Statistics
| Branch: | Revision:

root / hw / ipoctal232.c @ 9a6ee9fd

History | View | Annotate | Download (16.5 kB)

1
/*
2
 * QEMU GE IP-Octal 232 IndustryPack emulation
3
 *
4
 * Copyright (C) 2012 Igalia, S.L.
5
 * Author: Alberto Garcia <agarcia@igalia.com>
6
 *
7
 * This code is licensed under the GNU GPL v2 or (at your option) any
8
 * later version.
9
 */
10

    
11
#include "ipack.h"
12
#include "qemu/bitops.h"
13
#include "char/char.h"
14

    
15
/* #define DEBUG_IPOCTAL */
16

    
17
#ifdef DEBUG_IPOCTAL
18
#define DPRINTF2(fmt, ...) \
19
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
20
#else
21
#define DPRINTF2(fmt, ...) do { } while (0)
22
#endif
23

    
24
#define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__)
25

    
26
#define RX_FIFO_SIZE 3
27

    
28
/* The IP-Octal has 8 channels (a-h)
29
   divided into 4 blocks (A-D) */
30
#define N_CHANNELS 8
31
#define N_BLOCKS   4
32

    
33
#define REG_MRa  0x01
34
#define REG_MRb  0x11
35
#define REG_SRa  0x03
36
#define REG_SRb  0x13
37
#define REG_CSRa 0x03
38
#define REG_CSRb 0x13
39
#define REG_CRa  0x05
40
#define REG_CRb  0x15
41
#define REG_RHRa 0x07
42
#define REG_RHRb 0x17
43
#define REG_THRa 0x07
44
#define REG_THRb 0x17
45
#define REG_ACR  0x09
46
#define REG_ISR  0x0B
47
#define REG_IMR  0x0B
48
#define REG_OPCR 0x1B
49

    
50
#define CR_ENABLE_RX    BIT(0)
51
#define CR_DISABLE_RX   BIT(1)
52
#define CR_ENABLE_TX    BIT(2)
53
#define CR_DISABLE_TX   BIT(3)
54
#define CR_CMD(cr)      ((cr) >> 4)
55
#define CR_NO_OP        0
56
#define CR_RESET_MR     1
57
#define CR_RESET_RX     2
58
#define CR_RESET_TX     3
59
#define CR_RESET_ERR    4
60
#define CR_RESET_BRKINT 5
61
#define CR_START_BRK    6
62
#define CR_STOP_BRK     7
63
#define CR_ASSERT_RTSN  8
64
#define CR_NEGATE_RTSN  9
65
#define CR_TIMEOUT_ON   10
66
#define CR_TIMEOUT_OFF  12
67

    
68
#define SR_RXRDY   BIT(0)
69
#define SR_FFULL   BIT(1)
70
#define SR_TXRDY   BIT(2)
71
#define SR_TXEMT   BIT(3)
72
#define SR_OVERRUN BIT(4)
73
#define SR_PARITY  BIT(5)
74
#define SR_FRAMING BIT(6)
75
#define SR_BREAK   BIT(7)
76

    
77
#define ISR_TXRDYA BIT(0)
78
#define ISR_RXRDYA BIT(1)
79
#define ISR_BREAKA BIT(2)
80
#define ISR_CNTRDY BIT(3)
81
#define ISR_TXRDYB BIT(4)
82
#define ISR_RXRDYB BIT(5)
83
#define ISR_BREAKB BIT(6)
84
#define ISR_MPICHG BIT(7)
85
#define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0))
86
#define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1))
87
#define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2))
88

    
89
typedef struct IPOctalState IPOctalState;
90
typedef struct SCC2698Channel SCC2698Channel;
91
typedef struct SCC2698Block SCC2698Block;
92

    
93
struct SCC2698Channel {
94
    IPOctalState *ipoctal;
95
    CharDriverState *dev;
96
    char *devpath;
97
    bool rx_enabled;
98
    uint8_t mr[2];
99
    uint8_t mr_idx;
100
    uint8_t sr;
101
    uint8_t rhr[RX_FIFO_SIZE];
102
    uint8_t rhr_idx;
103
    uint8_t rx_pending;
104
};
105

    
106
struct SCC2698Block {
107
    uint8_t imr;
108
    uint8_t isr;
109
};
110

    
111
struct IPOctalState {
112
    IPackDevice dev;
113
    SCC2698Channel ch[N_CHANNELS];
114
    SCC2698Block blk[N_BLOCKS];
115
    uint8_t irq_vector;
116
};
117

    
118
#define TYPE_IPOCTAL "ipoctal232"
119

    
120
#define IPOCTAL(obj) \
121
    OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL)
122

    
123
static const VMStateDescription vmstate_scc2698_channel = {
124
    .name = "scc2698_channel",
125
    .version_id = 1,
126
    .minimum_version_id = 1,
127
    .minimum_version_id_old = 1,
128
    .fields      = (VMStateField[]) {
129
        VMSTATE_BOOL(rx_enabled, SCC2698Channel),
130
        VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2),
131
        VMSTATE_UINT8(mr_idx, SCC2698Channel),
132
        VMSTATE_UINT8(sr, SCC2698Channel),
133
        VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE),
134
        VMSTATE_UINT8(rhr_idx, SCC2698Channel),
135
        VMSTATE_UINT8(rx_pending, SCC2698Channel),
136
        VMSTATE_END_OF_LIST()
137
    }
138
};
139

    
140
static const VMStateDescription vmstate_scc2698_block = {
141
    .name = "scc2698_block",
142
    .version_id = 1,
143
    .minimum_version_id = 1,
144
    .minimum_version_id_old = 1,
145
    .fields      = (VMStateField[]) {
146
        VMSTATE_UINT8(imr, SCC2698Block),
147
        VMSTATE_UINT8(isr, SCC2698Block),
148
        VMSTATE_END_OF_LIST()
149
    }
150
};
151

    
152
static const VMStateDescription vmstate_ipoctal = {
153
    .name = "ipoctal232",
154
    .version_id = 1,
155
    .minimum_version_id = 1,
156
    .minimum_version_id_old = 1,
157
    .fields      = (VMStateField[]) {
158
        VMSTATE_IPACK_DEVICE(dev, IPOctalState),
159
        VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1,
160
                             vmstate_scc2698_channel, SCC2698Channel),
161
        VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1,
162
                             vmstate_scc2698_block, SCC2698Block),
163
        VMSTATE_UINT8(irq_vector, IPOctalState),
164
        VMSTATE_END_OF_LIST()
165
    }
166
};
167

    
168
/* data[10] is 0x0C, not 0x0B as the doc says */
169
static const uint8_t id_prom_data[] = {
170
    0x49, 0x50, 0x41, 0x43, 0xF0, 0x22,
171
    0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC
172
};
173

    
174
static void update_irq(IPOctalState *dev, unsigned block)
175
{
176
    /* Blocks A and B interrupt on INT0#, C and D on INT1#.
177
       Thus, to get the status we have to check two blocks. */
178
    SCC2698Block *blk0 = &dev->blk[block];
179
    SCC2698Block *blk1 = &dev->blk[block^1];
180
    unsigned intno = block / 2;
181

    
182
    if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) {
183
        qemu_irq_raise(dev->dev.irq[intno]);
184
    } else {
185
        qemu_irq_lower(dev->dev.irq[intno]);
186
    }
187
}
188

    
189
static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val)
190
{
191
    SCC2698Channel *ch = &dev->ch[channel];
192
    SCC2698Block *blk = &dev->blk[channel / 2];
193

    
194
    DPRINTF("Write CR%c %u: ", channel + 'a', val);
195

    
196
    /* The lower 4 bits are used to enable and disable Tx and Rx */
197
    if (val & CR_ENABLE_RX) {
198
        DPRINTF2("Rx on, ");
199
        ch->rx_enabled = true;
200
    }
201
    if (val & CR_DISABLE_RX) {
202
        DPRINTF2("Rx off, ");
203
        ch->rx_enabled = false;
204
    }
205
    if (val & CR_ENABLE_TX) {
206
        DPRINTF2("Tx on, ");
207
        ch->sr |= SR_TXRDY | SR_TXEMT;
208
        blk->isr |= ISR_TXRDY(channel);
209
    }
210
    if (val & CR_DISABLE_TX) {
211
        DPRINTF2("Tx off, ");
212
        ch->sr &= ~(SR_TXRDY | SR_TXEMT);
213
        blk->isr &= ~ISR_TXRDY(channel);
214
    }
215

    
216
    DPRINTF2("cmd: ");
217

    
218
    /* The rest of the bits implement different commands */
219
    switch (CR_CMD(val)) {
220
    case CR_NO_OP:
221
        DPRINTF2("none");
222
        break;
223
    case CR_RESET_MR:
224
        DPRINTF2("reset MR");
225
        ch->mr_idx = 0;
226
        break;
227
    case CR_RESET_RX:
228
        DPRINTF2("reset Rx");
229
        ch->rx_enabled = false;
230
        ch->rx_pending = 0;
231
        ch->sr &= ~SR_RXRDY;
232
        blk->isr &= ~ISR_RXRDY(channel);
233
        break;
234
    case CR_RESET_TX:
235
        DPRINTF2("reset Tx");
236
        ch->sr &= ~(SR_TXRDY | SR_TXEMT);
237
        blk->isr &= ~ISR_TXRDY(channel);
238
        break;
239
    case CR_RESET_ERR:
240
        DPRINTF2("reset err");
241
        ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK);
242
        break;
243
    case CR_RESET_BRKINT:
244
        DPRINTF2("reset brk ch int");
245
        blk->isr &= ~(ISR_BREAKA | ISR_BREAKB);
246
        break;
247
    default:
248
        DPRINTF2("unsupported 0x%x", CR_CMD(val));
249
    }
250

    
251
    DPRINTF2("\n");
252
}
253

    
254
static uint16_t io_read(IPackDevice *ip, uint8_t addr)
255
{
256
    IPOctalState *dev = IPOCTAL(ip);
257
    uint16_t ret = 0;
258
    /* addr[7:6]: block   (A-D)
259
       addr[7:5]: channel (a-h)
260
       addr[5:0]: register */
261
    unsigned block = addr >> 5;
262
    unsigned channel = addr >> 4;
263
    /* Big endian, accessed using 8-bit bytes at odd locations */
264
    unsigned offset = (addr & 0x1F) ^ 1;
265
    SCC2698Channel *ch = &dev->ch[channel];
266
    SCC2698Block *blk = &dev->blk[block];
267
    uint8_t old_isr = blk->isr;
268

    
269
    switch (offset) {
270

    
271
    case REG_MRa:
272
    case REG_MRb:
273
        ret = ch->mr[ch->mr_idx];
274
        DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret);
275
        ch->mr_idx = 1;
276
        break;
277

    
278
    case REG_SRa:
279
    case REG_SRb:
280
        ret = ch->sr;
281
        DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret);
282
        break;
283

    
284
    case REG_RHRa:
285
    case REG_RHRb:
286
        ret = ch->rhr[ch->rhr_idx];
287
        if (ch->rx_pending > 0) {
288
            ch->rx_pending--;
289
            if (ch->rx_pending == 0) {
290
                ch->sr &= ~SR_RXRDY;
291
                blk->isr &= ~ISR_RXRDY(channel);
292
                if (ch->dev) {
293
                    qemu_chr_accept_input(ch->dev);
294
                }
295
            } else {
296
                ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE;
297
            }
298
            if (ch->sr & SR_BREAK) {
299
                ch->sr &= ~SR_BREAK;
300
                blk->isr |= ISR_BREAK(channel);
301
            }
302
        }
303
        DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret);
304
        break;
305

    
306
    case REG_ISR:
307
        ret = blk->isr;
308
        DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret);
309
        break;
310

    
311
    default:
312
        DPRINTF("Read unknown/unsupported register 0x%02x\n", offset);
313
    }
314

    
315
    if (old_isr != blk->isr) {
316
        update_irq(dev, block);
317
    }
318

    
319
    return ret;
320
}
321

    
322
static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val)
323
{
324
    IPOctalState *dev = IPOCTAL(ip);
325
    unsigned reg = val & 0xFF;
326
    /* addr[7:6]: block   (A-D)
327
       addr[7:5]: channel (a-h)
328
       addr[5:0]: register */
329
    unsigned block = addr >> 5;
330
    unsigned channel = addr >> 4;
331
    /* Big endian, accessed using 8-bit bytes at odd locations */
332
    unsigned offset = (addr & 0x1F) ^ 1;
333
    SCC2698Channel *ch = &dev->ch[channel];
334
    SCC2698Block *blk = &dev->blk[block];
335
    uint8_t old_isr = blk->isr;
336
    uint8_t old_imr = blk->imr;
337

    
338
    switch (offset) {
339

    
340
    case REG_MRa:
341
    case REG_MRb:
342
        ch->mr[ch->mr_idx] = reg;
343
        DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg);
344
        ch->mr_idx = 1;
345
        break;
346

    
347
    /* Not implemented */
348
    case REG_CSRa:
349
    case REG_CSRb:
350
        DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg);
351
        break;
352

    
353
    case REG_CRa:
354
    case REG_CRb:
355
        write_cr(dev, channel, reg);
356
        break;
357

    
358
    case REG_THRa:
359
    case REG_THRb:
360
        if (ch->sr & SR_TXRDY) {
361
            DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg);
362
            if (ch->dev) {
363
                uint8_t thr = reg;
364
                qemu_chr_fe_write(ch->dev, &thr, 1);
365
            }
366
        } else {
367
            DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg);
368
        }
369
        break;
370

    
371
    /* Not implemented */
372
    case REG_ACR:
373
        DPRINTF("Write ACR%c 0x%x\n", block + 'A', val);
374
        break;
375

    
376
    case REG_IMR:
377
        DPRINTF("Write IMR%c 0x%x\n", block + 'A', val);
378
        blk->imr = reg;
379
        break;
380

    
381
    /* Not implemented */
382
    case REG_OPCR:
383
        DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val);
384
        break;
385

    
386
    default:
387
        DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val);
388
    }
389

    
390
    if (old_isr != blk->isr || old_imr != blk->imr) {
391
        update_irq(dev, block);
392
    }
393
}
394

    
395
static uint16_t id_read(IPackDevice *ip, uint8_t addr)
396
{
397
    uint16_t ret = 0;
398
    unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */
399

    
400
    if (pos < ARRAY_SIZE(id_prom_data)) {
401
        ret = id_prom_data[pos];
402
    } else {
403
        DPRINTF("Attempt to read unavailable PROM data at 0x%x\n",  addr);
404
    }
405

    
406
    return ret;
407
}
408

    
409
static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val)
410
{
411
    IPOctalState *dev = IPOCTAL(ip);
412
    if (addr == 1) {
413
        DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
414
        dev->irq_vector = val; /* Undocumented, but the hw works like that */
415
    } else {
416
        DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
417
    }
418
}
419

    
420
static uint16_t int_read(IPackDevice *ip, uint8_t addr)
421
{
422
    IPOctalState *dev = IPOCTAL(ip);
423
    /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */
424
    if (addr != 0 && addr != 2) {
425
        DPRINTF("Attempt to read from 0x%x\n", addr);
426
        return 0;
427
    } else {
428
        /* Update interrupts if necessary */
429
        update_irq(dev, addr);
430
        return dev->irq_vector;
431
    }
432
}
433

    
434
static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val)
435
{
436
    DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
437
}
438

    
439
static uint16_t mem_read16(IPackDevice *ip, uint32_t addr)
440
{
441
    DPRINTF("Attempt to read from 0x%x\n", addr);
442
    return 0;
443
}
444

    
445
static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val)
446
{
447
    DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
448
}
449

    
450
static uint8_t mem_read8(IPackDevice *ip, uint32_t addr)
451
{
452
    DPRINTF("Attempt to read from 0x%x\n", addr);
453
    return 0;
454
}
455

    
456
static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val)
457
{
458
    IPOctalState *dev = IPOCTAL(ip);
459
    if (addr == 1) {
460
        DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
461
        dev->irq_vector = val;
462
    } else {
463
        DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
464
    }
465
}
466

    
467
static int hostdev_can_receive(void *opaque)
468
{
469
    SCC2698Channel *ch = opaque;
470
    int available_bytes = RX_FIFO_SIZE - ch->rx_pending;
471
    return ch->rx_enabled ? available_bytes : 0;
472
}
473

    
474
static void hostdev_receive(void *opaque, const uint8_t *buf, int size)
475
{
476
    SCC2698Channel *ch = opaque;
477
    IPOctalState *dev = ch->ipoctal;
478
    unsigned pos = ch->rhr_idx + ch->rx_pending;
479
    int i;
480

    
481
    assert(size + ch->rx_pending <= RX_FIFO_SIZE);
482

    
483
    /* Copy data to the RxFIFO */
484
    for (i = 0; i < size; i++) {
485
        pos %= RX_FIFO_SIZE;
486
        ch->rhr[pos++] = buf[i];
487
    }
488

    
489
    ch->rx_pending += size;
490

    
491
    /* If the RxFIFO was empty raise an interrupt */
492
    if (!(ch->sr & SR_RXRDY)) {
493
        unsigned block, channel = 0;
494
        /* Find channel number to update the ISR register */
495
        while (&dev->ch[channel] != ch) {
496
            channel++;
497
        }
498
        block = channel / 2;
499
        dev->blk[block].isr |= ISR_RXRDY(channel);
500
        ch->sr |= SR_RXRDY;
501
        update_irq(dev, block);
502
    }
503
}
504

    
505
static void hostdev_event(void *opaque, int event)
506
{
507
    SCC2698Channel *ch = opaque;
508
    switch (event) {
509
    case CHR_EVENT_OPENED:
510
        DPRINTF("Device %s opened\n", ch->dev->label);
511
        break;
512
    case CHR_EVENT_BREAK: {
513
        uint8_t zero = 0;
514
        DPRINTF("Device %s received break\n", ch->dev->label);
515

    
516
        if (!(ch->sr & SR_BREAK)) {
517
            IPOctalState *dev = ch->ipoctal;
518
            unsigned block, channel = 0;
519

    
520
            while (&dev->ch[channel] != ch) {
521
                channel++;
522
            }
523
            block = channel / 2;
524

    
525
            ch->sr |= SR_BREAK;
526
            dev->blk[block].isr |= ISR_BREAK(channel);
527
        }
528

    
529
        /* Put a zero character in the buffer */
530
        hostdev_receive(ch, &zero, 1);
531
    }
532
        break;
533
    default:
534
        DPRINTF("Device %s received event %d\n", ch->dev->label, event);
535
    }
536
}
537

    
538
static int ipoctal_init(IPackDevice *ip)
539
{
540
    IPOctalState *s = IPOCTAL(ip);
541
    unsigned i;
542

    
543
    for (i = 0; i < N_CHANNELS; i++) {
544
        SCC2698Channel *ch = &s->ch[i];
545
        ch->ipoctal = s;
546

    
547
        /* Redirect IP-Octal channels to host character devices */
548
        if (ch->devpath) {
549
            const char chr_name[] = "ipoctal";
550
            char label[ARRAY_SIZE(chr_name) + 2];
551
            static int index;
552

    
553
            snprintf(label, sizeof(label), "%s%d", chr_name, index);
554

    
555
            ch->dev = qemu_chr_new(label, ch->devpath, NULL);
556

    
557
            if (ch->dev) {
558
                index++;
559
                qemu_chr_add_handlers(ch->dev, hostdev_can_receive,
560
                                      hostdev_receive, hostdev_event, ch);
561
                DPRINTF("Redirecting channel %u to %s (%s)\n",
562
                        i, ch->devpath, label);
563
            } else {
564
                DPRINTF("Could not redirect channel %u to %s\n",
565
                        i, ch->devpath);
566
            }
567
        }
568
    }
569

    
570
    return 0;
571
}
572

    
573
static Property ipoctal_properties[] = {
574
    DEFINE_PROP_STRING("serial0", IPOctalState, ch[0].devpath),
575
    DEFINE_PROP_STRING("serial1", IPOctalState, ch[1].devpath),
576
    DEFINE_PROP_STRING("serial2", IPOctalState, ch[2].devpath),
577
    DEFINE_PROP_STRING("serial3", IPOctalState, ch[3].devpath),
578
    DEFINE_PROP_STRING("serial4", IPOctalState, ch[4].devpath),
579
    DEFINE_PROP_STRING("serial5", IPOctalState, ch[5].devpath),
580
    DEFINE_PROP_STRING("serial6", IPOctalState, ch[6].devpath),
581
    DEFINE_PROP_STRING("serial7", IPOctalState, ch[7].devpath),
582
    DEFINE_PROP_END_OF_LIST(),
583
};
584

    
585
static void ipoctal_class_init(ObjectClass *klass, void *data)
586
{
587
    DeviceClass *dc = DEVICE_CLASS(klass);
588
    IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass);
589

    
590
    ic->init        = ipoctal_init;
591
    ic->io_read     = io_read;
592
    ic->io_write    = io_write;
593
    ic->id_read     = id_read;
594
    ic->id_write    = id_write;
595
    ic->int_read    = int_read;
596
    ic->int_write   = int_write;
597
    ic->mem_read16  = mem_read16;
598
    ic->mem_write16 = mem_write16;
599
    ic->mem_read8   = mem_read8;
600
    ic->mem_write8  = mem_write8;
601

    
602
    dc->desc    = "GE IP-Octal 232 8-channel RS-232 IndustryPack";
603
    dc->props   = ipoctal_properties;
604
    dc->vmsd    = &vmstate_ipoctal;
605
}
606

    
607
static const TypeInfo ipoctal_info = {
608
    .name          = TYPE_IPOCTAL,
609
    .parent        = TYPE_IPACK_DEVICE,
610
    .instance_size = sizeof(IPOctalState),
611
    .class_init    = ipoctal_class_init,
612
};
613

    
614
static void ipoctal_register_types(void)
615
{
616
    type_register_static(&ipoctal_info);
617
}
618

    
619
type_init(ipoctal_register_types)