
    struct sockaddr_un uaddr;
3643
#endif
3644
    struct sockaddr *addr;
3645
    socklen_t addrlen;
3646

    
3647
#ifndef _WIN32
3648
    if (is_unix) {
3649
        addr = (struct sockaddr *)&uaddr;
3650
        addrlen = sizeof(uaddr);
3651
        if (parse_unix_path(&uaddr, host_str) < 0)
3652
            goto fail;
3653
    } else
3654
#endif
3655
    {
3656
        addr = (struct sockaddr *)&saddr;
3657
        addrlen = sizeof(saddr);
3658
        if (parse_host_port(&saddr, host_str) < 0)
3659
            goto fail;
3660
    }
3661

    
3662
    ptr = host_str;
3663
    while((ptr = strchr(ptr,','))) {
3664
        ptr++;
3665
        if (!strncmp(ptr,"server",6)) {
3666
            is_listen = 1;
3667
        } else if (!strncmp(ptr,"nowait",6)) {
3668
            is_waitconnect = 0;
3669
        } else if (!strncmp(ptr,"nodelay",6)) {
3670
            do_nodelay = 1;
3671
        } else {
3672
            printf("Unknown option: %s\n", ptr);
3673
            goto fail;
3674
        }
3675
    }
3676
    if (!is_listen)
3677
        is_waitconnect = 0;
3678

    
3679
    chr = qemu_mallocz(sizeof(CharDriverState));
3680
    if (!chr)
3681
        goto fail;
3682
    s = qemu_mallocz(sizeof(TCPCharDriver));
3683
    if (!s)
3684
        goto fail;
3685

    
3686
#ifndef _WIN32
3687
    if (is_unix)
3688
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3689
    else
3690
#endif
3691
        fd = socket(PF_INET, SOCK_STREAM, 0);
3692

    
3693
    if (fd < 0)
3694
        goto fail;
3695

    
3696
    if (!is_waitconnect)
3697
        socket_set_nonblock(fd);
3698

    
3699
    s->connected = 0;
3700
    s->fd = -1;
3701
    s->listen_fd = -1;
3702
    s->is_unix = is_unix;
3703
    s->do_nodelay = do_nodelay && !is_unix;
3704

    
3705
    chr->opaque = s;
3706
    chr->chr_write = tcp_chr_write;
3707
    chr->chr_close = tcp_chr_close;
3708

    
3709
    if (is_listen) {
3710
        /* allow fast reuse */
3711
#ifndef _WIN32
3712
        if (is_unix) {
3713
            char path[109];
3714
            pstrcpy(path, sizeof(path), uaddr.sun_path);
3715
            unlink(path);
3716
        } else
3717
#endif
3718
        {
3719
            val = 1;
3720
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3721
        }
3722

    
3723
        ret = bind(fd, addr, addrlen);
3724
        if (ret < 0)
3725
            goto fail;
3726

    
3727
        ret = listen(fd, 0);
3728
        if (ret < 0)
3729
            goto fail;
3730

    
3731
        s->listen_fd = fd;
3732
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3733
        if (is_telnet)
3734
            s->do_telnetopt = 1;
3735
    } else {
3736
        for(;;) {
3737
            ret = connect(fd, addr, addrlen);
3738
            if (ret < 0) {
3739
                err = socket_error();
3740
                if (err == EINTR || err == EWOULDBLOCK) {
3741
                } else if (err == EINPROGRESS) {
3742
                    break;
3743
#ifdef _WIN32
3744
                } else if (err == WSAEALREADY) {
3745
                    break;
3746
#endif
3747
                } else {
3748
                    goto fail;
3749
                }
3750
            } else {
3751
                s->connected = 1;
3752
                break;
3753
            }
3754
        }
3755
        s->fd = fd;
3756
        socket_set_nodelay(fd);
3757
        if (s->connected)
3758
            tcp_chr_connect(chr);
3759
        else
3760
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3761
    }
3762

    
3763
    if (is_listen && is_waitconnect) {
3764
        printf("QEMU waiting for connection on: %s\n", host_str);
3765
        tcp_chr_accept(chr);
3766
        socket_set_nonblock(s->listen_fd);
3767
    }
3768

    
3769
    return chr;
3770
 fail:
3771
    if (fd >= 0)
3772
        closesocket(fd);
3773
    qemu_free(s);
3774
    qemu_free(chr);
3775
    return NULL;
3776
}
3777

    
3778
CharDriverState *qemu_chr_open(const char *filename)
3779
{
3780
    const char *p;
3781

    
3782
    if (!strcmp(filename, "vc")) {
3783
        return text_console_init(&display_state, 0);
3784
    } else if (strstart(filename, "vc:", &p)) {
3785
        return text_console_init(&display_state, p);
3786
    } else if (!strcmp(filename, "null")) {
3787
        return qemu_chr_open_null();
3788
    } else
3789
    if (strstart(filename, "tcp:", &p)) {
3790
        return qemu_chr_open_tcp(p, 0, 0);
3791
    } else
3792
    if (strstart(filename, "telnet:", &p)) {
3793
        return qemu_chr_open_tcp(p, 1, 0);
3794
    } else
3795
    if (strstart(filename, "udp:", &p)) {
3796
        return qemu_chr_open_udp(p);
3797
    } else
3798
    if (strstart(filename, "mon:", &p)) {
3799
        CharDriverState *drv = qemu_chr_open(p);
3800
        if (drv) {
3801
            drv = qemu_chr_open_mux(drv);
3802
            monitor_init(drv, !nographic);
3803
            return drv;
3804
        }
3805
        printf("Unable to open driver: %s\n", p);
3806
        return 0;
3807
    } else
3808
#ifndef _WIN32
3809
    if (strstart(filename, "unix:", &p)) {
3810
        return qemu_chr_open_tcp(p, 0, 1);
3811
    } else if (strstart(filename, "file:", &p)) {
3812
        return qemu_chr_open_file_out(p);
3813
    } else if (strstart(filename, "pipe:", &p)) {
3814
        return qemu_chr_open_pipe(p);
3815
    } else if (!strcmp(filename, "pty")) {
3816
        return qemu_chr_open_pty();
3817
    } else if (!strcmp(filename, "stdio")) {
3818
        return qemu_chr_open_stdio();
3819
    } else
3820
#if defined(__linux__)
3821
    if (strstart(filename, "/dev/parport", NULL)) {
3822
        return qemu_chr_open_pp(filename);
3823
    } else
3824
#endif
3825
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3826
    || defined(__NetBSD__) || defined(__OpenBSD__)
3827
    if (strstart(filename, "/dev/", NULL)) {
3828
        return qemu_chr_open_tty(filename);
3829
    } else
3830
#endif
3831
#else /* !_WIN32 */
3832
    if (strstart(filename, "COM", NULL)) {
3833
        return qemu_chr_open_win(filename);
3834
    } else
3835
    if (strstart(filename, "pipe:", &p)) {
3836
        return qemu_chr_open_win_pipe(p);
3837
    } else
3838
    if (strstart(filename, "con:", NULL)) {
3839
        return qemu_chr_open_win_con(filename);
3840
    } else
3841
    if (strstart(filename, "file:", &p)) {
3842
        return qemu_chr_open_win_file_out(p);
3843
    } else
3844
#endif
3845
#ifdef CONFIG_BRLAPI
3846
    if (!strcmp(filename, "braille")) {
3847
        return chr_baum_init();
3848
    } else
3849
#endif
3850
    {
3851
        return NULL;
3852
    }
3853
}
3854

    
3855
void qemu_chr_close(CharDriverState *chr)
3856
{
3857
    if (chr->chr_close)
3858
        chr->chr_close(chr);
3859
    qemu_free(chr);
3860
}
3861

    
3862
/***********************************************************/
3863
/* network device redirectors */
3864

    
3865
__attribute__ (( unused ))
3866
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3867
{
3868
    int len, i, j, c;
3869

    
3870
    for(i=0;i<size;i+=16) {
3871
        len = size - i;
3872
        if (len > 16)
3873
            len = 16;
3874
        fprintf(f, "%08x ", i);
3875
        for(j=0;j<16;j++) {
3876
            if (j < len)
3877
                fprintf(f, " %02x", buf[i+j]);
3878
            else
3879
                fprintf(f, "   ");
3880
        }
3881
        fprintf(f, " ");
3882
        for(j=0;j<len;j++) {
3883
            c = buf[i+j];
3884
            if (c < ' ' || c > '~')
3885
                c = '.';
3886
            fprintf(f, "%c", c);
3887
        }
3888
        fprintf(f, "\n");
3889
    }
3890
}
3891

    
3892
static int parse_macaddr(uint8_t *macaddr, const char *p)
3893
{
3894
    int i;
3895
    char *last_char;
3896
    long int offset;
3897

    
3898
    errno = 0;
3899
    offset = strtol(p, &last_char, 0);    
3900
    if (0 == errno && '\0' == *last_char &&
3901
            offset >= 0 && offset <= 0xFFFFFF) {
3902
        macaddr[3] = (offset & 0xFF0000) >> 16;
3903
        macaddr[4] = (offset & 0xFF00) >> 8;
3904
        macaddr[5] = offset & 0xFF;
3905
        return 0;
3906
    } else {
3907
        for(i = 0; i < 6; i++) {
3908
            macaddr[i] = strtol(p, (char **)&p, 16);
3909
            if (i == 5) {
3910
                if (*p != '\0')
3911
                    return -1;
3912
            } else {
3913
                if (*p != ':' && *p != '-')
3914
                    return -1;
3915
                p++;
3916
            }
3917
        }
3918
        return 0;    
3919
    }
3920

    
3921
    return -1;
3922
}
3923

    
3924
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3925
{
3926
    const char *p, *p1;
3927
    int len;
3928
    p = *pp;
3929
    p1 = strchr(p, sep);
3930
    if (!p1)
3931
        return -1;
3932
    len = p1 - p;
3933
    p1++;
3934
    if (buf_size > 0) {
3935
        if (len > buf_size - 1)
3936
            len = buf_size - 1;
3937
        memcpy(buf, p, len);
3938
        buf[len] = '\0';
3939
    }
3940
    *pp = p1;
3941
    return 0;
3942
}
3943

    
3944
int parse_host_src_port(struct sockaddr_in *haddr,
3945
                        struct sockaddr_in *saddr,
3946
                        const char *input_str)
3947
{
3948
    char *str = strdup(input_str);
3949
    char *host_str = str;
3950
    char *src_str;
3951
    const char *src_str2;
3952
    char *ptr;
3953

    
3954
    /*
3955
     * Chop off any extra arguments at the end of the string which
3956
     * would start with a comma, then fill in the src port information
3957
     * if it was provided else use the "any address" and "any port".
3958
     */
3959
    if ((ptr = strchr(str,',')))
3960
        *ptr = '\0';
3961

    
3962
    if ((src_str = strchr(input_str,'@'))) {
3963
        *src_str = '\0';
3964
        src_str++;
3965
    }
3966

    
3967
    if (parse_host_port(haddr, host_str) < 0)
3968
        goto fail;
3969

    
3970
    src_str2 = src_str;
3971
    if (!src_str || *src_str == '\0')
3972
        src_str2 = ":0";
3973

    
3974
    if (parse_host_port(saddr, src_str2) < 0)
3975
        goto fail;
3976

    
3977
    free(str);
3978
    return(0);
3979

    
3980
fail:
3981
    free(str);
3982
    return -1;
3983
}
3984

    
3985
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3986
{
3987
    char buf[512];
3988
    struct hostent *he;
3989
    const char *p, *r;
3990
    int port;
3991

    
3992
    p = str;
3993
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3994
        return -1;
3995
    saddr->sin_family = AF_INET;
3996
    if (buf[0] == '\0') {
3997
        saddr->sin_addr.s_addr = 0;
3998
    } else {
3999
        if (isdigit(buf[0])) {
4000
            if (!inet_aton(buf, &saddr->sin_addr))
4001
                return -1;
4002
        } else {
4003
            if ((he = gethostbyname(buf)) == NULL)
4004
                return - 1;
4005
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
4006
        }
4007
    }
4008
    port = strtol(p, (char **)&r, 0);
4009
    if (r == p)
4010
        return -1;
4011
    saddr->sin_port = htons(port);
4012
    return 0;
4013
}
4014

    
4015
#ifndef _WIN32
4016
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4017
{
4018
    const char *p;
4019
    int len;
4020

    
4021
    len = MIN(108, strlen(str));
4022
    p = strchr(str, ',');
4023
    if (p)
4024
        len = MIN(len, p - str);
4025

    
4026
    memset(uaddr, 0, sizeof(*uaddr));
4027

    
4028
    uaddr->sun_family = AF_UNIX;
4029
    memcpy(uaddr->sun_path, str, len);
4030

    
4031
    return 0;
4032
}
4033
#endif
4034

    
4035
/* find or alloc a new VLAN */
4036
VLANState *qemu_find_vlan(int id)
4037
{
4038
    VLANState **pvlan, *vlan;
4039
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4040
        if (vlan->id == id)
4041
            return vlan;
4042
    }
4043
    vlan = qemu_mallocz(sizeof(VLANState));
4044
    if (!vlan)
4045
        return NULL;
4046
    vlan->id = id;
4047
    vlan->next = NULL;
4048
    pvlan = &first_vlan;
4049
    while (*pvlan != NULL)
4050
        pvlan = &(*pvlan)->next;
4051
    *pvlan = vlan;
4052
    return vlan;
4053
}
4054

    
4055
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4056
                                      IOReadHandler *fd_read,
4057
                                      IOCanRWHandler *fd_can_read,
4058
                                      void *opaque)
4059
{
4060
    VLANClientState *vc, **pvc;
4061
    vc = qemu_mallocz(sizeof(VLANClientState));
4062
    if (!vc)
4063
        return NULL;
4064
    vc->fd_read = fd_read;
4065
    vc->fd_can_read = fd_can_read;
4066
    vc->opaque = opaque;
4067
    vc->vlan = vlan;
4068

    
4069
    vc->next = NULL;
4070
    pvc = &vlan->first_client;
4071
    while (*pvc != NULL)
4072
        pvc = &(*pvc)->next;
4073
    *pvc = vc;
4074
    return vc;
4075
}
4076

    
4077
void qemu_del_vlan_client(VLANClientState *vc)
4078
{
4079
    VLANClientState **pvc = &vc->vlan->first_client;
4080

    
4081
    while (*pvc != NULL)
4082
        if (*pvc == vc) {
4083
            *pvc = vc->next;
4084
            free(vc);
4085
            break;
4086
        } else
4087
            pvc = &(*pvc)->next;
4088
}
4089

    
4090
int qemu_can_send_packet(VLANClientState *vc1)
4091
{
4092
    VLANState *vlan = vc1->vlan;
4093
    VLANClientState *vc;
4094

    
4095
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4096
        if (vc != vc1) {
4097
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4098
                return 1;
4099
        }
4100
    }
4101
    return 0;
4102
}
4103

    
4104
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4105
{
4106
    VLANState *vlan = vc1->vlan;
4107
    VLANClientState *vc;
4108

    
4109
#if 0
4110
    printf("vlan %d send:\n", vlan->id);
4111
    hex_dump(stdout, buf, size);
4112
#endif
4113
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4114
        if (vc != vc1) {
4115
            vc->fd_read(vc->opaque, buf, size);
4116
        }
4117
    }
4118
}
4119

    
4120
#if defined(CONFIG_SLIRP)
4121

    
4122
/* slirp network adapter */
4123

    
4124
static int slirp_inited;
4125
static VLANClientState *slirp_vc;
4126

    
4127
int slirp_can_output(void)
4128
{
4129
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
4130
}
4131

    
4132
void slirp_output(const uint8_t *pkt, int pkt_len)
4133
{
4134
#if 0
4135
    printf("slirp output:\n");
4136
    hex_dump(stdout, pkt, pkt_len);
4137
#endif
4138
    if (!slirp_vc)
4139
        return;
4140
    qemu_send_packet(slirp_vc, pkt, pkt_len);
4141
}
4142

    
4143
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4144
{
4145
#if 0
4146
    printf("slirp input:\n");
4147
    hex_dump(stdout, buf, size);
4148
#endif
4149
    slirp_input(buf, size);
4150
}
4151

    
4152
static int net_slirp_init(VLANState *vlan)
4153
{
4154
    if (!slirp_inited) {
4155
        slirp_inited = 1;
4156
        slirp_init();
4157
    }
4158
    slirp_vc = qemu_new_vlan_client(vlan,
4159
                                    slirp_receive, NULL, NULL);
4160
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4161
    return 0;
4162
}
4163

    
4164
static void net_slirp_redir(const char *redir_str)
4165
{
4166
    int is_udp;
4167
    char buf[256], *r;
4168
    const char *p;
4169
    struct in_addr guest_addr;
4170
    int host_port, guest_port;
4171

    
4172
    if (!slirp_inited) {
4173
        slirp_inited = 1;
4174
        slirp_init();
4175
    }
4176

    
4177
    p = redir_str;
4178
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4179
        goto fail;
4180
    if (!strcmp(buf, "tcp")) {
4181
        is_udp = 0;
4182
    } else if (!strcmp(buf, "udp")) {
4183
        is_udp = 1;
4184
    } else {
4185
        goto fail;
4186
    }
4187

    
4188
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4189
        goto fail;
4190
    host_port = strtol(buf, &r, 0);
4191
    if (r == buf)
4192
        goto fail;
4193

    
4194
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4195
        goto fail;
4196
    if (buf[0] == '\0') {
4197
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
4198
    }
4199
    if (!inet_aton(buf, &guest_addr))
4200
        goto fail;
4201

    
4202
    guest_port = strtol(p, &r, 0);
4203
    if (r == p)
4204
        goto fail;
4205

    
4206
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4207
        fprintf(stderr, "qemu: could not set up redirection\n");
4208
        exit(1);
4209
    }
4210
    return;
4211
 fail:
4212
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4213
    exit(1);
4214
}
4215

    
4216
#ifndef _WIN32
4217

    
4218
char smb_dir[1024];
4219

    
4220
static void erase_dir(char *dir_name)
4221
{
4222
    DIR *d;
4223
    struct dirent *de;
4224
    char filename[1024];
4225

    
4226
    /* erase all the files in the directory */
4227
    if ((d = opendir(dir_name)) != 0) {
4228
        for(;;) {
4229
            de = readdir(d);
4230
            if (!de)
4231
                break;
4232
            if (strcmp(de->d_name, ".") != 0 &&
4233
                strcmp(de->d_name, "..") != 0) {
4234
                snprintf(filename, sizeof(filename), "%s/%s",
4235
                         smb_dir, de->d_name);
4236
                if (unlink(filename) != 0)  /* is it a directory? */
4237
                    erase_dir(filename);
4238
            }
4239
        }
4240
        closedir(d);
4241
        rmdir(dir_name);
4242
    }
4243
}
4244

    
4245
/* automatic user mode samba server configuration */
4246
static void smb_exit(void)
4247
{
4248
    erase_dir(smb_dir);
4249
}
4250

    
4251
/* automatic user mode samba server configuration */
4252
static void net_slirp_smb(const char *exported_dir)
4253
{
4254
    char smb_conf[1024];
4255
    char smb_cmdline[1024];
4256
    FILE *f;
4257

    
4258
    if (!slirp_inited) {
4259
        slirp_inited = 1;
4260
        slirp_init();
4261
    }
4262

    
4263
    /* XXX: better tmp dir construction */
4264
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4265
    if (mkdir(smb_dir, 0700) < 0) {
4266
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4267
        exit(1);
4268
    }
4269
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4270

    
4271
    f = fopen(smb_conf, "w");
4272
    if (!f) {
4273
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4274
        exit(1);
4275
    }
4276
    fprintf(f,
4277
            "[global]\n"
4278
            "private dir=%s\n"
4279
            "smb ports=0\n"
4280
            "socket address=127.0.0.1\n"
4281
            "pid directory=%s\n"
4282
            "lock directory=%s\n"
4283
            "log file=%s/log.smbd\n"
4284
            "smb passwd file=%s/smbpasswd\n"
4285
            "security = share\n"
4286
            "[qemu]\n"
4287
            "path=%s\n"
4288
            "read only=no\n"
4289
            "guest ok=yes\n",
4290
            smb_dir,
4291
            smb_dir,
4292
            smb_dir,
4293
            smb_dir,
4294
            smb_dir,
4295
            exported_dir
4296
            );
4297
    fclose(f);
4298
    atexit(smb_exit);
4299

    
4300
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4301
             SMBD_COMMAND, smb_conf);
4302

    
4303
    slirp_add_exec(0, smb_cmdline, 4, 139);
4304
}
4305

    
4306
#endif /* !defined(_WIN32) */
4307
void do_info_slirp(void)
4308
{
4309
    slirp_stats();
4310
}
4311

    
4312
#endif /* CONFIG_SLIRP */
4313

    
4314
#if !defined(_WIN32)
4315

    
4316
typedef struct TAPState {
4317
    VLANClientState *vc;
4318
    int fd;
4319
    char down_script[1024];
4320
} TAPState;
4321

    
4322
static void tap_receive(void *opaque, const uint8_t *buf, int size)
4323
{
4324
    TAPState *s = opaque;
4325
    int ret;
4326
    for(;;) {
4327
        ret = write(s->fd, buf, size);
4328
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4329
        } else {
4330
            break;
4331
        }
4332
    }
4333
}
4334

    
4335
static void tap_send(void *opaque)
4336
{
4337
    TAPState *s = opaque;
4338
    uint8_t buf[4096];
4339
    int size;
4340

    
4341
#ifdef __sun__
4342
    struct strbuf sbuf;
4343
    int f = 0;
4344
    sbuf.maxlen = sizeof(buf);
4345
    sbuf.buf = buf;
4346
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4347
#else
4348
    size = read(s->fd, buf, sizeof(buf));
4349
#endif
4350
    if (size > 0) {
4351
        qemu_send_packet(s->vc, buf, size);
4352
    }
4353
}
4354

    
4355
/* fd support */
4356

    
4357
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4358
{
4359
    TAPState *s;
4360

    
4361
    s = qemu_mallocz(sizeof(TAPState));
4362
    if (!s)
4363
        return NULL;
4364
    s->fd = fd;
4365
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4366
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4367
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4368
    return s;
4369
}
4370

    
4371
#if defined (_BSD) || defined (__FreeBSD_kernel__)
4372
static int tap_open(char *ifname, int ifname_size)
4373
{
4374
    int fd;
4375
    char *dev;
4376
    struct stat s;
4377

    
4378
    TFR(fd = open("/dev/tap", O_RDWR));
4379
    if (fd < 0) {
4380
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4381
        return -1;
4382
    }
4383

    
4384
    fstat(fd, &s);
4385
    dev = devname(s.st_rdev, S_IFCHR);
4386
    pstrcpy(ifname, ifname_size, dev);
4387

    
4388
    fcntl(fd, F_SETFL, O_NONBLOCK);
4389
    return fd;
4390
}
4391
#elif defined(__sun__)
4392
#define TUNNEWPPA       (('T'<<16) | 0x0001)
4393
/*
4394
 * Allocate TAP device, returns opened fd.
4395
 * Stores dev name in the first arg(must be large enough).
4396
 */
4397
int tap_alloc(char *dev, size_t dev_size)
4398
{
4399
    int tap_fd, if_fd, ppa = -1;
4400
    static int ip_fd = 0;
4401
    char *ptr;
4402

    
4403
    static int arp_fd = 0;
4404
    int ip_muxid, arp_muxid;
4405
    struct strioctl  strioc_if, strioc_ppa;
4406
    int link_type = I_PLINK;;
4407
    struct lifreq ifr;
4408
    char actual_name[32] = "";
4409

    
4410
    memset(&ifr, 0x0, sizeof(ifr));
4411

    
4412
    if( *dev ){
4413
       ptr = dev;
4414
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
4415
       ppa = atoi(ptr);
4416
    }
4417

    
4418
    /* Check if IP device was opened */
4419
    if( ip_fd )
4420
       close(ip_fd);
4421

    
4422
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4423
    if (ip_fd < 0) {
4424
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4425
       return -1;
4426
    }
4427

    
4428
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4429
    if (tap_fd < 0) {
4430
       syslog(LOG_ERR, "Can't open /dev/tap");
4431
       return -1;
4432
    }
4433

    
4434
    /* Assign a new PPA and get its unit number. */
4435
    strioc_ppa.ic_cmd = TUNNEWPPA;
4436
    strioc_ppa.ic_timout = 0;
4437
    strioc_ppa.ic_len = sizeof(ppa);
4438
    strioc_ppa.ic_dp = (char *)&ppa;
4439
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4440
       syslog (LOG_ERR, "Can't assign new interface");
4441

    
4442
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4443
    if (if_fd < 0) {
4444
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
4445
       return -1;
4446
    }
4447
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
4448
       syslog(LOG_ERR, "Can't push IP module");
4449
       return -1;
4450
    }
4451

    
4452
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4453
        syslog(LOG_ERR, "Can't get flags\n");
4454

    
4455
    snprintf (actual_name, 32, "tap%d", ppa);
4456
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4457

    
4458
    ifr.lifr_ppa = ppa;
4459
    /* Assign ppa according to the unit number returned by tun device */
4460

    
4461
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4462
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4463
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4464
        syslog (LOG_ERR, "Can't get flags\n");
4465
    /* Push arp module to if_fd */
4466
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4467
        syslog (LOG_ERR, "Can't push ARP module (2)");
4468

    
4469
    /* Push arp module to ip_fd */
4470
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4471
        syslog (LOG_ERR, "I_POP failed\n");
4472
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4473
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4474
    /* Open arp_fd */
4475
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4476
    if (arp_fd < 0)
4477
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4478

    
4479
    /* Set ifname to arp */
4480
    strioc_if.ic_cmd = SIOCSLIFNAME;
4481
    strioc_if.ic_timout = 0;
4482
    strioc_if.ic_len = sizeof(ifr);
4483
    strioc_if.ic_dp = (char *)&ifr;
4484
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4485
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4486
    }
4487

    
4488
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4489
       syslog(LOG_ERR, "Can't link TAP device to IP");
4490
       return -1;
4491
    }
4492

    
4493
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4494
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4495

    
4496
    close (if_fd);
4497

    
4498
    memset(&ifr, 0x0, sizeof(ifr));
4499
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4500
    ifr.lifr_ip_muxid  = ip_muxid;
4501
    ifr.lifr_arp_muxid = arp_muxid;
4502

    
4503
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4504
    {
4505
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4506
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4507
      syslog (LOG_ERR, "Can't set multiplexor id");
4508
    }
4509

    
4510
    snprintf(dev, dev_size, "tap%d", ppa);
4511
    return tap_fd;
4512
}
4513

    
4514
static int tap_open(char *ifname, int ifname_size)
4515
{
4516
    char  dev[10]="";
4517
    int fd;
4518
    if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4519
       fprintf(stderr, "Cannot allocate TAP device\n");
4520
       return -1;
4521
    }
4522
    pstrcpy(ifname, ifname_size, dev);
4523
    fcntl(fd, F_SETFL, O_NONBLOCK);
4524
    return fd;
4525
}
4526
#else
4527
static int tap_open(char *ifname, int ifname_size)
4528
{
4529
    struct ifreq ifr;
4530
    int fd, ret;
4531

    
4532
    TFR(fd = open("/dev/net/tun", O_RDWR));
4533
    if (fd < 0) {
4534
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4535
        return -1;
4536
    }
4537
    memset(&ifr, 0, sizeof(ifr));
4538
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4539
    if (ifname[0] != '\0')
4540
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4541
    else
4542
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4543
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4544
    if (ret != 0) {
4545
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4546
        close(fd);
4547
        return -1;
4548
    }
4549
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4550
    fcntl(fd, F_SETFL, O_NONBLOCK);
4551
    return fd;
4552
}
4553
#endif
4554

    
4555
static int launch_script(const char *setup_script, const char *ifname, int fd)
4556
{
4557
    int pid, status;
4558
    char *args[3];
4559
    char **parg;
4560

    
4561
        /* try to launch network script */
4562
        pid = fork();
4563
        if (pid >= 0) {
4564
            if (pid == 0) {
4565
                int open_max = sysconf (_SC_OPEN_MAX), i;
4566
                for (i = 0; i < open_max; i++)
4567
                    if (i != STDIN_FILENO &&
4568
                        i != STDOUT_FILENO &&
4569
                        i != STDERR_FILENO &&
4570
                        i != fd)
4571
                        close(i);
4572

    
4573
                parg = args;
4574
                *parg++ = (char *)setup_script;
4575
                *parg++ = (char *)ifname;
4576
                *parg++ = NULL;
4577
                execv(setup_script, args);
4578
                _exit(1);
4579
            }
4580
            while (waitpid(pid, &status, 0) != pid);
4581
            if (!WIFEXITED(status) ||
4582
                WEXITSTATUS(status) != 0) {
4583
                fprintf(stderr, "%s: could not launch network script\n",
4584
                        setup_script);
4585
                return -1;
4586
            }
4587
        }
4588
    return 0;
4589
}
4590

    
4591
static int net_tap_init(VLANState *vlan, const char *ifname1,
4592
                        const char *setup_script, const char *down_script)
4593
{
4594
    TAPState *s;
4595
    int fd;
4596
    char ifname[128];
4597

    
4598
    if (ifname1 != NULL)
4599
        pstrcpy(ifname, sizeof(ifname), ifname1);
4600
    else
4601
        ifname[0] = '\0';
4602
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4603
    if (fd < 0)
4604
        return -1;
4605

    
4606
    if (!setup_script || !strcmp(setup_script, "no"))
4607
        setup_script = "";
4608
    if (setup_script[0] != '\0') {
4609
        if (launch_script(setup_script, ifname, fd))
4610
            return -1;
4611
    }
4612
    s = net_tap_fd_init(vlan, fd);
4613
    if (!s)
4614
        return -1;
4615
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4616
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4617
    if (down_script && strcmp(down_script, "no"))
4618
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4619
    return 0;
4620
}
4621

    
4622
#endif /* !_WIN32 */
4623

    
4624
#if defined(CONFIG_VDE)
4625
typedef struct VDEState {
4626
    VLANClientState *vc;
4627
    VDECONN *vde;
4628
} VDEState;
4629

    
4630
static void vde_to_qemu(void *opaque)
4631
{
4632
    VDEState *s = opaque;
4633
    uint8_t buf[4096];
4634
    int size;
4635

    
4636
    size = vde_recv(s->vde, buf, sizeof(buf), 0);
4637
    if (size > 0) {
4638
        qemu_send_packet(s->vc, buf, size);
4639
    }
4640
}
4641

    
4642
static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4643
{
4644
    VDEState *s = opaque;
4645
    int ret;
4646
    for(;;) {
4647
        ret = vde_send(s->vde, buf, size, 0);
4648
        if (ret < 0 && errno == EINTR) {
4649
        } else {
4650
            break;
4651
        }
4652
    }
4653
}
4654

    
4655
static int net_vde_init(VLANState *vlan, const char *sock, int port,
4656
                        const char *group, int mode)
4657
{
4658
    VDEState *s;
4659
    char *init_group = strlen(group) ? (char *)group : NULL;
4660
    char *init_sock = strlen(sock) ? (char *)sock : NULL;
4661

    
4662
    struct vde_open_args args = {
4663
        .port = port,
4664
        .group = init_group,
4665
        .mode = mode,
4666
    };
4667

    
4668
    s = qemu_mallocz(sizeof(VDEState));
4669
    if (!s)
4670
        return -1;
4671
    s->vde = vde_open(init_sock, "QEMU", &args);
4672
    if (!s->vde){
4673
        free(s);
4674
        return -1;
4675
    }
4676
    s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4677
    qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4678
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4679
             sock, vde_datafd(s->vde));
4680
    return 0;
4681
}
4682
#endif
4683

    
4684
/* network connection */
4685
typedef struct NetSocketState {
4686
    VLANClientState *vc;
4687
    int fd;
4688
    int state; /* 0 = getting length, 1 = getting data */
4689
    int index;
4690
    int packet_len;
4691
    uint8_t buf[4096];
4692
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4693
} NetSocketState;
4694

    
4695
typedef struct NetSocketListenState {
4696
    VLANState *vlan;
4697
    int fd;
4698
} NetSocketListenState;
4699

    
4700
/* XXX: we consider we can send the whole packet without blocking */
4701
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4702
{
4703
    NetSocketState *s = opaque;
4704
    uint32_t len;
4705
    len = htonl(size);
4706

    
4707
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4708
    send_all(s->fd, buf, size);
4709
}
4710

    
4711
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4712
{
4713
    NetSocketState *s = opaque;
4714
    sendto(s->fd, buf, size, 0,
4715
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4716
}
4717

    
4718
static void net_socket_send(void *opaque)
4719
{
4720
    NetSocketState *s = opaque;
4721
    int l, size, err;
4722
    uint8_t buf1[4096];
4723
    const uint8_t *buf;
4724

    
4725
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4726
    if (size < 0) {
4727
        err = socket_error();
4728
        if (err != EWOULDBLOCK)
4729
            goto eoc;
4730
    } else if (size == 0) {
4731
        /* end of connection */
4732
    eoc:
4733
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4734
        closesocket(s->fd);
4735
        return;
4736
    }
4737
    buf = buf1;
4738
    while (size > 0) {
4739
        /* reassemble a packet from the network */
4740
        switch(s->state) {
4741
        case 0:
4742
            l = 4 - s->index;
4743
            if (l > size)
4744
                l = size;
4745
            memcpy(s->buf + s->index, buf, l);
4746
            buf += l;
4747
            size -= l;
4748
            s->index += l;
4749
            if (s->index == 4) {
4750
                /* got length */
4751
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4752
                s->index = 0;
4753
                s->state = 1;
4754
            }
4755
            break;
4756
        case 1:
4757
            l = s->packet_len - s->index;
4758
            if (l > size)
4759
                l = size;
4760
            memcpy(s->buf + s->index, buf, l);
4761
            s->index += l;
4762
            buf += l;
4763
            size -= l;
4764
            if (s->index >= s->packet_len) {
4765
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4766
                s->index = 0;
4767
                s->state = 0;
4768
            }
4769
            break;
4770
        }
4771
    }
4772
}
4773

    
4774
static void net_socket_send_dgram(void *opaque)
4775
{
4776
    NetSocketState *s = opaque;
4777
    int size;
4778

    
4779
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4780
    if (size < 0)
4781
        return;
4782
    if (size == 0) {
4783
        /* end of connection */
4784
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4785
        return;
4786
    }
4787
    qemu_send_packet(s->vc, s->buf, size);
4788
}
4789

    
4790
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4791
{
4792
    struct ip_mreq imr;
4793
    int fd;
4794
    int val, ret;
4795
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4796
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4797
                inet_ntoa(mcastaddr->sin_addr),
4798
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4799
        return -1;
4800

    
4801
    }
4802
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4803
    if (fd < 0) {
4804
        perror("socket(PF_INET, SOCK_DGRAM)");
4805
        return -1;
4806
    }
4807

    
4808
    val = 1;
4809
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4810
                   (const char *)&val, sizeof(val));
4811
    if (ret < 0) {
4812
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4813
        goto fail;
4814
    }
4815

    
4816
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4817
    if (ret < 0) {
4818
        perror("bind");
4819
        goto fail;
4820
    }
4821

    
4822
    /* Add host to multicast group */
4823
    imr.imr_multiaddr = mcastaddr->sin_addr;
4824
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4825

    
4826
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4827
                     (const char *)&imr, sizeof(struct ip_mreq));
4828
    if (ret < 0) {
4829
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4830
        goto fail;
4831
    }
4832

    
4833
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4834
    val = 1;
4835
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4836
                   (const char *)&val, sizeof(val));
4837
    if (ret < 0) {
4838
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4839
        goto fail;
4840
    }
4841

    
4842
    socket_set_nonblock(fd);
4843
    return fd;
4844
fail:
4845
    if (fd >= 0)
4846
        closesocket(fd);
4847
    return -1;
4848
}
4849

    
4850
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4851
                                          int is_connected)
4852
{
4853
    struct sockaddr_in saddr;
4854
    int newfd;
4855
    socklen_t saddr_len;
4856
    NetSocketState *s;
4857

    
4858
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4859
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4860
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4861
     */
4862

    
4863
    if (is_connected) {
4864
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4865
            /* must be bound */
4866
            if (saddr.sin_addr.s_addr==0) {
4867
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4868
                        fd);
4869
                return NULL;
4870
            }
4871
            /* clone dgram socket */
4872
            newfd = net_socket_mcast_create(&saddr);
4873
            if (newfd < 0) {
4874
                /* error already reported by net_socket_mcast_create() */
4875
                close(fd);
4876
                return NULL;
4877
            }
4878
            /* clone newfd to fd, close newfd */
4879
            dup2(newfd, fd);
4880
            close(newfd);
4881

    
4882
        } else {
4883
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4884
                    fd, strerror(errno));
4885
            return NULL;
4886
        }
4887
    }
4888

    
4889
    s = qemu_mallocz(sizeof(NetSocketState));
4890
    if (!s)
4891
        return NULL;
4892
    s->fd = fd;
4893

    
4894
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4895
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4896

    
4897
    /* mcast: save bound address as dst */
4898
    if (is_connected) s->dgram_dst=saddr;
4899

    
4900
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4901
            "socket: fd=%d (%s mcast=%s:%d)",
4902
            fd, is_connected? "cloned" : "",
4903
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4904
    return s;
4905
}
4906

    
4907
static void net_socket_connect(void *opaque)
4908
{
4909
    NetSocketState *s = opaque;
4910
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4911
}
4912

    
4913
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4914
                                          int is_connected)
4915
{
4916
    NetSocketState *s;
4917
    s = qemu_mallocz(sizeof(NetSocketState));
4918
    if (!s)
4919
        return NULL;
4920
    s->fd = fd;
4921
    s->vc = qemu_new_vlan_client(vlan,
4922
                                 net_socket_receive, NULL, s);
4923
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4924
             "socket: fd=%d", fd);
4925
    if (is_connected) {
4926
        net_socket_connect(s);
4927
    } else {
4928
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4929
    }
4930
    return s;
4931
}
4932

    
4933
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4934
                                          int is_connected)
4935
{
4936
    int so_type=-1, optlen=sizeof(so_type);
4937

    
4938
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4939
        (socklen_t *)&optlen)< 0) {
4940
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4941
        return NULL;
4942
    }
4943
    switch(so_type) {
4944
    case SOCK_DGRAM:
4945
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4946
    case SOCK_STREAM:
4947
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4948
    default:
4949
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4950
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4951
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4952
    }
4953
    return NULL;
4954
}
4955

    
4956
static void net_socket_accept(void *opaque)
4957
{
4958
    NetSocketListenState *s = opaque;
4959
    NetSocketState *s1;
4960
    struct sockaddr_in saddr;
4961
    socklen_t len;
4962
    int fd;
4963

    
4964
    for(;;) {
4965
        len = sizeof(saddr);
4966
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4967
        if (fd < 0 && errno != EINTR) {
4968
            return;
4969
        } else if (fd >= 0) {
4970
            break;
4971
        }
4972
    }
4973
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4974
    if (!s1) {
4975
        closesocket(fd);
4976
    } else {
4977
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4978
                 "socket: connection from %s:%d",
4979
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4980
    }
4981
}
4982

    
4983
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4984
{
4985
    NetSocketListenState *s;
4986
    int fd, val, ret;
4987
    struct sockaddr_in saddr;
4988

    
4989
    if (parse_host_port(&saddr, host_str) < 0)
4990
        return -1;
4991

    
4992
    s = qemu_mallocz(sizeof(NetSocketListenState));
4993
    if (!s)
4994
        return -1;
4995

    
4996
    fd = socket(PF_INET, SOCK_STREAM, 0);
4997
    if (fd < 0) {
4998
        perror("socket");
4999
        return -1;
5000
    }
5001
    socket_set_nonblock(fd);
5002

    
5003
    /* allow fast reuse */
5004
    val = 1;
5005
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
5006

    
5007
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5008
    if (ret < 0) {
5009
        perror("bind");
5010
        return -1;
5011
    }
5012
    ret = listen(fd, 0);
5013
    if (ret < 0) {
5014
        perror("listen");
5015
        return -1;
5016
    }
5017
    s->vlan = vlan;
5018
    s->fd = fd;
5019
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5020
    return 0;
5021
}
5022

    
5023
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5024
{
5025
    NetSocketState *s;
5026
    int fd, connected, ret, err;
5027
    struct sockaddr_in saddr;
5028

    
5029
    if (parse_host_port(&saddr, host_str) < 0)
5030
        return -1;
5031

    
5032
    fd = socket(PF_INET, SOCK_STREAM, 0);
5033
    if (fd < 0) {
5034
        perror("socket");
5035
        return -1;
5036
    }
5037
    socket_set_nonblock(fd);
5038

    
5039
    connected = 0;
5040
    for(;;) {
5041
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5042
        if (ret < 0) {
5043
            err = socket_error();
5044
            if (err == EINTR || err == EWOULDBLOCK) {
5045
            } else if (err == EINPROGRESS) {
5046
                break;
5047
#ifdef _WIN32
5048
            } else if (err == WSAEALREADY) {
5049
                break;
5050
#endif
5051
            } else {
5052
                perror("connect");
5053
                closesocket(fd);
5054
                return -1;
5055
            }
5056
        } else {
5057
            connected = 1;
5058
            break;
5059
        }
5060
    }
5061
    s = net_socket_fd_init(vlan, fd, connected);
5062
    if (!s)
5063
        return -1;
5064
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5065
             "socket: connect to %s:%d",
5066
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5067
    return 0;
5068
}
5069

    
5070
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5071
{
5072
    NetSocketState *s;
5073
    int fd;
5074
    struct sockaddr_in saddr;
5075

    
5076
    if (parse_host_port(&saddr, host_str) < 0)
5077
        return -1;
5078

    
5079

    
5080
    fd = net_socket_mcast_create(&saddr);
5081
    if (fd < 0)
5082
        return -1;
5083

    
5084
    s = net_socket_fd_init(vlan, fd, 0);
5085
    if (!s)
5086
        return -1;
5087

    
5088
    s->dgram_dst = saddr;
5089

    
5090
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5091
             "socket: mcast=%s:%d",
5092
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5093
    return 0;
5094

    
5095
}
5096

    
5097
static const char *get_opt_name(char *buf, int buf_size, const char *p)
5098
{
5099
    char *q;
5100

    
5101
    q = buf;
5102
    while (*p != '\0' && *p != '=') {
5103
        if (q && (q - buf) < buf_size - 1)
5104
            *q++ = *p;
5105
        p++;
5106
    }
5107
    if (q)
5108
        *q = '\0';
5109

    
5110
    return p;
5111
}
5112

    
5113
static const char *get_opt_value(char *buf, int buf_size, const char *p)
5114
{
5115
    char *q;
5116

    
5117
    q = buf;
5118
    while (*p != '\0') {
5119
        if (*p == ',') {
5120
            if (*(p + 1) != ',')
5121
                break;
5122
            p++;
5123
        }
5124
        if (q && (q - buf) < buf_size - 1)
5125
            *q++ = *p;
5126
        p++;
5127
    }
5128
    if (q)
5129
        *q = '\0';
5130

    
5131
    return p;
5132
}
5133

    
5134
static int get_param_value(char *buf, int buf_size,
5135
                           const char *tag, const char *str)
5136
{
5137
    const char *p;
5138
    char option[128];
5139

    
5140
    p = str;
5141
    for(;;) {
5142
        p = get_opt_name(option, sizeof(option), p);
5143
        if (*p != '=')
5144
            break;
5145
        p++;
5146
        if (!strcmp(tag, option)) {
5147
            (void)get_opt_value(buf, buf_size, p);
5148
            return strlen(buf);
5149
        } else {
5150
            p = get_opt_value(NULL, 0, p);
5151
        }
5152
        if (*p != ',')
5153
            break;
5154
        p++;
5155
    }
5156
    return 0;
5157
}
5158

    
5159
static int check_params(char *buf, int buf_size,
5160
                        const char * const *params, const char *str)
5161
{
5162
    const char *p;
5163
    int i;
5164

    
5165
    p = str;
5166
    for(;;) {
5167
        p = get_opt_name(buf, buf_size, p);
5168
        if (*p != '=')
5169
            return -1;
5170
        p++;
5171
        for(i = 0; params[i] != NULL; i++)
5172
            if (!strcmp(params[i], buf))
5173
                break;
5174
        if (params[i] == NULL)
5175
            return -1;
5176
        p = get_opt_value(NULL, 0, p);
5177
        if (*p != ',')
5178
            break;
5179
        p++;
5180
    }
5181
    return 0;
5182
}
5183

    
5184
static int net_client_init(const char *device, const char *p)
5185
{
5186
    char buf[1024];
5187
    int vlan_id, ret;
5188
    VLANState *vlan;
5189

    
5190
    vlan_id = 0;
5191
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5192
        vlan_id = strtol(buf, NULL, 0);
5193
    }
5194
    vlan = qemu_find_vlan(vlan_id);
5195
    if (!vlan) {
5196
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5197
        return -1;
5198
    }
5199
    if (!strcmp(device, "nic")) {
5200
        NICInfo *nd;
5201
        uint8_t *macaddr;
5202

    
5203
        if (nb_nics >= MAX_NICS) {
5204
            fprintf(stderr, "Too Many NICs\n");
5205
            return -1;
5206
        }
5207
        nd = &nd_table[nb_nics];
5208
        macaddr = nd->macaddr;
5209
        macaddr[0] = 0x52;
5210
        macaddr[1] = 0x54;
5211
        macaddr[2] = 0x00;
5212
        macaddr[3] = 0x12;
5213
        macaddr[4] = 0x34;
5214
        macaddr[5] = 0x56 + nb_nics;
5215

    
5216
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5217
            if (parse_macaddr(macaddr, buf) < 0) {
5218
                fprintf(stderr, "invalid syntax for ethernet address\n");
5219
                return -1;
5220
            }
5221
        }
5222
        if (get_param_value(buf, sizeof(buf), "model", p)) {
5223
            nd->model = strdup(buf);
5224
        }
5225
        nd->vlan = vlan;
5226
        nb_nics++;
5227
        vlan->nb_guest_devs++;
5228
        ret = 0;
5229
    } else
5230
    if (!strcmp(device, "none")) {
5231
        /* does nothing. It is needed to signal that no network cards
5232
           are wanted */
5233
        ret = 0;
5234
    } else
5235
#ifdef CONFIG_SLIRP
5236
    if (!strcmp(device, "user")) {
5237
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5238
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5239
        }
5240
        vlan->nb_host_devs++;
5241
        ret = net_slirp_init(vlan);
5242
    } else
5243
#endif
5244
#ifdef _WIN32
5245
    if (!strcmp(device, "tap")) {
5246
        char ifname[64];
5247
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5248
            fprintf(stderr, "tap: no interface name\n");
5249
            return -1;
5250
        }
5251
        vlan->nb_host_devs++;
5252
        ret = tap_win32_init(vlan, ifname);
5253
    } else
5254
#else
5255
    if (!strcmp(device, "tap")) {
5256
        char ifname[64];
5257
        char setup_script[1024], down_script[1024];
5258
        int fd;
5259
        vlan->nb_host_devs++;
5260
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5261
            fd = strtol(buf, NULL, 0);
5262
            fcntl(fd, F_SETFL, O_NONBLOCK);
5263
            ret = -1;
5264
            if (net_tap_fd_init(vlan, fd))
5265
                ret = 0;
5266
        } else {
5267
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5268
                ifname[0] = '\0';
5269
            }
5270
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5271
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5272
            }
5273
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5274
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5275
            }
5276
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
5277
        }
5278
    } else
5279
#endif
5280
    if (!strcmp(device, "socket")) {
5281
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5282
            int fd;
5283
            fd = strtol(buf, NULL, 0);
5284
            ret = -1;
5285
            if (net_socket_fd_init(vlan, fd, 1))
5286
                ret = 0;
5287
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5288
            ret = net_socket_listen_init(vlan, buf);
5289
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5290
            ret = net_socket_connect_init(vlan, buf);
5291
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5292
            ret = net_socket_mcast_init(vlan, buf);
5293
        } else {
5294
            fprintf(stderr, "Unknown socket options: %s\n", p);
5295
            return -1;
5296
        }
5297
        vlan->nb_host_devs++;
5298
    } else
5299
#ifdef CONFIG_VDE
5300
    if (!strcmp(device, "vde")) {
5301
        char vde_sock[1024], vde_group[512];
5302
        int vde_port, vde_mode;
5303
        vlan->nb_host_devs++;
5304
        if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5305
            vde_sock[0] = '\0';
5306
        }
5307
        if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5308
            vde_port = strtol(buf, NULL, 10);
5309
        } else {
5310
            vde_port = 0;
5311
        }
5312
        if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5313
            vde_group[0] = '\0';
5314
        }
5315
        if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5316
            vde_mode = strtol(buf, NULL, 8);
5317
        } else {
5318
            vde_mode = 0700;
5319
        }
5320
        ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5321
    } else
5322
#endif
5323
    {
5324
        fprintf(stderr, "Unknown network device: %s\n", device);
5325
        return -1;
5326
    }
5327
    if (ret < 0) {
5328
        fprintf(stderr, "Could not initialize device '%s'\n", device);
5329
    }
5330

    
5331
    return ret;
5332
}
5333

    
5334
static int net_client_parse(const char *str)
5335
{
5336
    const char *p;
5337
    char *q;
5338
    char device[64];
5339

    
5340
    p = str;
5341
    q = device;
5342
    while (*p != '\0' && *p != ',') {
5343
        if ((q - device) < sizeof(device) - 1)
5344
            *q++ = *p;
5345
        p++;
5346
    }
5347
    *q = '\0';
5348
    if (*p == ',')
5349
        p++;
5350

    
5351
    return net_client_init(device, p);
5352
}
5353

    
5354
void do_info_network(void)
5355
{
5356
    VLANState *vlan;
5357
    VLANClientState *vc;
5358

    
5359
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5360
        term_printf("VLAN %d devices:\n", vlan->id);
5361
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5362
            term_printf("  %s\n", vc->info_str);
5363
    }
5364
}
5365

    
5366
/***********************************************************/
5367
/* Bluetooth support */
5368
static int nb_hcis;
5369
static int cur_hci;
5370
static struct HCIInfo *hci_table[MAX_NICS];
5371
static struct bt_vlan_s {
5372
    struct bt_scatternet_s net;
5373
    int id;
5374
    struct bt_vlan_s *next;
5375
} *first_bt_vlan;
5376

    
5377
/* find or alloc a new bluetooth "VLAN" */
5378
struct bt_scatternet_s *qemu_find_bt_vlan(int id)
5379
{
5380
    struct bt_vlan_s **pvlan, *vlan;
5381
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
5382
        if (vlan->id == id)
5383
            return &vlan->net;
5384
    }
5385
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
5386
    vlan->id = id;
5387
    pvlan = &first_bt_vlan;
5388
    while (*pvlan != NULL)
5389
        pvlan = &(*pvlan)->next;
5390
    *pvlan = vlan;
5391
    return &vlan->net;
5392
}
5393

    
5394
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
5395
{
5396
}
5397

    
5398
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
5399
{
5400
    return -ENOTSUP;
5401
}
5402

    
5403
static struct HCIInfo null_hci = {
5404
    .cmd_send = null_hci_send,
5405
    .sco_send = null_hci_send,
5406
    .acl_send = null_hci_send,
5407
    .bdaddr_set = null_hci_addr_set,
5408
};
5409

    
5410
struct HCIInfo *qemu_next_hci(void)
5411
{
5412
    if (cur_hci == nb_hcis)
5413
        return &null_hci;
5414

    
5415
    return hci_table[cur_hci++];
5416
}
5417

    
5418
/***********************************************************/
5419
/* QEMU Block devices */
5420

    
5421
#define HD_ALIAS "index=%d,media=disk"
5422
#ifdef TARGET_PPC
5423
#define CDROM_ALIAS "index=1,media=cdrom"
5424
#else
5425
#define CDROM_ALIAS "index=2,media=cdrom"
5426
#endif
5427
#define FD_ALIAS "index=%d,if=floppy"
5428
#define PFLASH_ALIAS "if=pflash"
5429
#define MTD_ALIAS "if=mtd"
5430
#define SD_ALIAS "index=0,if=sd"
5431

    
5432
static int drive_add(const char *file, const char *fmt, ...)
5433
{
5434
    va_list ap;
5435

    
5436
    if (nb_drives_opt >= MAX_DRIVES) {
5437
        fprintf(stderr, "qemu: too many drives\n");
5438
        exit(1);
5439
    }
5440

    
5441
    drives_opt[nb_drives_opt].file = file;
5442
    va_start(ap, fmt);
5443
    vsnprintf(drives_opt[nb_drives_opt].opt,
5444
              sizeof(drives_opt[0].opt), fmt, ap);
5445
    va_end(ap);
5446

    
5447
    return nb_drives_opt++;
5448
}
5449

    
5450
int drive_get_index(BlockInterfaceType type, int bus, int unit)
5451
{
5452
    int index;
5453

    
5454
    /* seek interface, bus and unit */
5455

    
5456
    for (index = 0; index < nb_drives; index++)
5457
        if (drives_table[index].type == type &&
5458
            drives_table[index].bus == bus &&
5459
            drives_table[index].unit == unit)
5460
        return index;
5461

    
5462
    return -1;
5463
}
5464

    
5465
int drive_get_max_bus(BlockInterfaceType type)
5466
{
5467
    int max_bus;
5468
    int index;
5469

    
5470
    max_bus = -1;
5471
    for (index = 0; index < nb_drives; index++) {
5472
        if(drives_table[index].type == type &&
5473
           drives_table[index].bus > max_bus)
5474
            max_bus = drives_table[index].bus;
5475
    }
5476
    return max_bus;
5477
}
5478

    
5479
static void bdrv_format_print(void *opaque, const char *name)
5480
{
5481
    fprintf(stderr, " %s", name);
5482
}
5483

    
5484
static int drive_init(struct drive_opt *arg, int snapshot,
5485
                      QEMUMachine *machine)
5486
{
5487
    char buf[128];
5488
    char file[1024];
5489
    char devname[128];
5490
    const char *mediastr = "";
5491
    BlockInterfaceType type;
5492
    enum { MEDIA_DISK, MEDIA_CDROM } media;
5493
    int bus_id, unit_id;
5494
    int cyls, heads, secs, translation;
5495
    BlockDriverState *bdrv;
5496
    BlockDriver *drv = NULL;
5497
    int max_devs;
5498
    int index;
5499
    int cache;
5500
    int bdrv_flags;
5501
    char *str = arg->opt;
5502
    static const char * const params[] = { "bus", "unit", "if", "index",
5503
                                           "cyls", "heads", "secs", "trans",
5504
                                           "media", "snapshot", "file",
5505
                                           "cache", "format", NULL };
5506

    
5507
    if (check_params(buf, sizeof(buf), params, str) < 0) {
5508
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5509
                         buf, str);
5510
         return -1;
5511
    }
5512

    
5513
    file[0] = 0;
5514
    cyls = heads = secs = 0;
5515
    bus_id = 0;
5516
    unit_id = -1;
5517
    translation = BIOS_ATA_TRANSLATION_AUTO;
5518
    index = -1;
5519
    cache = 1;
5520

    
5521
    if (machine->use_scsi) {
5522
        type = IF_SCSI;
5523
        max_devs = MAX_SCSI_DEVS;
5524
        pstrcpy(devname, sizeof(devname), "scsi");
5525
    } else {
5526
        type = IF_IDE;
5527
        max_devs = MAX_IDE_DEVS;
5528
        pstrcpy(devname, sizeof(devname), "ide");
5529
    }
5530
    media = MEDIA_DISK;
5531

    
5532
    /* extract parameters */
5533

    
5534
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
5535
        bus_id = strtol(buf, NULL, 0);
5536
        if (bus_id < 0) {
5537
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5538
            return -1;
5539
        }
5540
    }
5541

    
5542
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
5543
        unit_id = strtol(buf, NULL, 0);
5544
        if (unit_id < 0) {
5545
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5546
            return -1;
5547
        }
5548
    }
5549

    
5550
    if (get_param_value(buf, sizeof(buf), "if", str)) {
5551
        pstrcpy(devname, sizeof(devname), buf);
5552
        if (!strcmp(buf, "ide")) {
5553
            type = IF_IDE;
5554
            max_devs = MAX_IDE_DEVS;
5555
        } else if (!strcmp(buf, "scsi")) {
5556
            type = IF_SCSI;
5557
            max_devs = MAX_SCSI_DEVS;
5558
        } else if (!strcmp(buf, "floppy")) {
5559
            type = IF_FLOPPY;
5560
            max_devs = 0;
5561
        } else if (!strcmp(buf, "pflash")) {
5562
            type = IF_PFLASH;
5563
            max_devs = 0;
5564
        } else if (!strcmp(buf, "mtd")) {
5565
            type = IF_MTD;
5566
            max_devs = 0;
5567
        } else if (!strcmp(buf, "sd")) {
5568
            type = IF_SD;
5569
            max_devs = 0;
5570
        } else {
5571
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5572
            return -1;
5573
        }
5574
    }
5575

    
5576
    if (get_param_value(buf, sizeof(buf), "index", str)) {
5577
        index = strtol(buf, NULL, 0);
5578
        if (index < 0) {
5579
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
5580
            return -1;
5581
        }
5582
    }
5583

    
5584
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5585
        cyls = strtol(buf, NULL, 0);
5586
    }
5587

    
5588
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
5589
        heads = strtol(buf, NULL, 0);
5590
    }
5591

    
5592
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
5593
        secs = strtol(buf, NULL, 0);
5594
    }
5595

    
5596
    if (cyls || heads || secs) {
5597
        if (cyls < 1 || cyls > 16383) {
5598
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5599
            return -1;
5600
        }
5601
        if (heads < 1 || heads > 16) {
5602
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5603
            return -1;
5604
        }
5605
        if (secs < 1 || secs > 63) {
5606
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5607
            return -1;
5608
        }
5609
    }
5610

    
5611
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
5612
        if (!cyls) {
5613
            fprintf(stderr,
5614
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
5615
                    str);
5616
            return -1;
5617
        }
5618
        if (!strcmp(buf, "none"))
5619
            translation = BIOS_ATA_TRANSLATION_NONE;
5620
        else if (!strcmp(buf, "lba"))
5621
            translation = BIOS_ATA_TRANSLATION_LBA;
5622
        else if (!strcmp(buf, "auto"))
5623
            translation = BIOS_ATA_TRANSLATION_AUTO;
5624
        else {
5625
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5626
            return -1;
5627
        }
5628
    }
5629

    
5630
    if (get_param_value(buf, sizeof(buf), "media", str)) {
5631
        if (!strcmp(buf, "disk")) {
5632
            media = MEDIA_DISK;
5633
        } else if (!strcmp(buf, "cdrom")) {
5634
            if (cyls || secs || heads) {
5635
                fprintf(stderr,
5636
                        "qemu: '%s' invalid physical CHS format\n", str);
5637
                return -1;
5638
            }
5639
            media = MEDIA_CDROM;
5640
        } else {
5641
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
5642
            return -1;
5643
        }
5644
    }
5645

    
5646
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5647
        if (!strcmp(buf, "on"))
5648
            snapshot = 1;
5649
        else if (!strcmp(buf, "off"))
5650
            snapshot = 0;
5651
        else {
5652
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5653
            return -1;
5654
        }
5655
    }
5656

    
5657
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
5658
        if (!strcmp(buf, "off"))
5659
            cache = 0;
5660
        else if (!strcmp(buf, "on"))
5661
            cache = 1;
5662
        else {
5663
           fprintf(stderr, "qemu: invalid cache option\n");
5664
           return -1;
5665
        }
5666
    }
5667

    
5668
    if (get_param_value(buf, sizeof(buf), "format", str)) {
5669
       if (strcmp(buf, "?") == 0) {
5670
            fprintf(stderr, "qemu: Supported formats:");
5671
            bdrv_iterate_format(bdrv_format_print, NULL);
5672
            fprintf(stderr, "\n");
5673
            return -1;
5674
        }
5675
        drv = bdrv_find_format(buf);
5676
        if (!drv) {
5677
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5678
            return -1;
5679
        }
5680
    }
5681

    
5682
    if (arg->file == NULL)
5683
        get_param_value(file, sizeof(file), "file", str);
5684
    else
5685
        pstrcpy(file, sizeof(file), arg->file);
5686

    
5687
    /* compute bus and unit according index */
5688

    
5689
    if (index != -1) {
5690
        if (bus_id != 0 || unit_id != -1) {
5691
            fprintf(stderr,
5692
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
5693
            return -1;
5694
        }
5695
        if (max_devs == 0)
5696
        {
5697
            unit_id = index;
5698
            bus_id = 0;
5699
        } else {
5700
            unit_id = index % max_devs;
5701
            bus_id = index / max_devs;
5702
        }
5703
    }
5704

    
5705
    /* if user doesn't specify a unit_id,
5706
     * try to find the first free
5707
     */
5708

    
5709
    if (unit_id == -1) {
5710
       unit_id = 0;
5711
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5712
           unit_id++;
5713
           if (max_devs && unit_id >= max_devs) {
5714
               unit_id -= max_devs;
5715
               bus_id++;
5716
           }
5717
       }
5718
    }
5719

    
5720
    /* check unit id */
5721

    
5722
    if (max_devs && unit_id >= max_devs) {
5723
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5724
                        str, unit_id, max_devs - 1);
5725
        return -1;
5726
    }
5727

    
5728
    /*
5729
     * ignore multiple definitions
5730
     */
5731

    
5732
    if (drive_get_index(type, bus_id, unit_id) != -1)
5733
        return 0;
5734

    
5735
    /* init */
5736

    
5737
    if (type == IF_IDE || type == IF_SCSI)
5738
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5739
    if (max_devs)
5740
        snprintf(buf, sizeof(buf), "%s%i%s%i",
5741
                 devname, bus_id, mediastr, unit_id);
5742
    else
5743
        snprintf(buf, sizeof(buf), "%s%s%i",
5744
                 devname, mediastr, unit_id);
5745
    bdrv = bdrv_new(buf);
5746
    drives_table[nb_drives].bdrv = bdrv;
5747
    drives_table[nb_drives].type = type;
5748
    drives_table[nb_drives].bus = bus_id;
5749
    drives_table[nb_drives].unit = unit_id;
5750
    nb_drives++;
5751

    
5752
    switch(type) {
5753
    case IF_IDE:
5754
    case IF_SCSI:
5755
        switch(media) {
5756
        case MEDIA_DISK:
5757
            if (cyls != 0) {
5758
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5759
                bdrv_set_translation_hint(bdrv, translation);
5760
            }
5761
            break;
5762
        case MEDIA_CDROM:
5763
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5764
            break;
5765
        }
5766
        break;
5767
    case IF_SD:
5768
        /* FIXME: This isn't really a floppy, but it's a reasonable
5769
           approximation.  */
5770
    case IF_FLOPPY:
5771
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5772
        break;
5773
    case IF_PFLASH:
5774
    case IF_MTD:
5775
        break;
5776
    }
5777
    if (!file[0])
5778
        return 0;
5779
    bdrv_flags = 0;
5780
    if (snapshot)
5781
        bdrv_flags |= BDRV_O_SNAPSHOT;
5782
    if (!cache)
5783
        bdrv_flags |= BDRV_O_DIRECT;
5784
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5785
        fprintf(stderr, "qemu: could not open disk image %s\n",
5786
                        file);
5787
        return -1;
5788
    }
5789
    return 0;
5790
}
5791

    
5792
/***********************************************************/
5793
/* USB devices */
5794

    
5795
static USBPort *used_usb_ports;
5796
static USBPort *free_usb_ports;
5797

    
5798
/* ??? Maybe change this to register a hub to keep track of the topology.  */
5799
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5800
                            usb_attachfn attach)
5801
{
5802
    port->opaque = opaque;
5803
    port->index = index;
5804
    port->attach = attach;
5805
    port->next = free_usb_ports;
5806
    free_usb_ports = port;
5807
}
5808

    
5809
int usb_device_add_dev(USBDevice *dev)
5810
{
5811
    USBPort *port;
5812

    
5813
    /* Find a USB port to add the device to.  */
5814
    port = free_usb_ports;
5815
    if (!port->next) {
5816
        USBDevice *hub;
5817

    
5818
        /* Create a new hub and chain it on.  */
5819
        free_usb_ports = NULL;
5820
        port->next = used_usb_ports;
5821
        used_usb_ports = port;
5822

    
5823
        hub = usb_hub_init(VM_USB_HUB_SIZE);
5824
        usb_attach(port, hub);
5825
        port = free_usb_ports;
5826
    }
5827

    
5828
    free_usb_ports = port->next;
5829
    port->next = used_usb_ports;
5830
    used_usb_ports = port;
5831
    usb_attach(port, dev);
5832
    return 0;
5833
}
5834

    
5835
static int usb_device_add(const char *devname)
5836
{
5837
    const char *p;
5838
    USBDevice *dev;
5839

    
5840
    if (!free_usb_ports)
5841
        return -1;
5842

    
5843
    if (strstart(devname, "host:", &p)) {
5844
        dev = usb_host_device_open(p);
5845
    } else if (!strcmp(devname, "mouse")) {
5846
        dev = usb_mouse_init();
5847
    } else if (!strcmp(devname, "tablet")) {
5848
        dev = usb_tablet_init();
5849
    } else if (!strcmp(devname, "keyboard")) {
5850
        dev = usb_keyboard_init();
5851
    } else if (strstart(devname, "disk:", &p)) {
5852
        dev = usb_msd_init(p);
5853
    } else if (!strcmp(devname, "wacom-tablet")) {
5854
        dev = usb_wacom_init();
5855
    } else if (strstart(devname, "serial:", &p)) {
5856
        dev = usb_serial_init(p);
5857
#ifdef CONFIG_BRLAPI
5858
    } else if (!strcmp(devname, "braille")) {
5859
        dev = usb_baum_init();
5860
#endif
5861
    } else if (strstart(devname, "net:", &p)) {
5862
        int nic = nb_nics;
5863

    
5864
        if (net_client_init("nic", p) < 0)
5865
            return -1;
5866
        nd_table[nic].model = "usb";
5867
        dev = usb_net_init(&nd_table[nic]);
5868
    } else {
5869
        return -1;
5870
    }
5871
    if (!dev)
5872
        return -1;
5873

    
5874
    return usb_device_add_dev(dev);
5875
}
5876

    
5877
int usb_device_del_addr(int bus_num, int addr)
5878
{
5879
    USBPort *port;
5880
    USBPort **lastp;
5881
    USBDevice *dev;
5882

    
5883
    if (!used_usb_ports)
5884
        return -1;
5885

    
5886
    if (bus_num != 0)
5887
        return -1;
5888

    
5889
    lastp = &used_usb_ports;
5890
    port = used_usb_ports;
5891
    while (port && port->dev->addr != addr) {
5892
        lastp = &port->next;
5893
        port = port->next;
5894
    }
5895

    
5896
    if (!port)
5897
        return -1;
5898

    
5899
    dev = port->dev;
5900
    *lastp = port->next;
5901
    usb_attach(port, NULL);
5902
    dev->handle_destroy(dev);
5903
    port->next = free_usb_ports;
5904
    free_usb_ports = port;
5905
    return 0;
5906
}
5907

    
5908
static int usb_device_del(const char *devname)
5909
{
5910
    int bus_num, addr;
5911
    const char *p;
5912

    
5913
    if (strstart(devname, "host:", &p))
5914
        return usb_host_device_close(p);
5915

    
5916
    if (!used_usb_ports)
5917
        return -1;
5918

    
5919
    p = strchr(devname, '.');
5920
    if (!p)
5921
        return -1;
5922
    bus_num = strtoul(devname, NULL, 0);
5923
    addr = strtoul(p + 1, NULL, 0);
5924

    
5925
    return usb_device_del_addr(bus_num, addr);
5926
}
5927

    
5928
void do_usb_add(const char *devname)
5929
{
5930
    usb_device_add(devname);
5931
}
5932

    
5933
void do_usb_del(const char *devname)
5934
{
5935
    usb_device_del(devname);
5936
}
5937

    
5938
void usb_info(void)
5939
{
5940
    USBDevice *dev;
5941
    USBPort *port;
5942
    const char *speed_str;
5943

    
5944
    if (!usb_enabled) {
5945
        term_printf("USB support not enabled\n");
5946
        return;
5947
    }
5948

    
5949
    for (port = used_usb_ports; port; port = port->next) {
5950
        dev = port->dev;
5951
        if (!dev)
5952
            continue;
5953
        switch(dev->speed) {
5954
        case USB_SPEED_LOW:
5955
            speed_str = "1.5";
5956
            break;
5957
        case USB_SPEED_FULL:
5958
            speed_str = "12";
5959
            break;
5960
        case USB_SPEED_HIGH:
5961
            speed_str = "480";
5962
            break;
5963
        default:
5964
            speed_str = "?";
5965
            break;
5966
        }
5967
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5968
                    0, dev->addr, speed_str, dev->devname);
5969
    }
5970
}
5971

    
5972
/***********************************************************/
5973
/* PCMCIA/Cardbus */
5974

    
5975
static struct pcmcia_socket_entry_s {
5976
    struct pcmcia_socket_s *socket;
5977
    struct pcmcia_socket_entry_s *next;
5978
} *pcmcia_sockets = 0;
5979

    
5980
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5981
{
5982
    struct pcmcia_socket_entry_s *entry;
5983

    
5984
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5985
    entry->socket = socket;
5986
    entry->next = pcmcia_sockets;
5987
    pcmcia_sockets = entry;
5988
}
5989

    
5990
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5991
{
5992
    struct pcmcia_socket_entry_s *entry, **ptr;
5993

    
5994
    ptr = &pcmcia_sockets;
5995
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5996
        if (entry->socket == socket) {
5997
            *ptr = entry->next;
5998
            qemu_free(entry);
5999
        }
6000
}
6001

    
6002
void pcmcia_info(void)
6003
{
6004
    struct pcmcia_socket_entry_s *iter;
6005
    if (!pcmcia_sockets)
6006
        term_printf("No PCMCIA sockets\n");
6007

    
6008
    for (iter = pcmcia_sockets; iter; iter = iter->next)
6009
        term_printf("%s: %s\n", iter->socket->slot_string,
6010
                    iter->socket->attached ? iter->socket->card_string :
6011
                    "Empty");
6012
}
6013

    
6014
/***********************************************************/
6015
/* dumb display */
6016

    
6017
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
6018
{
6019
}
6020

    
6021
static void dumb_resize(DisplayState *ds, int w, int h)
6022
{
6023
}
6024

    
6025
static void dumb_refresh(DisplayState *ds)
6026
{
6027
#if defined(CONFIG_SDL)
6028
    vga_hw_update();
6029
#endif
6030
}
6031

    
6032
static void dumb_display_init(DisplayState *ds)
6033
{
6034
    ds->data = NULL;
6035
    ds->linesize = 0;
6036
    ds->depth = 0;
6037
    ds->dpy_update = dumb_update;
6038
    ds->dpy_resize = dumb_resize;
6039
    ds->dpy_refresh = dumb_refresh;
6040
    ds->gui_timer_interval = 500;
6041
    ds->idle = 1;
6042
}
6043

    
6044
/***********************************************************/
6045
/* I/O handling */
6046

    
6047
#define MAX_IO_HANDLERS 64
6048

    
6049
typedef struct IOHandlerRecord {
6050
    int fd;
6051
    IOCanRWHandler *fd_read_poll;
6052
    IOHandler *fd_read;
6053
    IOHandler *fd_write;
6054
    int deleted;
6055
    void *opaque;
6056
    /* temporary data */
6057
    struct pollfd *ufd;
6058
    struct IOHandlerRecord *next;
6059
} IOHandlerRecord;
6060

    
6061
static IOHandlerRecord *first_io_handler;
6062

    
6063
/* XXX: fd_read_poll should be suppressed, but an API change is
6064
   necessary in the character devices to suppress fd_can_read(). */
6065
int qemu_set_fd_handler2(int fd,
6066
                         IOCanRWHandler *fd_read_poll,
6067
                         IOHandler *fd_read,
6068
                         IOHandler *fd_write,
6069
                         void *opaque)
6070
{
6071
    IOHandlerRecord **pioh, *ioh;
6072

    
6073
    if (!fd_read && !fd_write) {
6074
        pioh = &first_io_handler;
6075
        for(;;) {
6076
            ioh = *pioh;
6077
            if (ioh == NULL)
6078
                break;
6079
            if (ioh->fd == fd) {
6080
                ioh->deleted = 1;
6081
                break;
6082
            }
6083
            pioh = &ioh->next;
6084
        }
6085
    } else {
6086
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6087
            if (ioh->fd == fd)
6088
                goto found;
6089
        }
6090
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6091
        if (!ioh)
6092
            return -1;
6093
        ioh->next = first_io_handler;
6094
        first_io_handler = ioh;
6095
    found:
6096
        ioh->fd = fd;
6097
        ioh->fd_read_poll = fd_read_poll;
6098
        ioh->fd_read = fd_read;
6099
        ioh->fd_write = fd_write;
6100
        ioh->opaque = opaque;
6101
        ioh->deleted = 0;
6102
    }
6103
    return 0;
6104
}
6105

    
6106
int qemu_set_fd_handler(int fd,
6107
                        IOHandler *fd_read,
6108
                        IOHandler *fd_write,
6109
                        void *opaque)
6110
{
6111
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6112
}
6113

    
6114
/***********************************************************/
6115
/* Polling handling */
6116

    
6117
typedef struct PollingEntry {
6118
    PollingFunc *func;
6119
    void *opaque;
6120
    struct PollingEntry *next;
6121
} PollingEntry;
6122

    
6123
static PollingEntry *first_polling_entry;
6124

    
6125
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6126
{
6127
    PollingEntry **ppe, *pe;
6128
    pe = qemu_mallocz(sizeof(PollingEntry));
6129
    if (!pe)
6130
        return -1;
6131
    pe->func = func;
6132
    pe->opaque = opaque;
6133
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6134
    *ppe = pe;
6135
    return 0;
6136
}
6137

    
6138
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6139
{
6140
    PollingEntry **ppe, *pe;
6141
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6142
        pe = *ppe;
6143
        if (pe->func == func && pe->opaque == opaque) {
6144
            *ppe = pe->next;
6145
            qemu_free(pe);
6146
            break;
6147
        }
6148
    }
6149
}
6150

    
6151
#ifdef _WIN32
6152
/***********************************************************/
6153
/* Wait objects support */
6154
typedef struct WaitObjects {
6155
    int num;
6156
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6157
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6158
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6159
} WaitObjects;
6160

    
6161
static WaitObjects wait_objects = {0};
6162

    
6163
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6164
{
6165
    WaitObjects *w = &wait_objects;
6166

    
6167
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
6168
        return -1;
6169
    w->events[w->num] = handle;
6170
    w->func[w->num] = func;
6171
    w->opaque[w->num] = opaque;
6172
    w->num++;
6173
    return 0;
6174
}
6175

    
6176
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6177
{
6178
    int i, found;
6179
    WaitObjects *w = &wait_objects;
6180

    
6181
    found = 0;
6182
    for (i = 0; i < w->num; i++) {
6183
        if (w->events[i] == handle)
6184
            found = 1;
6185
        if (found) {
6186
            w->events[i] = w->events[i + 1];
6187
            w->func[i] = w->func[i + 1];
6188
            w->opaque[i] = w->opaque[i + 1];
6189
        }
6190
    }
6191
    if (found)
6192
        w->num--;
6193
}
6194
#endif
6195

    
6196
/***********************************************************/
6197
/* savevm/loadvm support */
6198

    
6199
#define IO_BUF_SIZE 32768
6200

    
6201
struct QEMUFile {
6202
    QEMUFilePutBufferFunc *put_buffer;
6203
    QEMUFileGetBufferFunc *get_buffer;
6204
    QEMUFileCloseFunc *close;
6205
    QEMUFileRateLimit *rate_limit;
6206
    void *opaque;
6207

    
6208
    int64_t buf_offset; /* start of buffer when writing, end of buffer
6209
                           when reading */
6210
    int buf_index;
6211
    int buf_size; /* 0 when writing */
6212
    uint8_t buf[IO_BUF_SIZE];
6213
};
6214

    
6215
typedef struct QEMUFileFD
6216
{
6217
    int fd;
6218
    QEMUFile *file;
6219
} QEMUFileFD;
6220

    
6221
static void fd_put_notify(void *opaque)
6222
{
6223
    QEMUFileFD *s = opaque;
6224

    
6225
    /* Remove writable callback and do a put notify */
6226
    qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
6227
    qemu_file_put_notify(s->file);
6228
}
6229

    
6230
static int fd_put_buffer(void *opaque, const uint8_t *buf,
6231
                         int64_t pos, int size)
6232
{
6233
    QEMUFileFD *s = opaque;
6234
    ssize_t len;
6235

    
6236
    do {
6237
        len = write(s->fd, buf, size);
6238
    } while (len == -1 && errno == EINTR);
6239

    
6240
    if (len == -1)
6241
        len = -errno;
6242

    
6243
    /* When the fd becomes writable again, register a callback to do
6244
     * a put notify */
6245
    if (len == -EAGAIN)
6246
        qemu_set_fd_handler2(s->fd, NULL, NULL, fd_put_notify, s);
6247

    
6248
    return len;
6249
}
6250

    
6251
static int fd_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6252
{
6253
    QEMUFileFD *s = opaque;
6254
    ssize_t len;
6255

    
6256
    do {
6257
        len = read(s->fd, buf, size);
6258
    } while (len == -1 && errno == EINTR);
6259

    
6260
    if (len == -1)
6261
        len = -errno;
6262

    
6263
    return len;
6264
}
6265

    
6266
static int fd_close(void *opaque)
6267
{
6268
    QEMUFileFD *s = opaque;
6269
    qemu_free(s);
6270
    return 0;
6271
}
6272

    
6273
QEMUFile *qemu_fopen_fd(int fd)
6274
{
6275
    QEMUFileFD *s = qemu_mallocz(sizeof(QEMUFileFD));
6276

    
6277
    if (s == NULL)
6278
        return NULL;
6279

    
6280
    s->fd = fd;
6281
    s->file = qemu_fopen_ops(s, fd_put_buffer, fd_get_buffer, fd_close, NULL);
6282
    return s->file;
6283
}
6284

    
6285
typedef struct QEMUFileStdio
6286
{
6287
    FILE *outfile;
6288
} QEMUFileStdio;
6289

    
6290
static void file_put_buffer(void *opaque, const uint8_t *buf,
6291
                            int64_t pos, int size)
6292
{
6293
    QEMUFileStdio *s = opaque;
6294
    fseek(s->outfile, pos, SEEK_SET);
6295
    fwrite(buf, 1, size, s->outfile);
6296
}
6297

    
6298
static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6299
{
6300
    QEMUFileStdio *s = opaque;
6301
    fseek(s->outfile, pos, SEEK_SET);
6302
    return fread(buf, 1, size, s->outfile);
6303
}
6304

    
6305
static int file_close(void *opaque)
6306
{
6307
    QEMUFileStdio *s = opaque;
6308
    fclose(s->outfile);
6309
    qemu_free(s);
6310
    return 0;
6311
}
6312

    
6313
QEMUFile *qemu_fopen(const char *filename, const char *mode)
6314
{
6315
    QEMUFileStdio *s;
6316

    
6317
    s = qemu_mallocz(sizeof(QEMUFileStdio));
6318
    if (!s)
6319
        return NULL;
6320

    
6321
    s->outfile = fopen(filename, mode);
6322
    if (!s->outfile)
6323
        goto fail;
6324

    
6325
    if (!strcmp(mode, "wb"))
6326
        return qemu_fopen_ops(s, file_put_buffer, NULL, file_close, NULL);
6327
    else if (!strcmp(mode, "rb"))
6328
        return qemu_fopen_ops(s, NULL, file_get_buffer, file_close, NULL);
6329

    
6330
fail:
6331
    if (s->outfile)
6332
        fclose(s->outfile);
6333
    qemu_free(s);
6334
    return NULL;
6335
}
6336

    
6337
typedef struct QEMUFileBdrv
6338
{
6339
    BlockDriverState *bs;
6340
    int64_t base_offset;
6341
} QEMUFileBdrv;
6342

    
6343
static void bdrv_put_buffer(void *opaque, const uint8_t *buf,
6344
                            int64_t pos, int size)
6345
{
6346
    QEMUFileBdrv *s = opaque;
6347
    bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6348
}
6349

    
6350
static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6351
{
6352
    QEMUFileBdrv *s = opaque;
6353
    return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6354
}
6355

    
6356
static int bdrv_fclose(void *opaque)
6357
{
6358
    QEMUFileBdrv *s = opaque;
6359
    qemu_free(s);
6360
    return 0;
6361
}
6362

    
6363
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6364
{
6365
    QEMUFileBdrv *s;
6366

    
6367
    s = qemu_mallocz(sizeof(QEMUFileBdrv));
6368
    if (!s)
6369
        return NULL;
6370

    
6371
    s->bs = bs;
6372
    s->base_offset = offset;
6373

    
6374
    if (is_writable)
6375
        return qemu_fopen_ops(s, bdrv_put_buffer, NULL, bdrv_fclose, NULL);
6376

    
6377
    return qemu_fopen_ops(s, NULL, bdrv_get_buffer, bdrv_fclose, NULL);
6378
}
6379

    
6380
QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6381
                         QEMUFileGetBufferFunc *get_buffer,
6382
                         QEMUFileCloseFunc *close,
6383
                         QEMUFileRateLimit *rate_limit)
6384
{
6385
    QEMUFile *f;
6386

    
6387
    f = qemu_mallocz(sizeof(QEMUFile));
6388
    if (!f)
6389
        return NULL;
6390

    
6391
    f->opaque = opaque;
6392
    f->put_buffer = put_buffer;
6393
    f->get_buffer = get_buffer;
6394
    f->close = close;
6395
    f->rate_limit = rate_limit;
6396

    
6397
    return f;
6398
}
6399

    
6400
void qemu_fflush(QEMUFile *f)
6401
{
6402
    if (!f->put_buffer)
6403
        return;
6404

    
6405
    if (f->buf_index > 0) {
6406
        f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6407
        f->buf_offset += f->buf_index;
6408
        f->buf_index = 0;
6409
    }
6410
}
6411

    
6412
static void qemu_fill_buffer(QEMUFile *f)
6413
{
6414
    int len;
6415

    
6416
    if (!f->get_buffer)
6417
        return;
6418

    
6419
    len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6420
    if (len < 0)
6421
        len = 0;
6422

    
6423
    f->buf_index = 0;
6424
    f->buf_size = len;
6425
    f->buf_offset += len;
6426
}
6427

    
6428
int qemu_fclose(QEMUFile *f)
6429
{
6430
    int ret = 0;
6431
    qemu_fflush(f);
6432
    if (f->close)
6433
        ret = f->close(f->opaque);
6434
    qemu_free(f);
6435
    return ret;
6436
}
6437

    
6438
void qemu_file_put_notify(QEMUFile *f)
6439
{
6440
    f->put_buffer(f->opaque, NULL, 0, 0);
6441
}
6442

    
6443
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6444
{
6445
    int l;
6446
    while (size > 0) {
6447
        l = IO_BUF_SIZE - f->buf_index;
6448
        if (l > size)
6449
            l = size;
6450
        memcpy(f->buf + f->buf_index, buf, l);
6451
        f->buf_index += l;
6452
        buf += l;
6453
        size -= l;
6454
        if (f->buf_index >= IO_BUF_SIZE)
6455
            qemu_fflush(f);
6456
    }
6457
}
6458

    
6459
void qemu_put_byte(QEMUFile *f, int v)
6460
{
6461
    f->buf[f->buf_index++] = v;
6462
    if (f->buf_index >= IO_BUF_SIZE)
6463
        qemu_fflush(f);
6464
}
6465

    
6466
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6467
{
6468
    int size, l;
6469

    
6470
    size = size1;
6471
    while (size > 0) {
6472
        l = f->buf_size - f->buf_index;
6473
        if (l == 0) {
6474
            qemu_fill_buffer(f);
6475
            l = f->buf_size - f->buf_index;
6476
            if (l == 0)
6477
                break;
6478
        }
6479
        if (l > size)
6480
            l = size;
6481
        memcpy(buf, f->buf + f->buf_index, l);
6482
        f->buf_index += l;
6483
        buf += l;
6484
        size -= l;
6485
    }
6486
    return size1 - size;
6487
}
6488

    
6489
int qemu_get_byte(QEMUFile *f)
6490
{
6491
    if (f->buf_index >= f->buf_size) {
6492
        qemu_fill_buffer(f);
6493
        if (f->buf_index >= f->buf_size)
6494
            return 0;
6495
    }
6496
    return f->buf[f->buf_index++];
6497
}
6498

    
6499
int64_t qemu_ftell(QEMUFile *f)
6500
{
6501
    return f->buf_offset - f->buf_size + f->buf_index;
6502
}
6503

    
6504
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6505
{
6506
    if (whence == SEEK_SET) {
6507
        /* nothing to do */
6508
    } else if (whence == SEEK_CUR) {
6509
        pos += qemu_ftell(f);
6510
    } else {
6511
        /* SEEK_END not supported */
6512
        return -1;
6513
    }
6514
    if (f->put_buffer) {
6515
        qemu_fflush(f);
6516
        f->buf_offset = pos;
6517
    } else {
6518
        f->buf_offset = pos;
6519
        f->buf_index = 0;
6520
        f->buf_size = 0;
6521
    }
6522
    return pos;
6523
}
6524

    
6525
int qemu_file_rate_limit(QEMUFile *f)
6526
{
6527
    if (f->rate_limit)
6528
        return f->rate_limit(f->opaque);
6529

    
6530
    return 0;
6531
}
6532

    
6533
void qemu_put_be16(QEMUFile *f, unsigned int v)
6534
{
6535
    qemu_put_byte(f, v >> 8);
6536
    qemu_put_byte(f, v);
6537
}
6538

    
6539
void qemu_put_be32(QEMUFile *f, unsigned int v)
6540
{
6541
    qemu_put_byte(f, v >> 24);
6542
    qemu_put_byte(f, v >> 16);
6543
    qemu_put_byte(f, v >> 8);
6544
    qemu_put_byte(f, v);
6545
}
6546

    
6547
void qemu_put_be64(QEMUFile *f, uint64_t v)
6548
{
6549
    qemu_put_be32(f, v >> 32);
6550
    qemu_put_be32(f, v);
6551
}
6552

    
6553
unsigned int qemu_get_be16(QEMUFile *f)
6554
{
6555
    unsigned int v;
6556
    v = qemu_get_byte(f) << 8;
6557
    v |= qemu_get_byte(f);
6558
    return v;
6559
}
6560

    
6561
unsigned int qemu_get_be32(QEMUFile *f)
6562
{
6563
    unsigned int v;
6564
    v = qemu_get_byte(f) << 24;
6565
    v |= qemu_get_byte(f) << 16;
6566
    v |= qemu_get_byte(f) << 8;
6567
    v |= qemu_get_byte(f);
6568
    return v;
6569
}
6570

    
6571
uint64_t qemu_get_be64(QEMUFile *f)
6572
{
6573
    uint64_t v;
6574
    v = (uint64_t)qemu_get_be32(f) << 32;
6575
    v |= qemu_get_be32(f);
6576
    return v;
6577
}
6578

    
6579
typedef struct SaveStateEntry {
6580
    char idstr[256];
6581
    int instance_id;
6582
    int version_id;
6583
    SaveStateHandler *save_state;
6584
    LoadStateHandler *load_state;
6585
    void *opaque;
6586
    struct SaveStateEntry *next;
6587
} SaveStateEntry;
6588

    
6589
static SaveStateEntry *first_se;
6590

    
6591
/* TODO: Individual devices generally have very little idea about the rest
6592
   of the system, so instance_id should be removed/replaced.
6593
   Meanwhile pass -1 as instance_id if you do not already have a clearly
6594
   distinguishing id for all instances of your device class. */
6595
int register_savevm(const char *idstr,
6596
                    int instance_id,
6597
                    int version_id,
6598
                    SaveStateHandler *save_state,
6599
                    LoadStateHandler *load_state,
6600
                    void *opaque)
6601
{
6602
    SaveStateEntry *se, **pse;
6603

    
6604
    se = qemu_malloc(sizeof(SaveStateEntry));
6605
    if (!se)
6606
        return -1;
6607
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6608
    se->instance_id = (instance_id == -1) ? 0 : instance_id;
6609
    se->version_id = version_id;
6610
    se->save_state = save_state;
6611
    se->load_state = load_state;
6612
    se->opaque = opaque;
6613
    se->next = NULL;
6614

    
6615
    /* add at the end of list */
6616
    pse = &first_se;
6617
    while (*pse != NULL) {
6618
        if (instance_id == -1
6619
                && strcmp(se->idstr, (*pse)->idstr) == 0
6620
                && se->instance_id <= (*pse)->instance_id)
6621
            se->instance_id = (*pse)->instance_id + 1;
6622
        pse = &(*pse)->next;
6623
    }
6624
    *pse = se;
6625
    return 0;
6626
}
6627

    
6628
#define QEMU_VM_FILE_MAGIC   0x5145564d
6629
#define QEMU_VM_FILE_VERSION 0x00000002
6630

    
6631
static int qemu_savevm_state(QEMUFile *f)
6632
{
6633
    SaveStateEntry *se;
6634
    int len, ret;
6635
    int64_t cur_pos, len_pos, total_len_pos;
6636

    
6637
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6638
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6639
    total_len_pos = qemu_ftell(f);
6640
    qemu_put_be64(f, 0); /* total size */
6641

    
6642
    for(se = first_se; se != NULL; se = se->next) {
6643
        if (se->save_state == NULL)
6644
            /* this one has a loader only, for backwards compatibility */
6645
            continue;
6646

    
6647
        /* ID string */
6648
        len = strlen(se->idstr);
6649
        qemu_put_byte(f, len);
6650
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6651

    
6652
        qemu_put_be32(f, se->instance_id);
6653
        qemu_put_be32(f, se->version_id);
6654

    
6655
        /* record size: filled later */
6656
        len_pos = qemu_ftell(f);
6657
        qemu_put_be32(f, 0);
6658
        se->save_state(f, se->opaque);
6659

    
6660
        /* fill record size */
6661
        cur_pos = qemu_ftell(f);
6662
        len = cur_pos - len_pos - 4;
6663
        qemu_fseek(f, len_pos, SEEK_SET);
6664
        qemu_put_be32(f, len);
6665
        qemu_fseek(f, cur_pos, SEEK_SET);
6666
    }
6667
    cur_pos = qemu_ftell(f);
6668
    qemu_fseek(f, total_len_pos, SEEK_SET);
6669
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
6670
    qemu_fseek(f, cur_pos, SEEK_SET);
6671

    
6672
    ret = 0;
6673
    return ret;
6674
}
6675

    
6676
static SaveStateEntry *find_se(const char *idstr, int instance_id)
6677
{
6678
    SaveStateEntry *se;
6679

    
6680
    for(se = first_se; se != NULL; se = se->next) {
6681
        if (!strcmp(se->idstr, idstr) &&
6682
            instance_id == se->instance_id)
6683
            return se;
6684
    }
6685
    return NULL;
6686
}
6687

    
6688
static int qemu_loadvm_state(QEMUFile *f)
6689
{
6690
    SaveStateEntry *se;
6691
    int len, ret, instance_id, record_len, version_id;
6692
    int64_t total_len, end_pos, cur_pos;
6693
    unsigned int v;
6694
    char idstr[256];
6695

    
6696
    v = qemu_get_be32(f);
6697
    if (v != QEMU_VM_FILE_MAGIC)
6698
        goto fail;
6699
    v = qemu_get_be32(f);
6700
    if (v != QEMU_VM_FILE_VERSION) {
6701
    fail:
6702
        ret = -1;
6703
        goto the_end;
6704
    }
6705
    total_len = qemu_get_be64(f);
6706
    end_pos = total_len + qemu_ftell(f);
6707
    for(;;) {
6708
        if (qemu_ftell(f) >= end_pos)
6709
            break;
6710
        len = qemu_get_byte(f);
6711
        qemu_get_buffer(f, (uint8_t *)idstr, len);
6712
        idstr[len] = '\0';
6713
        instance_id = qemu_get_be32(f);
6714
        version_id = qemu_get_be32(f);
6715
        record_len = qemu_get_be32(f);
6716
#if 0
6717
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
6718
               idstr, instance_id, version_id, record_len);
6719
#endif
6720
        cur_pos = qemu_ftell(f);
6721
        se = find_se(idstr, instance_id);
6722
        if (!se) {
6723
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6724
                    instance_id, idstr);
6725
        } else {
6726
            ret = se->load_state(f, se->opaque, version_id);
6727
            if (ret < 0) {
6728
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6729
                        instance_id, idstr);
6730
            }
6731
        }
6732
        /* always seek to exact end of record */
6733
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6734
    }
6735
    ret = 0;
6736
 the_end:
6737
    return ret;
6738
}
6739

    
6740
/* device can contain snapshots */
6741
static int bdrv_can_snapshot(BlockDriverState *bs)
6742
{
6743
    return (bs &&
6744
            !bdrv_is_removable(bs) &&
6745
            !bdrv_is_read_only(bs));
6746
}
6747

    
6748
/* device must be snapshots in order to have a reliable snapshot */
6749
static int bdrv_has_snapshot(BlockDriverState *bs)
6750
{
6751
    return (bs &&
6752
            !bdrv_is_removable(bs) &&
6753
            !bdrv_is_read_only(bs));
6754
}
6755

    
6756
static BlockDriverState *get_bs_snapshots(void)
6757
{
6758
    BlockDriverState *bs;
6759
    int i;
6760

    
6761
    if (bs_snapshots)
6762
        return bs_snapshots;
6763
    for(i = 0; i <= nb_drives; i++) {
6764
        bs = drives_table[i].bdrv;
6765
        if (bdrv_can_snapshot(bs))
6766
            goto ok;
6767
    }
6768
    return NULL;
6769
 ok:
6770
    bs_snapshots = bs;
6771
    return bs;
6772
}
6773

    
6774
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6775
                              const char *name)
6776
{
6777
    QEMUSnapshotInfo *sn_tab, *sn;
6778
    int nb_sns, i, ret;
6779

    
6780
    ret = -ENOENT;
6781
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6782
    if (nb_sns < 0)
6783
        return ret;
6784
    for(i = 0; i < nb_sns; i++) {
6785
        sn = &sn_tab[i];
6786
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6787
            *sn_info = *sn;
6788
            ret = 0;
6789
            break;
6790
        }
6791
    }
6792
    qemu_free(sn_tab);
6793
    return ret;
6794
}
6795

    
6796
void do_savevm(const char *name)
6797
{
6798
    BlockDriverState *bs, *bs1;
6799
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6800
    int must_delete, ret, i;
6801
    BlockDriverInfo bdi1, *bdi = &bdi1;
6802
    QEMUFile *f;
6803
    int saved_vm_running;
6804
#ifdef _WIN32
6805
    struct _timeb tb;
6806
#else
6807
    struct timeval tv;
6808
#endif
6809

    
6810
    bs = get_bs_snapshots();
6811
    if (!bs) {
6812
        term_printf("No block device can accept snapshots\n");
6813
        return;
6814
    }
6815

    
6816
    /* ??? Should this occur after vm_stop?  */
6817
    qemu_aio_flush();
6818

    
6819
    saved_vm_running = vm_running;
6820
    vm_stop(0);
6821

    
6822
    must_delete = 0;
6823
    if (name) {
6824
        ret = bdrv_snapshot_find(bs, old_sn, name);
6825
        if (ret >= 0) {
6826
            must_delete = 1;
6827
        }
6828
    }
6829
    memset(sn, 0, sizeof(*sn));
6830
    if (must_delete) {
6831
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6832
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6833
    } else {
6834
        if (name)
6835
            pstrcpy(sn->name, sizeof(sn->name), name);
6836
    }
6837

    
6838
    /* fill auxiliary fields */
6839
#ifdef _WIN32
6840
    _ftime(&tb);
6841
    sn->date_sec = tb.time;
6842
    sn->date_nsec = tb.millitm * 1000000;
6843
#else
6844
    gettimeofday(&tv, NULL);
6845
    sn->date_sec = tv.tv_sec;
6846
    sn->date_nsec = tv.tv_usec * 1000;
6847
#endif
6848
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6849

    
6850
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6851
        term_printf("Device %s does not support VM state snapshots\n",
6852
                    bdrv_get_device_name(bs));
6853
        goto the_end;
6854
    }
6855

    
6856
    /* save the VM state */
6857
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6858
    if (!f) {
6859
        term_printf("Could not open VM state file\n");
6860
        goto the_end;
6861
    }
6862
    ret = qemu_savevm_state(f);
6863
    sn->vm_state_size = qemu_ftell(f);
6864
    qemu_fclose(f);
6865
    if (ret < 0) {
6866
        term_printf("Error %d while writing VM\n", ret);
6867
        goto the_end;
6868
    }
6869

    
6870
    /* create the snapshots */
6871

    
6872
    for(i = 0; i < nb_drives; i++) {
6873
        bs1 = drives_table[i].bdrv;
6874
        if (bdrv_has_snapshot(bs1)) {
6875
            if (must_delete) {
6876
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6877
                if (ret < 0) {
6878
                    term_printf("Error while deleting snapshot on '%s'\n",
6879
                                bdrv_get_device_name(bs1));
6880
                }
6881
            }
6882
            ret = bdrv_snapshot_create(bs1, sn);
6883
            if (ret < 0) {
6884
                term_printf("Error while creating snapshot on '%s'\n",
6885
                            bdrv_get_device_name(bs1));
6886
            }
6887
        }
6888
    }
6889

    
6890
 the_end:
6891
    if (saved_vm_running)
6892
        vm_start();
6893
}
6894

    
6895
void do_loadvm(const char *name)
6896
{
6897
    BlockDriverState *bs, *bs1;
6898
    BlockDriverInfo bdi1, *bdi = &bdi1;
6899
    QEMUFile *f;
6900
    int i, ret;
6901
    int saved_vm_running;
6902

    
6903
    bs = get_bs_snapshots();
6904
    if (!bs) {
6905
        term_printf("No block device supports snapshots\n");
6906
        return;
6907
    }
6908

    
6909
    /* Flush all IO requests so they don't interfere with the new state.  */
6910
    qemu_aio_flush();
6911

    
6912
    saved_vm_running = vm_running;
6913
    vm_stop(0);
6914

    
6915
    for(i = 0; i <= nb_drives; i++) {
6916
        bs1 = drives_table[i].bdrv;
6917
        if (bdrv_has_snapshot(bs1)) {
6918
            ret = bdrv_snapshot_goto(bs1, name);
6919
            if (ret < 0) {
6920
                if (bs != bs1)
6921
                    term_printf("Warning: ");
6922
                switch(ret) {
6923
                case -ENOTSUP:
6924
                    term_printf("Snapshots not supported on device '%s'\n",
6925
                                bdrv_get_device_name(bs1));
6926
                    break;
6927
                case -ENOENT:
6928
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
6929
                                name, bdrv_get_device_name(bs1));
6930
                    break;
6931
                default:
6932
                    term_printf("Error %d while activating snapshot on '%s'\n",
6933
                                ret, bdrv_get_device_name(bs1));
6934
                    break;
6935
                }
6936
                /* fatal on snapshot block device */
6937
                if (bs == bs1)
6938
                    goto the_end;
6939
            }
6940
        }
6941
    }
6942

    
6943
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6944
        term_printf("Device %s does not support VM state snapshots\n",
6945
                    bdrv_get_device_name(bs));
6946
        return;
6947
    }
6948

    
6949
    /* restore the VM state */
6950
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6951
    if (!f) {
6952
        term_printf("Could not open VM state file\n");
6953
        goto the_end;
6954
    }
6955
    ret = qemu_loadvm_state(f);
6956
    qemu_fclose(f);
6957
    if (ret < 0) {
6958
        term_printf("Error %d while loading VM state\n", ret);
6959
    }
6960
 the_end:
6961
    if (saved_vm_running)
6962
        vm_start();
6963
}
6964

    
6965
void do_delvm(const char *name)
6966
{
6967
    BlockDriverState *bs, *bs1;
6968
    int i, ret;
6969

    
6970
    bs = get_bs_snapshots();
6971
    if (!bs) {
6972
        term_printf("No block device supports snapshots\n");
6973
        return;
6974
    }
6975

    
6976
    for(i = 0; i <= nb_drives; i++) {
6977
        bs1 = drives_table[i].bdrv;
6978
        if (bdrv_has_snapshot(bs1)) {
6979
            ret = bdrv_snapshot_delete(bs1, name);
6980
            if (ret < 0) {
6981
                if (ret == -ENOTSUP)
6982
                    term_printf("Snapshots not supported on device '%s'\n",
6983
                                bdrv_get_device_name(bs1));
6984
                else
6985
                    term_printf("Error %d while deleting snapshot on '%s'\n",
6986
                                ret, bdrv_get_device_name(bs1));
6987
            }
6988
        }
6989
    }
6990
}
6991

    
6992
void do_info_snapshots(void)
6993
{
6994
    BlockDriverState *bs, *bs1;
6995
    QEMUSnapshotInfo *sn_tab, *sn;
6996
    int nb_sns, i;
6997
    char buf[256];
6998

    
6999
    bs = get_bs_snapshots();
7000
    if (!bs) {
7001
        term_printf("No available block device supports snapshots\n");
7002
        return;
7003
    }
7004
    term_printf("Snapshot devices:");
7005
    for(i = 0; i <= nb_drives; i++) {
7006
        bs1 = drives_table[i].bdrv;
7007
        if (bdrv_has_snapshot(bs1)) {
7008
            if (bs == bs1)
7009
                term_printf(" %s", bdrv_get_device_name(bs1));
7010
        }
7011
    }
7012
    term_printf("\n");
7013

    
7014
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7015
    if (nb_sns < 0) {
7016
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
7017
        return;
7018
    }
7019
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
7020
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
7021
    for(i = 0; i < nb_sns; i++) {
7022
        sn = &sn_tab[i];
7023
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
7024
    }
7025
    qemu_free(sn_tab);
7026
}
7027

    
7028
/***********************************************************/
7029
/* ram save/restore */
7030

    
7031
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
7032
{
7033
    int v;
7034

    
7035
    v = qemu_get_byte(f);
7036
    switch(v) {
7037
    case 0:
7038
        if (qemu_get_buffer(f, buf, len) != len)
7039
            return -EIO;
7040
        break;
7041
    case 1:
7042
        v = qemu_get_byte(f);
7043
        memset(buf, v, len);
7044
        break;
7045
    default:
7046
        return -EINVAL;
7047
    }
7048
    return 0;
7049
}
7050

    
7051
static int ram_load_v1(QEMUFile *f, void *opaque)
7052
{
7053
    int ret;
7054
    ram_addr_t i;
7055

    
7056
    if (qemu_get_be32(f) != phys_ram_size)
7057
        return -EINVAL;
7058
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
7059
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
7060
        if (ret)
7061
            return ret;
7062
    }
7063
    return 0;
7064
}
7065

    
7066
#define BDRV_HASH_BLOCK_SIZE 1024
7067
#define IOBUF_SIZE 4096
7068
#define RAM_CBLOCK_MAGIC 0xfabe
7069

    
7070
typedef struct RamCompressState {
7071
    z_stream zstream;
7072
    QEMUFile *f;
7073
    uint8_t buf[IOBUF_SIZE];
7074
} RamCompressState;
7075

    
7076
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
7077
{
7078
    int ret;
7079
    memset(s, 0, sizeof(*s));
7080
    s->f = f;
7081
    ret = deflateInit2(&s->zstream, 1,
7082
                       Z_DEFLATED, 15,
7083
                       9, Z_DEFAULT_STRATEGY);
7084
    if (ret != Z_OK)
7085
        return -1;
7086
    s->zstream.avail_out = IOBUF_SIZE;
7087
    s->zstream.next_out = s->buf;
7088
    return 0;
7089
}
7090

    
7091
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
7092
{
7093
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
7094
    qemu_put_be16(s->f, len);
7095
    qemu_put_buffer(s->f, buf, len);
7096
}
7097

    
7098
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
7099
{
7100
    int ret;
7101

    
7102
    s->zstream.avail_in = len;
7103
    s->zstream.next_in = (uint8_t *)buf;
7104
    while (s->zstream.avail_in > 0) {
7105
        ret = deflate(&s->zstream, Z_NO_FLUSH);
7106
        if (ret != Z_OK)
7107
            return -1;
7108
        if (s->zstream.avail_out == 0) {
7109
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
7110
            s->zstream.avail_out = IOBUF_SIZE;
7111
            s->zstream.next_out = s->buf;
7112
        }
7113
    }
7114
    return 0;
7115
}
7116

    
7117
static void ram_compress_close(RamCompressState *s)
7118
{
7119
    int len, ret;
7120

    
7121
    /* compress last bytes */
7122
    for(;;) {
7123
        ret = deflate(&s->zstream, Z_FINISH);
7124
        if (ret == Z_OK || ret == Z_STREAM_END) {
7125
            len = IOBUF_SIZE - s->zstream.avail_out;
7126
            if (len > 0) {
7127
                ram_put_cblock(s, s->buf, len);
7128
            }
7129
            s->zstream.avail_out = IOBUF_SIZE;
7130
            s->zstream.next_out = s->buf;
7131
            if (ret == Z_STREAM_END)
7132
                break;
7133
        } else {
7134
            goto fail;
7135
        }
7136
    }
7137
fail:
7138
    deflateEnd(&s->zstream);
7139
}
7140

    
7141
typedef struct RamDecompressState {
7142
    z_stream zstream;
7143
    QEMUFile *f;
7144
    uint8_t buf[IOBUF_SIZE];
7145
} RamDecompressState;
7146

    
7147
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
7148
{
7149
    int ret;
7150
    memset(s, 0, sizeof(*s));
7151
    s->f = f;
7152
    ret = inflateInit(&s->zstream);
7153
    if (ret != Z_OK)
7154
        return -1;
7155
    return 0;
7156
}
7157

    
7158
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7159
{
7160
    int ret, clen;
7161

    
7162
    s->zstream.avail_out = len;
7163
    s->zstream.next_out = buf;
7164
    while (s->zstream.avail_out > 0) {
7165
        if (s->zstream.avail_in == 0) {
7166
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7167
                return -1;
7168
            clen = qemu_get_be16(s->f);
7169
            if (clen > IOBUF_SIZE)
7170
                return -1;
7171
            qemu_get_buffer(s->f, s->buf, clen);
7172
            s->zstream.avail_in = clen;
7173
            s->zstream.next_in = s->buf;
7174
        }
7175
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7176
        if (ret != Z_OK && ret != Z_STREAM_END) {
7177
            return -1;
7178
        }
7179
    }
7180
    return 0;
7181
}
7182

    
7183
static void ram_decompress_close(RamDecompressState *s)
7184
{
7185
    inflateEnd(&s->zstream);
7186
}
7187

    
7188
static void ram_save(QEMUFile *f, void *opaque)
7189
{
7190
    ram_addr_t i;
7191
    RamCompressState s1, *s = &s1;
7192
    uint8_t buf[10];
7193

    
7194
    qemu_put_be32(f, phys_ram_size);
7195
    if (ram_compress_open(s, f) < 0)
7196
        return;
7197
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7198
#if 0
7199
        if (tight_savevm_enabled) {
7200
            int64_t sector_num;
7201
            int j;
7202

7203
            /* find if the memory block is available on a virtual
7204
               block device */
7205
            sector_num = -1;
7206
            for(j = 0; j < nb_drives; j++) {
7207
                sector_num = bdrv_hash_find(drives_table[j].bdrv,
7208
                                            phys_ram_base + i,
7209
                                            BDRV_HASH_BLOCK_SIZE);
7210
                if (sector_num >= 0)
7211
                    break;
7212
            }
7213
            if (j == nb_drives)
7214
                goto normal_compress;
7215
            buf[0] = 1;
7216
            buf[1] = j;
7217
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7218
            ram_compress_buf(s, buf, 10);
7219
        } else
7220
#endif
7221
        {
7222
            //        normal_compress:
7223
            buf[0] = 0;
7224
            ram_compress_buf(s, buf, 1);
7225
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7226
        }
7227
    }
7228
    ram_compress_close(s);
7229
}
7230

    
7231
static int ram_load(QEMUFile *f, void *opaque, int version_id)
7232
{
7233
    RamDecompressState s1, *s = &s1;
7234
    uint8_t buf[10];
7235
    ram_addr_t i;
7236

    
7237
    if (version_id == 1)
7238
        return ram_load_v1(f, opaque);
7239
    if (version_id != 2)
7240
        return -EINVAL;
7241
    if (qemu_get_be32(f) != phys_ram_size)
7242
        return -EINVAL;
7243
    if (ram_decompress_open(s, f) < 0)
7244
        return -EINVAL;
7245
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7246
        if (ram_decompress_buf(s, buf, 1) < 0) {
7247
            fprintf(stderr, "Error while reading ram block header\n");
7248
            goto error;
7249
        }
7250
        if (buf[0] == 0) {
7251
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7252
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7253
                goto error;
7254
            }
7255
        } else
7256
#if 0
7257
        if (buf[0] == 1) {
7258
            int bs_index;
7259
            int64_t sector_num;
7260

7261
            ram_decompress_buf(s, buf + 1, 9);
7262
            bs_index = buf[1];
7263
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7264
            if (bs_index >= nb_drives) {
7265
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
7266
                goto error;
7267
            }
7268
            if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7269
                          phys_ram_base + i,
7270
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7271
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7272
                        bs_index, sector_num);
7273
                goto error;
7274
            }
7275
        } else
7276
#endif
7277
        {
7278
        error:
7279
            printf("Error block header\n");
7280
            return -EINVAL;
7281
        }
7282
    }
7283
    ram_decompress_close(s);
7284
    return 0;
7285
}
7286

    
7287
/***********************************************************/
7288
/* bottom halves (can be seen as timers which expire ASAP) */
7289

    
7290
struct QEMUBH {
7291
    QEMUBHFunc *cb;
7292
    void *opaque;
7293
    int scheduled;
7294
    QEMUBH *next;
7295
};
7296

    
7297
static QEMUBH *first_bh = NULL;
7298

    
7299
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7300
{
7301
    QEMUBH *bh;
7302
    bh = qemu_mallocz(sizeof(QEMUBH));
7303
    if (!bh)
7304
        return NULL;
7305
    bh->cb = cb;
7306
    bh->opaque = opaque;
7307
    return bh;
7308
}
7309

    
7310
int qemu_bh_poll(void)
7311
{
7312
    QEMUBH *bh, **pbh;
7313
    int ret;
7314

    
7315
    ret = 0;
7316
    for(;;) {
7317
        pbh = &first_bh;
7318
        bh = *pbh;
7319
        if (!bh)
7320
            break;
7321
        ret = 1;
7322
        *pbh = bh->next;
7323
        bh->scheduled = 0;
7324
        bh->cb(bh->opaque);
7325
    }
7326
    return ret;
7327
}
7328

    
7329
void qemu_bh_schedule(QEMUBH *bh)
7330
{
7331
    CPUState *env = cpu_single_env;
7332
    if (bh->scheduled)
7333
        return;
7334
    bh->scheduled = 1;
7335
    bh->next = first_bh;
7336
    first_bh = bh;
7337

    
7338
    /* stop the currently executing CPU to execute the BH ASAP */
7339
    if (env) {
7340
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7341
    }
7342
}
7343

    
7344
void qemu_bh_cancel(QEMUBH *bh)
7345
{
7346
    QEMUBH **pbh;
7347
    if (bh->scheduled) {
7348
        pbh = &first_bh;
7349
        while (*pbh != bh)
7350
            pbh = &(*pbh)->next;
7351
        *pbh = bh->next;
7352
        bh->scheduled = 0;
7353
    }
7354
}
7355

    
7356
void qemu_bh_delete(QEMUBH *bh)
7357
{
7358
    qemu_bh_cancel(bh);
7359
    qemu_free(bh);
7360
}
7361

    
7362
/***********************************************************/
7363
/* machine registration */
7364

    
7365
QEMUMachine *first_machine = NULL;
7366

    
7367
int qemu_register_machine(QEMUMachine *m)
7368
{
7369
    QEMUMachine **pm;
7370
    pm = &first_machine;
7371
    while (*pm != NULL)
7372
        pm = &(*pm)->next;
7373
    m->next = NULL;
7374
    *pm = m;
7375
    return 0;
7376
}
7377

    
7378
static QEMUMachine *find_machine(const char *name)
7379
{
7380
    QEMUMachine *m;
7381

    
7382
    for(m = first_machine; m != NULL; m = m->next) {
7383
        if (!strcmp(m->name, name))
7384
            return m;
7385
    }
7386
    return NULL;
7387
}
7388

    
7389
/***********************************************************/
7390
/* main execution loop */
7391

    
7392
static void gui_update(void *opaque)
7393
{
7394
    DisplayState *ds = opaque;
7395
    ds->dpy_refresh(ds);
7396
    qemu_mod_timer(ds->gui_timer,
7397
        (ds->gui_timer_interval ?
7398
            ds->gui_timer_interval :
7399
            GUI_REFRESH_INTERVAL)
7400
        + qemu_get_clock(rt_clock));
7401
}
7402

    
7403
struct vm_change_state_entry {
7404
    VMChangeStateHandler *cb;
7405
    void *opaque;
7406
    LIST_ENTRY (vm_change_state_entry) entries;
7407
};
7408

    
7409
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7410

    
7411
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7412
                                                     void *opaque)
7413
{
7414
    VMChangeStateEntry *e;
7415

    
7416
    e = qemu_mallocz(sizeof (*e));
7417
    if (!e)
7418
        return NULL;
7419

    
7420
    e->cb = cb;
7421
    e->opaque = opaque;
7422
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7423
    return e;
7424
}
7425

    
7426
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7427
{
7428
    LIST_REMOVE (e, entries);
7429
    qemu_free (e);
7430
}
7431

    
7432
static void vm_state_notify(int running)
7433
{
7434
    VMChangeStateEntry *e;
7435

    
7436
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7437
        e->cb(e->opaque, running);
7438
    }
7439
}
7440

    
7441
/* XXX: support several handlers */
7442
static VMStopHandler *vm_stop_cb;
7443
static void *vm_stop_opaque;
7444

    
7445
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7446
{
7447
    vm_stop_cb = cb;
7448
    vm_stop_opaque = opaque;
7449
    return 0;
7450
}
7451

    
7452
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7453
{
7454
    vm_stop_cb = NULL;
7455
}
7456

    
7457
void vm_start(void)
7458
{
7459
    if (!vm_running) {
7460
        cpu_enable_ticks();
7461
        vm_running = 1;
7462
        vm_state_notify(1);
7463
        qemu_rearm_alarm_timer(alarm_timer);
7464
    }
7465
}
7466

    
7467
void vm_stop(int reason)
7468
{
7469
    if (vm_running) {
7470
        cpu_disable_ticks();
7471
        vm_running = 0;
7472
        if (reason != 0) {
7473
            if (vm_stop_cb) {
7474
                vm_stop_cb(vm_stop_opaque, reason);
7475
            }
7476
        }
7477
        vm_state_notify(0);
7478
    }
7479
}
7480

    
7481
/* reset/shutdown handler */
7482

    
7483
typedef struct QEMUResetEntry {
7484
    QEMUResetHandler *func;
7485
    void *opaque;
7486
    struct QEMUResetEntry *next;
7487
} QEMUResetEntry;
7488

    
7489
static QEMUResetEntry *first_reset_entry;
7490
static int reset_requested;
7491
static int shutdown_requested;
7492
static int powerdown_requested;
7493

    
7494
int qemu_shutdown_requested(void)
7495
{
7496
    int r = shutdown_requested;
7497
    shutdown_requested = 0;
7498
    return r;
7499
}
7500

    
7501
int qemu_reset_requested(void)
7502
{
7503
    int r = reset_requested;
7504
    reset_requested = 0;
7505
    return r;
7506
}
7507

    
7508
int qemu_powerdown_requested(void)
7509
{
7510
    int r = powerdown_requested;
7511
    powerdown_requested = 0;
7512
    return r;
7513
}
7514

    
7515
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7516
{
7517
    QEMUResetEntry **pre, *re;
7518

    
7519
    pre = &first_reset_entry;
7520
    while (*pre != NULL)
7521
        pre = &(*pre)->next;
7522
    re = qemu_mallocz(sizeof(QEMUResetEntry));
7523
    re->func = func;
7524
    re->opaque = opaque;
7525
    re->next = NULL;
7526
    *pre = re;
7527
}
7528

    
7529
void qemu_system_reset(void)
7530
{
7531
    QEMUResetEntry *re;
7532

    
7533
    /* reset all devices */
7534
    for(re = first_reset_entry; re != NULL; re = re->next) {
7535
        re->func(re->opaque);
7536
    }
7537
}
7538

    
7539
void qemu_system_reset_request(void)
7540
{
7541
    if (no_reboot) {
7542
        shutdown_requested = 1;
7543
    } else {
7544
        reset_requested = 1;
7545
    }
7546
    if (cpu_single_env)
7547
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7548
}
7549

    
7550
void qemu_system_shutdown_request(void)
7551
{
7552
    shutdown_requested = 1;
7553
    if (cpu_single_env)
7554
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7555
}
7556

    
7557
void qemu_system_powerdown_request(void)
7558
{
7559
    powerdown_requested = 1;
7560
    if (cpu_single_env)
7561
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7562
}
7563

    
7564
void main_loop_wait(int timeout)
7565
{
7566
    IOHandlerRecord *ioh;
7567
    fd_set rfds, wfds, xfds;
7568
    int ret, nfds;
7569
#ifdef _WIN32
7570
    int ret2, i;
7571
#endif
7572
    struct timeval tv;
7573
    PollingEntry *pe;
7574

    
7575

    
7576
    /* XXX: need to suppress polling by better using win32 events */
7577
    ret = 0;
7578
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7579
        ret |= pe->func(pe->opaque);
7580
    }
7581
#ifdef _WIN32
7582
    if (ret == 0) {
7583
        int err;
7584
        WaitObjects *w = &wait_objects;
7585

    
7586
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7587
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7588
            if (w->func[ret - WAIT_OBJECT_0])
7589
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7590

    
7591
            /* Check for additional signaled events */
7592
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7593

    
7594
                /* Check if event is signaled */
7595
                ret2 = WaitForSingleObject(w->events[i], 0);
7596
                if(ret2 == WAIT_OBJECT_0) {
7597
                    if (w->func[i])
7598
                        w->func[i](w->opaque[i]);
7599
                } else if (ret2 == WAIT_TIMEOUT) {
7600
                } else {
7601
                    err = GetLastError();
7602
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7603
                }
7604
            }
7605
        } else if (ret == WAIT_TIMEOUT) {
7606
        } else {
7607
            err = GetLastError();
7608
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7609
        }
7610
    }
7611
#endif
7612
    /* poll any events */
7613
    /* XXX: separate device handlers from system ones */
7614
    nfds = -1;
7615
    FD_ZERO(&rfds);
7616
    FD_ZERO(&wfds);
7617
    FD_ZERO(&xfds);
7618
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7619
        if (ioh->deleted)
7620
            continue;
7621
        if (ioh->fd_read &&
7622
            (!ioh->fd_read_poll ||
7623
             ioh->fd_read_poll(ioh->opaque) != 0)) {
7624
            FD_SET(ioh->fd, &rfds);
7625
            if (ioh->fd > nfds)
7626
                nfds = ioh->fd;
7627
        }
7628
        if (ioh->fd_write) {
7629
            FD_SET(ioh->fd, &wfds);
7630
            if (ioh->fd > nfds)
7631
                nfds = ioh->fd;
7632
        }
7633
    }
7634

    
7635
    tv.tv_sec = 0;
7636
#ifdef _WIN32
7637
    tv.tv_usec = 0;
7638
#else
7639
    tv.tv_usec = timeout * 1000;
7640
#endif
7641
#if defined(CONFIG_SLIRP)
7642
    if (slirp_inited) {
7643
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7644
    }
7645
#endif
7646
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7647
    if (ret > 0) {
7648
        IOHandlerRecord **pioh;
7649

    
7650
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7651
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7652
                ioh->fd_read(ioh->opaque);
7653
            }
7654
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7655
                ioh->fd_write(ioh->opaque);
7656
            }
7657
        }
7658

    
7659
        /* remove deleted IO handlers */
7660
        pioh = &first_io_handler;
7661
        while (*pioh) {
7662
            ioh = *pioh;
7663
            if (ioh->deleted) {
7664
                *pioh = ioh->next;
7665
                qemu_free(ioh);
7666
            } else
7667
                pioh = &ioh->next;
7668
        }
7669
    }
7670
#if defined(CONFIG_SLIRP)
7671
    if (slirp_inited) {
7672
        if (ret < 0) {
7673
            FD_ZERO(&rfds);
7674
            FD_ZERO(&wfds);
7675
            FD_ZERO(&xfds);
7676
        }
7677
        slirp_select_poll(&rfds, &wfds, &xfds);
7678
    }
7679
#endif
7680

    
7681
    if (vm_running) {
7682
        if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7683
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7684
                        qemu_get_clock(vm_clock));
7685
        /* run dma transfers, if any */
7686
        DMA_run();
7687
    }
7688

    
7689
    /* real time timers */
7690
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7691
                    qemu_get_clock(rt_clock));
7692

    
7693
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7694
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7695
        qemu_rearm_alarm_timer(alarm_timer);
7696
    }
7697

    
7698
    /* Check bottom-halves last in case any of the earlier events triggered
7699
       them.  */
7700
    qemu_bh_poll();
7701

    
7702
}
7703

    
7704
static int main_loop(void)
7705
{
7706
    int ret, timeout;
7707
#ifdef CONFIG_PROFILER
7708
    int64_t ti;
7709
#endif
7710
    CPUState *env;
7711

    
7712
    cur_cpu = first_cpu;
7713
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
7714
    for(;;) {
7715
        if (vm_running) {
7716

    
7717
            for(;;) {
7718
                /* get next cpu */
7719
                env = next_cpu;
7720
#ifdef CONFIG_PROFILER
7721
                ti = profile_getclock();
7722
#endif
7723
                if (use_icount) {
7724
                    int64_t count;
7725
                    int decr;
7726
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
7727
                    env->icount_decr.u16.low = 0;
7728
                    env->icount_extra = 0;
7729
                    count = qemu_next_deadline();
7730
                    count = (count + (1 << icount_time_shift) - 1)
7731
                            >> icount_time_shift;
7732
                    qemu_icount += count;
7733
                    decr = (count > 0xffff) ? 0xffff : count;
7734
                    count -= decr;
7735
                    env->icount_decr.u16.low = decr;
7736
                    env->icount_extra = count;
7737
                }
7738
                ret = cpu_exec(env);
7739
#ifdef CONFIG_PROFILER
7740
                qemu_time += profile_getclock() - ti;
7741
#endif
7742
                if (use_icount) {
7743
                    /* Fold pending instructions back into the
7744
                       instruction counter, and clear the interrupt flag.  */
7745
                    qemu_icount -= (env->icount_decr.u16.low
7746
                                    + env->icount_extra);
7747
                    env->icount_decr.u32 = 0;
7748
                    env->icount_extra = 0;
7749
                }
7750
                next_cpu = env->next_cpu ?: first_cpu;
7751
                if (event_pending && likely(ret != EXCP_DEBUG)) {
7752
                    ret = EXCP_INTERRUPT;
7753
                    event_pending = 0;
7754
                    break;
7755
                }
7756
                if (ret == EXCP_HLT) {
7757
                    /* Give the next CPU a chance to run.  */
7758
                    cur_cpu = env;
7759
                    continue;
7760
                }
7761
                if (ret != EXCP_HALTED)
7762
                    break;
7763
                /* all CPUs are halted ? */
7764
                if (env == cur_cpu)
7765
                    break;
7766
            }
7767
            cur_cpu = env;
7768

    
7769
            if (shutdown_requested) {
7770
                ret = EXCP_INTERRUPT;
7771
                if (no_shutdown) {
7772
                    vm_stop(0);
7773
                    no_shutdown = 0;
7774
                }
7775
                else
7776
                    break;
7777
            }
7778
            if (reset_requested) {
7779
                reset_requested = 0;
7780
                qemu_system_reset();
7781
                ret = EXCP_INTERRUPT;
7782
            }
7783
            if (powerdown_requested) {
7784
                powerdown_requested = 0;
7785
                qemu_system_powerdown();
7786
                ret = EXCP_INTERRUPT;
7787
            }
7788
            if (unlikely(ret == EXCP_DEBUG)) {
7789
                vm_stop(EXCP_DEBUG);
7790
            }
7791
            /* If all cpus are halted then wait until the next IRQ */
7792
            /* XXX: use timeout computed from timers */
7793
            if (ret == EXCP_HALTED) {
7794
                if (use_icount) {
7795
                    int64_t add;
7796
                    int64_t delta;
7797
                    /* Advance virtual time to the next event.  */
7798
                    if (use_icount == 1) {
7799
                        /* When not using an adaptive execution frequency
7800
                           we tend to get badly out of sync with real time,
7801
                           so just delay for a reasonable amount of time.  */
7802
                        delta = 0;
7803
                    } else {
7804
                        delta = cpu_get_icount() - cpu_get_clock();
7805
                    }
7806
                    if (delta > 0) {
7807
                        /* If virtual time is ahead of real time then just
7808
                           wait for IO.  */
7809
                        timeout = (delta / 1000000) + 1;
7810
                    } else {
7811
                        /* Wait for either IO to occur or the next
7812
                           timer event.  */
7813
                        add = qemu_next_deadline();
7814
                        /* We advance the timer before checking for IO.
7815
                           Limit the amount we advance so that early IO
7816
                           activity won't get the guest too far ahead.  */
7817
                        if (add > 10000000)
7818
                            add = 10000000;
7819
                        delta += add;
7820
                        add = (add + (1 << icount_time_shift) - 1)
7821
                              >> icount_time_shift;
7822
                        qemu_icount += add;
7823
                        timeout = delta / 1000000;
7824
                        if (timeout < 0)
7825
                            timeout = 0;
7826
                    }
7827
                } else {
7828
                    timeout = 10;
7829
                }
7830
            } else {
7831
                timeout = 0;
7832
            }
7833
        } else {
7834
            if (shutdown_requested) {
7835
                ret = EXCP_INTERRUPT;
7836
                break;
7837
            }
7838
            timeout = 10;
7839
        }
7840
#ifdef CONFIG_PROFILER
7841
        ti = profile_getclock();
7842
#endif
7843
        main_loop_wait(timeout);
7844
#ifdef CONFIG_PROFILER
7845
        dev_time += profile_getclock() - ti;
7846
#endif
7847
    }
7848
    cpu_disable_ticks();
7849
    return ret;
7850
}
7851

    
7852
static void help(int exitcode)
7853
{
7854
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7855
           "usage: %s [options] [disk_image]\n"
7856
           "\n"
7857
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7858
           "\n"
7859
           "Standard options:\n"
7860
           "-M machine      select emulated machine (-M ? for list)\n"
7861
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7862
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7863
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
7864
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7865
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7866
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7867
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7868
           "       [,cache=on|off][,format=f]\n"
7869
           "                use 'file' as a drive image\n"
7870
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7871
           "-sd file        use 'file' as SecureDigital card image\n"
7872
           "-pflash file    use 'file' as a parallel flash image\n"
7873
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7874
           "-snapshot       write to temporary files instead of disk image files\n"
7875
#ifdef CONFIG_SDL
7876
           "-no-frame       open SDL window without a frame and window decorations\n"
7877
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7878
           "-no-quit        disable SDL window close capability\n"
7879
#endif
7880
#ifdef TARGET_I386
7881
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7882
#endif
7883
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7884
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7885
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7886
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7887
#ifndef _WIN32
7888
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7889
#endif
7890
#ifdef HAS_AUDIO
7891
           "-audio-help     print list of audio drivers and their options\n"
7892
           "-soundhw c1,... enable audio support\n"
7893
           "                and only specified sound cards (comma separated list)\n"
7894
           "                use -soundhw ? to get the list of supported cards\n"
7895
           "                use -soundhw all to enable all of them\n"
7896
#endif
7897
           "-vga [std|cirrus|vmware]\n"
7898
           "                select video card type\n"
7899
           "-localtime      set the real time clock to local time [default=utc]\n"
7900
           "-full-screen    start in full screen\n"
7901
#ifdef TARGET_I386
7902
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7903
#endif
7904
           "-usb            enable the USB driver (will be the default soon)\n"
7905
           "-usbdevice name add the host or guest USB device 'name'\n"
7906
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7907
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7908
#endif
7909
           "-name string    set the name of the guest\n"
7910
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
7911
           "\n"
7912
           "Network options:\n"
7913
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7914
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7915
#ifdef CONFIG_SLIRP
7916
           "-net user[,vlan=n][,hostname=host]\n"
7917
           "                connect the user mode network stack to VLAN 'n' and send\n"
7918
           "                hostname 'host' to DHCP clients\n"
7919
#endif
7920
#ifdef _WIN32
7921
           "-net tap[,vlan=n],ifname=name\n"
7922
           "                connect the host TAP network interface to VLAN 'n'\n"
7923
#else
7924
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7925
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7926
           "                network scripts 'file' (default=%s)\n"
7927
           "                and 'dfile' (default=%s);\n"
7928
           "                use '[down]script=no' to disable script execution;\n"
7929
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7930
#endif
7931
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7932
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7933
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7934
           "                connect the vlan 'n' to multicast maddr and port\n"
7935
#ifdef CONFIG_VDE
7936
           "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
7937
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
7938
           "                on host and listening for incoming connections on 'socketpath'.\n"
7939
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
7940
           "                ownership and permissions for communication port.\n"
7941
#endif
7942
           "-net none       use it alone to have zero network devices; if no -net option\n"
7943
           "                is provided, the default is '-net nic -net user'\n"
7944
           "\n"
7945
#ifdef CONFIG_SLIRP
7946
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7947
           "-bootp file     advertise file in BOOTP replies\n"
7948
#ifndef _WIN32
7949
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7950
#endif
7951
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7952
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7953
#endif
7954
           "\n"
7955
           "Linux boot specific:\n"
7956
           "-kernel bzImage use 'bzImage' as kernel image\n"
7957
           "-append cmdline use 'cmdline' as kernel command line\n"
7958
           "-initrd file    use 'file' as initial ram disk\n"
7959
           "\n"
7960
           "Debug/Expert options:\n"
7961
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7962
           "-serial dev     redirect the serial port to char device 'dev'\n"
7963
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7964
           "-pidfile file   Write PID to 'file'\n"
7965
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7966
           "-s              wait gdb connection to port\n"
7967
           "-p port         set gdb connection port [default=%s]\n"
7968
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7969
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7970
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7971
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7972
#ifdef USE_KQEMU
7973
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7974
           "-no-kqemu       disable KQEMU kernel module usage\n"
7975
#endif
7976
#ifdef TARGET_I386
7977
           "-no-acpi        disable ACPI\n"
7978
#endif
7979
#ifdef CONFIG_CURSES
7980
           "-curses         use a curses/ncurses interface instead of SDL\n"
7981
#endif
7982
           "-no-reboot      exit instead of rebooting\n"
7983
           "-no-shutdown    stop before shutdown\n"
7984
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
7985
           "-vnc display    start a VNC server on display\n"
7986
#ifndef _WIN32
7987
           "-daemonize      daemonize QEMU after initializing\n"
7988
#endif
7989
           "-option-rom rom load a file, rom, into the option ROM space\n"
7990
#ifdef TARGET_SPARC
7991
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7992
#endif
7993
           "-clock          force the use of the given methods for timer alarm.\n"
7994
           "                To see what timers are available use -clock ?\n"
7995
           "-startdate      select initial date of the clock\n"
7996
           "-icount [N|auto]\n"
7997
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
7998
           "\n"
7999
           "During emulation, the following keys are useful:\n"
8000
           "ctrl-alt-f      toggle full screen\n"
8001
           "ctrl-alt-n      switch to virtual console 'n'\n"
8002
           "ctrl-alt        toggle mouse and keyboard grab\n"
8003
           "\n"
8004
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
8005
           ,
8006
           "qemu",
8007
           DEFAULT_RAM_SIZE,
8008
#ifndef _WIN32
8009
           DEFAULT_NETWORK_SCRIPT,
8010
           DEFAULT_NETWORK_DOWN_SCRIPT,
8011
#endif
8012
           DEFAULT_GDBSTUB_PORT,
8013
           "/tmp/qemu.log");
8014
    exit(exitcode);
8015
}
8016

    
8017
#define HAS_ARG 0x0001
8018

    
8019
enum {
8020
    QEMU_OPTION_h,
8021

    
8022
    QEMU_OPTION_M,
8023
    QEMU_OPTION_cpu,
8024
    QEMU_OPTION_fda,
8025
    QEMU_OPTION_fdb,
8026
    QEMU_OPTION_hda,
8027
    QEMU_OPTION_hdb,
8028
    QEMU_OPTION_hdc,
8029
    QEMU_OPTION_hdd,
8030
    QEMU_OPTION_drive,
8031
    QEMU_OPTION_cdrom,
8032
    QEMU_OPTION_mtdblock,
8033
    QEMU_OPTION_sd,
8034
    QEMU_OPTION_pflash,
8035
    QEMU_OPTION_boot,
8036
    QEMU_OPTION_snapshot,
8037
#ifdef TARGET_I386
8038
    QEMU_OPTION_no_fd_bootchk,
8039
#endif
8040
    QEMU_OPTION_m,
8041
    QEMU_OPTION_nographic,
8042
    QEMU_OPTION_portrait,
8043
#ifdef HAS_AUDIO
8044
    QEMU_OPTION_audio_help,
8045
    QEMU_OPTION_soundhw,
8046
#endif
8047

    
8048
    QEMU_OPTION_net,
8049
    QEMU_OPTION_tftp,
8050
    QEMU_OPTION_bootp,
8051
    QEMU_OPTION_smb,
8052
    QEMU_OPTION_redir,
8053

    
8054
    QEMU_OPTION_kernel,
8055
    QEMU_OPTION_append,
8056
    QEMU_OPTION_initrd,
8057

    
8058
    QEMU_OPTION_S,
8059
    QEMU_OPTION_s,
8060
    QEMU_OPTION_p,
8061
    QEMU_OPTION_d,
8062
    QEMU_OPTION_hdachs,
8063
    QEMU_OPTION_L,
8064
    QEMU_OPTION_bios,
8065
    QEMU_OPTION_k,
8066
    QEMU_OPTION_localtime,
8067
    QEMU_OPTION_g,
8068
    QEMU_OPTION_vga,
8069
    QEMU_OPTION_echr,
8070
    QEMU_OPTION_monitor,
8071
    QEMU_OPTION_serial,
8072
    QEMU_OPTION_parallel,
8073
    QEMU_OPTION_loadvm,
8074
    QEMU_OPTION_full_screen,
8075
    QEMU_OPTION_no_frame,
8076
    QEMU_OPTION_alt_grab,
8077
    QEMU_OPTION_no_quit,
8078
    QEMU_OPTION_pidfile,
8079
    QEMU_OPTION_no_kqemu,
8080
    QEMU_OPTION_kernel_kqemu,
8081
    QEMU_OPTION_win2k_hack,
8082
    QEMU_OPTION_usb,
8083
    QEMU_OPTION_usbdevice,
8084
    QEMU_OPTION_smp,
8085
    QEMU_OPTION_vnc,
8086
    QEMU_OPTION_no_acpi,
8087
    QEMU_OPTION_curses,
8088
    QEMU_OPTION_no_reboot,
8089
    QEMU_OPTION_no_shutdown,
8090
    QEMU_OPTION_show_cursor,
8091
    QEMU_OPTION_daemonize,
8092
    QEMU_OPTION_option_rom,
8093
    QEMU_OPTION_semihosting,
8094
    QEMU_OPTION_name,
8095
    QEMU_OPTION_prom_env,
8096
    QEMU_OPTION_old_param,
8097
    QEMU_OPTION_clock,
8098
    QEMU_OPTION_startdate,
8099
    QEMU_OPTION_tb_size,
8100
    QEMU_OPTION_icount,
8101
    QEMU_OPTION_uuid,
8102
};
8103

    
8104
typedef struct QEMUOption {
8105
    const char *name;
8106
    int flags;
8107
    int index;
8108
} QEMUOption;
8109

    
8110
const QEMUOption qemu_options[] = {
8111
    { "h", 0, QEMU_OPTION_h },
8112
    { "help", 0, QEMU_OPTION_h },
8113

    
8114
    { "M", HAS_ARG, QEMU_OPTION_M },
8115
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
8116
    { "fda", HAS_ARG, QEMU_OPTION_fda },
8117
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
8118
    { "hda", HAS_ARG, QEMU_OPTION_hda },
8119
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
8120
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
8121
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
8122
    { "drive", HAS_ARG, QEMU_OPTION_drive },
8123
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
8124
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
8125
    { "sd", HAS_ARG, QEMU_OPTION_sd },
8126
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
8127
    { "boot", HAS_ARG, QEMU_OPTION_boot },
8128
    { "snapshot", 0, QEMU_OPTION_snapshot },
8129
#ifdef TARGET_I386
8130
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
8131
#endif
8132
    { "m", HAS_ARG, QEMU_OPTION_m },
8133
    { "nographic", 0, QEMU_OPTION_nographic },
8134
    { "portrait", 0, QEMU_OPTION_portrait },
8135
    { "k", HAS_ARG, QEMU_OPTION_k },
8136
#ifdef HAS_AUDIO
8137
    { "audio-help", 0, QEMU_OPTION_audio_help },
8138
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
8139
#endif
8140

    
8141
    { "net", HAS_ARG, QEMU_OPTION_net},
8142
#ifdef CONFIG_SLIRP
8143
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
8144
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
8145
#ifndef _WIN32
8146
    { "smb", HAS_ARG, QEMU_OPTION_smb },
8147
#endif
8148
    { "redir", HAS_ARG, QEMU_OPTION_redir },
8149
#endif
8150

    
8151
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
8152
    { "append", HAS_ARG, QEMU_OPTION_append },
8153
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
8154

    
8155
    { "S", 0, QEMU_OPTION_S },
8156
    { "s", 0, QEMU_OPTION_s },
8157
    { "p", HAS_ARG, QEMU_OPTION_p },
8158
    { "d", HAS_ARG, QEMU_OPTION_d },
8159
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
8160
    { "L", HAS_ARG, QEMU_OPTION_L },
8161
    { "bios", HAS_ARG, QEMU_OPTION_bios },
8162
#ifdef USE_KQEMU
8163
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
8164
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
8165
#endif
8166
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
8167
    { "g", 1, QEMU_OPTION_g },
8168
#endif
8169
    { "localtime", 0, QEMU_OPTION_localtime },
8170
    { "vga", HAS_ARG, QEMU_OPTION_vga },
8171
    { "echr", HAS_ARG, QEMU_OPTION_echr },
8172
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
8173
    { "serial", HAS_ARG, QEMU_OPTION_serial },
8174
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
8175
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
8176
    { "full-screen", 0, QEMU_OPTION_full_screen },
8177
#ifdef CONFIG_SDL
8178
    { "no-frame", 0, QEMU_OPTION_no_frame },
8179
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
8180
    { "no-quit", 0, QEMU_OPTION_no_quit },
8181
#endif
8182
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8183
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8184
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8185
    { "smp", HAS_ARG, QEMU_OPTION_smp },
8186
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8187
#ifdef CONFIG_CURSES
8188
    { "curses", 0, QEMU_OPTION_curses },
8189
#endif
8190
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
8191

    
8192
    /* temporary options */
8193
    { "usb", 0, QEMU_OPTION_usb },
8194
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
8195
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
8196
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8197
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
8198
    { "daemonize", 0, QEMU_OPTION_daemonize },
8199
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8200
#if defined(TARGET_ARM) || defined(TARGET_M68K)
8201
    { "semihosting", 0, QEMU_OPTION_semihosting },
8202
#endif
8203
    { "name", HAS_ARG, QEMU_OPTION_name },
8204
#if defined(TARGET_SPARC)
8205
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8206
#endif
8207
#if defined(TARGET_ARM)
8208
    { "old-param", 0, QEMU_OPTION_old_param },
8209
#endif
8210
    { "clock", HAS_ARG, QEMU_OPTION_clock },
8211
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8212
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8213
    { "icount", HAS_ARG, QEMU_OPTION_icount },
8214
    { NULL },
8215
};
8216

    
8217
/* password input */
8218

    
8219
int qemu_key_check(BlockDriverState *bs, const char *name)
8220
{
8221
    char password[256];
8222
    int i;
8223

    
8224
    if (!bdrv_is_encrypted(bs))
8225
        return 0;
8226

    
8227
    term_printf("%s is encrypted.\n", name);
8228
    for(i = 0; i < 3; i++) {
8229
        monitor_readline("Password: ", 1, password, sizeof(password));
8230
        if (bdrv_set_key(bs, password) == 0)
8231
            return 0;
8232
        term_printf("invalid password\n");
8233
    }
8234
    return -EPERM;
8235
}
8236

    
8237
static BlockDriverState *get_bdrv(int index)
8238
{
8239
    if (index > nb_drives)
8240
        return NULL;
8241
    return drives_table[index].bdrv;
8242
}
8243

    
8244
static void read_passwords(void)
8245
{
8246
    BlockDriverState *bs;
8247
    int i;
8248

    
8249
    for(i = 0; i < 6; i++) {
8250
        bs = get_bdrv(i);
8251
        if (bs)
8252
            qemu_key_check(bs, bdrv_get_device_name(bs));
8253
    }
8254
}
8255

    
8256
#ifdef HAS_AUDIO
8257
struct soundhw soundhw[] = {
8258
#ifdef HAS_AUDIO_CHOICE
8259
#if defined(TARGET_I386) || defined(TARGET_MIPS)
8260
    {
8261
        "pcspk",
8262
        "PC speaker",
8263
        0,
8264
        1,
8265
        { .init_isa = pcspk_audio_init }
8266
    },
8267
#endif
8268
    {
8269
        "sb16",
8270
        "Creative Sound Blaster 16",
8271
        0,
8272
        1,
8273
        { .init_isa = SB16_init }
8274
    },
8275

    
8276
#ifdef CONFIG_CS4231A
8277
    {
8278
        "cs4231a",
8279
        "CS4231A",
8280
        0,
8281
        1,
8282
        { .init_isa = cs4231a_init }
8283
    },
8284
#endif
8285

    
8286
#ifdef CONFIG_ADLIB
8287
    {
8288
        "adlib",
8289
#ifdef HAS_YMF262
8290
        "Yamaha YMF262 (OPL3)",
8291
#else
8292
        "Yamaha YM3812 (OPL2)",
8293
#endif
8294
        0,
8295
        1,
8296
        { .init_isa = Adlib_init }
8297
    },
8298
#endif
8299

    
8300
#ifdef CONFIG_GUS
8301
    {
8302
        "gus",
8303
        "Gravis Ultrasound GF1",
8304
        0,
8305
        1,
8306
        { .init_isa = GUS_init }
8307
    },
8308
#endif
8309

    
8310
#ifdef CONFIG_AC97
8311
    {
8312
        "ac97",
8313
        "Intel 82801AA AC97 Audio",
8314
        0,
8315
        0,
8316
        { .init_pci = ac97_init }
8317
    },
8318
#endif
8319

    
8320
    {
8321
        "es1370",
8322
        "ENSONIQ AudioPCI ES1370",
8323
        0,
8324
        0,
8325
        { .init_pci = es1370_init }
8326
    },
8327
#endif
8328

    
8329
    { NULL, NULL, 0, 0, { NULL } }
8330
};
8331

    
8332
static void select_soundhw (const char *optarg)
8333
{
8334
    struct soundhw *c;
8335

    
8336
    if (*optarg == '?') {
8337
    show_valid_cards:
8338

    
8339
        printf ("Valid sound card names (comma separated):\n");
8340
        for (c = soundhw; c->name; ++c) {
8341
            printf ("%-11s %s\n", c->name, c->descr);
8342
        }
8343
        printf ("\n-soundhw all will enable all of the above\n");
8344
        exit (*optarg != '?');
8345
    }
8346
    else {
8347
        size_t l;
8348
        const char *p;
8349
        char *e;
8350
        int bad_card = 0;
8351

    
8352
        if (!strcmp (optarg, "all")) {
8353
            for (c = soundhw; c->name; ++c) {
8354
                c->enabled = 1;
8355
            }
8356
            return;
8357
        }
8358

    
8359
        p = optarg;
8360
        while (*p) {
8361
            e = strchr (p, ',');
8362
            l = !e ? strlen (p) : (size_t) (e - p);
8363

    
8364
            for (c = soundhw; c->name; ++c) {
8365
                if (!strncmp (c->name, p, l)) {
8366
                    c->enabled = 1;
8367
                    break;
8368
                }
8369
            }
8370

    
8371
            if (!c->name) {
8372
                if (l > 80) {
8373
                    fprintf (stderr,
8374
                             "Unknown sound card name (too big to show)\n");
8375
                }
8376
                else {
8377
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
8378
                             (int) l, p);
8379
                }
8380
                bad_card = 1;
8381
            }
8382
            p += l + (e != NULL);
8383
        }
8384

    
8385
        if (bad_card)
8386
            goto show_valid_cards;
8387
    }
8388
}
8389
#endif
8390

    
8391
static void select_vgahw (const char *p)
8392
{
8393
    const char *opts;
8394

    
8395
    if (strstart(p, "std", &opts)) {
8396
        cirrus_vga_enabled = 0;
8397
        vmsvga_enabled = 0;
8398
    } else if (strstart(p, "cirrus", &opts)) {
8399
        cirrus_vga_enabled = 1;
8400
        vmsvga_enabled = 0;
8401
    } else if (strstart(p, "vmware", &opts)) {
8402
        cirrus_vga_enabled = 0;
8403
        vmsvga_enabled = 1;
8404
    } else {
8405
    invalid_vga:
8406
        fprintf(stderr, "Unknown vga type: %s\n", p);
8407
        exit(1);
8408
    }
8409
    while (*opts) {
8410
        const char *nextopt;
8411

    
8412
        if (strstart(opts, ",retrace=", &nextopt)) {
8413
            opts = nextopt;
8414
            if (strstart(opts, "dumb", &nextopt))
8415
                vga_retrace_method = VGA_RETRACE_DUMB;
8416
            else if (strstart(opts, "precise", &nextopt))
8417
                vga_retrace_method = VGA_RETRACE_PRECISE;
8418
            else goto invalid_vga;
8419
        } else goto invalid_vga;
8420
        opts = nextopt;
8421
    }
8422
}
8423

    
8424
#ifdef _WIN32
8425
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8426
{
8427
    exit(STATUS_CONTROL_C_EXIT);
8428
    return TRUE;
8429
}
8430
#endif
8431

    
8432
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8433
{
8434
    int ret;
8435

    
8436
    if(strlen(str) != 36)
8437
        return -1;
8438

    
8439
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8440
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8441
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8442

    
8443
    if(ret != 16)
8444
        return -1;
8445

    
8446
    return 0;
8447
}
8448

    
8449
#define MAX_NET_CLIENTS 32
8450

    
8451
#ifndef _WIN32
8452

    
8453
static void termsig_handler(int signal)
8454
{
8455
    qemu_system_shutdown_request();
8456
}
8457

    
8458
static void termsig_setup(void)
8459
{
8460
    struct sigaction act;
8461

    
8462
    memset(&act, 0, sizeof(act));
8463
    act.sa_handler = termsig_handler;
8464
    sigaction(SIGINT,  &act, NULL);
8465
    sigaction(SIGHUP,  &act, NULL);
8466
    sigaction(SIGTERM, &act, NULL);
8467
}
8468

    
8469
#endif
8470

    
8471
int main(int argc, char **argv)
8472
{
8473
#ifdef CONFIG_GDBSTUB
8474
    int use_gdbstub;
8475
    const char *gdbstub_port;
8476
#endif
8477
    uint32_t boot_devices_bitmap = 0;
8478
    int i;
8479
    int snapshot, linux_boot, net_boot;
8480
    const char *initrd_filename;
8481
    const char *kernel_filename, *kernel_cmdline;
8482
    const char *boot_devices = "";
8483
    DisplayState *ds = &display_state;
8484
    int cyls, heads, secs, translation;
8485
    const char *net_clients[MAX_NET_CLIENTS];
8486
    int nb_net_clients;
8487
    int hda_index;
8488
    int optind;
8489
    const char *r, *optarg;
8490
    CharDriverState *monitor_hd;
8491
    const char *monitor_device;
8492
    const char *serial_devices[MAX_SERIAL_PORTS];
8493
    int serial_device_index;
8494
    const char *parallel_devices[MAX_PARALLEL_PORTS];
8495
    int parallel_device_index;
8496
    const char *loadvm = NULL;
8497
    QEMUMachine *machine;
8498
    const char *cpu_model;
8499
    const char *usb_devices[MAX_USB_CMDLINE];
8500
    int usb_devices_index;
8501
    int fds[2];
8502
    int tb_size;
8503
    const char *pid_file = NULL;
8504
    VLANState *vlan;
8505

    
8506
    LIST_INIT (&vm_change_state_head);
8507
#ifndef _WIN32
8508
    {
8509
        struct sigaction act;
8510
        sigfillset(&act.sa_mask);
8511
        act.sa_flags = 0;
8512
        act.sa_handler = SIG_IGN;
8513
        sigaction(SIGPIPE, &act, NULL);
8514
    }
8515
#else
8516
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8517
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
8518
       QEMU to run on a single CPU */
8519
    {
8520
        HANDLE h;
8521
        DWORD mask, smask;
8522
        int i;
8523
        h = GetCurrentProcess();
8524
        if (GetProcessAffinityMask(h, &mask, &smask)) {
8525
            for(i = 0; i < 32; i++) {
8526
                if (mask & (1 << i))
8527
                    break;
8528
            }
8529
            if (i != 32) {
8530
                mask = 1 << i;
8531
                SetProcessAffinityMask(h, mask);
8532
            }
8533
        }
8534
    }
8535
#endif
8536

    
8537
    register_machines();
8538
    machine = first_machine;
8539
    cpu_model = NULL;
8540
    initrd_filename = NULL;
8541
    ram_size = 0;
8542
    vga_ram_size = VGA_RAM_SIZE;
8543
#ifdef CONFIG_GDBSTUB
8544
    use_gdbstub = 0;
8545
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8546
#endif
8547
    snapshot = 0;
8548
    nographic = 0;
8549
    curses = 0;
8550
    kernel_filename = NULL;
8551
    kernel_cmdline = "";
8552
    cyls = heads = secs = 0;
8553
    translation = BIOS_ATA_TRANSLATION_AUTO;
8554
    monitor_device = "vc";
8555

    
8556
    serial_devices[0] = "vc:80Cx24C";
8557
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8558
        serial_devices[i] = NULL;
8559
    serial_device_index = 0;
8560

    
8561
    parallel_devices[0] = "vc:640x480";
8562
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8563
        parallel_devices[i] = NULL;
8564
    parallel_device_index = 0;
8565

    
8566
    usb_devices_index = 0;
8567

    
8568
    nb_net_clients = 0;
8569
    nb_drives = 0;
8570
    nb_drives_opt = 0;
8571
    hda_index = -1;
8572

    
8573
    nb_nics = 0;
8574

    
8575
    tb_size = 0;
8576
    
8577
    optind = 1;
8578
    for(;;) {
8579
        if (optind >= argc)
8580
            break;
8581
        r = argv[optind];
8582
        if (r[0] != '-') {
8583
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8584
        } else {
8585
            const QEMUOption *popt;
8586

    
8587
            optind++;
8588
            /* Treat --foo the same as -foo.  */
8589
            if (r[1] == '-')
8590
                r++;
8591
            popt = qemu_options;
8592
            for(;;) {
8593
                if (!popt->name) {
8594
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8595
                            argv[0], r);
8596
                    exit(1);
8597
                }
8598
                if (!strcmp(popt->name, r + 1))
8599
                    break;
8600
                popt++;
8601
            }
8602
            if (popt->flags & HAS_ARG) {
8603
                if (optind >= argc) {
8604
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
8605
                            argv[0], r);
8606
                    exit(1);
8607
                }
8608
                optarg = argv[optind++];
8609
            } else {
8610
                optarg = NULL;
8611
            }
8612

    
8613
            switch(popt->index) {
8614
            case QEMU_OPTION_M:
8615
                machine = find_machine(optarg);
8616
                if (!machine) {
8617
                    QEMUMachine *m;
8618
                    printf("Supported machines are:\n");
8619
                    for(m = first_machine; m != NULL; m = m->next) {
8620
                        printf("%-10s %s%s\n",
8621
                               m->name, m->desc,
8622
                               m == first_machine ? " (default)" : "");
8623
                    }
8624
                    exit(*optarg != '?');
8625
                }
8626
                break;
8627
            case QEMU_OPTION_cpu:
8628
                /* hw initialization will check this */
8629
                if (*optarg == '?') {
8630
/* XXX: implement xxx_cpu_list for targets that still miss it */
8631
#if defined(cpu_list)
8632
                    cpu_list(stdout, &fprintf);
8633
#endif
8634
                    exit(0);
8635
                } else {
8636
                    cpu_model = optarg;
8637
                }
8638
                break;
8639
            case QEMU_OPTION_initrd:
8640
                initrd_filename = optarg;
8641
                break;
8642
            case QEMU_OPTION_hda:
8643
                if (cyls == 0)
8644
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8645
                else
8646
                    hda_index = drive_add(optarg, HD_ALIAS
8647
                             ",cyls=%d,heads=%d,secs=%d%s",
8648
                             0, cyls, heads, secs,
8649
                             translation == BIOS_ATA_TRANSLATION_LBA ?
8650
                                 ",trans=lba" :
8651
                             translation == BIOS_ATA_TRANSLATION_NONE ?
8652
                                 ",trans=none" : "");
8653
                 break;
8654
            case QEMU_OPTION_hdb:
8655
            case QEMU_OPTION_hdc:
8656
            case QEMU_OPTION_hdd:
8657
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8658
                break;
8659
            case QEMU_OPTION_drive:
8660
                drive_add(NULL, "%s", optarg);
8661
                break;
8662
            case QEMU_OPTION_mtdblock:
8663
                drive_add(optarg, MTD_ALIAS);
8664
                break;
8665
            case QEMU_OPTION_sd:
8666
                drive_add(optarg, SD_ALIAS);
8667
                break;
8668
            case QEMU_OPTION_pflash:
8669
                drive_add(optarg, PFLASH_ALIAS);
8670
                break;
8671
            case QEMU_OPTION_snapshot:
8672
                snapshot = 1;
8673
                break;
8674
            case QEMU_OPTION_hdachs:
8675
                {
8676
                    const char *p;
8677
                    p = optarg;
8678
                    cyls = strtol(p, (char **)&p, 0);
8679
                    if (cyls < 1 || cyls > 16383)
8680
                        goto chs_fail;
8681
                    if (*p != ',')
8682
                        goto chs_fail;
8683
                    p++;
8684
                    heads = strtol(p, (char **)&p, 0);
8685
                    if (heads < 1 || heads > 16)
8686
                        goto chs_fail;
8687
                    if (*p != ',')
8688
                        goto chs_fail;
8689
                    p++;
8690
                    secs = strtol(p, (char **)&p, 0);
8691
                    if (secs < 1 || secs > 63)
8692
                        goto chs_fail;
8693
                    if (*p == ',') {
8694
                        p++;
8695
                        if (!strcmp(p, "none"))
8696
                            translation = BIOS_ATA_TRANSLATION_NONE;
8697
                        else if (!strcmp(p, "lba"))
8698
                            translation = BIOS_ATA_TRANSLATION_LBA;
8699
                        else if (!strcmp(p, "auto"))
8700
                            translation = BIOS_ATA_TRANSLATION_AUTO;
8701
                        else
8702
                            goto chs_fail;
8703
                    } else if (*p != '\0') {
8704
                    chs_fail:
8705
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
8706
                        exit(1);
8707
                    }
8708
                    if (hda_index != -1)
8709
                        snprintf(drives_opt[hda_index].opt,
8710
                                 sizeof(drives_opt[hda_index].opt),
8711
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8712
                                 0, cyls, heads, secs,
8713
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
8714
                                         ",trans=lba" :
8715
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
8716
                                     ",trans=none" : "");
8717
                }
8718
                break;
8719
            case QEMU_OPTION_nographic:
8720
                nographic = 1;
8721
                break;
8722
#ifdef CONFIG_CURSES
8723
            case QEMU_OPTION_curses:
8724
                curses = 1;
8725
                break;
8726
#endif
8727
            case QEMU_OPTION_portrait:
8728
                graphic_rotate = 1;
8729
                break;
8730
            case QEMU_OPTION_kernel:
8731
                kernel_filename = optarg;
8732
                break;
8733
            case QEMU_OPTION_append:
8734
                kernel_cmdline = optarg;
8735
                break;
8736
            case QEMU_OPTION_cdrom:
8737
                drive_add(optarg, CDROM_ALIAS);
8738
                break;
8739
            case QEMU_OPTION_boot:
8740
                boot_devices = optarg;
8741
                /* We just do some generic consistency checks */
8742
                {
8743
                    /* Could easily be extended to 64 devices if needed */
8744
                    const char *p;
8745
                    
8746
                    boot_devices_bitmap = 0;
8747
                    for (p = boot_devices; *p != '\0'; p++) {
8748
                        /* Allowed boot devices are:
8749
                         * a b     : floppy disk drives
8750
                         * c ... f : IDE disk drives
8751
                         * g ... m : machine implementation dependant drives
8752
                         * n ... p : network devices
8753
                         * It's up to each machine implementation to check
8754
                         * if the given boot devices match the actual hardware
8755
                         * implementation and firmware features.
8756
                         */
8757
                        if (*p < 'a' || *p > 'q') {
8758
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
8759
                            exit(1);
8760
                        }
8761
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8762
                            fprintf(stderr,
8763
                                    "Boot device '%c' was given twice\n",*p);
8764
                            exit(1);
8765
                        }
8766
                        boot_devices_bitmap |= 1 << (*p - 'a');
8767
                    }
8768
                }
8769
                break;
8770
            case QEMU_OPTION_fda:
8771
            case QEMU_OPTION_fdb:
8772
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8773
                break;
8774
#ifdef TARGET_I386
8775
            case QEMU_OPTION_no_fd_bootchk:
8776
                fd_bootchk = 0;
8777
                break;
8778
#endif
8779
            case QEMU_OPTION_net:
8780
                if (nb_net_clients >= MAX_NET_CLIENTS) {
8781
                    fprintf(stderr, "qemu: too many network clients\n");
8782
                    exit(1);
8783
                }
8784
                net_clients[nb_net_clients] = optarg;
8785
                nb_net_clients++;
8786
                break;
8787
#ifdef CONFIG_SLIRP
8788
            case QEMU_OPTION_tftp:
8789
                tftp_prefix = optarg;
8790
                break;
8791
            case QEMU_OPTION_bootp:
8792
                bootp_filename = optarg;
8793
                break;
8794
#ifndef _WIN32
8795
            case QEMU_OPTION_smb:
8796
                net_slirp_smb(optarg);
8797
                break;
8798
#endif
8799
            case QEMU_OPTION_redir:
8800
                net_slirp_redir(optarg);
8801
                break;
8802
#endif
8803
#ifdef HAS_AUDIO
8804
            case QEMU_OPTION_audio_help:
8805
                AUD_help ();
8806
                exit (0);
8807
                break;
8808
            case QEMU_OPTION_soundhw:
8809
                select_soundhw (optarg);
8810
                break;
8811
#endif
8812
            case QEMU_OPTION_h:
8813
                help(0);
8814
                break;
8815
            case QEMU_OPTION_m: {
8816
                uint64_t value;
8817
                char *ptr;
8818

    
8819
                value = strtoul(optarg, &ptr, 10);
8820
                switch (*ptr) {
8821
                case 0: case 'M': case 'm':
8822
                    value <<= 20;
8823
                    break;
8824
                case 'G': case 'g':
8825
                    value <<= 30;
8826
                    break;
8827
                default:
8828
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8829
                    exit(1);
8830
                }
8831

    
8832
                /* On 32-bit hosts, QEMU is limited by virtual address space */
8833
                if (value > (2047 << 20)
8834
#ifndef USE_KQEMU
8835
                    && HOST_LONG_BITS == 32
8836
#endif
8837
                    ) {
8838
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8839
                    exit(1);
8840
                }
8841
                if (value != (uint64_t)(ram_addr_t)value) {
8842
                    fprintf(stderr, "qemu: ram size too large\n");
8843
                    exit(1);
8844
                }
8845
                ram_size = value;
8846
                break;
8847
            }
8848
            case QEMU_OPTION_d:
8849
                {
8850
                    int mask;
8851
                    CPULogItem *item;
8852

    
8853
                    mask = cpu_str_to_log_mask(optarg);
8854
                    if (!mask) {
8855
                        printf("Log items (comma separated):\n");
8856
                    for(item = cpu_log_items; item->mask != 0; item++) {
8857
                        printf("%-10s %s\n", item->name, item->help);
8858
                    }
8859
                    exit(1);
8860
                    }
8861
                    cpu_set_log(mask);
8862
                }
8863
                break;
8864
#ifdef CONFIG_GDBSTUB
8865
            case QEMU_OPTION_s:
8866
                use_gdbstub = 1;
8867
                break;
8868
            case QEMU_OPTION_p:
8869
                gdbstub_port = optarg;
8870
                break;
8871
#endif
8872
            case QEMU_OPTION_L:
8873
                bios_dir = optarg;
8874
                break;
8875
            case QEMU_OPTION_bios:
8876
                bios_name = optarg;
8877
                break;
8878
            case QEMU_OPTION_S:
8879
                autostart = 0;
8880
                break;
8881
            case QEMU_OPTION_k:
8882
                keyboard_layout = optarg;
8883
                break;
8884
            case QEMU_OPTION_localtime:
8885
                rtc_utc = 0;
8886
                break;
8887
            case QEMU_OPTION_vga:
8888
                select_vgahw (optarg);
8889
                break;
8890
            case QEMU_OPTION_g:
8891
                {
8892
                    const char *p;
8893
                    int w, h, depth;
8894
                    p = optarg;
8895
                    w = strtol(p, (char **)&p, 10);
8896
                    if (w <= 0) {
8897
                    graphic_error:
8898
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
8899
                        exit(1);
8900
                    }
8901
                    if (*p != 'x')
8902
                        goto graphic_error;
8903
                    p++;
8904
                    h = strtol(p, (char **)&p, 10);
8905
                    if (h <= 0)
8906
                        goto graphic_error;
8907
                    if (*p == 'x') {
8908
                        p++;
8909
                        depth = strtol(p, (char **)&p, 10);
8910
                        if (depth != 8 && depth != 15 && depth != 16 &&
8911
                            depth != 24 && depth != 32)
8912
                            goto graphic_error;
8913
                    } else if (*p == '\0') {
8914
                        depth = graphic_depth;
8915
                    } else {
8916
                        goto graphic_error;
8917
                    }
8918

    
8919
                    graphic_width = w;
8920
                    graphic_height = h;
8921
                    graphic_depth = depth;
8922
                }
8923
                break;
8924
            case QEMU_OPTION_echr:
8925
                {
8926
                    char *r;
8927
                    term_escape_char = strtol(optarg, &r, 0);
8928
                    if (r == optarg)
8929
                        printf("Bad argument to echr\n");
8930
                    break;
8931
                }
8932
            case QEMU_OPTION_monitor:
8933
                monitor_device = optarg;
8934
                break;
8935
            case QEMU_OPTION_serial:
8936
                if (serial_device_index >= MAX_SERIAL_PORTS) {
8937
                    fprintf(stderr, "qemu: too many serial ports\n");
8938
                    exit(1);
8939
                }
8940
                serial_devices[serial_device_index] = optarg;
8941
                serial_device_index++;
8942
                break;
8943
            case QEMU_OPTION_parallel:
8944
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8945
                    fprintf(stderr, "qemu: too many parallel ports\n");
8946
                    exit(1);
8947
                }
8948
                parallel_devices[parallel_device_index] = optarg;
8949
                parallel_device_index++;
8950
                break;
8951
            case QEMU_OPTION_loadvm:
8952
                loadvm = optarg;
8953
                break;
8954
            case QEMU_OPTION_full_screen:
8955
                full_screen = 1;
8956
                break;
8957
#ifdef CONFIG_SDL
8958
            case QEMU_OPTION_no_frame:
8959
                no_frame = 1;
8960
                break;
8961
            case QEMU_OPTION_alt_grab:
8962
                alt_grab = 1;
8963
                break;
8964
            case QEMU_OPTION_no_quit:
8965
                no_quit = 1;
8966
                break;
8967
#endif
8968
            case QEMU_OPTION_pidfile:
8969
                pid_file = optarg;
8970
                break;
8971
#ifdef TARGET_I386
8972
            case QEMU_OPTION_win2k_hack:
8973
                win2k_install_hack = 1;
8974
                break;
8975
#endif
8976
#ifdef USE_KQEMU
8977
            case QEMU_OPTION_no_kqemu:
8978
                kqemu_allowed = 0;
8979
                break;
8980
            case QEMU_OPTION_kernel_kqemu:
8981
                kqemu_allowed = 2;
8982
                break;
8983
#endif
8984
            case QEMU_OPTION_usb:
8985
                usb_enabled = 1;
8986
                break;
8987
            case QEMU_OPTION_usbdevice:
8988
                usb_enabled = 1;
8989
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8990
                    fprintf(stderr, "Too many USB devices\n");
8991
                    exit(1);
8992
                }
8993
                usb_devices[usb_devices_index] = optarg;
8994
                usb_devices_index++;
8995
                break;
8996
            case QEMU_OPTION_smp:
8997
                smp_cpus = atoi(optarg);
8998
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8999
                    fprintf(stderr, "Invalid number of CPUs\n");
9000
                    exit(1);
9001
                }
9002
                break;
9003
            case QEMU_OPTION_vnc:
9004
                vnc_display = optarg;
9005
                break;
9006
            case QEMU_OPTION_no_acpi:
9007
                acpi_enabled = 0;
9008
                break;
9009
            case QEMU_OPTION_no_reboot:
9010
                no_reboot = 1;
9011
                break;
9012
            case QEMU_OPTION_no_shutdown:
9013
                no_shutdown = 1;
9014
                break;
9015
            case QEMU_OPTION_show_cursor:
9016
                cursor_hide = 0;
9017
                break;
9018
            case QEMU_OPTION_uuid:
9019
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
9020
                    fprintf(stderr, "Fail to parse UUID string."
9021
                            " Wrong format.\n");
9022
                    exit(1);
9023
                }
9024
                break;
9025
            case QEMU_OPTION_daemonize:
9026
                daemonize = 1;
9027
                break;
9028
            case QEMU_OPTION_option_rom:
9029
                if (nb_option_roms >= MAX_OPTION_ROMS) {
9030
                    fprintf(stderr, "Too many option ROMs\n");
9031
                    exit(1);
9032
                }
9033
                option_rom[nb_option_roms] = optarg;
9034
                nb_option_roms++;
9035
                break;
9036
            case QEMU_OPTION_semihosting:
9037
                semihosting_enabled = 1;
9038
                break;
9039
            case QEMU_OPTION_name:
9040
                qemu_name = optarg;
9041
                break;
9042
#ifdef TARGET_SPARC
9043
            case QEMU_OPTION_prom_env:
9044
                if (nb_prom_envs >= MAX_PROM_ENVS) {
9045
                    fprintf(stderr, "Too many prom variables\n");
9046
                    exit(1);
9047
                }
9048
                prom_envs[nb_prom_envs] = optarg;
9049
                nb_prom_envs++;
9050
                break;
9051
#endif
9052
#ifdef TARGET_ARM
9053
            case QEMU_OPTION_old_param:
9054
                old_param = 1;
9055
                break;
9056
#endif
9057
            case QEMU_OPTION_clock:
9058
                configure_alarms(optarg);
9059
                break;
9060
            case QEMU_OPTION_startdate:
9061
                {
9062
                    struct tm tm;
9063
                    time_t rtc_start_date;
9064
                    if (!strcmp(optarg, "now")) {
9065
                        rtc_date_offset = -1;
9066
                    } else {
9067
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
9068
                               &tm.tm_year,
9069
                               &tm.tm_mon,
9070
                               &tm.tm_mday,
9071
                               &tm.tm_hour,
9072
                               &tm.tm_min,
9073
                               &tm.tm_sec) == 6) {
9074
                            /* OK */
9075
                        } else if (sscanf(optarg, "%d-%d-%d",
9076
                                          &tm.tm_year,
9077
                                          &tm.tm_mon,
9078
                                          &tm.tm_mday) == 3) {
9079
                            tm.tm_hour = 0;
9080
                            tm.tm_min = 0;
9081
                            tm.tm_sec = 0;
9082
                        } else {
9083
                            goto date_fail;
9084
                        }
9085
                        tm.tm_year -= 1900;
9086
                        tm.tm_mon--;
9087
                        rtc_start_date = mktimegm(&tm);
9088
                        if (rtc_start_date == -1) {
9089
                        date_fail:
9090
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
9091
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
9092
                            exit(1);
9093
                        }
9094
                        rtc_date_offset = time(NULL) - rtc_start_date;
9095
                    }
9096
                }
9097
                break;
9098
            case QEMU_OPTION_tb_size:
9099
                tb_size = strtol(optarg, NULL, 0);
9100
                if (tb_size < 0)
9101
                    tb_size = 0;
9102
                break;
9103
            case QEMU_OPTION_icount:
9104
                use_icount = 1;
9105
                if (strcmp(optarg, "auto") == 0) {
9106
                    icount_time_shift = -1;
9107
                } else {
9108
                    icount_time_shift = strtol(optarg, NULL, 0);
9109
                }
9110
                break;
9111
            }
9112
        }
9113
    }
9114

    
9115
    if (nographic) {
9116
       if (serial_device_index == 0)
9117
           serial_devices[0] = "stdio";
9118
       if (parallel_device_index == 0)
9119
           parallel_devices[0] = "null";
9120
       if (strncmp(monitor_device, "vc", 2) == 0)
9121
           monitor_device = "stdio";
9122
    }
9123

    
9124
#ifndef _WIN32
9125
    if (daemonize) {
9126
        pid_t pid;
9127

    
9128
        if (pipe(fds) == -1)
9129
            exit(1);
9130

    
9131
        pid = fork();
9132
        if (pid > 0) {
9133
            uint8_t status;
9134
            ssize_t len;
9135

    
9136
            close(fds[1]);
9137

    
9138
        again:
9139
            len = read(fds[0], &status, 1);
9140
            if (len == -1 && (errno == EINTR))
9141
                goto again;
9142

    
9143
            if (len != 1)
9144
                exit(1);
9145
            else if (status == 1) {
9146
                fprintf(stderr, "Could not acquire pidfile\n");
9147
                exit(1);
9148
            } else
9149
                exit(0);
9150
        } else if (pid < 0)
9151
            exit(1);
9152

    
9153
        setsid();
9154

    
9155
        pid = fork();
9156
        if (pid > 0)
9157
            exit(0);
9158
        else if (pid < 0)
9159
            exit(1);
9160

    
9161
        umask(027);
9162

    
9163
        signal(SIGTSTP, SIG_IGN);
9164
        signal(SIGTTOU, SIG_IGN);
9165
        signal(SIGTTIN, SIG_IGN);
9166
    }
9167
#endif
9168

    
9169
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9170
        if (daemonize) {
9171
            uint8_t status = 1;
9172
            write(fds[1], &status, 1);
9173
        } else
9174
            fprintf(stderr, "Could not acquire pid file\n");
9175
        exit(1);
9176
    }
9177

    
9178
#ifdef USE_KQEMU
9179
    if (smp_cpus > 1)
9180
        kqemu_allowed = 0;
9181
#endif
9182
    linux_boot = (kernel_filename != NULL);
9183
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9184

    
9185
    if (!linux_boot && net_boot == 0 &&
9186
        !machine->nodisk_ok && nb_drives_opt == 0)
9187
        help(1);
9188

    
9189
    if (!linux_boot && *kernel_cmdline != '\0') {
9190
        fprintf(stderr, "-append only allowed with -kernel option\n");
9191
        exit(1);
9192
    }
9193

    
9194
    if (!linux_boot && initrd_filename != NULL) {
9195
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
9196
        exit(1);
9197
    }
9198

    
9199
    /* boot to floppy or the default cd if no hard disk defined yet */
9200
    if (!boot_devices[0]) {
9201
        boot_devices = "cad";
9202
    }
9203
    setvbuf(stdout, NULL, _IOLBF, 0);
9204

    
9205
    init_timers();
9206
    init_timer_alarm();
9207
    if (use_icount && icount_time_shift < 0) {
9208
        use_icount = 2;
9209
        /* 125MIPS seems a reasonable initial guess at the guest speed.
9210
           It will be corrected fairly quickly anyway.  */
9211
        icount_time_shift = 3;
9212
        init_icount_adjust();
9213
    }
9214

    
9215
#ifdef _WIN32
9216
    socket_init();
9217
#endif
9218

    
9219
    /* init network clients */
9220
    if (nb_net_clients == 0) {
9221
        /* if no clients, we use a default config */
9222
        net_clients[nb_net_clients++] = "nic";
9223
#ifdef CONFIG_SLIRP
9224
        net_clients[nb_net_clients++] = "user";
9225
#endif
9226
    }
9227

    
9228
    for(i = 0;i < nb_net_clients; i++) {
9229
        if (net_client_parse(net_clients[i]) < 0)
9230
            exit(1);
9231
    }
9232
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9233
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9234
            continue;
9235
        if (vlan->nb_guest_devs == 0)
9236
            fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9237
        if (vlan->nb_host_devs == 0)
9238
            fprintf(stderr,
9239
                    "Warning: vlan %d is not connected to host network\n",
9240
                    vlan->id);
9241
    }
9242

    
9243
#ifdef TARGET_I386
9244
    /* XXX: this should be moved in the PC machine instantiation code */
9245
    if (net_boot != 0) {
9246
        int netroms = 0;
9247
        for (i = 0; i < nb_nics && i < 4; i++) {
9248
            const char *model = nd_table[i].model;
9249
            char buf[1024];
9250
            if (net_boot & (1 << i)) {
9251
                if (model == NULL)
9252
                    model = "ne2k_pci";
9253
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9254
                if (get_image_size(buf) > 0) {
9255
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
9256
                        fprintf(stderr, "Too many option ROMs\n");
9257
                        exit(1);
9258
                    }
9259
                    option_rom[nb_option_roms] = strdup(buf);
9260
                    nb_option_roms++;
9261
                    netroms++;
9262
                }
9263
            }
9264
        }
9265
        if (netroms == 0) {
9266
            fprintf(stderr, "No valid PXE rom found for network device\n");
9267
            exit(1);
9268
        }
9269
    }
9270
#endif
9271

    
9272
    /* init the memory */
9273
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9274

    
9275
    if (machine->ram_require & RAMSIZE_FIXED) {
9276
        if (ram_size > 0) {
9277
            if (ram_size < phys_ram_size) {
9278
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9279
                                machine->name, (unsigned long long) phys_ram_size);
9280
                exit(-1);
9281
            }
9282

    
9283
            phys_ram_size = ram_size;
9284
        } else
9285
            ram_size = phys_ram_size;
9286
    } else {
9287
        if (ram_size == 0)
9288
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9289

    
9290
        phys_ram_size += ram_size;
9291
    }
9292

    
9293
    phys_ram_base = qemu_vmalloc(phys_ram_size);
9294
    if (!phys_ram_base) {
9295
        fprintf(stderr, "Could not allocate physical memory\n");
9296
        exit(1);
9297
    }
9298

    
9299
    /* init the dynamic translator */
9300
    cpu_exec_init_all(tb_size * 1024 * 1024);
9301

    
9302
    bdrv_init();
9303

    
9304
    /* we always create the cdrom drive, even if no disk is there */
9305

    
9306
    if (nb_drives_opt < MAX_DRIVES)
9307
        drive_add(NULL, CDROM_ALIAS);
9308

    
9309
    /* we always create at least one floppy */
9310

    
9311
    if (nb_drives_opt < MAX_DRIVES)
9312
        drive_add(NULL, FD_ALIAS, 0);
9313

    
9314
    /* we always create one sd slot, even if no card is in it */
9315

    
9316
    if (nb_drives_opt < MAX_DRIVES)
9317
        drive_add(NULL, SD_ALIAS);
9318

    
9319
    /* open the virtual block devices */
9320

    
9321
    for(i = 0; i < nb_drives_opt; i++)
9322
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9323
            exit(1);
9324

    
9325
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9326
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9327

    
9328
    /* terminal init */
9329
    memset(&display_state, 0, sizeof(display_state));
9330
    if (nographic) {
9331
        if (curses) {
9332
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9333
            exit(1);
9334
        }
9335
        /* nearly nothing to do */
9336
        dumb_display_init(ds);
9337
    } else if (vnc_display != NULL) {
9338
        vnc_display_init(ds);
9339
        if (vnc_display_open(ds, vnc_display) < 0)
9340
            exit(1);
9341
    } else
9342
#if defined(CONFIG_CURSES)
9343
    if (curses) {
9344
        curses_display_init(ds, full_screen);
9345
    } else
9346
#endif
9347
    {
9348
#if defined(CONFIG_SDL)
9349
        sdl_display_init(ds, full_screen, no_frame);
9350
#elif defined(CONFIG_COCOA)
9351
        cocoa_display_init(ds, full_screen);
9352
#else
9353
        dumb_display_init(ds);
9354
#endif
9355
    }
9356

    
9357
#ifndef _WIN32
9358
    /* must be after terminal init, SDL library changes signal handlers */
9359
    termsig_setup();
9360
#endif
9361

    
9362
    /* Maintain compatibility with multiple stdio monitors */
9363
    if (!strcmp(monitor_device,"stdio")) {
9364
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9365
            const char *devname = serial_devices[i];
9366
            if (devname && !strcmp(devname,"mon:stdio")) {
9367
                monitor_device = NULL;
9368
                break;
9369
            } else if (devname && !strcmp(devname,"stdio")) {
9370
                monitor_device = NULL;
9371
                serial_devices[i] = "mon:stdio";
9372
                break;
9373
            }
9374
        }
9375
    }
9376
    if (monitor_device) {
9377
        monitor_hd = qemu_chr_open(monitor_device);
9378
        if (!monitor_hd) {
9379
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9380
            exit(1);
9381
        }
9382
        monitor_init(monitor_hd, !nographic);
9383
    }
9384

    
9385
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9386
        const char *devname = serial_devices[i];
9387
        if (devname && strcmp(devname, "none")) {
9388
            serial_hds[i] = qemu_chr_open(devname);
9389
            if (!serial_hds[i]) {
9390
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
9391
                        devname);
9392
                exit(1);
9393
            }
9394
            if (strstart(devname, "vc", 0))
9395
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9396
        }
9397
    }
9398

    
9399
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9400
        const char *devname = parallel_devices[i];
9401
        if (devname && strcmp(devname, "none")) {
9402
            parallel_hds[i] = qemu_chr_open(devname);
9403
            if (!parallel_hds[i]) {
9404
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9405
                        devname);
9406
                exit(1);
9407
            }
9408
            if (strstart(devname, "vc", 0))
9409
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9410
        }
9411
    }
9412

    
9413
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
9414
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9415

    
9416
    /* init USB devices */
9417
    if (usb_enabled) {
9418
        for(i = 0; i < usb_devices_index; i++) {
9419
            if (usb_device_add(usb_devices[i]) < 0) {
9420
                fprintf(stderr, "Warning: could not add USB device %s\n",
9421
                        usb_devices[i]);
9422
            }
9423
        }
9424
    }
9425

    
9426
    if (display_state.dpy_refresh) {
9427
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9428
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9429
    }
9430

    
9431
#ifdef CONFIG_GDBSTUB
9432
    if (use_gdbstub) {
9433
        /* XXX: use standard host:port notation and modify options
9434
           accordingly. */
9435
        if (gdbserver_start(gdbstub_port) < 0) {
9436
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9437
                    gdbstub_port);
9438
            exit(1);
9439
        }
9440
    }
9441
#endif
9442

    
9443
    if (loadvm)
9444
        do_loadvm(loadvm);
9445

    
9446
    {
9447
        /* XXX: simplify init */
9448
        read_passwords();
9449
        if (autostart) {
9450
            vm_start();
9451
        }
9452
    }
9453

    
9454
    if (daemonize) {
9455
        uint8_t status = 0;
9456
        ssize_t len;
9457
        int fd;
9458

    
9459
    again1:
9460
        len = write(fds[1], &status, 1);
9461
        if (len == -1 && (errno == EINTR))
9462
            goto again1;
9463

    
9464
        if (len != 1)
9465
            exit(1);
9466

    
9467
        chdir("/");
9468
        TFR(fd = open("/dev/null", O_RDWR));
9469
        if (fd == -1)
9470
            exit(1);
9471

    
9472
        dup2(fd, 0);
9473
        dup2(fd, 1);
9474
        dup2(fd, 2);
9475

    
9476
        close(fd);
9477
    }
9478

    
9479
    main_loop();
9480
    quit_timers();
9481

    
9482
#if !defined(_WIN32)
9483
    /* close network clients */
9484
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9485
        VLANClientState *vc;
9486

    
9487
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9488
            if (vc->fd_read == tap_receive) {
9489
                char ifname[64];
9490
                TAPState *s = vc->opaque;
9491

    
9492
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9493
                    s->down_script[0])
9494
                    launch_script(s->down_script, ifname, s->fd);
9495
            }
9496
#if defined(CONFIG_VDE)
9497
            if (vc->fd_read == vde_from_qemu) {
9498
                VDEState *s = vc->opaque;
9499
                vde_close(s->vde);
9500
            }
9501
#endif
9502
        }
9503
    }
9504
#endif
9505
    return 0;
9506
}