Statistics
| Branch: | Revision:

root / hw / ppc.c @ 9a6ee9fd

History | View | Annotate | Download (39.7 kB)

1
/*
2
 * QEMU generic PowerPC hardware System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "ppc.h"
26
#include "qemu/timer.h"
27
#include "sysemu/sysemu.h"
28
#include "nvram.h"
29
#include "qemu/log.h"
30
#include "loader.h"
31
#include "sysemu/kvm.h"
32
#include "kvm_ppc.h"
33

    
34
//#define PPC_DEBUG_IRQ
35
//#define PPC_DEBUG_TB
36

    
37
#ifdef PPC_DEBUG_IRQ
38
#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39
#else
40
#  define LOG_IRQ(...) do { } while (0)
41
#endif
42

    
43

    
44
#ifdef PPC_DEBUG_TB
45
#  define LOG_TB(...) qemu_log(__VA_ARGS__)
46
#else
47
#  define LOG_TB(...) do { } while (0)
48
#endif
49

    
50
static void cpu_ppc_tb_stop (CPUPPCState *env);
51
static void cpu_ppc_tb_start (CPUPPCState *env);
52

    
53
void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
54
{
55
    CPUPPCState *env = &cpu->env;
56
    unsigned int old_pending = env->pending_interrupts;
57

    
58
    if (level) {
59
        env->pending_interrupts |= 1 << n_IRQ;
60
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
61
    } else {
62
        env->pending_interrupts &= ~(1 << n_IRQ);
63
        if (env->pending_interrupts == 0)
64
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
65
    }
66

    
67
    if (old_pending != env->pending_interrupts) {
68
#ifdef CONFIG_KVM
69
        kvmppc_set_interrupt(cpu, n_IRQ, level);
70
#endif
71
    }
72

    
73
    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
74
                "req %08x\n", __func__, env, n_IRQ, level,
75
                env->pending_interrupts, env->interrupt_request);
76
}
77

    
78
/* PowerPC 6xx / 7xx internal IRQ controller */
79
static void ppc6xx_set_irq(void *opaque, int pin, int level)
80
{
81
    PowerPCCPU *cpu = opaque;
82
    CPUPPCState *env = &cpu->env;
83
    int cur_level;
84

    
85
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
86
                env, pin, level);
87
    cur_level = (env->irq_input_state >> pin) & 1;
88
    /* Don't generate spurious events */
89
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
90
        switch (pin) {
91
        case PPC6xx_INPUT_TBEN:
92
            /* Level sensitive - active high */
93
            LOG_IRQ("%s: %s the time base\n",
94
                        __func__, level ? "start" : "stop");
95
            if (level) {
96
                cpu_ppc_tb_start(env);
97
            } else {
98
                cpu_ppc_tb_stop(env);
99
            }
100
        case PPC6xx_INPUT_INT:
101
            /* Level sensitive - active high */
102
            LOG_IRQ("%s: set the external IRQ state to %d\n",
103
                        __func__, level);
104
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
105
            break;
106
        case PPC6xx_INPUT_SMI:
107
            /* Level sensitive - active high */
108
            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
109
                        __func__, level);
110
            ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
111
            break;
112
        case PPC6xx_INPUT_MCP:
113
            /* Negative edge sensitive */
114
            /* XXX: TODO: actual reaction may depends on HID0 status
115
             *            603/604/740/750: check HID0[EMCP]
116
             */
117
            if (cur_level == 1 && level == 0) {
118
                LOG_IRQ("%s: raise machine check state\n",
119
                            __func__);
120
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
121
            }
122
            break;
123
        case PPC6xx_INPUT_CKSTP_IN:
124
            /* Level sensitive - active low */
125
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
126
            /* XXX: Note that the only way to restart the CPU is to reset it */
127
            if (level) {
128
                LOG_IRQ("%s: stop the CPU\n", __func__);
129
                env->halted = 1;
130
            }
131
            break;
132
        case PPC6xx_INPUT_HRESET:
133
            /* Level sensitive - active low */
134
            if (level) {
135
                LOG_IRQ("%s: reset the CPU\n", __func__);
136
                cpu_interrupt(env, CPU_INTERRUPT_RESET);
137
            }
138
            break;
139
        case PPC6xx_INPUT_SRESET:
140
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
141
                        __func__, level);
142
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
143
            break;
144
        default:
145
            /* Unknown pin - do nothing */
146
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
147
            return;
148
        }
149
        if (level)
150
            env->irq_input_state |= 1 << pin;
151
        else
152
            env->irq_input_state &= ~(1 << pin);
153
    }
154
}
155

    
156
void ppc6xx_irq_init(CPUPPCState *env)
157
{
158
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
159

    
160
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
161
                                                  PPC6xx_INPUT_NB);
162
}
163

    
164
#if defined(TARGET_PPC64)
165
/* PowerPC 970 internal IRQ controller */
166
static void ppc970_set_irq(void *opaque, int pin, int level)
167
{
168
    PowerPCCPU *cpu = opaque;
169
    CPUPPCState *env = &cpu->env;
170
    int cur_level;
171

    
172
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
173
                env, pin, level);
174
    cur_level = (env->irq_input_state >> pin) & 1;
175
    /* Don't generate spurious events */
176
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
177
        switch (pin) {
178
        case PPC970_INPUT_INT:
179
            /* Level sensitive - active high */
180
            LOG_IRQ("%s: set the external IRQ state to %d\n",
181
                        __func__, level);
182
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
183
            break;
184
        case PPC970_INPUT_THINT:
185
            /* Level sensitive - active high */
186
            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
187
                        level);
188
            ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
189
            break;
190
        case PPC970_INPUT_MCP:
191
            /* Negative edge sensitive */
192
            /* XXX: TODO: actual reaction may depends on HID0 status
193
             *            603/604/740/750: check HID0[EMCP]
194
             */
195
            if (cur_level == 1 && level == 0) {
196
                LOG_IRQ("%s: raise machine check state\n",
197
                            __func__);
198
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
199
            }
200
            break;
201
        case PPC970_INPUT_CKSTP:
202
            /* Level sensitive - active low */
203
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
204
            if (level) {
205
                LOG_IRQ("%s: stop the CPU\n", __func__);
206
                env->halted = 1;
207
            } else {
208
                LOG_IRQ("%s: restart the CPU\n", __func__);
209
                env->halted = 0;
210
                qemu_cpu_kick(CPU(cpu));
211
            }
212
            break;
213
        case PPC970_INPUT_HRESET:
214
            /* Level sensitive - active low */
215
            if (level) {
216
                cpu_interrupt(env, CPU_INTERRUPT_RESET);
217
            }
218
            break;
219
        case PPC970_INPUT_SRESET:
220
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
221
                        __func__, level);
222
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
223
            break;
224
        case PPC970_INPUT_TBEN:
225
            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
226
                        level);
227
            /* XXX: TODO */
228
            break;
229
        default:
230
            /* Unknown pin - do nothing */
231
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
232
            return;
233
        }
234
        if (level)
235
            env->irq_input_state |= 1 << pin;
236
        else
237
            env->irq_input_state &= ~(1 << pin);
238
    }
239
}
240

    
241
void ppc970_irq_init(CPUPPCState *env)
242
{
243
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
244

    
245
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
246
                                                  PPC970_INPUT_NB);
247
}
248

    
249
/* POWER7 internal IRQ controller */
250
static void power7_set_irq(void *opaque, int pin, int level)
251
{
252
    PowerPCCPU *cpu = opaque;
253
    CPUPPCState *env = &cpu->env;
254

    
255
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
256
                env, pin, level);
257

    
258
    switch (pin) {
259
    case POWER7_INPUT_INT:
260
        /* Level sensitive - active high */
261
        LOG_IRQ("%s: set the external IRQ state to %d\n",
262
                __func__, level);
263
        ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
264
        break;
265
    default:
266
        /* Unknown pin - do nothing */
267
        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
268
        return;
269
    }
270
    if (level) {
271
        env->irq_input_state |= 1 << pin;
272
    } else {
273
        env->irq_input_state &= ~(1 << pin);
274
    }
275
}
276

    
277
void ppcPOWER7_irq_init(CPUPPCState *env)
278
{
279
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
280

    
281
    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
282
                                                  POWER7_INPUT_NB);
283
}
284
#endif /* defined(TARGET_PPC64) */
285

    
286
/* PowerPC 40x internal IRQ controller */
287
static void ppc40x_set_irq(void *opaque, int pin, int level)
288
{
289
    PowerPCCPU *cpu = opaque;
290
    CPUPPCState *env = &cpu->env;
291
    int cur_level;
292

    
293
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
294
                env, pin, level);
295
    cur_level = (env->irq_input_state >> pin) & 1;
296
    /* Don't generate spurious events */
297
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
298
        switch (pin) {
299
        case PPC40x_INPUT_RESET_SYS:
300
            if (level) {
301
                LOG_IRQ("%s: reset the PowerPC system\n",
302
                            __func__);
303
                ppc40x_system_reset(cpu);
304
            }
305
            break;
306
        case PPC40x_INPUT_RESET_CHIP:
307
            if (level) {
308
                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
309
                ppc40x_chip_reset(cpu);
310
            }
311
            break;
312
        case PPC40x_INPUT_RESET_CORE:
313
            /* XXX: TODO: update DBSR[MRR] */
314
            if (level) {
315
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
316
                ppc40x_core_reset(cpu);
317
            }
318
            break;
319
        case PPC40x_INPUT_CINT:
320
            /* Level sensitive - active high */
321
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
322
                        __func__, level);
323
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
324
            break;
325
        case PPC40x_INPUT_INT:
326
            /* Level sensitive - active high */
327
            LOG_IRQ("%s: set the external IRQ state to %d\n",
328
                        __func__, level);
329
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
330
            break;
331
        case PPC40x_INPUT_HALT:
332
            /* Level sensitive - active low */
333
            if (level) {
334
                LOG_IRQ("%s: stop the CPU\n", __func__);
335
                env->halted = 1;
336
            } else {
337
                LOG_IRQ("%s: restart the CPU\n", __func__);
338
                env->halted = 0;
339
                qemu_cpu_kick(CPU(cpu));
340
            }
341
            break;
342
        case PPC40x_INPUT_DEBUG:
343
            /* Level sensitive - active high */
344
            LOG_IRQ("%s: set the debug pin state to %d\n",
345
                        __func__, level);
346
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
347
            break;
348
        default:
349
            /* Unknown pin - do nothing */
350
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
351
            return;
352
        }
353
        if (level)
354
            env->irq_input_state |= 1 << pin;
355
        else
356
            env->irq_input_state &= ~(1 << pin);
357
    }
358
}
359

    
360
void ppc40x_irq_init(CPUPPCState *env)
361
{
362
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
363

    
364
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
365
                                                  cpu, PPC40x_INPUT_NB);
366
}
367

    
368
/* PowerPC E500 internal IRQ controller */
369
static void ppce500_set_irq(void *opaque, int pin, int level)
370
{
371
    PowerPCCPU *cpu = opaque;
372
    CPUPPCState *env = &cpu->env;
373
    int cur_level;
374

    
375
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
376
                env, pin, level);
377
    cur_level = (env->irq_input_state >> pin) & 1;
378
    /* Don't generate spurious events */
379
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
380
        switch (pin) {
381
        case PPCE500_INPUT_MCK:
382
            if (level) {
383
                LOG_IRQ("%s: reset the PowerPC system\n",
384
                            __func__);
385
                qemu_system_reset_request();
386
            }
387
            break;
388
        case PPCE500_INPUT_RESET_CORE:
389
            if (level) {
390
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
391
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
392
            }
393
            break;
394
        case PPCE500_INPUT_CINT:
395
            /* Level sensitive - active high */
396
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
397
                        __func__, level);
398
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
399
            break;
400
        case PPCE500_INPUT_INT:
401
            /* Level sensitive - active high */
402
            LOG_IRQ("%s: set the core IRQ state to %d\n",
403
                        __func__, level);
404
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
405
            break;
406
        case PPCE500_INPUT_DEBUG:
407
            /* Level sensitive - active high */
408
            LOG_IRQ("%s: set the debug pin state to %d\n",
409
                        __func__, level);
410
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
411
            break;
412
        default:
413
            /* Unknown pin - do nothing */
414
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
415
            return;
416
        }
417
        if (level)
418
            env->irq_input_state |= 1 << pin;
419
        else
420
            env->irq_input_state &= ~(1 << pin);
421
    }
422
}
423

    
424
void ppce500_irq_init(CPUPPCState *env)
425
{
426
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
427

    
428
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
429
                                                  cpu, PPCE500_INPUT_NB);
430
}
431

    
432
/* Enable or Disable the E500 EPR capability */
433
void ppce500_set_mpic_proxy(bool enabled)
434
{
435
    CPUPPCState *env;
436

    
437
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
438
        PowerPCCPU *cpu = ppc_env_get_cpu(env);
439
        CPUState *cs = CPU(cpu);
440

    
441
        env->mpic_proxy = enabled;
442
        if (kvm_enabled()) {
443
            kvmppc_set_mpic_proxy(POWERPC_CPU(cs), enabled);
444
        }
445
    }
446
}
447

    
448
/*****************************************************************************/
449
/* PowerPC time base and decrementer emulation */
450

    
451
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
452
{
453
    /* TB time in tb periods */
454
    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
455
}
456

    
457
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
458
{
459
    ppc_tb_t *tb_env = env->tb_env;
460
    uint64_t tb;
461

    
462
    if (kvm_enabled()) {
463
        return env->spr[SPR_TBL];
464
    }
465

    
466
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
467
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
468

    
469
    return tb;
470
}
471

    
472
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
473
{
474
    ppc_tb_t *tb_env = env->tb_env;
475
    uint64_t tb;
476

    
477
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
478
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
479

    
480
    return tb >> 32;
481
}
482

    
483
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
484
{
485
    if (kvm_enabled()) {
486
        return env->spr[SPR_TBU];
487
    }
488

    
489
    return _cpu_ppc_load_tbu(env);
490
}
491

    
492
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
493
                                    int64_t *tb_offsetp, uint64_t value)
494
{
495
    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
496
    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
497
                __func__, value, *tb_offsetp);
498
}
499

    
500
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
501
{
502
    ppc_tb_t *tb_env = env->tb_env;
503
    uint64_t tb;
504

    
505
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
506
    tb &= 0xFFFFFFFF00000000ULL;
507
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
508
                     &tb_env->tb_offset, tb | (uint64_t)value);
509
}
510

    
511
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
512
{
513
    ppc_tb_t *tb_env = env->tb_env;
514
    uint64_t tb;
515

    
516
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
517
    tb &= 0x00000000FFFFFFFFULL;
518
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
519
                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
520
}
521

    
522
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
523
{
524
    _cpu_ppc_store_tbu(env, value);
525
}
526

    
527
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
528
{
529
    ppc_tb_t *tb_env = env->tb_env;
530
    uint64_t tb;
531

    
532
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
533
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
534

    
535
    return tb;
536
}
537

    
538
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
539
{
540
    ppc_tb_t *tb_env = env->tb_env;
541
    uint64_t tb;
542

    
543
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
544
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
545

    
546
    return tb >> 32;
547
}
548

    
549
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
550
{
551
    ppc_tb_t *tb_env = env->tb_env;
552
    uint64_t tb;
553

    
554
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
555
    tb &= 0xFFFFFFFF00000000ULL;
556
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
557
                     &tb_env->atb_offset, tb | (uint64_t)value);
558
}
559

    
560
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
561
{
562
    ppc_tb_t *tb_env = env->tb_env;
563
    uint64_t tb;
564

    
565
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
566
    tb &= 0x00000000FFFFFFFFULL;
567
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
568
                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
569
}
570

    
571
static void cpu_ppc_tb_stop (CPUPPCState *env)
572
{
573
    ppc_tb_t *tb_env = env->tb_env;
574
    uint64_t tb, atb, vmclk;
575

    
576
    /* If the time base is already frozen, do nothing */
577
    if (tb_env->tb_freq != 0) {
578
        vmclk = qemu_get_clock_ns(vm_clock);
579
        /* Get the time base */
580
        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
581
        /* Get the alternate time base */
582
        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
583
        /* Store the time base value (ie compute the current offset) */
584
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
585
        /* Store the alternate time base value (compute the current offset) */
586
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
587
        /* Set the time base frequency to zero */
588
        tb_env->tb_freq = 0;
589
        /* Now, the time bases are frozen to tb_offset / atb_offset value */
590
    }
591
}
592

    
593
static void cpu_ppc_tb_start (CPUPPCState *env)
594
{
595
    ppc_tb_t *tb_env = env->tb_env;
596
    uint64_t tb, atb, vmclk;
597

    
598
    /* If the time base is not frozen, do nothing */
599
    if (tb_env->tb_freq == 0) {
600
        vmclk = qemu_get_clock_ns(vm_clock);
601
        /* Get the time base from tb_offset */
602
        tb = tb_env->tb_offset;
603
        /* Get the alternate time base from atb_offset */
604
        atb = tb_env->atb_offset;
605
        /* Restore the tb frequency from the decrementer frequency */
606
        tb_env->tb_freq = tb_env->decr_freq;
607
        /* Store the time base value */
608
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
609
        /* Store the alternate time base value */
610
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
611
    }
612
}
613

    
614
static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
615
{
616
    ppc_tb_t *tb_env = env->tb_env;
617
    uint32_t decr;
618
    int64_t diff;
619

    
620
    diff = next - qemu_get_clock_ns(vm_clock);
621
    if (diff >= 0) {
622
        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
623
    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
624
        decr = 0;
625
    }  else {
626
        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
627
    }
628
    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
629

    
630
    return decr;
631
}
632

    
633
uint32_t cpu_ppc_load_decr (CPUPPCState *env)
634
{
635
    ppc_tb_t *tb_env = env->tb_env;
636

    
637
    if (kvm_enabled()) {
638
        return env->spr[SPR_DECR];
639
    }
640

    
641
    return _cpu_ppc_load_decr(env, tb_env->decr_next);
642
}
643

    
644
uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
645
{
646
    ppc_tb_t *tb_env = env->tb_env;
647

    
648
    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
649
}
650

    
651
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
652
{
653
    ppc_tb_t *tb_env = env->tb_env;
654
    uint64_t diff;
655

    
656
    diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
657

    
658
    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
659
}
660

    
661
/* When decrementer expires,
662
 * all we need to do is generate or queue a CPU exception
663
 */
664
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
665
{
666
    /* Raise it */
667
    LOG_TB("raise decrementer exception\n");
668
    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
669
}
670

    
671
static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
672
{
673
    /* Raise it */
674
    LOG_TB("raise decrementer exception\n");
675
    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
676
}
677

    
678
static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
679
                                 struct QEMUTimer *timer,
680
                                 void (*raise_excp)(PowerPCCPU *),
681
                                 uint32_t decr, uint32_t value,
682
                                 int is_excp)
683
{
684
    CPUPPCState *env = &cpu->env;
685
    ppc_tb_t *tb_env = env->tb_env;
686
    uint64_t now, next;
687

    
688
    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
689
                decr, value);
690

    
691
    if (kvm_enabled()) {
692
        /* KVM handles decrementer exceptions, we don't need our own timer */
693
        return;
694
    }
695

    
696
    now = qemu_get_clock_ns(vm_clock);
697
    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
698
    if (is_excp) {
699
        next += *nextp - now;
700
    }
701
    if (next == now) {
702
        next++;
703
    }
704
    *nextp = next;
705
    /* Adjust timer */
706
    qemu_mod_timer(timer, next);
707

    
708
    /* If we set a negative value and the decrementer was positive, raise an
709
     * exception.
710
     */
711
    if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
712
        && (value & 0x80000000)
713
        && !(decr & 0x80000000)) {
714
        (*raise_excp)(cpu);
715
    }
716
}
717

    
718
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
719
                                       uint32_t value, int is_excp)
720
{
721
    ppc_tb_t *tb_env = cpu->env.tb_env;
722

    
723
    __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
724
                         &cpu_ppc_decr_excp, decr, value, is_excp);
725
}
726

    
727
void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
728
{
729
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
730

    
731
    _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
732
}
733

    
734
static void cpu_ppc_decr_cb(void *opaque)
735
{
736
    PowerPCCPU *cpu = opaque;
737

    
738
    _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
739
}
740

    
741
static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
742
                                        uint32_t value, int is_excp)
743
{
744
    ppc_tb_t *tb_env = cpu->env.tb_env;
745

    
746
    if (tb_env->hdecr_timer != NULL) {
747
        __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
748
                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
749
    }
750
}
751

    
752
void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
753
{
754
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
755

    
756
    _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
757
}
758

    
759
static void cpu_ppc_hdecr_cb(void *opaque)
760
{
761
    PowerPCCPU *cpu = opaque;
762

    
763
    _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
764
}
765

    
766
static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
767
{
768
    ppc_tb_t *tb_env = cpu->env.tb_env;
769

    
770
    tb_env->purr_load = value;
771
    tb_env->purr_start = qemu_get_clock_ns(vm_clock);
772
}
773

    
774
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
775
{
776
    CPUPPCState *env = opaque;
777
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
778
    ppc_tb_t *tb_env = env->tb_env;
779

    
780
    tb_env->tb_freq = freq;
781
    tb_env->decr_freq = freq;
782
    /* There is a bug in Linux 2.4 kernels:
783
     * if a decrementer exception is pending when it enables msr_ee at startup,
784
     * it's not ready to handle it...
785
     */
786
    _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
787
    _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
788
    cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
789
}
790

    
791
/* Set up (once) timebase frequency (in Hz) */
792
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
793
{
794
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
795
    ppc_tb_t *tb_env;
796

    
797
    tb_env = g_malloc0(sizeof(ppc_tb_t));
798
    env->tb_env = tb_env;
799
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
800
    /* Create new timer */
801
    tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, cpu);
802
    if (0) {
803
        /* XXX: find a suitable condition to enable the hypervisor decrementer
804
         */
805
        tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb,
806
                                                cpu);
807
    } else {
808
        tb_env->hdecr_timer = NULL;
809
    }
810
    cpu_ppc_set_tb_clk(env, freq);
811

    
812
    return &cpu_ppc_set_tb_clk;
813
}
814

    
815
/* Specific helpers for POWER & PowerPC 601 RTC */
816
#if 0
817
static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
818
{
819
    return cpu_ppc_tb_init(env, 7812500);
820
}
821
#endif
822

    
823
void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
824
{
825
    _cpu_ppc_store_tbu(env, value);
826
}
827

    
828
uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
829
{
830
    return _cpu_ppc_load_tbu(env);
831
}
832

    
833
void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
834
{
835
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
836
}
837

    
838
uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
839
{
840
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
841
}
842

    
843
/*****************************************************************************/
844
/* PowerPC 40x timers */
845

    
846
/* PIT, FIT & WDT */
847
typedef struct ppc40x_timer_t ppc40x_timer_t;
848
struct ppc40x_timer_t {
849
    uint64_t pit_reload;  /* PIT auto-reload value        */
850
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
851
    struct QEMUTimer *fit_timer;
852
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
853
    struct QEMUTimer *wdt_timer;
854

    
855
    /* 405 have the PIT, 440 have a DECR.  */
856
    unsigned int decr_excp;
857
};
858

    
859
/* Fixed interval timer */
860
static void cpu_4xx_fit_cb (void *opaque)
861
{
862
    PowerPCCPU *cpu;
863
    CPUPPCState *env;
864
    ppc_tb_t *tb_env;
865
    ppc40x_timer_t *ppc40x_timer;
866
    uint64_t now, next;
867

    
868
    env = opaque;
869
    cpu = ppc_env_get_cpu(env);
870
    tb_env = env->tb_env;
871
    ppc40x_timer = tb_env->opaque;
872
    now = qemu_get_clock_ns(vm_clock);
873
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
874
    case 0:
875
        next = 1 << 9;
876
        break;
877
    case 1:
878
        next = 1 << 13;
879
        break;
880
    case 2:
881
        next = 1 << 17;
882
        break;
883
    case 3:
884
        next = 1 << 21;
885
        break;
886
    default:
887
        /* Cannot occur, but makes gcc happy */
888
        return;
889
    }
890
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
891
    if (next == now)
892
        next++;
893
    qemu_mod_timer(ppc40x_timer->fit_timer, next);
894
    env->spr[SPR_40x_TSR] |= 1 << 26;
895
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
896
        ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
897
    }
898
    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
899
           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
900
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
901
}
902

    
903
/* Programmable interval timer */
904
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
905
{
906
    ppc40x_timer_t *ppc40x_timer;
907
    uint64_t now, next;
908

    
909
    ppc40x_timer = tb_env->opaque;
910
    if (ppc40x_timer->pit_reload <= 1 ||
911
        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
912
        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
913
        /* Stop PIT */
914
        LOG_TB("%s: stop PIT\n", __func__);
915
        qemu_del_timer(tb_env->decr_timer);
916
    } else {
917
        LOG_TB("%s: start PIT %016" PRIx64 "\n",
918
                    __func__, ppc40x_timer->pit_reload);
919
        now = qemu_get_clock_ns(vm_clock);
920
        next = now + muldiv64(ppc40x_timer->pit_reload,
921
                              get_ticks_per_sec(), tb_env->decr_freq);
922
        if (is_excp)
923
            next += tb_env->decr_next - now;
924
        if (next == now)
925
            next++;
926
        qemu_mod_timer(tb_env->decr_timer, next);
927
        tb_env->decr_next = next;
928
    }
929
}
930

    
931
static void cpu_4xx_pit_cb (void *opaque)
932
{
933
    PowerPCCPU *cpu;
934
    CPUPPCState *env;
935
    ppc_tb_t *tb_env;
936
    ppc40x_timer_t *ppc40x_timer;
937

    
938
    env = opaque;
939
    cpu = ppc_env_get_cpu(env);
940
    tb_env = env->tb_env;
941
    ppc40x_timer = tb_env->opaque;
942
    env->spr[SPR_40x_TSR] |= 1 << 27;
943
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
944
        ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
945
    }
946
    start_stop_pit(env, tb_env, 1);
947
    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
948
           "%016" PRIx64 "\n", __func__,
949
           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
950
           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
951
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
952
           ppc40x_timer->pit_reload);
953
}
954

    
955
/* Watchdog timer */
956
static void cpu_4xx_wdt_cb (void *opaque)
957
{
958
    PowerPCCPU *cpu;
959
    CPUPPCState *env;
960
    ppc_tb_t *tb_env;
961
    ppc40x_timer_t *ppc40x_timer;
962
    uint64_t now, next;
963

    
964
    env = opaque;
965
    cpu = ppc_env_get_cpu(env);
966
    tb_env = env->tb_env;
967
    ppc40x_timer = tb_env->opaque;
968
    now = qemu_get_clock_ns(vm_clock);
969
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
970
    case 0:
971
        next = 1 << 17;
972
        break;
973
    case 1:
974
        next = 1 << 21;
975
        break;
976
    case 2:
977
        next = 1 << 25;
978
        break;
979
    case 3:
980
        next = 1 << 29;
981
        break;
982
    default:
983
        /* Cannot occur, but makes gcc happy */
984
        return;
985
    }
986
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
987
    if (next == now)
988
        next++;
989
    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
990
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
991
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
992
    case 0x0:
993
    case 0x1:
994
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
995
        ppc40x_timer->wdt_next = next;
996
        env->spr[SPR_40x_TSR] |= 1 << 31;
997
        break;
998
    case 0x2:
999
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1000
        ppc40x_timer->wdt_next = next;
1001
        env->spr[SPR_40x_TSR] |= 1 << 30;
1002
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1003
            ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1004
        }
1005
        break;
1006
    case 0x3:
1007
        env->spr[SPR_40x_TSR] &= ~0x30000000;
1008
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1009
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1010
        case 0x0:
1011
            /* No reset */
1012
            break;
1013
        case 0x1: /* Core reset */
1014
            ppc40x_core_reset(cpu);
1015
            break;
1016
        case 0x2: /* Chip reset */
1017
            ppc40x_chip_reset(cpu);
1018
            break;
1019
        case 0x3: /* System reset */
1020
            ppc40x_system_reset(cpu);
1021
            break;
1022
        }
1023
    }
1024
}
1025

    
1026
void store_40x_pit (CPUPPCState *env, target_ulong val)
1027
{
1028
    ppc_tb_t *tb_env;
1029
    ppc40x_timer_t *ppc40x_timer;
1030

    
1031
    tb_env = env->tb_env;
1032
    ppc40x_timer = tb_env->opaque;
1033
    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1034
    ppc40x_timer->pit_reload = val;
1035
    start_stop_pit(env, tb_env, 0);
1036
}
1037

    
1038
target_ulong load_40x_pit (CPUPPCState *env)
1039
{
1040
    return cpu_ppc_load_decr(env);
1041
}
1042

    
1043
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1044
{
1045
    CPUPPCState *env = opaque;
1046
    ppc_tb_t *tb_env = env->tb_env;
1047

    
1048
    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1049
                freq);
1050
    tb_env->tb_freq = freq;
1051
    tb_env->decr_freq = freq;
1052
    /* XXX: we should also update all timers */
1053
}
1054

    
1055
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1056
                                  unsigned int decr_excp)
1057
{
1058
    ppc_tb_t *tb_env;
1059
    ppc40x_timer_t *ppc40x_timer;
1060

    
1061
    tb_env = g_malloc0(sizeof(ppc_tb_t));
1062
    env->tb_env = tb_env;
1063
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1064
    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1065
    tb_env->tb_freq = freq;
1066
    tb_env->decr_freq = freq;
1067
    tb_env->opaque = ppc40x_timer;
1068
    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1069
    if (ppc40x_timer != NULL) {
1070
        /* We use decr timer for PIT */
1071
        tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1072
        ppc40x_timer->fit_timer =
1073
            qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1074
        ppc40x_timer->wdt_timer =
1075
            qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1076
        ppc40x_timer->decr_excp = decr_excp;
1077
    }
1078

    
1079
    return &ppc_40x_set_tb_clk;
1080
}
1081

    
1082
/*****************************************************************************/
1083
/* Embedded PowerPC Device Control Registers */
1084
typedef struct ppc_dcrn_t ppc_dcrn_t;
1085
struct ppc_dcrn_t {
1086
    dcr_read_cb dcr_read;
1087
    dcr_write_cb dcr_write;
1088
    void *opaque;
1089
};
1090

    
1091
/* XXX: on 460, DCR addresses are 32 bits wide,
1092
 *      using DCRIPR to get the 22 upper bits of the DCR address
1093
 */
1094
#define DCRN_NB 1024
1095
struct ppc_dcr_t {
1096
    ppc_dcrn_t dcrn[DCRN_NB];
1097
    int (*read_error)(int dcrn);
1098
    int (*write_error)(int dcrn);
1099
};
1100

    
1101
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1102
{
1103
    ppc_dcrn_t *dcr;
1104

    
1105
    if (dcrn < 0 || dcrn >= DCRN_NB)
1106
        goto error;
1107
    dcr = &dcr_env->dcrn[dcrn];
1108
    if (dcr->dcr_read == NULL)
1109
        goto error;
1110
    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1111

    
1112
    return 0;
1113

    
1114
 error:
1115
    if (dcr_env->read_error != NULL)
1116
        return (*dcr_env->read_error)(dcrn);
1117

    
1118
    return -1;
1119
}
1120

    
1121
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1122
{
1123
    ppc_dcrn_t *dcr;
1124

    
1125
    if (dcrn < 0 || dcrn >= DCRN_NB)
1126
        goto error;
1127
    dcr = &dcr_env->dcrn[dcrn];
1128
    if (dcr->dcr_write == NULL)
1129
        goto error;
1130
    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1131

    
1132
    return 0;
1133

    
1134
 error:
1135
    if (dcr_env->write_error != NULL)
1136
        return (*dcr_env->write_error)(dcrn);
1137

    
1138
    return -1;
1139
}
1140

    
1141
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1142
                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1143
{
1144
    ppc_dcr_t *dcr_env;
1145
    ppc_dcrn_t *dcr;
1146

    
1147
    dcr_env = env->dcr_env;
1148
    if (dcr_env == NULL)
1149
        return -1;
1150
    if (dcrn < 0 || dcrn >= DCRN_NB)
1151
        return -1;
1152
    dcr = &dcr_env->dcrn[dcrn];
1153
    if (dcr->opaque != NULL ||
1154
        dcr->dcr_read != NULL ||
1155
        dcr->dcr_write != NULL)
1156
        return -1;
1157
    dcr->opaque = opaque;
1158
    dcr->dcr_read = dcr_read;
1159
    dcr->dcr_write = dcr_write;
1160

    
1161
    return 0;
1162
}
1163

    
1164
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1165
                  int (*write_error)(int dcrn))
1166
{
1167
    ppc_dcr_t *dcr_env;
1168

    
1169
    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1170
    dcr_env->read_error = read_error;
1171
    dcr_env->write_error = write_error;
1172
    env->dcr_env = dcr_env;
1173

    
1174
    return 0;
1175
}
1176

    
1177
/*****************************************************************************/
1178
/* Debug port */
1179
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1180
{
1181
    addr &= 0xF;
1182
    switch (addr) {
1183
    case 0:
1184
        printf("%c", val);
1185
        break;
1186
    case 1:
1187
        printf("\n");
1188
        fflush(stdout);
1189
        break;
1190
    case 2:
1191
        printf("Set loglevel to %04" PRIx32 "\n", val);
1192
        qemu_set_log(val | 0x100);
1193
        break;
1194
    }
1195
}
1196

    
1197
/*****************************************************************************/
1198
/* NVRAM helpers */
1199
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1200
{
1201
    return (*nvram->read_fn)(nvram->opaque, addr);
1202
}
1203

    
1204
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1205
{
1206
    (*nvram->write_fn)(nvram->opaque, addr, val);
1207
}
1208

    
1209
static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1210
{
1211
    nvram_write(nvram, addr, value);
1212
}
1213

    
1214
static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1215
{
1216
    return nvram_read(nvram, addr);
1217
}
1218

    
1219
static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1220
{
1221
    nvram_write(nvram, addr, value >> 8);
1222
    nvram_write(nvram, addr + 1, value & 0xFF);
1223
}
1224

    
1225
static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1226
{
1227
    uint16_t tmp;
1228

    
1229
    tmp = nvram_read(nvram, addr) << 8;
1230
    tmp |= nvram_read(nvram, addr + 1);
1231

    
1232
    return tmp;
1233
}
1234

    
1235
static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1236
{
1237
    nvram_write(nvram, addr, value >> 24);
1238
    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1239
    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1240
    nvram_write(nvram, addr + 3, value & 0xFF);
1241
}
1242

    
1243
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1244
{
1245
    uint32_t tmp;
1246

    
1247
    tmp = nvram_read(nvram, addr) << 24;
1248
    tmp |= nvram_read(nvram, addr + 1) << 16;
1249
    tmp |= nvram_read(nvram, addr + 2) << 8;
1250
    tmp |= nvram_read(nvram, addr + 3);
1251

    
1252
    return tmp;
1253
}
1254

    
1255
static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1256
                             uint32_t max)
1257
{
1258
    int i;
1259

    
1260
    for (i = 0; i < max && str[i] != '\0'; i++) {
1261
        nvram_write(nvram, addr + i, str[i]);
1262
    }
1263
    nvram_write(nvram, addr + i, str[i]);
1264
    nvram_write(nvram, addr + max - 1, '\0');
1265
}
1266

    
1267
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1268
{
1269
    int i;
1270

    
1271
    memset(dst, 0, max);
1272
    for (i = 0; i < max; i++) {
1273
        dst[i] = NVRAM_get_byte(nvram, addr + i);
1274
        if (dst[i] == '\0')
1275
            break;
1276
    }
1277

    
1278
    return i;
1279
}
1280

    
1281
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1282
{
1283
    uint16_t tmp;
1284
    uint16_t pd, pd1, pd2;
1285

    
1286
    tmp = prev >> 8;
1287
    pd = prev ^ value;
1288
    pd1 = pd & 0x000F;
1289
    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1290
    tmp ^= (pd1 << 3) | (pd1 << 8);
1291
    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1292

    
1293
    return tmp;
1294
}
1295

    
1296
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1297
{
1298
    uint32_t i;
1299
    uint16_t crc = 0xFFFF;
1300
    int odd;
1301

    
1302
    odd = count & 1;
1303
    count &= ~1;
1304
    for (i = 0; i != count; i++) {
1305
        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1306
    }
1307
    if (odd) {
1308
        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1309
    }
1310

    
1311
    return crc;
1312
}
1313

    
1314
#define CMDLINE_ADDR 0x017ff000
1315

    
1316
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1317
                          const char *arch,
1318
                          uint32_t RAM_size, int boot_device,
1319
                          uint32_t kernel_image, uint32_t kernel_size,
1320
                          const char *cmdline,
1321
                          uint32_t initrd_image, uint32_t initrd_size,
1322
                          uint32_t NVRAM_image,
1323
                          int width, int height, int depth)
1324
{
1325
    uint16_t crc;
1326

    
1327
    /* Set parameters for Open Hack'Ware BIOS */
1328
    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1329
    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1330
    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1331
    NVRAM_set_string(nvram, 0x20, arch, 16);
1332
    NVRAM_set_lword(nvram,  0x30, RAM_size);
1333
    NVRAM_set_byte(nvram,   0x34, boot_device);
1334
    NVRAM_set_lword(nvram,  0x38, kernel_image);
1335
    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1336
    if (cmdline) {
1337
        /* XXX: put the cmdline in NVRAM too ? */
1338
        pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1339
        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1340
        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1341
    } else {
1342
        NVRAM_set_lword(nvram,  0x40, 0);
1343
        NVRAM_set_lword(nvram,  0x44, 0);
1344
    }
1345
    NVRAM_set_lword(nvram,  0x48, initrd_image);
1346
    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1347
    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1348

    
1349
    NVRAM_set_word(nvram,   0x54, width);
1350
    NVRAM_set_word(nvram,   0x56, height);
1351
    NVRAM_set_word(nvram,   0x58, depth);
1352
    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1353
    NVRAM_set_word(nvram,   0xFC, crc);
1354

    
1355
    return 0;
1356
}