Statistics
| Branch: | Revision:

root / hw / etraxfs_timer.c @ 997641a8

History | View | Annotate | Download (7.8 kB)

1
/*
2
 * QEMU ETRAX Timers
3
 *
4
 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27
#include "sysemu.h"
28
#include "qemu-timer.h"
29

    
30
#define D(x)
31

    
32
#define RW_TMR0_DIV   0x00
33
#define R_TMR0_DATA   0x04
34
#define RW_TMR0_CTRL  0x08
35
#define RW_TMR1_DIV   0x10
36
#define R_TMR1_DATA   0x14
37
#define RW_TMR1_CTRL  0x18
38
#define R_TIME        0x38
39
#define RW_WD_CTRL    0x40
40
#define R_WD_STAT     0x44
41
#define RW_INTR_MASK  0x48
42
#define RW_ACK_INTR   0x4c
43
#define R_INTR        0x50
44
#define R_MASKED_INTR 0x54
45

    
46
struct fs_timer_t {
47
        CPUState *env;
48
        qemu_irq *irq;
49
        qemu_irq *nmi;
50

    
51
        QEMUBH *bh_t0;
52
        QEMUBH *bh_t1;
53
        QEMUBH *bh_wd;
54
        ptimer_state *ptimer_t0;
55
        ptimer_state *ptimer_t1;
56
        ptimer_state *ptimer_wd;
57
        struct timeval last;
58

    
59
        int wd_hits;
60

    
61
        /* Control registers.  */
62
        uint32_t rw_tmr0_div;
63
        uint32_t r_tmr0_data;
64
        uint32_t rw_tmr0_ctrl;
65

    
66
        uint32_t rw_tmr1_div;
67
        uint32_t r_tmr1_data;
68
        uint32_t rw_tmr1_ctrl;
69

    
70
        uint32_t rw_wd_ctrl;
71

    
72
        uint32_t rw_intr_mask;
73
        uint32_t rw_ack_intr;
74
        uint32_t r_intr;
75
        uint32_t r_masked_intr;
76
};
77

    
78
static uint32_t timer_rinvalid (void *opaque, target_phys_addr_t addr)
79
{
80
        struct fs_timer_t *t = opaque;
81
        CPUState *env = t->env;
82
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
83
                  addr);
84
        return 0;
85
}
86

    
87
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
88
{
89
        struct fs_timer_t *t = opaque;
90
        uint32_t r = 0;
91

    
92
        switch (addr) {
93
        case R_TMR0_DATA:
94
                break;
95
        case R_TMR1_DATA:
96
                D(printf ("R_TMR1_DATA\n"));
97
                break;
98
        case R_TIME:
99
                r = qemu_get_clock(vm_clock) * 10;
100
                break;
101
        case RW_INTR_MASK:
102
                r = t->rw_intr_mask;
103
                break;
104
        case R_MASKED_INTR:
105
                r = t->r_intr & t->rw_intr_mask;
106
                break;
107
        default:
108
                D(printf ("%s %x\n", __func__, addr));
109
                break;
110
        }
111
        return r;
112
}
113

    
114
static void
115
timer_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
116
{
117
        struct fs_timer_t *t = opaque;
118
        CPUState *env = t->env;
119
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
120
                  addr);
121
}
122

    
123
#define TIMER_SLOWDOWN 1
124
static void update_ctrl(struct fs_timer_t *t, int tnum)
125
{
126
        unsigned int op;
127
        unsigned int freq;
128
        unsigned int freq_hz;
129
        unsigned int div;
130
        uint32_t ctrl;
131

    
132
        ptimer_state *timer;
133

    
134
        if (tnum == 0) {
135
                ctrl = t->rw_tmr0_ctrl;
136
                div = t->rw_tmr0_div;
137
                timer = t->ptimer_t0;
138
        } else {
139
                ctrl = t->rw_tmr1_ctrl;
140
                div = t->rw_tmr1_div;
141
                timer = t->ptimer_t1;
142
        }
143

    
144

    
145
        op = ctrl & 3;
146
        freq = ctrl >> 2;
147
        freq_hz = 32000000;
148

    
149
        switch (freq)
150
        {
151
        case 0:
152
        case 1:
153
                D(printf ("extern or disabled timer clock?\n"));
154
                break;
155
        case 4: freq_hz =  29493000; break;
156
        case 5: freq_hz =  32000000; break;
157
        case 6: freq_hz =  32768000; break;
158
        case 7: freq_hz = 100001000; break;
159
        default:
160
                abort();
161
                break;
162
        }
163

    
164
        D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
165
        div = div * TIMER_SLOWDOWN;
166
        div >>= 10;
167
        freq_hz >>= 10;
168
        ptimer_set_freq(timer, freq_hz);
169
        ptimer_set_limit(timer, div, 0);
170

    
171
        switch (op)
172
        {
173
                case 0:
174
                        /* Load.  */
175
                        ptimer_set_limit(timer, div, 1);
176
                        break;
177
                case 1:
178
                        /* Hold.  */
179
                        ptimer_stop(timer);
180
                        break;
181
                case 2:
182
                        /* Run.  */
183
                        ptimer_run(timer, 0);
184
                        break;
185
                default:
186
                        abort();
187
                        break;
188
        }
189
}
190

    
191
static void timer_update_irq(struct fs_timer_t *t)
192
{
193
        t->r_intr &= ~(t->rw_ack_intr);
194
        t->r_masked_intr = t->r_intr & t->rw_intr_mask;
195

    
196
        D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
197
        if (t->r_masked_intr)
198
                qemu_irq_raise(t->irq[0]);
199
        else
200
                qemu_irq_lower(t->irq[0]);
201
}
202

    
203
static void timer0_hit(void *opaque)
204
{
205
        struct fs_timer_t *t = opaque;
206
        t->r_intr |= 1;
207
        timer_update_irq(t);
208
}
209

    
210
static void timer1_hit(void *opaque)
211
{
212
        struct fs_timer_t *t = opaque;
213
        t->r_intr |= 2;
214
        timer_update_irq(t);
215
}
216

    
217
static void watchdog_hit(void *opaque)
218
{
219
        struct fs_timer_t *t = opaque;
220
        if (t->wd_hits == 0) {
221
                /* real hw gives a single tick before reseting but we are
222
                   a bit friendlier to compensate for our slower execution.  */
223
                ptimer_set_count(t->ptimer_wd, 10);
224
                ptimer_run(t->ptimer_wd, 1);
225
                qemu_irq_raise(t->nmi[0]);
226
        }
227
        else
228
                qemu_system_reset_request();
229

    
230
        t->wd_hits++;
231
}
232

    
233
static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
234
{
235
        unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
236
        unsigned int wd_key = t->rw_wd_ctrl >> 9;
237
        unsigned int wd_cnt = t->rw_wd_ctrl & 511;
238
        unsigned int new_key = value >> 9 & ((1 << 7) - 1);
239
        unsigned int new_cmd = (value >> 8) & 1;
240

    
241
        /* If the watchdog is enabled, they written key must match the
242
           complement of the previous.  */
243
        wd_key = ~wd_key & ((1 << 7) - 1);
244

    
245
        if (wd_en && wd_key != new_key)
246
                return;
247

    
248
        D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", 
249
                 wd_en, new_key, wd_key, new_cmd, wd_cnt));
250

    
251
        if (t->wd_hits)
252
                qemu_irq_lower(t->nmi[0]);
253

    
254
        t->wd_hits = 0;
255

    
256
        ptimer_set_freq(t->ptimer_wd, 760);
257
        if (wd_cnt == 0)
258
                wd_cnt = 256;
259
        ptimer_set_count(t->ptimer_wd, wd_cnt);
260
        if (new_cmd)
261
                ptimer_run(t->ptimer_wd, 1);
262
        else
263
                ptimer_stop(t->ptimer_wd);
264

    
265
        t->rw_wd_ctrl = value;
266
}
267

    
268
static void
269
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
270
{
271
        struct fs_timer_t *t = opaque;
272

    
273
        switch (addr)
274
        {
275
                case RW_TMR0_DIV:
276
                        t->rw_tmr0_div = value;
277
                        break;
278
                case RW_TMR0_CTRL:
279
                        D(printf ("RW_TMR0_CTRL=%x\n", value));
280
                        t->rw_tmr0_ctrl = value;
281
                        update_ctrl(t, 0);
282
                        break;
283
                case RW_TMR1_DIV:
284
                        t->rw_tmr1_div = value;
285
                        break;
286
                case RW_TMR1_CTRL:
287
                        D(printf ("RW_TMR1_CTRL=%x\n", value));
288
                        t->rw_tmr1_ctrl = value;
289
                        update_ctrl(t, 1);
290
                        break;
291
                case RW_INTR_MASK:
292
                        D(printf ("RW_INTR_MASK=%x\n", value));
293
                        t->rw_intr_mask = value;
294
                        timer_update_irq(t);
295
                        break;
296
                case RW_WD_CTRL:
297
                        timer_watchdog_update(t, value);
298
                        break;
299
                case RW_ACK_INTR:
300
                        t->rw_ack_intr = value;
301
                        timer_update_irq(t);
302
                        t->rw_ack_intr = 0;
303
                        break;
304
                default:
305
                        printf ("%s " TARGET_FMT_plx " %x\n",
306
                                __func__, addr, value);
307
                        break;
308
        }
309
}
310

    
311
static CPUReadMemoryFunc *timer_read[] = {
312
        &timer_rinvalid,
313
        &timer_rinvalid,
314
        &timer_readl,
315
};
316

    
317
static CPUWriteMemoryFunc *timer_write[] = {
318
        &timer_winvalid,
319
        &timer_winvalid,
320
        &timer_writel,
321
};
322

    
323
static void etraxfs_timer_reset(void *opaque)
324
{
325
        struct fs_timer_t *t = opaque;
326

    
327
        ptimer_stop(t->ptimer_t0);
328
        ptimer_stop(t->ptimer_t1);
329
        ptimer_stop(t->ptimer_wd);
330
        t->rw_wd_ctrl = 0;
331
        t->r_intr = 0;
332
        t->rw_intr_mask = 0;
333
        qemu_irq_lower(t->irq[0]);
334
}
335

    
336
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
337
                        target_phys_addr_t base)
338
{
339
        static struct fs_timer_t *t;
340
        int timer_regs;
341

    
342
        t = qemu_mallocz(sizeof *t);
343
        if (!t)
344
                return;
345

    
346
        t->bh_t0 = qemu_bh_new(timer0_hit, t);
347
        t->bh_t1 = qemu_bh_new(timer1_hit, t);
348
        t->bh_wd = qemu_bh_new(watchdog_hit, t);
349
        t->ptimer_t0 = ptimer_init(t->bh_t0);
350
        t->ptimer_t1 = ptimer_init(t->bh_t1);
351
        t->ptimer_wd = ptimer_init(t->bh_wd);
352
        t->irq = irqs;
353
        t->nmi = nmi;
354
        t->env = env;
355

    
356
        timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
357
        cpu_register_physical_memory (base, 0x5c, timer_regs);
358

    
359
        qemu_register_reset(etraxfs_timer_reset, t);
360
}