Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 99a0949b

History | View | Annotate | Download (21.5 kB)

1 80cabfad bellard
/*
2 80cabfad bellard
 * QEMU MC146818 RTC emulation
3 5fafdf24 ths
 *
4 80cabfad bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 5fafdf24 ths
 *
6 80cabfad bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 80cabfad bellard
 * of this software and associated documentation files (the "Software"), to deal
8 80cabfad bellard
 * in the Software without restriction, including without limitation the rights
9 80cabfad bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 80cabfad bellard
 * copies of the Software, and to permit persons to whom the Software is
11 80cabfad bellard
 * furnished to do so, subject to the following conditions:
12 80cabfad bellard
 *
13 80cabfad bellard
 * The above copyright notice and this permission notice shall be included in
14 80cabfad bellard
 * all copies or substantial portions of the Software.
15 80cabfad bellard
 *
16 80cabfad bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 80cabfad bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 80cabfad bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 80cabfad bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 80cabfad bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 80cabfad bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 80cabfad bellard
 * THE SOFTWARE.
23 80cabfad bellard
 */
24 87ecb68b pbrook
#include "hw.h"
25 87ecb68b pbrook
#include "qemu-timer.h"
26 87ecb68b pbrook
#include "sysemu.h"
27 87ecb68b pbrook
#include "pc.h"
28 87ecb68b pbrook
#include "isa.h"
29 16b29ae1 aliguori
#include "hpet_emul.h"
30 80cabfad bellard
31 80cabfad bellard
//#define DEBUG_CMOS
32 80cabfad bellard
33 80cabfad bellard
#define RTC_SECONDS             0
34 80cabfad bellard
#define RTC_SECONDS_ALARM       1
35 80cabfad bellard
#define RTC_MINUTES             2
36 80cabfad bellard
#define RTC_MINUTES_ALARM       3
37 80cabfad bellard
#define RTC_HOURS               4
38 80cabfad bellard
#define RTC_HOURS_ALARM         5
39 80cabfad bellard
#define RTC_ALARM_DONT_CARE    0xC0
40 80cabfad bellard
41 80cabfad bellard
#define RTC_DAY_OF_WEEK         6
42 80cabfad bellard
#define RTC_DAY_OF_MONTH        7
43 80cabfad bellard
#define RTC_MONTH               8
44 80cabfad bellard
#define RTC_YEAR                9
45 80cabfad bellard
46 80cabfad bellard
#define RTC_REG_A               10
47 80cabfad bellard
#define RTC_REG_B               11
48 80cabfad bellard
#define RTC_REG_C               12
49 80cabfad bellard
#define RTC_REG_D               13
50 80cabfad bellard
51 dff38e7b bellard
#define REG_A_UIP 0x80
52 80cabfad bellard
53 100d9891 aurel32
#define REG_B_SET  0x80
54 100d9891 aurel32
#define REG_B_PIE  0x40
55 100d9891 aurel32
#define REG_B_AIE  0x20
56 100d9891 aurel32
#define REG_B_UIE  0x10
57 100d9891 aurel32
#define REG_B_SQWE 0x08
58 100d9891 aurel32
#define REG_B_DM   0x04
59 dff38e7b bellard
60 72716184 Anthony Liguori
#define REG_C_UF   0x10
61 72716184 Anthony Liguori
#define REG_C_IRQF 0x80
62 72716184 Anthony Liguori
#define REG_C_PF   0x40
63 72716184 Anthony Liguori
#define REG_C_AF   0x20
64 72716184 Anthony Liguori
65 dff38e7b bellard
struct RTCState {
66 32e0c826 Gerd Hoffmann
    ISADevice dev;
67 dff38e7b bellard
    uint8_t cmos_data[128];
68 dff38e7b bellard
    uint8_t cmos_index;
69 43f493af bellard
    struct tm current_tm;
70 32e0c826 Gerd Hoffmann
    int32_t base_year;
71 d537cf6c pbrook
    qemu_irq irq;
72 100d9891 aurel32
    qemu_irq sqw_irq;
73 18c6e2ff ths
    int it_shift;
74 dff38e7b bellard
    /* periodic timer */
75 dff38e7b bellard
    QEMUTimer *periodic_timer;
76 dff38e7b bellard
    int64_t next_periodic_time;
77 dff38e7b bellard
    /* second update */
78 dff38e7b bellard
    int64_t next_second_time;
79 73822ec8 aliguori
#ifdef TARGET_I386
80 73822ec8 aliguori
    uint32_t irq_coalesced;
81 73822ec8 aliguori
    uint32_t period;
82 93b66569 aliguori
    QEMUTimer *coalesced_timer;
83 73822ec8 aliguori
#endif
84 dff38e7b bellard
    QEMUTimer *second_timer;
85 dff38e7b bellard
    QEMUTimer *second_timer2;
86 dff38e7b bellard
};
87 dff38e7b bellard
88 16b29ae1 aliguori
static void rtc_irq_raise(qemu_irq irq) {
89 c50c2d68 aurel32
    /* When HPET is operating in legacy mode, RTC interrupts are disabled
90 16b29ae1 aliguori
     * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
91 c50c2d68 aurel32
     * mode is established while interrupt is raised. We want it to
92 16b29ae1 aliguori
     * be lowered in any case
93 c50c2d68 aurel32
     */
94 16b29ae1 aliguori
#if defined TARGET_I386 || defined TARGET_X86_64
95 c50c2d68 aurel32
    if (!hpet_in_legacy_mode())
96 16b29ae1 aliguori
#endif
97 16b29ae1 aliguori
        qemu_irq_raise(irq);
98 16b29ae1 aliguori
}
99 16b29ae1 aliguori
100 dff38e7b bellard
static void rtc_set_time(RTCState *s);
101 dff38e7b bellard
static void rtc_copy_date(RTCState *s);
102 dff38e7b bellard
103 93b66569 aliguori
#ifdef TARGET_I386
104 93b66569 aliguori
static void rtc_coalesced_timer_update(RTCState *s)
105 93b66569 aliguori
{
106 93b66569 aliguori
    if (s->irq_coalesced == 0) {
107 93b66569 aliguori
        qemu_del_timer(s->coalesced_timer);
108 93b66569 aliguori
    } else {
109 93b66569 aliguori
        /* divide each RTC interval to 2 - 8 smaller intervals */
110 93b66569 aliguori
        int c = MIN(s->irq_coalesced, 7) + 1; 
111 93b66569 aliguori
        int64_t next_clock = qemu_get_clock(vm_clock) +
112 6ee093c9 Juan Quintela
                muldiv64(s->period / c, get_ticks_per_sec(), 32768);
113 93b66569 aliguori
        qemu_mod_timer(s->coalesced_timer, next_clock);
114 93b66569 aliguori
    }
115 93b66569 aliguori
}
116 93b66569 aliguori
117 93b66569 aliguori
static void rtc_coalesced_timer(void *opaque)
118 93b66569 aliguori
{
119 93b66569 aliguori
    RTCState *s = opaque;
120 93b66569 aliguori
121 93b66569 aliguori
    if (s->irq_coalesced != 0) {
122 93b66569 aliguori
        apic_reset_irq_delivered();
123 93b66569 aliguori
        s->cmos_data[RTC_REG_C] |= 0xc0;
124 93b66569 aliguori
        rtc_irq_raise(s->irq);
125 93b66569 aliguori
        if (apic_get_irq_delivered()) {
126 93b66569 aliguori
            s->irq_coalesced--;
127 93b66569 aliguori
        }
128 93b66569 aliguori
    }
129 93b66569 aliguori
130 93b66569 aliguori
    rtc_coalesced_timer_update(s);
131 93b66569 aliguori
}
132 93b66569 aliguori
#endif
133 93b66569 aliguori
134 dff38e7b bellard
static void rtc_timer_update(RTCState *s, int64_t current_time)
135 dff38e7b bellard
{
136 dff38e7b bellard
    int period_code, period;
137 dff38e7b bellard
    int64_t cur_clock, next_irq_clock;
138 100d9891 aurel32
    int enable_pie;
139 dff38e7b bellard
140 dff38e7b bellard
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
141 16b29ae1 aliguori
#if defined TARGET_I386 || defined TARGET_X86_64
142 c50c2d68 aurel32
    /* disable periodic timer if hpet is in legacy mode, since interrupts are
143 16b29ae1 aliguori
     * disabled anyway.
144 16b29ae1 aliguori
     */
145 a8b01dd8 pbrook
    enable_pie = !hpet_in_legacy_mode();
146 16b29ae1 aliguori
#else
147 100d9891 aurel32
    enable_pie = 1;
148 16b29ae1 aliguori
#endif
149 100d9891 aurel32
    if (period_code != 0
150 100d9891 aurel32
        && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
151 100d9891 aurel32
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
152 dff38e7b bellard
        if (period_code <= 2)
153 dff38e7b bellard
            period_code += 7;
154 dff38e7b bellard
        /* period in 32 Khz cycles */
155 dff38e7b bellard
        period = 1 << (period_code - 1);
156 73822ec8 aliguori
#ifdef TARGET_I386
157 73822ec8 aliguori
        if(period != s->period)
158 73822ec8 aliguori
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
159 73822ec8 aliguori
        s->period = period;
160 73822ec8 aliguori
#endif
161 dff38e7b bellard
        /* compute 32 khz clock */
162 6ee093c9 Juan Quintela
        cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
163 dff38e7b bellard
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
164 6ee093c9 Juan Quintela
        s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
165 dff38e7b bellard
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
166 dff38e7b bellard
    } else {
167 73822ec8 aliguori
#ifdef TARGET_I386
168 73822ec8 aliguori
        s->irq_coalesced = 0;
169 73822ec8 aliguori
#endif
170 dff38e7b bellard
        qemu_del_timer(s->periodic_timer);
171 dff38e7b bellard
    }
172 dff38e7b bellard
}
173 dff38e7b bellard
174 dff38e7b bellard
static void rtc_periodic_timer(void *opaque)
175 dff38e7b bellard
{
176 dff38e7b bellard
    RTCState *s = opaque;
177 dff38e7b bellard
178 dff38e7b bellard
    rtc_timer_update(s, s->next_periodic_time);
179 100d9891 aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
180 100d9891 aurel32
        s->cmos_data[RTC_REG_C] |= 0xc0;
181 93b66569 aliguori
#ifdef TARGET_I386
182 93b66569 aliguori
        if(rtc_td_hack) {
183 93b66569 aliguori
            apic_reset_irq_delivered();
184 93b66569 aliguori
            rtc_irq_raise(s->irq);
185 93b66569 aliguori
            if (!apic_get_irq_delivered()) {
186 93b66569 aliguori
                s->irq_coalesced++;
187 93b66569 aliguori
                rtc_coalesced_timer_update(s);
188 93b66569 aliguori
            }
189 93b66569 aliguori
        } else
190 93b66569 aliguori
#endif
191 100d9891 aurel32
        rtc_irq_raise(s->irq);
192 100d9891 aurel32
    }
193 100d9891 aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
194 100d9891 aurel32
        /* Not square wave at all but we don't want 2048Hz interrupts!
195 100d9891 aurel32
           Must be seen as a pulse.  */
196 100d9891 aurel32
        qemu_irq_raise(s->sqw_irq);
197 100d9891 aurel32
    }
198 dff38e7b bellard
}
199 80cabfad bellard
200 b41a2cd1 bellard
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
201 80cabfad bellard
{
202 b41a2cd1 bellard
    RTCState *s = opaque;
203 80cabfad bellard
204 80cabfad bellard
    if ((addr & 1) == 0) {
205 80cabfad bellard
        s->cmos_index = data & 0x7f;
206 80cabfad bellard
    } else {
207 80cabfad bellard
#ifdef DEBUG_CMOS
208 80cabfad bellard
        printf("cmos: write index=0x%02x val=0x%02x\n",
209 80cabfad bellard
               s->cmos_index, data);
210 3b46e624 ths
#endif
211 dff38e7b bellard
        switch(s->cmos_index) {
212 80cabfad bellard
        case RTC_SECONDS_ALARM:
213 80cabfad bellard
        case RTC_MINUTES_ALARM:
214 80cabfad bellard
        case RTC_HOURS_ALARM:
215 80cabfad bellard
            /* XXX: not supported */
216 80cabfad bellard
            s->cmos_data[s->cmos_index] = data;
217 80cabfad bellard
            break;
218 80cabfad bellard
        case RTC_SECONDS:
219 80cabfad bellard
        case RTC_MINUTES:
220 80cabfad bellard
        case RTC_HOURS:
221 80cabfad bellard
        case RTC_DAY_OF_WEEK:
222 80cabfad bellard
        case RTC_DAY_OF_MONTH:
223 80cabfad bellard
        case RTC_MONTH:
224 80cabfad bellard
        case RTC_YEAR:
225 80cabfad bellard
            s->cmos_data[s->cmos_index] = data;
226 dff38e7b bellard
            /* if in set mode, do not update the time */
227 dff38e7b bellard
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
228 dff38e7b bellard
                rtc_set_time(s);
229 dff38e7b bellard
            }
230 80cabfad bellard
            break;
231 80cabfad bellard
        case RTC_REG_A:
232 dff38e7b bellard
            /* UIP bit is read only */
233 dff38e7b bellard
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
234 dff38e7b bellard
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
235 dff38e7b bellard
            rtc_timer_update(s, qemu_get_clock(vm_clock));
236 dff38e7b bellard
            break;
237 80cabfad bellard
        case RTC_REG_B:
238 dff38e7b bellard
            if (data & REG_B_SET) {
239 dff38e7b bellard
                /* set mode: reset UIP mode */
240 dff38e7b bellard
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
241 dff38e7b bellard
                data &= ~REG_B_UIE;
242 dff38e7b bellard
            } else {
243 dff38e7b bellard
                /* if disabling set mode, update the time */
244 dff38e7b bellard
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
245 dff38e7b bellard
                    rtc_set_time(s);
246 dff38e7b bellard
                }
247 dff38e7b bellard
            }
248 dff38e7b bellard
            s->cmos_data[RTC_REG_B] = data;
249 dff38e7b bellard
            rtc_timer_update(s, qemu_get_clock(vm_clock));
250 80cabfad bellard
            break;
251 80cabfad bellard
        case RTC_REG_C:
252 80cabfad bellard
        case RTC_REG_D:
253 80cabfad bellard
            /* cannot write to them */
254 80cabfad bellard
            break;
255 80cabfad bellard
        default:
256 80cabfad bellard
            s->cmos_data[s->cmos_index] = data;
257 80cabfad bellard
            break;
258 80cabfad bellard
        }
259 80cabfad bellard
    }
260 80cabfad bellard
}
261 80cabfad bellard
262 dff38e7b bellard
static inline int to_bcd(RTCState *s, int a)
263 80cabfad bellard
{
264 6f1bf24d aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
265 dff38e7b bellard
        return a;
266 dff38e7b bellard
    } else {
267 dff38e7b bellard
        return ((a / 10) << 4) | (a % 10);
268 dff38e7b bellard
    }
269 80cabfad bellard
}
270 80cabfad bellard
271 dff38e7b bellard
static inline int from_bcd(RTCState *s, int a)
272 80cabfad bellard
{
273 6f1bf24d aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
274 dff38e7b bellard
        return a;
275 dff38e7b bellard
    } else {
276 dff38e7b bellard
        return ((a >> 4) * 10) + (a & 0x0f);
277 dff38e7b bellard
    }
278 dff38e7b bellard
}
279 dff38e7b bellard
280 dff38e7b bellard
static void rtc_set_time(RTCState *s)
281 dff38e7b bellard
{
282 43f493af bellard
    struct tm *tm = &s->current_tm;
283 dff38e7b bellard
284 dff38e7b bellard
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
285 dff38e7b bellard
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
286 43f493af bellard
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
287 43f493af bellard
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
288 43f493af bellard
        (s->cmos_data[RTC_HOURS] & 0x80)) {
289 43f493af bellard
        tm->tm_hour += 12;
290 43f493af bellard
    }
291 6f1bf24d aurel32
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
292 dff38e7b bellard
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
293 dff38e7b bellard
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
294 42fc73a1 aurel32
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
295 43f493af bellard
}
296 43f493af bellard
297 43f493af bellard
static void rtc_copy_date(RTCState *s)
298 43f493af bellard
{
299 43f493af bellard
    const struct tm *tm = &s->current_tm;
300 42fc73a1 aurel32
    int year;
301 dff38e7b bellard
302 43f493af bellard
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
303 43f493af bellard
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
304 43f493af bellard
    if (s->cmos_data[RTC_REG_B] & 0x02) {
305 43f493af bellard
        /* 24 hour format */
306 43f493af bellard
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
307 43f493af bellard
    } else {
308 43f493af bellard
        /* 12 hour format */
309 43f493af bellard
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
310 43f493af bellard
        if (tm->tm_hour >= 12)
311 43f493af bellard
            s->cmos_data[RTC_HOURS] |= 0x80;
312 43f493af bellard
    }
313 6f1bf24d aurel32
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
314 43f493af bellard
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
315 43f493af bellard
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
316 42fc73a1 aurel32
    year = (tm->tm_year - s->base_year) % 100;
317 42fc73a1 aurel32
    if (year < 0)
318 42fc73a1 aurel32
        year += 100;
319 42fc73a1 aurel32
    s->cmos_data[RTC_YEAR] = to_bcd(s, year);
320 43f493af bellard
}
321 43f493af bellard
322 43f493af bellard
/* month is between 0 and 11. */
323 43f493af bellard
static int get_days_in_month(int month, int year)
324 43f493af bellard
{
325 5fafdf24 ths
    static const int days_tab[12] = {
326 5fafdf24 ths
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
327 43f493af bellard
    };
328 43f493af bellard
    int d;
329 43f493af bellard
    if ((unsigned )month >= 12)
330 43f493af bellard
        return 31;
331 43f493af bellard
    d = days_tab[month];
332 43f493af bellard
    if (month == 1) {
333 43f493af bellard
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
334 43f493af bellard
            d++;
335 43f493af bellard
    }
336 43f493af bellard
    return d;
337 43f493af bellard
}
338 43f493af bellard
339 43f493af bellard
/* update 'tm' to the next second */
340 43f493af bellard
static void rtc_next_second(struct tm *tm)
341 43f493af bellard
{
342 43f493af bellard
    int days_in_month;
343 43f493af bellard
344 43f493af bellard
    tm->tm_sec++;
345 43f493af bellard
    if ((unsigned)tm->tm_sec >= 60) {
346 43f493af bellard
        tm->tm_sec = 0;
347 43f493af bellard
        tm->tm_min++;
348 43f493af bellard
        if ((unsigned)tm->tm_min >= 60) {
349 43f493af bellard
            tm->tm_min = 0;
350 43f493af bellard
            tm->tm_hour++;
351 43f493af bellard
            if ((unsigned)tm->tm_hour >= 24) {
352 43f493af bellard
                tm->tm_hour = 0;
353 43f493af bellard
                /* next day */
354 43f493af bellard
                tm->tm_wday++;
355 43f493af bellard
                if ((unsigned)tm->tm_wday >= 7)
356 43f493af bellard
                    tm->tm_wday = 0;
357 5fafdf24 ths
                days_in_month = get_days_in_month(tm->tm_mon,
358 43f493af bellard
                                                  tm->tm_year + 1900);
359 43f493af bellard
                tm->tm_mday++;
360 43f493af bellard
                if (tm->tm_mday < 1) {
361 43f493af bellard
                    tm->tm_mday = 1;
362 43f493af bellard
                } else if (tm->tm_mday > days_in_month) {
363 43f493af bellard
                    tm->tm_mday = 1;
364 43f493af bellard
                    tm->tm_mon++;
365 43f493af bellard
                    if (tm->tm_mon >= 12) {
366 43f493af bellard
                        tm->tm_mon = 0;
367 43f493af bellard
                        tm->tm_year++;
368 43f493af bellard
                    }
369 43f493af bellard
                }
370 43f493af bellard
            }
371 43f493af bellard
        }
372 43f493af bellard
    }
373 dff38e7b bellard
}
374 dff38e7b bellard
375 43f493af bellard
376 dff38e7b bellard
static void rtc_update_second(void *opaque)
377 dff38e7b bellard
{
378 dff38e7b bellard
    RTCState *s = opaque;
379 4721c457 bellard
    int64_t delay;
380 dff38e7b bellard
381 dff38e7b bellard
    /* if the oscillator is not in normal operation, we do not update */
382 dff38e7b bellard
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
383 6ee093c9 Juan Quintela
        s->next_second_time += get_ticks_per_sec();
384 dff38e7b bellard
        qemu_mod_timer(s->second_timer, s->next_second_time);
385 dff38e7b bellard
    } else {
386 43f493af bellard
        rtc_next_second(&s->current_tm);
387 3b46e624 ths
388 dff38e7b bellard
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
389 dff38e7b bellard
            /* update in progress bit */
390 dff38e7b bellard
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
391 dff38e7b bellard
        }
392 4721c457 bellard
        /* should be 244 us = 8 / 32768 seconds, but currently the
393 4721c457 bellard
           timers do not have the necessary resolution. */
394 6ee093c9 Juan Quintela
        delay = (get_ticks_per_sec() * 1) / 100;
395 4721c457 bellard
        if (delay < 1)
396 4721c457 bellard
            delay = 1;
397 5fafdf24 ths
        qemu_mod_timer(s->second_timer2,
398 4721c457 bellard
                       s->next_second_time + delay);
399 dff38e7b bellard
    }
400 dff38e7b bellard
}
401 dff38e7b bellard
402 dff38e7b bellard
static void rtc_update_second2(void *opaque)
403 dff38e7b bellard
{
404 dff38e7b bellard
    RTCState *s = opaque;
405 dff38e7b bellard
406 dff38e7b bellard
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
407 dff38e7b bellard
        rtc_copy_date(s);
408 dff38e7b bellard
    }
409 dff38e7b bellard
410 dff38e7b bellard
    /* check alarm */
411 dff38e7b bellard
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
412 dff38e7b bellard
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
413 43f493af bellard
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
414 dff38e7b bellard
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
415 43f493af bellard
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
416 dff38e7b bellard
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
417 43f493af bellard
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
418 dff38e7b bellard
419 5fafdf24 ths
            s->cmos_data[RTC_REG_C] |= 0xa0;
420 16b29ae1 aliguori
            rtc_irq_raise(s->irq);
421 dff38e7b bellard
        }
422 dff38e7b bellard
    }
423 dff38e7b bellard
424 dff38e7b bellard
    /* update ended interrupt */
425 98815437 Bernhard Kauer
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
426 dff38e7b bellard
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
427 98815437 Bernhard Kauer
      s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
428 98815437 Bernhard Kauer
      rtc_irq_raise(s->irq);
429 dff38e7b bellard
    }
430 dff38e7b bellard
431 dff38e7b bellard
    /* clear update in progress bit */
432 dff38e7b bellard
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
433 dff38e7b bellard
434 6ee093c9 Juan Quintela
    s->next_second_time += get_ticks_per_sec();
435 dff38e7b bellard
    qemu_mod_timer(s->second_timer, s->next_second_time);
436 80cabfad bellard
}
437 80cabfad bellard
438 b41a2cd1 bellard
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
439 80cabfad bellard
{
440 b41a2cd1 bellard
    RTCState *s = opaque;
441 80cabfad bellard
    int ret;
442 80cabfad bellard
    if ((addr & 1) == 0) {
443 80cabfad bellard
        return 0xff;
444 80cabfad bellard
    } else {
445 80cabfad bellard
        switch(s->cmos_index) {
446 80cabfad bellard
        case RTC_SECONDS:
447 80cabfad bellard
        case RTC_MINUTES:
448 80cabfad bellard
        case RTC_HOURS:
449 80cabfad bellard
        case RTC_DAY_OF_WEEK:
450 80cabfad bellard
        case RTC_DAY_OF_MONTH:
451 80cabfad bellard
        case RTC_MONTH:
452 80cabfad bellard
        case RTC_YEAR:
453 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
454 80cabfad bellard
            break;
455 80cabfad bellard
        case RTC_REG_A:
456 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
457 80cabfad bellard
            break;
458 80cabfad bellard
        case RTC_REG_C:
459 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
460 d537cf6c pbrook
            qemu_irq_lower(s->irq);
461 5fafdf24 ths
            s->cmos_data[RTC_REG_C] = 0x00;
462 80cabfad bellard
            break;
463 80cabfad bellard
        default:
464 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
465 80cabfad bellard
            break;
466 80cabfad bellard
        }
467 80cabfad bellard
#ifdef DEBUG_CMOS
468 80cabfad bellard
        printf("cmos: read index=0x%02x val=0x%02x\n",
469 80cabfad bellard
               s->cmos_index, ret);
470 80cabfad bellard
#endif
471 80cabfad bellard
        return ret;
472 80cabfad bellard
    }
473 80cabfad bellard
}
474 80cabfad bellard
475 dff38e7b bellard
void rtc_set_memory(RTCState *s, int addr, int val)
476 dff38e7b bellard
{
477 dff38e7b bellard
    if (addr >= 0 && addr <= 127)
478 dff38e7b bellard
        s->cmos_data[addr] = val;
479 dff38e7b bellard
}
480 dff38e7b bellard
481 dff38e7b bellard
void rtc_set_date(RTCState *s, const struct tm *tm)
482 dff38e7b bellard
{
483 43f493af bellard
    s->current_tm = *tm;
484 dff38e7b bellard
    rtc_copy_date(s);
485 dff38e7b bellard
}
486 dff38e7b bellard
487 ea55ffb3 ths
/* PC cmos mappings */
488 ea55ffb3 ths
#define REG_IBM_CENTURY_BYTE        0x32
489 ea55ffb3 ths
#define REG_IBM_PS2_CENTURY_BYTE    0x37
490 ea55ffb3 ths
491 9596ebb7 pbrook
static void rtc_set_date_from_host(RTCState *s)
492 ea55ffb3 ths
{
493 f6503059 balrog
    struct tm tm;
494 ea55ffb3 ths
    int val;
495 ea55ffb3 ths
496 ea55ffb3 ths
    /* set the CMOS date */
497 f6503059 balrog
    qemu_get_timedate(&tm, 0);
498 f6503059 balrog
    rtc_set_date(s, &tm);
499 ea55ffb3 ths
500 f6503059 balrog
    val = to_bcd(s, (tm.tm_year / 100) + 19);
501 ea55ffb3 ths
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
502 ea55ffb3 ths
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
503 ea55ffb3 ths
}
504 ea55ffb3 ths
505 dff38e7b bellard
static void rtc_save(QEMUFile *f, void *opaque)
506 dff38e7b bellard
{
507 dff38e7b bellard
    RTCState *s = opaque;
508 dff38e7b bellard
509 dff38e7b bellard
    qemu_put_buffer(f, s->cmos_data, 128);
510 dff38e7b bellard
    qemu_put_8s(f, &s->cmos_index);
511 3b46e624 ths
512 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_sec);
513 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_min);
514 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_hour);
515 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_wday);
516 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_mday);
517 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_mon);
518 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_year);
519 dff38e7b bellard
520 dff38e7b bellard
    qemu_put_timer(f, s->periodic_timer);
521 bee8d684 ths
    qemu_put_be64(f, s->next_periodic_time);
522 dff38e7b bellard
523 bee8d684 ths
    qemu_put_be64(f, s->next_second_time);
524 dff38e7b bellard
    qemu_put_timer(f, s->second_timer);
525 dff38e7b bellard
    qemu_put_timer(f, s->second_timer2);
526 80cabfad bellard
}
527 80cabfad bellard
528 dff38e7b bellard
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
529 80cabfad bellard
{
530 dff38e7b bellard
    RTCState *s = opaque;
531 dff38e7b bellard
532 dff38e7b bellard
    if (version_id != 1)
533 dff38e7b bellard
        return -EINVAL;
534 80cabfad bellard
535 dff38e7b bellard
    qemu_get_buffer(f, s->cmos_data, 128);
536 dff38e7b bellard
    qemu_get_8s(f, &s->cmos_index);
537 43f493af bellard
538 bee8d684 ths
    s->current_tm.tm_sec=qemu_get_be32(f);
539 bee8d684 ths
    s->current_tm.tm_min=qemu_get_be32(f);
540 bee8d684 ths
    s->current_tm.tm_hour=qemu_get_be32(f);
541 bee8d684 ths
    s->current_tm.tm_wday=qemu_get_be32(f);
542 bee8d684 ths
    s->current_tm.tm_mday=qemu_get_be32(f);
543 bee8d684 ths
    s->current_tm.tm_mon=qemu_get_be32(f);
544 bee8d684 ths
    s->current_tm.tm_year=qemu_get_be32(f);
545 dff38e7b bellard
546 dff38e7b bellard
    qemu_get_timer(f, s->periodic_timer);
547 bee8d684 ths
    s->next_periodic_time=qemu_get_be64(f);
548 dff38e7b bellard
549 bee8d684 ths
    s->next_second_time=qemu_get_be64(f);
550 dff38e7b bellard
    qemu_get_timer(f, s->second_timer);
551 dff38e7b bellard
    qemu_get_timer(f, s->second_timer2);
552 dff38e7b bellard
    return 0;
553 dff38e7b bellard
}
554 dff38e7b bellard
555 73822ec8 aliguori
#ifdef TARGET_I386
556 73822ec8 aliguori
static void rtc_save_td(QEMUFile *f, void *opaque)
557 73822ec8 aliguori
{
558 73822ec8 aliguori
    RTCState *s = opaque;
559 73822ec8 aliguori
560 73822ec8 aliguori
    qemu_put_be32(f, s->irq_coalesced);
561 73822ec8 aliguori
    qemu_put_be32(f, s->period);
562 73822ec8 aliguori
}
563 73822ec8 aliguori
564 73822ec8 aliguori
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
565 73822ec8 aliguori
{
566 73822ec8 aliguori
    RTCState *s = opaque;
567 73822ec8 aliguori
568 73822ec8 aliguori
    if (version_id != 1)
569 73822ec8 aliguori
        return -EINVAL;
570 73822ec8 aliguori
571 73822ec8 aliguori
    s->irq_coalesced = qemu_get_be32(f);
572 73822ec8 aliguori
    s->period = qemu_get_be32(f);
573 93b66569 aliguori
    rtc_coalesced_timer_update(s);
574 73822ec8 aliguori
    return 0;
575 73822ec8 aliguori
}
576 73822ec8 aliguori
#endif
577 73822ec8 aliguori
578 eeb7c03c Gleb Natapov
static void rtc_reset(void *opaque)
579 eeb7c03c Gleb Natapov
{
580 eeb7c03c Gleb Natapov
    RTCState *s = opaque;
581 eeb7c03c Gleb Natapov
582 72716184 Anthony Liguori
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
583 72716184 Anthony Liguori
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
584 eeb7c03c Gleb Natapov
585 72716184 Anthony Liguori
    qemu_irq_lower(s->irq);
586 eeb7c03c Gleb Natapov
587 eeb7c03c Gleb Natapov
#ifdef TARGET_I386
588 eeb7c03c Gleb Natapov
    if (rtc_td_hack)
589 eeb7c03c Gleb Natapov
            s->irq_coalesced = 0;
590 eeb7c03c Gleb Natapov
#endif
591 eeb7c03c Gleb Natapov
}
592 eeb7c03c Gleb Natapov
593 32e0c826 Gerd Hoffmann
static int rtc_initfn(ISADevice *dev)
594 dff38e7b bellard
{
595 32e0c826 Gerd Hoffmann
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
596 32e0c826 Gerd Hoffmann
    int base = 0x70;
597 32e0c826 Gerd Hoffmann
    int isairq = 8;
598 dff38e7b bellard
599 32e0c826 Gerd Hoffmann
    isa_init_irq(dev, &s->irq, isairq);
600 80cabfad bellard
601 80cabfad bellard
    s->cmos_data[RTC_REG_A] = 0x26;
602 80cabfad bellard
    s->cmos_data[RTC_REG_B] = 0x02;
603 80cabfad bellard
    s->cmos_data[RTC_REG_C] = 0x00;
604 80cabfad bellard
    s->cmos_data[RTC_REG_D] = 0x80;
605 80cabfad bellard
606 ea55ffb3 ths
    rtc_set_date_from_host(s);
607 ea55ffb3 ths
608 5fafdf24 ths
    s->periodic_timer = qemu_new_timer(vm_clock,
609 dff38e7b bellard
                                       rtc_periodic_timer, s);
610 93b66569 aliguori
#ifdef TARGET_I386
611 93b66569 aliguori
    if (rtc_td_hack)
612 93b66569 aliguori
        s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
613 93b66569 aliguori
#endif
614 5fafdf24 ths
    s->second_timer = qemu_new_timer(vm_clock,
615 dff38e7b bellard
                                     rtc_update_second, s);
616 5fafdf24 ths
    s->second_timer2 = qemu_new_timer(vm_clock,
617 dff38e7b bellard
                                      rtc_update_second2, s);
618 dff38e7b bellard
619 6ee093c9 Juan Quintela
    s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100;
620 dff38e7b bellard
    qemu_mod_timer(s->second_timer2, s->next_second_time);
621 dff38e7b bellard
622 b41a2cd1 bellard
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
623 b41a2cd1 bellard
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
624 dff38e7b bellard
625 dff38e7b bellard
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
626 73822ec8 aliguori
#ifdef TARGET_I386
627 73822ec8 aliguori
    if (rtc_td_hack)
628 73822ec8 aliguori
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
629 73822ec8 aliguori
#endif
630 a08d4367 Jan Kiszka
    qemu_register_reset(rtc_reset, s);
631 32e0c826 Gerd Hoffmann
    return 0;
632 32e0c826 Gerd Hoffmann
}
633 32e0c826 Gerd Hoffmann
634 32e0c826 Gerd Hoffmann
RTCState *rtc_init(int base_year)
635 32e0c826 Gerd Hoffmann
{
636 32e0c826 Gerd Hoffmann
    ISADevice *dev;
637 eeb7c03c Gleb Natapov
638 32e0c826 Gerd Hoffmann
    dev = isa_create("mc146818rtc");
639 32e0c826 Gerd Hoffmann
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
640 32e0c826 Gerd Hoffmann
    qdev_init(&dev->qdev);
641 32e0c826 Gerd Hoffmann
    return DO_UPCAST(RTCState, dev, dev);
642 80cabfad bellard
}
643 80cabfad bellard
644 32e0c826 Gerd Hoffmann
static ISADeviceInfo mc146818rtc_info = {
645 32e0c826 Gerd Hoffmann
    .qdev.name     = "mc146818rtc",
646 32e0c826 Gerd Hoffmann
    .qdev.size     = sizeof(RTCState),
647 32e0c826 Gerd Hoffmann
    .qdev.no_user  = 1,
648 32e0c826 Gerd Hoffmann
    .init          = rtc_initfn,
649 32e0c826 Gerd Hoffmann
    .qdev.props    = (Property[]) {
650 32e0c826 Gerd Hoffmann
        DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
651 32e0c826 Gerd Hoffmann
        DEFINE_PROP_END_OF_LIST(),
652 32e0c826 Gerd Hoffmann
    }
653 32e0c826 Gerd Hoffmann
};
654 32e0c826 Gerd Hoffmann
655 32e0c826 Gerd Hoffmann
static void mc146818rtc_register(void)
656 100d9891 aurel32
{
657 32e0c826 Gerd Hoffmann
    isa_qdev_register(&mc146818rtc_info);
658 100d9891 aurel32
}
659 32e0c826 Gerd Hoffmann
device_init(mc146818rtc_register)
660 100d9891 aurel32
661 2ca9d013 ths
/* Memory mapped interface */
662 99a0949b malc
static uint32_t cmos_mm_readb (void *opaque, a_target_phys_addr addr)
663 2ca9d013 ths
{
664 2ca9d013 ths
    RTCState *s = opaque;
665 2ca9d013 ths
666 8da3ff18 pbrook
    return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
667 2ca9d013 ths
}
668 2ca9d013 ths
669 9596ebb7 pbrook
static void cmos_mm_writeb (void *opaque,
670 99a0949b malc
                            a_target_phys_addr addr, uint32_t value)
671 2ca9d013 ths
{
672 2ca9d013 ths
    RTCState *s = opaque;
673 2ca9d013 ths
674 8da3ff18 pbrook
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
675 2ca9d013 ths
}
676 2ca9d013 ths
677 99a0949b malc
static uint32_t cmos_mm_readw (void *opaque, a_target_phys_addr addr)
678 2ca9d013 ths
{
679 2ca9d013 ths
    RTCState *s = opaque;
680 18c6e2ff ths
    uint32_t val;
681 2ca9d013 ths
682 8da3ff18 pbrook
    val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
683 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
684 18c6e2ff ths
    val = bswap16(val);
685 18c6e2ff ths
#endif
686 18c6e2ff ths
    return val;
687 2ca9d013 ths
}
688 2ca9d013 ths
689 9596ebb7 pbrook
static void cmos_mm_writew (void *opaque,
690 99a0949b malc
                            a_target_phys_addr addr, uint32_t value)
691 2ca9d013 ths
{
692 2ca9d013 ths
    RTCState *s = opaque;
693 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
694 18c6e2ff ths
    value = bswap16(value);
695 18c6e2ff ths
#endif
696 8da3ff18 pbrook
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
697 2ca9d013 ths
}
698 2ca9d013 ths
699 99a0949b malc
static uint32_t cmos_mm_readl (void *opaque, a_target_phys_addr addr)
700 2ca9d013 ths
{
701 2ca9d013 ths
    RTCState *s = opaque;
702 18c6e2ff ths
    uint32_t val;
703 2ca9d013 ths
704 8da3ff18 pbrook
    val = cmos_ioport_read(s, addr >> s->it_shift);
705 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
706 18c6e2ff ths
    val = bswap32(val);
707 18c6e2ff ths
#endif
708 18c6e2ff ths
    return val;
709 2ca9d013 ths
}
710 2ca9d013 ths
711 9596ebb7 pbrook
static void cmos_mm_writel (void *opaque,
712 99a0949b malc
                            a_target_phys_addr addr, uint32_t value)
713 2ca9d013 ths
{
714 2ca9d013 ths
    RTCState *s = opaque;
715 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
716 18c6e2ff ths
    value = bswap32(value);
717 18c6e2ff ths
#endif
718 8da3ff18 pbrook
    cmos_ioport_write(s, addr >> s->it_shift, value);
719 2ca9d013 ths
}
720 2ca9d013 ths
721 d60efc6b Blue Swirl
static CPUReadMemoryFunc * const rtc_mm_read[] = {
722 2ca9d013 ths
    &cmos_mm_readb,
723 2ca9d013 ths
    &cmos_mm_readw,
724 2ca9d013 ths
    &cmos_mm_readl,
725 2ca9d013 ths
};
726 2ca9d013 ths
727 d60efc6b Blue Swirl
static CPUWriteMemoryFunc * const rtc_mm_write[] = {
728 2ca9d013 ths
    &cmos_mm_writeb,
729 2ca9d013 ths
    &cmos_mm_writew,
730 2ca9d013 ths
    &cmos_mm_writel,
731 2ca9d013 ths
};
732 2ca9d013 ths
733 99a0949b malc
RTCState *rtc_mm_init(a_target_phys_addr base, int it_shift, qemu_irq irq,
734 42fc73a1 aurel32
                      int base_year)
735 2ca9d013 ths
{
736 2ca9d013 ths
    RTCState *s;
737 2ca9d013 ths
    int io_memory;
738 2ca9d013 ths
739 2ca9d013 ths
    s = qemu_mallocz(sizeof(RTCState));
740 2ca9d013 ths
741 2ca9d013 ths
    s->irq = irq;
742 2ca9d013 ths
    s->cmos_data[RTC_REG_A] = 0x26;
743 2ca9d013 ths
    s->cmos_data[RTC_REG_B] = 0x02;
744 2ca9d013 ths
    s->cmos_data[RTC_REG_C] = 0x00;
745 2ca9d013 ths
    s->cmos_data[RTC_REG_D] = 0x80;
746 2ca9d013 ths
747 42fc73a1 aurel32
    s->base_year = base_year;
748 2ca9d013 ths
    rtc_set_date_from_host(s);
749 2ca9d013 ths
750 2ca9d013 ths
    s->periodic_timer = qemu_new_timer(vm_clock,
751 2ca9d013 ths
                                       rtc_periodic_timer, s);
752 2ca9d013 ths
    s->second_timer = qemu_new_timer(vm_clock,
753 2ca9d013 ths
                                     rtc_update_second, s);
754 2ca9d013 ths
    s->second_timer2 = qemu_new_timer(vm_clock,
755 2ca9d013 ths
                                      rtc_update_second2, s);
756 2ca9d013 ths
757 6ee093c9 Juan Quintela
    s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100;
758 2ca9d013 ths
    qemu_mod_timer(s->second_timer2, s->next_second_time);
759 2ca9d013 ths
760 1eed09cb Avi Kivity
    io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
761 18c6e2ff ths
    cpu_register_physical_memory(base, 2 << it_shift, io_memory);
762 2ca9d013 ths
763 2ca9d013 ths
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
764 73822ec8 aliguori
#ifdef TARGET_I386
765 73822ec8 aliguori
    if (rtc_td_hack)
766 73822ec8 aliguori
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
767 73822ec8 aliguori
#endif
768 a08d4367 Jan Kiszka
    qemu_register_reset(rtc_reset, s);
769 2ca9d013 ths
    return s;
770 2ca9d013 ths
}