Statistics
| Branch: | Revision:

root / hw / pc.c @ 9a6ee9fd

History | View | Annotate | Download (32.3 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "serial.h"
27
#include "apic.h"
28
#include "fdc.h"
29
#include "ide.h"
30
#include "pci/pci.h"
31
#include "monitor/monitor.h"
32
#include "fw_cfg.h"
33
#include "hpet_emul.h"
34
#include "smbios.h"
35
#include "loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "mc146818rtc.h"
39
#include "i8254.h"
40
#include "pcspk.h"
41
#include "pci/msi.h"
42
#include "sysbus.h"
43
#include "sysemu/sysemu.h"
44
#include "sysemu/kvm.h"
45
#include "kvm_i386.h"
46
#include "xen.h"
47
#include "sysemu/blockdev.h"
48
#include "hw/block-common.h"
49
#include "ui/qemu-spice.h"
50
#include "exec/memory.h"
51
#include "exec/address-spaces.h"
52
#include "sysemu/arch_init.h"
53
#include "qemu/bitmap.h"
54

    
55
/* debug PC/ISA interrupts */
56
//#define DEBUG_IRQ
57

    
58
#ifdef DEBUG_IRQ
59
#define DPRINTF(fmt, ...)                                       \
60
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
61
#else
62
#define DPRINTF(fmt, ...)
63
#endif
64

    
65
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
66
#define ACPI_DATA_SIZE       0x10000
67
#define BIOS_CFG_IOPORT 0x510
68
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
69
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
70
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
71
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
72
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
73

    
74
#define E820_NR_ENTRIES                16
75

    
76
struct e820_entry {
77
    uint64_t address;
78
    uint64_t length;
79
    uint32_t type;
80
} QEMU_PACKED __attribute((__aligned__(4)));
81

    
82
struct e820_table {
83
    uint32_t count;
84
    struct e820_entry entry[E820_NR_ENTRIES];
85
} QEMU_PACKED __attribute((__aligned__(4)));
86

    
87
static struct e820_table e820_table;
88
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
89

    
90
void gsi_handler(void *opaque, int n, int level)
91
{
92
    GSIState *s = opaque;
93

    
94
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
95
    if (n < ISA_NUM_IRQS) {
96
        qemu_set_irq(s->i8259_irq[n], level);
97
    }
98
    qemu_set_irq(s->ioapic_irq[n], level);
99
}
100

    
101
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
102
                           unsigned size)
103
{
104
}
105

    
106
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
107
{
108
    return 0xffffffffffffffffULL;
109
}
110

    
111
/* MSDOS compatibility mode FPU exception support */
112
static qemu_irq ferr_irq;
113

    
114
void pc_register_ferr_irq(qemu_irq irq)
115
{
116
    ferr_irq = irq;
117
}
118

    
119
/* XXX: add IGNNE support */
120
void cpu_set_ferr(CPUX86State *s)
121
{
122
    qemu_irq_raise(ferr_irq);
123
}
124

    
125
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
126
                           unsigned size)
127
{
128
    qemu_irq_lower(ferr_irq);
129
}
130

    
131
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
132
{
133
    return 0xffffffffffffffffULL;
134
}
135

    
136
/* TSC handling */
137
uint64_t cpu_get_tsc(CPUX86State *env)
138
{
139
    return cpu_get_ticks();
140
}
141

    
142
/* SMM support */
143

    
144
static cpu_set_smm_t smm_set;
145
static void *smm_arg;
146

    
147
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
148
{
149
    assert(smm_set == NULL);
150
    assert(smm_arg == NULL);
151
    smm_set = callback;
152
    smm_arg = arg;
153
}
154

    
155
void cpu_smm_update(CPUX86State *env)
156
{
157
    if (smm_set && smm_arg && env == first_cpu)
158
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
159
}
160

    
161

    
162
/* IRQ handling */
163
int cpu_get_pic_interrupt(CPUX86State *env)
164
{
165
    int intno;
166

    
167
    intno = apic_get_interrupt(env->apic_state);
168
    if (intno >= 0) {
169
        return intno;
170
    }
171
    /* read the irq from the PIC */
172
    if (!apic_accept_pic_intr(env->apic_state)) {
173
        return -1;
174
    }
175

    
176
    intno = pic_read_irq(isa_pic);
177
    return intno;
178
}
179

    
180
static void pic_irq_request(void *opaque, int irq, int level)
181
{
182
    CPUX86State *env = first_cpu;
183

    
184
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
185
    if (env->apic_state) {
186
        while (env) {
187
            if (apic_accept_pic_intr(env->apic_state)) {
188
                apic_deliver_pic_intr(env->apic_state, level);
189
            }
190
            env = env->next_cpu;
191
        }
192
    } else {
193
        if (level)
194
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
195
        else
196
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
197
    }
198
}
199

    
200
/* PC cmos mappings */
201

    
202
#define REG_EQUIPMENT_BYTE          0x14
203

    
204
static int cmos_get_fd_drive_type(FDriveType fd0)
205
{
206
    int val;
207

    
208
    switch (fd0) {
209
    case FDRIVE_DRV_144:
210
        /* 1.44 Mb 3"5 drive */
211
        val = 4;
212
        break;
213
    case FDRIVE_DRV_288:
214
        /* 2.88 Mb 3"5 drive */
215
        val = 5;
216
        break;
217
    case FDRIVE_DRV_120:
218
        /* 1.2 Mb 5"5 drive */
219
        val = 2;
220
        break;
221
    case FDRIVE_DRV_NONE:
222
    default:
223
        val = 0;
224
        break;
225
    }
226
    return val;
227
}
228

    
229
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
230
                         int16_t cylinders, int8_t heads, int8_t sectors)
231
{
232
    rtc_set_memory(s, type_ofs, 47);
233
    rtc_set_memory(s, info_ofs, cylinders);
234
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
235
    rtc_set_memory(s, info_ofs + 2, heads);
236
    rtc_set_memory(s, info_ofs + 3, 0xff);
237
    rtc_set_memory(s, info_ofs + 4, 0xff);
238
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
239
    rtc_set_memory(s, info_ofs + 6, cylinders);
240
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
241
    rtc_set_memory(s, info_ofs + 8, sectors);
242
}
243

    
244
/* convert boot_device letter to something recognizable by the bios */
245
static int boot_device2nibble(char boot_device)
246
{
247
    switch(boot_device) {
248
    case 'a':
249
    case 'b':
250
        return 0x01; /* floppy boot */
251
    case 'c':
252
        return 0x02; /* hard drive boot */
253
    case 'd':
254
        return 0x03; /* CD-ROM boot */
255
    case 'n':
256
        return 0x04; /* Network boot */
257
    }
258
    return 0;
259
}
260

    
261
static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
262
{
263
#define PC_MAX_BOOT_DEVICES 3
264
    int nbds, bds[3] = { 0, };
265
    int i;
266

    
267
    nbds = strlen(boot_device);
268
    if (nbds > PC_MAX_BOOT_DEVICES) {
269
        error_report("Too many boot devices for PC");
270
        return(1);
271
    }
272
    for (i = 0; i < nbds; i++) {
273
        bds[i] = boot_device2nibble(boot_device[i]);
274
        if (bds[i] == 0) {
275
            error_report("Invalid boot device for PC: '%c'",
276
                         boot_device[i]);
277
            return(1);
278
        }
279
    }
280
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
281
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
282
    return(0);
283
}
284

    
285
static int pc_boot_set(void *opaque, const char *boot_device)
286
{
287
    return set_boot_dev(opaque, boot_device, 0);
288
}
289

    
290
typedef struct pc_cmos_init_late_arg {
291
    ISADevice *rtc_state;
292
    BusState *idebus[2];
293
} pc_cmos_init_late_arg;
294

    
295
static void pc_cmos_init_late(void *opaque)
296
{
297
    pc_cmos_init_late_arg *arg = opaque;
298
    ISADevice *s = arg->rtc_state;
299
    int16_t cylinders;
300
    int8_t heads, sectors;
301
    int val;
302
    int i, trans;
303

    
304
    val = 0;
305
    if (ide_get_geometry(arg->idebus[0], 0,
306
                         &cylinders, &heads, &sectors) >= 0) {
307
        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
308
        val |= 0xf0;
309
    }
310
    if (ide_get_geometry(arg->idebus[0], 1,
311
                         &cylinders, &heads, &sectors) >= 0) {
312
        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
313
        val |= 0x0f;
314
    }
315
    rtc_set_memory(s, 0x12, val);
316

    
317
    val = 0;
318
    for (i = 0; i < 4; i++) {
319
        /* NOTE: ide_get_geometry() returns the physical
320
           geometry.  It is always such that: 1 <= sects <= 63, 1
321
           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
322
           geometry can be different if a translation is done. */
323
        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
324
                             &cylinders, &heads, &sectors) >= 0) {
325
            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
326
            assert((trans & ~3) == 0);
327
            val |= trans << (i * 2);
328
        }
329
    }
330
    rtc_set_memory(s, 0x39, val);
331

    
332
    qemu_unregister_reset(pc_cmos_init_late, opaque);
333
}
334

    
335
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
336
                  const char *boot_device,
337
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
338
                  ISADevice *s)
339
{
340
    int val, nb, i;
341
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
342
    static pc_cmos_init_late_arg arg;
343

    
344
    /* various important CMOS locations needed by PC/Bochs bios */
345

    
346
    /* memory size */
347
    /* base memory (first MiB) */
348
    val = MIN(ram_size / 1024, 640);
349
    rtc_set_memory(s, 0x15, val);
350
    rtc_set_memory(s, 0x16, val >> 8);
351
    /* extended memory (next 64MiB) */
352
    if (ram_size > 1024 * 1024) {
353
        val = (ram_size - 1024 * 1024) / 1024;
354
    } else {
355
        val = 0;
356
    }
357
    if (val > 65535)
358
        val = 65535;
359
    rtc_set_memory(s, 0x17, val);
360
    rtc_set_memory(s, 0x18, val >> 8);
361
    rtc_set_memory(s, 0x30, val);
362
    rtc_set_memory(s, 0x31, val >> 8);
363
    /* memory between 16MiB and 4GiB */
364
    if (ram_size > 16 * 1024 * 1024) {
365
        val = (ram_size - 16 * 1024 * 1024) / 65536;
366
    } else {
367
        val = 0;
368
    }
369
    if (val > 65535)
370
        val = 65535;
371
    rtc_set_memory(s, 0x34, val);
372
    rtc_set_memory(s, 0x35, val >> 8);
373
    /* memory above 4GiB */
374
    val = above_4g_mem_size / 65536;
375
    rtc_set_memory(s, 0x5b, val);
376
    rtc_set_memory(s, 0x5c, val >> 8);
377
    rtc_set_memory(s, 0x5d, val >> 16);
378

    
379
    /* set the number of CPU */
380
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
381

    
382
    /* set boot devices, and disable floppy signature check if requested */
383
    if (set_boot_dev(s, boot_device, fd_bootchk)) {
384
        exit(1);
385
    }
386

    
387
    /* floppy type */
388
    if (floppy) {
389
        for (i = 0; i < 2; i++) {
390
            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
391
        }
392
    }
393
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
394
        cmos_get_fd_drive_type(fd_type[1]);
395
    rtc_set_memory(s, 0x10, val);
396

    
397
    val = 0;
398
    nb = 0;
399
    if (fd_type[0] < FDRIVE_DRV_NONE) {
400
        nb++;
401
    }
402
    if (fd_type[1] < FDRIVE_DRV_NONE) {
403
        nb++;
404
    }
405
    switch (nb) {
406
    case 0:
407
        break;
408
    case 1:
409
        val |= 0x01; /* 1 drive, ready for boot */
410
        break;
411
    case 2:
412
        val |= 0x41; /* 2 drives, ready for boot */
413
        break;
414
    }
415
    val |= 0x02; /* FPU is there */
416
    val |= 0x04; /* PS/2 mouse installed */
417
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
418

    
419
    /* hard drives */
420
    arg.rtc_state = s;
421
    arg.idebus[0] = idebus0;
422
    arg.idebus[1] = idebus1;
423
    qemu_register_reset(pc_cmos_init_late, &arg);
424
}
425

    
426
/* port 92 stuff: could be split off */
427
typedef struct Port92State {
428
    ISADevice dev;
429
    MemoryRegion io;
430
    uint8_t outport;
431
    qemu_irq *a20_out;
432
} Port92State;
433

    
434
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
435
                         unsigned size)
436
{
437
    Port92State *s = opaque;
438

    
439
    DPRINTF("port92: write 0x%02x\n", val);
440
    s->outport = val;
441
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
442
    if (val & 1) {
443
        qemu_system_reset_request();
444
    }
445
}
446

    
447
static uint64_t port92_read(void *opaque, hwaddr addr,
448
                            unsigned size)
449
{
450
    Port92State *s = opaque;
451
    uint32_t ret;
452

    
453
    ret = s->outport;
454
    DPRINTF("port92: read 0x%02x\n", ret);
455
    return ret;
456
}
457

    
458
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
459
{
460
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
461

    
462
    s->a20_out = a20_out;
463
}
464

    
465
static const VMStateDescription vmstate_port92_isa = {
466
    .name = "port92",
467
    .version_id = 1,
468
    .minimum_version_id = 1,
469
    .minimum_version_id_old = 1,
470
    .fields      = (VMStateField []) {
471
        VMSTATE_UINT8(outport, Port92State),
472
        VMSTATE_END_OF_LIST()
473
    }
474
};
475

    
476
static void port92_reset(DeviceState *d)
477
{
478
    Port92State *s = container_of(d, Port92State, dev.qdev);
479

    
480
    s->outport &= ~1;
481
}
482

    
483
static const MemoryRegionOps port92_ops = {
484
    .read = port92_read,
485
    .write = port92_write,
486
    .impl = {
487
        .min_access_size = 1,
488
        .max_access_size = 1,
489
    },
490
    .endianness = DEVICE_LITTLE_ENDIAN,
491
};
492

    
493
static int port92_initfn(ISADevice *dev)
494
{
495
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
496

    
497
    memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
498
    isa_register_ioport(dev, &s->io, 0x92);
499

    
500
    s->outport = 0;
501
    return 0;
502
}
503

    
504
static void port92_class_initfn(ObjectClass *klass, void *data)
505
{
506
    DeviceClass *dc = DEVICE_CLASS(klass);
507
    ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
508
    ic->init = port92_initfn;
509
    dc->no_user = 1;
510
    dc->reset = port92_reset;
511
    dc->vmsd = &vmstate_port92_isa;
512
}
513

    
514
static const TypeInfo port92_info = {
515
    .name          = "port92",
516
    .parent        = TYPE_ISA_DEVICE,
517
    .instance_size = sizeof(Port92State),
518
    .class_init    = port92_class_initfn,
519
};
520

    
521
static void port92_register_types(void)
522
{
523
    type_register_static(&port92_info);
524
}
525

    
526
type_init(port92_register_types)
527

    
528
static void handle_a20_line_change(void *opaque, int irq, int level)
529
{
530
    X86CPU *cpu = opaque;
531

    
532
    /* XXX: send to all CPUs ? */
533
    /* XXX: add logic to handle multiple A20 line sources */
534
    x86_cpu_set_a20(cpu, level);
535
}
536

    
537
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
538
{
539
    int index = le32_to_cpu(e820_table.count);
540
    struct e820_entry *entry;
541

    
542
    if (index >= E820_NR_ENTRIES)
543
        return -EBUSY;
544
    entry = &e820_table.entry[index++];
545

    
546
    entry->address = cpu_to_le64(address);
547
    entry->length = cpu_to_le64(length);
548
    entry->type = cpu_to_le32(type);
549

    
550
    e820_table.count = cpu_to_le32(index);
551
    return index;
552
}
553

    
554
/* Calculates the limit to CPU APIC ID values
555
 *
556
 * This function returns the limit for the APIC ID value, so that all
557
 * CPU APIC IDs are < pc_apic_id_limit().
558
 *
559
 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
560
 */
561
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
562
{
563
    return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
564
}
565

    
566
static void *bochs_bios_init(void)
567
{
568
    void *fw_cfg;
569
    uint8_t *smbios_table;
570
    size_t smbios_len;
571
    uint64_t *numa_fw_cfg;
572
    int i, j;
573
    unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
574

    
575
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
576
    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
577
     *
578
     * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
579
     * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
580
     * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
581
     * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
582
     * may see".
583
     *
584
     * So, this means we must not use max_cpus, here, but the maximum possible
585
     * APIC ID value, plus one.
586
     *
587
     * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
588
     *     the APIC ID, not the "CPU index"
589
     */
590
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
591
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
592
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
593
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
594
                     acpi_tables, acpi_tables_len);
595
    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
596

    
597
    smbios_table = smbios_get_table(&smbios_len);
598
    if (smbios_table)
599
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
600
                         smbios_table, smbios_len);
601
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
602
                     &e820_table, sizeof(e820_table));
603

    
604
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
605
    /* allocate memory for the NUMA channel: one (64bit) word for the number
606
     * of nodes, one word for each VCPU->node and one word for each node to
607
     * hold the amount of memory.
608
     */
609
    numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
610
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
611
    for (i = 0; i < max_cpus; i++) {
612
        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
613
        assert(apic_id < apic_id_limit);
614
        for (j = 0; j < nb_numa_nodes; j++) {
615
            if (test_bit(i, node_cpumask[j])) {
616
                numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
617
                break;
618
            }
619
        }
620
    }
621
    for (i = 0; i < nb_numa_nodes; i++) {
622
        numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
623
    }
624
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
625
                     (1 + apic_id_limit + nb_numa_nodes) *
626
                     sizeof(*numa_fw_cfg));
627

    
628
    return fw_cfg;
629
}
630

    
631
static long get_file_size(FILE *f)
632
{
633
    long where, size;
634

    
635
    /* XXX: on Unix systems, using fstat() probably makes more sense */
636

    
637
    where = ftell(f);
638
    fseek(f, 0, SEEK_END);
639
    size = ftell(f);
640
    fseek(f, where, SEEK_SET);
641

    
642
    return size;
643
}
644

    
645
static void load_linux(void *fw_cfg,
646
                       const char *kernel_filename,
647
                       const char *initrd_filename,
648
                       const char *kernel_cmdline,
649
                       hwaddr max_ram_size)
650
{
651
    uint16_t protocol;
652
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
653
    uint32_t initrd_max;
654
    uint8_t header[8192], *setup, *kernel, *initrd_data;
655
    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
656
    FILE *f;
657
    char *vmode;
658

    
659
    /* Align to 16 bytes as a paranoia measure */
660
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
661

    
662
    /* load the kernel header */
663
    f = fopen(kernel_filename, "rb");
664
    if (!f || !(kernel_size = get_file_size(f)) ||
665
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
666
        MIN(ARRAY_SIZE(header), kernel_size)) {
667
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
668
                kernel_filename, strerror(errno));
669
        exit(1);
670
    }
671

    
672
    /* kernel protocol version */
673
#if 0
674
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
675
#endif
676
    if (ldl_p(header+0x202) == 0x53726448)
677
        protocol = lduw_p(header+0x206);
678
    else {
679
        /* This looks like a multiboot kernel. If it is, let's stop
680
           treating it like a Linux kernel. */
681
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
682
                           kernel_cmdline, kernel_size, header))
683
            return;
684
        protocol = 0;
685
    }
686

    
687
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
688
        /* Low kernel */
689
        real_addr    = 0x90000;
690
        cmdline_addr = 0x9a000 - cmdline_size;
691
        prot_addr    = 0x10000;
692
    } else if (protocol < 0x202) {
693
        /* High but ancient kernel */
694
        real_addr    = 0x90000;
695
        cmdline_addr = 0x9a000 - cmdline_size;
696
        prot_addr    = 0x100000;
697
    } else {
698
        /* High and recent kernel */
699
        real_addr    = 0x10000;
700
        cmdline_addr = 0x20000;
701
        prot_addr    = 0x100000;
702
    }
703

    
704
#if 0
705
    fprintf(stderr,
706
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
707
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
708
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
709
            real_addr,
710
            cmdline_addr,
711
            prot_addr);
712
#endif
713

    
714
    /* highest address for loading the initrd */
715
    if (protocol >= 0x203)
716
        initrd_max = ldl_p(header+0x22c);
717
    else
718
        initrd_max = 0x37ffffff;
719

    
720
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
721
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
722

    
723
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
724
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
725
    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
726

    
727
    if (protocol >= 0x202) {
728
        stl_p(header+0x228, cmdline_addr);
729
    } else {
730
        stw_p(header+0x20, 0xA33F);
731
        stw_p(header+0x22, cmdline_addr-real_addr);
732
    }
733

    
734
    /* handle vga= parameter */
735
    vmode = strstr(kernel_cmdline, "vga=");
736
    if (vmode) {
737
        unsigned int video_mode;
738
        /* skip "vga=" */
739
        vmode += 4;
740
        if (!strncmp(vmode, "normal", 6)) {
741
            video_mode = 0xffff;
742
        } else if (!strncmp(vmode, "ext", 3)) {
743
            video_mode = 0xfffe;
744
        } else if (!strncmp(vmode, "ask", 3)) {
745
            video_mode = 0xfffd;
746
        } else {
747
            video_mode = strtol(vmode, NULL, 0);
748
        }
749
        stw_p(header+0x1fa, video_mode);
750
    }
751

    
752
    /* loader type */
753
    /* High nybble = B reserved for QEMU; low nybble is revision number.
754
       If this code is substantially changed, you may want to consider
755
       incrementing the revision. */
756
    if (protocol >= 0x200)
757
        header[0x210] = 0xB0;
758

    
759
    /* heap */
760
    if (protocol >= 0x201) {
761
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
762
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
763
    }
764

    
765
    /* load initrd */
766
    if (initrd_filename) {
767
        if (protocol < 0x200) {
768
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
769
            exit(1);
770
        }
771

    
772
        initrd_size = get_image_size(initrd_filename);
773
        if (initrd_size < 0) {
774
            fprintf(stderr, "qemu: error reading initrd %s\n",
775
                    initrd_filename);
776
            exit(1);
777
        }
778

    
779
        initrd_addr = (initrd_max-initrd_size) & ~4095;
780

    
781
        initrd_data = g_malloc(initrd_size);
782
        load_image(initrd_filename, initrd_data);
783

    
784
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
785
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
786
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
787

    
788
        stl_p(header+0x218, initrd_addr);
789
        stl_p(header+0x21c, initrd_size);
790
    }
791

    
792
    /* load kernel and setup */
793
    setup_size = header[0x1f1];
794
    if (setup_size == 0)
795
        setup_size = 4;
796
    setup_size = (setup_size+1)*512;
797
    kernel_size -= setup_size;
798

    
799
    setup  = g_malloc(setup_size);
800
    kernel = g_malloc(kernel_size);
801
    fseek(f, 0, SEEK_SET);
802
    if (fread(setup, 1, setup_size, f) != setup_size) {
803
        fprintf(stderr, "fread() failed\n");
804
        exit(1);
805
    }
806
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
807
        fprintf(stderr, "fread() failed\n");
808
        exit(1);
809
    }
810
    fclose(f);
811
    memcpy(setup, header, MIN(sizeof(header), setup_size));
812

    
813
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
814
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
815
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
816

    
817
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
818
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
819
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
820

    
821
    option_rom[nb_option_roms].name = "linuxboot.bin";
822
    option_rom[nb_option_roms].bootindex = 0;
823
    nb_option_roms++;
824
}
825

    
826
#define NE2000_NB_MAX 6
827

    
828
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
829
                                              0x280, 0x380 };
830
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
831

    
832
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
833
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
834

    
835
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
836
{
837
    static int nb_ne2k = 0;
838

    
839
    if (nb_ne2k == NE2000_NB_MAX)
840
        return;
841
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
842
                    ne2000_irq[nb_ne2k], nd);
843
    nb_ne2k++;
844
}
845

    
846
DeviceState *cpu_get_current_apic(void)
847
{
848
    if (cpu_single_env) {
849
        return cpu_single_env->apic_state;
850
    } else {
851
        return NULL;
852
    }
853
}
854

    
855
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
856
{
857
    CPUX86State *s = opaque;
858

    
859
    if (level) {
860
        cpu_interrupt(s, CPU_INTERRUPT_SMI);
861
    }
862
}
863

    
864
void pc_cpus_init(const char *cpu_model)
865
{
866
    int i;
867

    
868
    /* init CPUs */
869
    if (cpu_model == NULL) {
870
#ifdef TARGET_X86_64
871
        cpu_model = "qemu64";
872
#else
873
        cpu_model = "qemu32";
874
#endif
875
    }
876

    
877
    for (i = 0; i < smp_cpus; i++) {
878
        if (!cpu_x86_init(cpu_model)) {
879
            fprintf(stderr, "Unable to find x86 CPU definition\n");
880
            exit(1);
881
        }
882
    }
883
}
884

    
885
void pc_acpi_init(const char *default_dsdt)
886
{
887
    char *filename = NULL, *arg = NULL;
888

    
889
    if (acpi_tables != NULL) {
890
        /* manually set via -acpitable, leave it alone */
891
        return;
892
    }
893

    
894
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
895
    if (filename == NULL) {
896
        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
897
        return;
898
    }
899

    
900
    arg = g_strdup_printf("file=%s", filename);
901
    if (acpi_table_add(arg) != 0) {
902
        fprintf(stderr, "WARNING: failed to load %s\n", filename);
903
    }
904
    g_free(arg);
905
    g_free(filename);
906
}
907

    
908
void *pc_memory_init(MemoryRegion *system_memory,
909
                    const char *kernel_filename,
910
                    const char *kernel_cmdline,
911
                    const char *initrd_filename,
912
                    ram_addr_t below_4g_mem_size,
913
                    ram_addr_t above_4g_mem_size,
914
                    MemoryRegion *rom_memory,
915
                    MemoryRegion **ram_memory)
916
{
917
    int linux_boot, i;
918
    MemoryRegion *ram, *option_rom_mr;
919
    MemoryRegion *ram_below_4g, *ram_above_4g;
920
    void *fw_cfg;
921

    
922
    linux_boot = (kernel_filename != NULL);
923

    
924
    /* Allocate RAM.  We allocate it as a single memory region and use
925
     * aliases to address portions of it, mostly for backwards compatibility
926
     * with older qemus that used qemu_ram_alloc().
927
     */
928
    ram = g_malloc(sizeof(*ram));
929
    memory_region_init_ram(ram, "pc.ram",
930
                           below_4g_mem_size + above_4g_mem_size);
931
    vmstate_register_ram_global(ram);
932
    *ram_memory = ram;
933
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
934
    memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
935
                             0, below_4g_mem_size);
936
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
937
    if (above_4g_mem_size > 0) {
938
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
939
        memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
940
                                 below_4g_mem_size, above_4g_mem_size);
941
        memory_region_add_subregion(system_memory, 0x100000000ULL,
942
                                    ram_above_4g);
943
    }
944

    
945

    
946
    /* Initialize PC system firmware */
947
    pc_system_firmware_init(rom_memory);
948

    
949
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
950
    memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
951
    vmstate_register_ram_global(option_rom_mr);
952
    memory_region_add_subregion_overlap(rom_memory,
953
                                        PC_ROM_MIN_VGA,
954
                                        option_rom_mr,
955
                                        1);
956

    
957
    fw_cfg = bochs_bios_init();
958
    rom_set_fw(fw_cfg);
959

    
960
    if (linux_boot) {
961
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
962
    }
963

    
964
    for (i = 0; i < nb_option_roms; i++) {
965
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
966
    }
967
    return fw_cfg;
968
}
969

    
970
qemu_irq *pc_allocate_cpu_irq(void)
971
{
972
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
973
}
974

    
975
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
976
{
977
    DeviceState *dev = NULL;
978

    
979
    if (pci_bus) {
980
        PCIDevice *pcidev = pci_vga_init(pci_bus);
981
        dev = pcidev ? &pcidev->qdev : NULL;
982
    } else if (isa_bus) {
983
        ISADevice *isadev = isa_vga_init(isa_bus);
984
        dev = isadev ? &isadev->qdev : NULL;
985
    }
986
    return dev;
987
}
988

    
989
static void cpu_request_exit(void *opaque, int irq, int level)
990
{
991
    CPUX86State *env = cpu_single_env;
992

    
993
    if (env && level) {
994
        cpu_exit(env);
995
    }
996
}
997

    
998
static const MemoryRegionOps ioport80_io_ops = {
999
    .write = ioport80_write,
1000
    .read = ioport80_read,
1001
    .endianness = DEVICE_NATIVE_ENDIAN,
1002
    .impl = {
1003
        .min_access_size = 1,
1004
        .max_access_size = 1,
1005
    },
1006
};
1007

    
1008
static const MemoryRegionOps ioportF0_io_ops = {
1009
    .write = ioportF0_write,
1010
    .read = ioportF0_read,
1011
    .endianness = DEVICE_NATIVE_ENDIAN,
1012
    .impl = {
1013
        .min_access_size = 1,
1014
        .max_access_size = 1,
1015
    },
1016
};
1017

    
1018
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1019
                          ISADevice **rtc_state,
1020
                          ISADevice **floppy,
1021
                          bool no_vmport)
1022
{
1023
    int i;
1024
    DriveInfo *fd[MAX_FD];
1025
    DeviceState *hpet = NULL;
1026
    int pit_isa_irq = 0;
1027
    qemu_irq pit_alt_irq = NULL;
1028
    qemu_irq rtc_irq = NULL;
1029
    qemu_irq *a20_line;
1030
    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1031
    qemu_irq *cpu_exit_irq;
1032
    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1033
    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1034

    
1035
    memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1036
    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1037

    
1038
    memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1039
    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1040

    
1041
    /*
1042
     * Check if an HPET shall be created.
1043
     *
1044
     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1045
     * when the HPET wants to take over. Thus we have to disable the latter.
1046
     */
1047
    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1048
        hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1049

    
1050
        if (hpet) {
1051
            for (i = 0; i < GSI_NUM_PINS; i++) {
1052
                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1053
            }
1054
            pit_isa_irq = -1;
1055
            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1056
            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1057
        }
1058
    }
1059
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1060

    
1061
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1062

    
1063
    if (!xen_enabled()) {
1064
        if (kvm_irqchip_in_kernel()) {
1065
            pit = kvm_pit_init(isa_bus, 0x40);
1066
        } else {
1067
            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1068
        }
1069
        if (hpet) {
1070
            /* connect PIT to output control line of the HPET */
1071
            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1072
        }
1073
        pcspk_init(isa_bus, pit);
1074
    }
1075

    
1076
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1077
        if (serial_hds[i]) {
1078
            serial_isa_init(isa_bus, i, serial_hds[i]);
1079
        }
1080
    }
1081

    
1082
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1083
        if (parallel_hds[i]) {
1084
            parallel_init(isa_bus, i, parallel_hds[i]);
1085
        }
1086
    }
1087

    
1088
    a20_line = qemu_allocate_irqs(handle_a20_line_change,
1089
                                  x86_env_get_cpu(first_cpu), 2);
1090
    i8042 = isa_create_simple(isa_bus, "i8042");
1091
    i8042_setup_a20_line(i8042, &a20_line[0]);
1092
    if (!no_vmport) {
1093
        vmport_init(isa_bus);
1094
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1095
    } else {
1096
        vmmouse = NULL;
1097
    }
1098
    if (vmmouse) {
1099
        qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1100
        qdev_init_nofail(&vmmouse->qdev);
1101
    }
1102
    port92 = isa_create_simple(isa_bus, "port92");
1103
    port92_init(port92, &a20_line[1]);
1104

    
1105
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1106
    DMA_init(0, cpu_exit_irq);
1107

    
1108
    for(i = 0; i < MAX_FD; i++) {
1109
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1110
    }
1111
    *floppy = fdctrl_init_isa(isa_bus, fd);
1112
}
1113

    
1114
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1115
{
1116
    int i;
1117

    
1118
    for (i = 0; i < nb_nics; i++) {
1119
        NICInfo *nd = &nd_table[i];
1120

    
1121
        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1122
            pc_init_ne2k_isa(isa_bus, nd);
1123
        } else {
1124
            pci_nic_init_nofail(nd, "e1000", NULL);
1125
        }
1126
    }
1127
}
1128

    
1129
void pc_pci_device_init(PCIBus *pci_bus)
1130
{
1131
    int max_bus;
1132
    int bus;
1133

    
1134
    max_bus = drive_get_max_bus(IF_SCSI);
1135
    for (bus = 0; bus <= max_bus; bus++) {
1136
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1137
    }
1138
}
1139

    
1140
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1141
{
1142
    DeviceState *dev;
1143
    SysBusDevice *d;
1144
    unsigned int i;
1145

    
1146
    if (kvm_irqchip_in_kernel()) {
1147
        dev = qdev_create(NULL, "kvm-ioapic");
1148
    } else {
1149
        dev = qdev_create(NULL, "ioapic");
1150
    }
1151
    if (parent_name) {
1152
        object_property_add_child(object_resolve_path(parent_name, NULL),
1153
                                  "ioapic", OBJECT(dev), NULL);
1154
    }
1155
    qdev_init_nofail(dev);
1156
    d = SYS_BUS_DEVICE(dev);
1157
    sysbus_mmio_map(d, 0, 0xfec00000);
1158

    
1159
    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1160
        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1161
    }
1162
}