Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 9b7b85d2

History | View | Annotate | Download (80.6 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4
#if !defined(CONFIG_USER_ONLY)
5
#include "softmmu_exec.h"
6
#endif /* !defined(CONFIG_USER_ONLY) */
7

    
8
//#define DEBUG_PCALL
9
//#define DEBUG_MMU
10
//#define DEBUG_MXCC
11
//#define DEBUG_UNALIGNED
12
//#define DEBUG_UNASSIGNED
13
//#define DEBUG_ASI
14

    
15
#ifdef DEBUG_MMU
16
#define DPRINTF_MMU(fmt, args...) \
17
do { printf("MMU: " fmt , ##args); } while (0)
18
#else
19
#define DPRINTF_MMU(fmt, args...) do {} while (0)
20
#endif
21

    
22
#ifdef DEBUG_MXCC
23
#define DPRINTF_MXCC(fmt, args...) \
24
do { printf("MXCC: " fmt , ##args); } while (0)
25
#else
26
#define DPRINTF_MXCC(fmt, args...) do {} while (0)
27
#endif
28

    
29
#ifdef DEBUG_ASI
30
#define DPRINTF_ASI(fmt, args...) \
31
do { printf("ASI: " fmt , ##args); } while (0)
32
#else
33
#define DPRINTF_ASI(fmt, args...) do {} while (0)
34
#endif
35

    
36
#ifdef TARGET_ABI32
37
#define ABI32_MASK(addr) do { (addr) &= 0xffffffffULL; } while (0)
38
#else
39
#define ABI32_MASK(addr) do {} while (0)
40
#endif
41

    
42
void raise_exception(int tt)
43
{
44
    env->exception_index = tt;
45
    cpu_loop_exit();
46
}
47

    
48
void helper_trap(target_ulong nb_trap)
49
{
50
    env->exception_index = TT_TRAP + (nb_trap & 0x7f);
51
    cpu_loop_exit();
52
}
53

    
54
void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
55
{
56
    if (do_trap) {
57
        env->exception_index = TT_TRAP + (nb_trap & 0x7f);
58
        cpu_loop_exit();
59
    }
60
}
61

    
62
void helper_check_align(target_ulong addr, uint32_t align)
63
{
64
    if (addr & align) {
65
#ifdef DEBUG_UNALIGNED
66
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
67
           "\n", addr, env->pc);
68
#endif
69
        raise_exception(TT_UNALIGNED);
70
    }
71
}
72

    
73
#define F_HELPER(name, p) void helper_f##name##p(void)
74

    
75
#define F_BINOP(name)                                           \
76
    F_HELPER(name, s)                                           \
77
    {                                                           \
78
        FT0 = float32_ ## name (FT0, FT1, &env->fp_status);     \
79
    }                                                           \
80
    F_HELPER(name, d)                                           \
81
    {                                                           \
82
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
83
    }                                                           \
84
    F_HELPER(name, q)                                           \
85
    {                                                           \
86
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
87
    }
88

    
89
F_BINOP(add);
90
F_BINOP(sub);
91
F_BINOP(mul);
92
F_BINOP(div);
93
#undef F_BINOP
94

    
95
void helper_fsmuld(void)
96
{
97
    DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
98
                      float32_to_float64(FT1, &env->fp_status),
99
                      &env->fp_status);
100
}
101

    
102
void helper_fdmulq(void)
103
{
104
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
105
                       float64_to_float128(DT1, &env->fp_status),
106
                       &env->fp_status);
107
}
108

    
109
F_HELPER(neg, s)
110
{
111
    FT0 = float32_chs(FT1);
112
}
113

    
114
#ifdef TARGET_SPARC64
115
F_HELPER(neg, d)
116
{
117
    DT0 = float64_chs(DT1);
118
}
119

    
120
F_HELPER(neg, q)
121
{
122
    QT0 = float128_chs(QT1);
123
}
124
#endif
125

    
126
/* Integer to float conversion.  */
127
F_HELPER(ito, s)
128
{
129
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
130
}
131

    
132
F_HELPER(ito, d)
133
{
134
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
135
}
136

    
137
F_HELPER(ito, q)
138
{
139
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
140
}
141

    
142
#ifdef TARGET_SPARC64
143
F_HELPER(xto, s)
144
{
145
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
146
}
147

    
148
F_HELPER(xto, d)
149
{
150
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
151
}
152

    
153
F_HELPER(xto, q)
154
{
155
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
156
}
157
#endif
158
#undef F_HELPER
159

    
160
/* floating point conversion */
161
void helper_fdtos(void)
162
{
163
    FT0 = float64_to_float32(DT1, &env->fp_status);
164
}
165

    
166
void helper_fstod(void)
167
{
168
    DT0 = float32_to_float64(FT1, &env->fp_status);
169
}
170

    
171
void helper_fqtos(void)
172
{
173
    FT0 = float128_to_float32(QT1, &env->fp_status);
174
}
175

    
176
void helper_fstoq(void)
177
{
178
    QT0 = float32_to_float128(FT1, &env->fp_status);
179
}
180

    
181
void helper_fqtod(void)
182
{
183
    DT0 = float128_to_float64(QT1, &env->fp_status);
184
}
185

    
186
void helper_fdtoq(void)
187
{
188
    QT0 = float64_to_float128(DT1, &env->fp_status);
189
}
190

    
191
/* Float to integer conversion.  */
192
void helper_fstoi(void)
193
{
194
    *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
195
}
196

    
197
void helper_fdtoi(void)
198
{
199
    *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
200
}
201

    
202
void helper_fqtoi(void)
203
{
204
    *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
205
}
206

    
207
#ifdef TARGET_SPARC64
208
void helper_fstox(void)
209
{
210
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
211
}
212

    
213
void helper_fdtox(void)
214
{
215
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
216
}
217

    
218
void helper_fqtox(void)
219
{
220
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
221
}
222

    
223
void helper_faligndata(void)
224
{
225
    uint64_t tmp;
226

    
227
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
228
    tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
229
    *((uint64_t *)&DT0) = tmp;
230
}
231

    
232
void helper_movl_FT0_0(void)
233
{
234
    *((uint32_t *)&FT0) = 0;
235
}
236

    
237
void helper_movl_DT0_0(void)
238
{
239
    *((uint64_t *)&DT0) = 0;
240
}
241

    
242
void helper_movl_FT0_1(void)
243
{
244
    *((uint32_t *)&FT0) = 0xffffffff;
245
}
246

    
247
void helper_movl_DT0_1(void)
248
{
249
    *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
250
}
251

    
252
void helper_fnot(void)
253
{
254
    *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
255
}
256

    
257
void helper_fnots(void)
258
{
259
    *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
260
}
261

    
262
void helper_fnor(void)
263
{
264
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
265
}
266

    
267
void helper_fnors(void)
268
{
269
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
270
}
271

    
272
void helper_for(void)
273
{
274
    *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
275
}
276

    
277
void helper_fors(void)
278
{
279
    *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
280
}
281

    
282
void helper_fxor(void)
283
{
284
    *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
285
}
286

    
287
void helper_fxors(void)
288
{
289
    *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
290
}
291

    
292
void helper_fand(void)
293
{
294
    *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
295
}
296

    
297
void helper_fands(void)
298
{
299
    *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
300
}
301

    
302
void helper_fornot(void)
303
{
304
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
305
}
306

    
307
void helper_fornots(void)
308
{
309
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
310
}
311

    
312
void helper_fandnot(void)
313
{
314
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
315
}
316

    
317
void helper_fandnots(void)
318
{
319
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
320
}
321

    
322
void helper_fnand(void)
323
{
324
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
325
}
326

    
327
void helper_fnands(void)
328
{
329
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
330
}
331

    
332
void helper_fxnor(void)
333
{
334
    *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
335
}
336

    
337
void helper_fxnors(void)
338
{
339
    *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
340
}
341

    
342
#ifdef WORDS_BIGENDIAN
343
#define VIS_B64(n) b[7 - (n)]
344
#define VIS_W64(n) w[3 - (n)]
345
#define VIS_SW64(n) sw[3 - (n)]
346
#define VIS_L64(n) l[1 - (n)]
347
#define VIS_B32(n) b[3 - (n)]
348
#define VIS_W32(n) w[1 - (n)]
349
#else
350
#define VIS_B64(n) b[n]
351
#define VIS_W64(n) w[n]
352
#define VIS_SW64(n) sw[n]
353
#define VIS_L64(n) l[n]
354
#define VIS_B32(n) b[n]
355
#define VIS_W32(n) w[n]
356
#endif
357

    
358
typedef union {
359
    uint8_t b[8];
360
    uint16_t w[4];
361
    int16_t sw[4];
362
    uint32_t l[2];
363
    float64 d;
364
} vis64;
365

    
366
typedef union {
367
    uint8_t b[4];
368
    uint16_t w[2];
369
    uint32_t l;
370
    float32 f;
371
} vis32;
372

    
373
void helper_fpmerge(void)
374
{
375
    vis64 s, d;
376

    
377
    s.d = DT0;
378
    d.d = DT1;
379

    
380
    // Reverse calculation order to handle overlap
381
    d.VIS_B64(7) = s.VIS_B64(3);
382
    d.VIS_B64(6) = d.VIS_B64(3);
383
    d.VIS_B64(5) = s.VIS_B64(2);
384
    d.VIS_B64(4) = d.VIS_B64(2);
385
    d.VIS_B64(3) = s.VIS_B64(1);
386
    d.VIS_B64(2) = d.VIS_B64(1);
387
    d.VIS_B64(1) = s.VIS_B64(0);
388
    //d.VIS_B64(0) = d.VIS_B64(0);
389

    
390
    DT0 = d.d;
391
}
392

    
393
void helper_fmul8x16(void)
394
{
395
    vis64 s, d;
396
    uint32_t tmp;
397

    
398
    s.d = DT0;
399
    d.d = DT1;
400

    
401
#define PMUL(r)                                                 \
402
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
403
    if ((tmp & 0xff) > 0x7f)                                    \
404
        tmp += 0x100;                                           \
405
    d.VIS_W64(r) = tmp >> 8;
406

    
407
    PMUL(0);
408
    PMUL(1);
409
    PMUL(2);
410
    PMUL(3);
411
#undef PMUL
412

    
413
    DT0 = d.d;
414
}
415

    
416
void helper_fmul8x16al(void)
417
{
418
    vis64 s, d;
419
    uint32_t tmp;
420

    
421
    s.d = DT0;
422
    d.d = DT1;
423

    
424
#define PMUL(r)                                                 \
425
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
426
    if ((tmp & 0xff) > 0x7f)                                    \
427
        tmp += 0x100;                                           \
428
    d.VIS_W64(r) = tmp >> 8;
429

    
430
    PMUL(0);
431
    PMUL(1);
432
    PMUL(2);
433
    PMUL(3);
434
#undef PMUL
435

    
436
    DT0 = d.d;
437
}
438

    
439
void helper_fmul8x16au(void)
440
{
441
    vis64 s, d;
442
    uint32_t tmp;
443

    
444
    s.d = DT0;
445
    d.d = DT1;
446

    
447
#define PMUL(r)                                                 \
448
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
449
    if ((tmp & 0xff) > 0x7f)                                    \
450
        tmp += 0x100;                                           \
451
    d.VIS_W64(r) = tmp >> 8;
452

    
453
    PMUL(0);
454
    PMUL(1);
455
    PMUL(2);
456
    PMUL(3);
457
#undef PMUL
458

    
459
    DT0 = d.d;
460
}
461

    
462
void helper_fmul8sux16(void)
463
{
464
    vis64 s, d;
465
    uint32_t tmp;
466

    
467
    s.d = DT0;
468
    d.d = DT1;
469

    
470
#define PMUL(r)                                                         \
471
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
472
    if ((tmp & 0xff) > 0x7f)                                            \
473
        tmp += 0x100;                                                   \
474
    d.VIS_W64(r) = tmp >> 8;
475

    
476
    PMUL(0);
477
    PMUL(1);
478
    PMUL(2);
479
    PMUL(3);
480
#undef PMUL
481

    
482
    DT0 = d.d;
483
}
484

    
485
void helper_fmul8ulx16(void)
486
{
487
    vis64 s, d;
488
    uint32_t tmp;
489

    
490
    s.d = DT0;
491
    d.d = DT1;
492

    
493
#define PMUL(r)                                                         \
494
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
495
    if ((tmp & 0xff) > 0x7f)                                            \
496
        tmp += 0x100;                                                   \
497
    d.VIS_W64(r) = tmp >> 8;
498

    
499
    PMUL(0);
500
    PMUL(1);
501
    PMUL(2);
502
    PMUL(3);
503
#undef PMUL
504

    
505
    DT0 = d.d;
506
}
507

    
508
void helper_fmuld8sux16(void)
509
{
510
    vis64 s, d;
511
    uint32_t tmp;
512

    
513
    s.d = DT0;
514
    d.d = DT1;
515

    
516
#define PMUL(r)                                                         \
517
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
518
    if ((tmp & 0xff) > 0x7f)                                            \
519
        tmp += 0x100;                                                   \
520
    d.VIS_L64(r) = tmp;
521

    
522
    // Reverse calculation order to handle overlap
523
    PMUL(1);
524
    PMUL(0);
525
#undef PMUL
526

    
527
    DT0 = d.d;
528
}
529

    
530
void helper_fmuld8ulx16(void)
531
{
532
    vis64 s, d;
533
    uint32_t tmp;
534

    
535
    s.d = DT0;
536
    d.d = DT1;
537

    
538
#define PMUL(r)                                                         \
539
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
540
    if ((tmp & 0xff) > 0x7f)                                            \
541
        tmp += 0x100;                                                   \
542
    d.VIS_L64(r) = tmp;
543

    
544
    // Reverse calculation order to handle overlap
545
    PMUL(1);
546
    PMUL(0);
547
#undef PMUL
548

    
549
    DT0 = d.d;
550
}
551

    
552
void helper_fexpand(void)
553
{
554
    vis32 s;
555
    vis64 d;
556

    
557
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
558
    d.d = DT1;
559
    d.VIS_L64(0) = s.VIS_W32(0) << 4;
560
    d.VIS_L64(1) = s.VIS_W32(1) << 4;
561
    d.VIS_L64(2) = s.VIS_W32(2) << 4;
562
    d.VIS_L64(3) = s.VIS_W32(3) << 4;
563

    
564
    DT0 = d.d;
565
}
566

    
567
#define VIS_HELPER(name, F)                             \
568
    void name##16(void)                                 \
569
    {                                                   \
570
        vis64 s, d;                                     \
571
                                                        \
572
        s.d = DT0;                                      \
573
        d.d = DT1;                                      \
574
                                                        \
575
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
576
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
577
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
578
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
579
                                                        \
580
        DT0 = d.d;                                      \
581
    }                                                   \
582
                                                        \
583
    void name##16s(void)                                \
584
    {                                                   \
585
        vis32 s, d;                                     \
586
                                                        \
587
        s.f = FT0;                                      \
588
        d.f = FT1;                                      \
589
                                                        \
590
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
591
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
592
                                                        \
593
        FT0 = d.f;                                      \
594
    }                                                   \
595
                                                        \
596
    void name##32(void)                                 \
597
    {                                                   \
598
        vis64 s, d;                                     \
599
                                                        \
600
        s.d = DT0;                                      \
601
        d.d = DT1;                                      \
602
                                                        \
603
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
604
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
605
                                                        \
606
        DT0 = d.d;                                      \
607
    }                                                   \
608
                                                        \
609
    void name##32s(void)                                \
610
    {                                                   \
611
        vis32 s, d;                                     \
612
                                                        \
613
        s.f = FT0;                                      \
614
        d.f = FT1;                                      \
615
                                                        \
616
        d.l = F(d.l, s.l);                              \
617
                                                        \
618
        FT0 = d.f;                                      \
619
    }
620

    
621
#define FADD(a, b) ((a) + (b))
622
#define FSUB(a, b) ((a) - (b))
623
VIS_HELPER(helper_fpadd, FADD)
624
VIS_HELPER(helper_fpsub, FSUB)
625

    
626
#define VIS_CMPHELPER(name, F)                                        \
627
    void name##16(void)                                           \
628
    {                                                             \
629
        vis64 s, d;                                               \
630
                                                                  \
631
        s.d = DT0;                                                \
632
        d.d = DT1;                                                \
633
                                                                  \
634
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
635
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
636
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
637
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
638
                                                                  \
639
        DT0 = d.d;                                                \
640
    }                                                             \
641
                                                                  \
642
    void name##32(void)                                           \
643
    {                                                             \
644
        vis64 s, d;                                               \
645
                                                                  \
646
        s.d = DT0;                                                \
647
        d.d = DT1;                                                \
648
                                                                  \
649
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
650
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
651
                                                                  \
652
        DT0 = d.d;                                                \
653
    }
654

    
655
#define FCMPGT(a, b) ((a) > (b))
656
#define FCMPEQ(a, b) ((a) == (b))
657
#define FCMPLE(a, b) ((a) <= (b))
658
#define FCMPNE(a, b) ((a) != (b))
659

    
660
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
661
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
662
VIS_CMPHELPER(helper_fcmple, FCMPLE)
663
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
664
#endif
665

    
666
void helper_check_ieee_exceptions(void)
667
{
668
    target_ulong status;
669

    
670
    status = get_float_exception_flags(&env->fp_status);
671
    if (status) {
672
        /* Copy IEEE 754 flags into FSR */
673
        if (status & float_flag_invalid)
674
            env->fsr |= FSR_NVC;
675
        if (status & float_flag_overflow)
676
            env->fsr |= FSR_OFC;
677
        if (status & float_flag_underflow)
678
            env->fsr |= FSR_UFC;
679
        if (status & float_flag_divbyzero)
680
            env->fsr |= FSR_DZC;
681
        if (status & float_flag_inexact)
682
            env->fsr |= FSR_NXC;
683

    
684
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
685
            /* Unmasked exception, generate a trap */
686
            env->fsr |= FSR_FTT_IEEE_EXCP;
687
            raise_exception(TT_FP_EXCP);
688
        } else {
689
            /* Accumulate exceptions */
690
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
691
        }
692
    }
693
}
694

    
695
void helper_clear_float_exceptions(void)
696
{
697
    set_float_exception_flags(0, &env->fp_status);
698
}
699

    
700
void helper_fabss(void)
701
{
702
    FT0 = float32_abs(FT1);
703
}
704

    
705
#ifdef TARGET_SPARC64
706
void helper_fabsd(void)
707
{
708
    DT0 = float64_abs(DT1);
709
}
710

    
711
void helper_fabsq(void)
712
{
713
    QT0 = float128_abs(QT1);
714
}
715
#endif
716

    
717
void helper_fsqrts(void)
718
{
719
    FT0 = float32_sqrt(FT1, &env->fp_status);
720
}
721

    
722
void helper_fsqrtd(void)
723
{
724
    DT0 = float64_sqrt(DT1, &env->fp_status);
725
}
726

    
727
void helper_fsqrtq(void)
728
{
729
    QT0 = float128_sqrt(QT1, &env->fp_status);
730
}
731

    
732
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
733
    void glue(helper_, name) (void)                                     \
734
    {                                                                   \
735
        target_ulong new_fsr;                                           \
736
                                                                        \
737
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
738
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
739
        case float_relation_unordered:                                  \
740
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
741
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
742
                env->fsr |= new_fsr;                                    \
743
                env->fsr |= FSR_NVC;                                    \
744
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
745
                raise_exception(TT_FP_EXCP);                            \
746
            } else {                                                    \
747
                env->fsr |= FSR_NVA;                                    \
748
            }                                                           \
749
            break;                                                      \
750
        case float_relation_less:                                       \
751
            new_fsr = FSR_FCC0 << FS;                                   \
752
            break;                                                      \
753
        case float_relation_greater:                                    \
754
            new_fsr = FSR_FCC1 << FS;                                   \
755
            break;                                                      \
756
        default:                                                        \
757
            new_fsr = 0;                                                \
758
            break;                                                      \
759
        }                                                               \
760
        env->fsr |= new_fsr;                                            \
761
    }
762

    
763
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
764
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
765

    
766
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
767
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
768

    
769
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
770
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
771

    
772
#ifdef TARGET_SPARC64
773
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
774
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
775
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
776

    
777
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
778
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
779
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
780

    
781
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
782
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
783
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
784

    
785
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
786
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
787
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
788

    
789
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
790
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
791
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
792

    
793
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
794
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
795
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
796
#endif
797

    
798
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
799
    defined(DEBUG_MXCC)
800
static void dump_mxcc(CPUState *env)
801
{
802
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
803
           env->mxccdata[0], env->mxccdata[1],
804
           env->mxccdata[2], env->mxccdata[3]);
805
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
806
           "          %016llx %016llx %016llx %016llx\n",
807
           env->mxccregs[0], env->mxccregs[1],
808
           env->mxccregs[2], env->mxccregs[3],
809
           env->mxccregs[4], env->mxccregs[5],
810
           env->mxccregs[6], env->mxccregs[7]);
811
}
812
#endif
813

    
814
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
815
    && defined(DEBUG_ASI)
816
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
817
                     uint64_t r1)
818
{
819
    switch (size)
820
    {
821
    case 1:
822
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
823
                    addr, asi, r1 & 0xff);
824
        break;
825
    case 2:
826
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
827
                    addr, asi, r1 & 0xffff);
828
        break;
829
    case 4:
830
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
831
                    addr, asi, r1 & 0xffffffff);
832
        break;
833
    case 8:
834
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
835
                    addr, asi, r1);
836
        break;
837
    }
838
}
839
#endif
840

    
841
#ifndef TARGET_SPARC64
842
#ifndef CONFIG_USER_ONLY
843
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
844
{
845
    uint64_t ret = 0;
846
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
847
    uint32_t last_addr = addr;
848
#endif
849

    
850
    helper_check_align(addr, size - 1);
851
    switch (asi) {
852
    case 2: /* SuperSparc MXCC registers */
853
        switch (addr) {
854
        case 0x01c00a00: /* MXCC control register */
855
            if (size == 8)
856
                ret = env->mxccregs[3];
857
            else
858
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
859
                             size);
860
            break;
861
        case 0x01c00a04: /* MXCC control register */
862
            if (size == 4)
863
                ret = env->mxccregs[3];
864
            else
865
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
866
                             size);
867
            break;
868
        case 0x01c00c00: /* Module reset register */
869
            if (size == 8) {
870
                ret = env->mxccregs[5];
871
                // should we do something here?
872
            } else
873
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
874
                             size);
875
            break;
876
        case 0x01c00f00: /* MBus port address register */
877
            if (size == 8)
878
                ret = env->mxccregs[7];
879
            else
880
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
881
                             size);
882
            break;
883
        default:
884
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
885
                         size);
886
            break;
887
        }
888
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
889
                     "addr = %08x -> ret = %08x,"
890
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
891
#ifdef DEBUG_MXCC
892
        dump_mxcc(env);
893
#endif
894
        break;
895
    case 3: /* MMU probe */
896
        {
897
            int mmulev;
898

    
899
            mmulev = (addr >> 8) & 15;
900
            if (mmulev > 4)
901
                ret = 0;
902
            else
903
                ret = mmu_probe(env, addr, mmulev);
904
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
905
                        addr, mmulev, ret);
906
        }
907
        break;
908
    case 4: /* read MMU regs */
909
        {
910
            int reg = (addr >> 8) & 0x1f;
911

    
912
            ret = env->mmuregs[reg];
913
            if (reg == 3) /* Fault status cleared on read */
914
                env->mmuregs[3] = 0;
915
            else if (reg == 0x13) /* Fault status read */
916
                ret = env->mmuregs[3];
917
            else if (reg == 0x14) /* Fault address read */
918
                ret = env->mmuregs[4];
919
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
920
        }
921
        break;
922
    case 5: // Turbosparc ITLB Diagnostic
923
    case 6: // Turbosparc DTLB Diagnostic
924
    case 7: // Turbosparc IOTLB Diagnostic
925
        break;
926
    case 9: /* Supervisor code access */
927
        switch(size) {
928
        case 1:
929
            ret = ldub_code(addr);
930
            break;
931
        case 2:
932
            ret = lduw_code(addr);
933
            break;
934
        default:
935
        case 4:
936
            ret = ldl_code(addr);
937
            break;
938
        case 8:
939
            ret = ldq_code(addr);
940
            break;
941
        }
942
        break;
943
    case 0xa: /* User data access */
944
        switch(size) {
945
        case 1:
946
            ret = ldub_user(addr);
947
            break;
948
        case 2:
949
            ret = lduw_user(addr);
950
            break;
951
        default:
952
        case 4:
953
            ret = ldl_user(addr);
954
            break;
955
        case 8:
956
            ret = ldq_user(addr);
957
            break;
958
        }
959
        break;
960
    case 0xb: /* Supervisor data access */
961
        switch(size) {
962
        case 1:
963
            ret = ldub_kernel(addr);
964
            break;
965
        case 2:
966
            ret = lduw_kernel(addr);
967
            break;
968
        default:
969
        case 4:
970
            ret = ldl_kernel(addr);
971
            break;
972
        case 8:
973
            ret = ldq_kernel(addr);
974
            break;
975
        }
976
        break;
977
    case 0xc: /* I-cache tag */
978
    case 0xd: /* I-cache data */
979
    case 0xe: /* D-cache tag */
980
    case 0xf: /* D-cache data */
981
        break;
982
    case 0x20: /* MMU passthrough */
983
        switch(size) {
984
        case 1:
985
            ret = ldub_phys(addr);
986
            break;
987
        case 2:
988
            ret = lduw_phys(addr);
989
            break;
990
        default:
991
        case 4:
992
            ret = ldl_phys(addr);
993
            break;
994
        case 8:
995
            ret = ldq_phys(addr);
996
            break;
997
        }
998
        break;
999
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1000
        switch(size) {
1001
        case 1:
1002
            ret = ldub_phys((target_phys_addr_t)addr
1003
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1004
            break;
1005
        case 2:
1006
            ret = lduw_phys((target_phys_addr_t)addr
1007
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1008
            break;
1009
        default:
1010
        case 4:
1011
            ret = ldl_phys((target_phys_addr_t)addr
1012
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1013
            break;
1014
        case 8:
1015
            ret = ldq_phys((target_phys_addr_t)addr
1016
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1017
            break;
1018
        }
1019
        break;
1020
    case 0x30: // Turbosparc secondary cache diagnostic
1021
    case 0x31: // Turbosparc RAM snoop
1022
    case 0x32: // Turbosparc page table descriptor diagnostic
1023
    case 0x39: /* data cache diagnostic register */
1024
        ret = 0;
1025
        break;
1026
    case 8: /* User code access, XXX */
1027
    default:
1028
        do_unassigned_access(addr, 0, 0, asi);
1029
        ret = 0;
1030
        break;
1031
    }
1032
    if (sign) {
1033
        switch(size) {
1034
        case 1:
1035
            ret = (int8_t) ret;
1036
            break;
1037
        case 2:
1038
            ret = (int16_t) ret;
1039
            break;
1040
        case 4:
1041
            ret = (int32_t) ret;
1042
            break;
1043
        default:
1044
            break;
1045
        }
1046
    }
1047
#ifdef DEBUG_ASI
1048
    dump_asi("read ", last_addr, asi, size, ret);
1049
#endif
1050
    return ret;
1051
}
1052

    
1053
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1054
{
1055
    helper_check_align(addr, size - 1);
1056
    switch(asi) {
1057
    case 2: /* SuperSparc MXCC registers */
1058
        switch (addr) {
1059
        case 0x01c00000: /* MXCC stream data register 0 */
1060
            if (size == 8)
1061
                env->mxccdata[0] = val;
1062
            else
1063
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1064
                             size);
1065
            break;
1066
        case 0x01c00008: /* MXCC stream data register 1 */
1067
            if (size == 8)
1068
                env->mxccdata[1] = val;
1069
            else
1070
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1071
                             size);
1072
            break;
1073
        case 0x01c00010: /* MXCC stream data register 2 */
1074
            if (size == 8)
1075
                env->mxccdata[2] = val;
1076
            else
1077
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1078
                             size);
1079
            break;
1080
        case 0x01c00018: /* MXCC stream data register 3 */
1081
            if (size == 8)
1082
                env->mxccdata[3] = val;
1083
            else
1084
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1085
                             size);
1086
            break;
1087
        case 0x01c00100: /* MXCC stream source */
1088
            if (size == 8)
1089
                env->mxccregs[0] = val;
1090
            else
1091
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1092
                             size);
1093
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1094
                                        0);
1095
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1096
                                        8);
1097
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1098
                                        16);
1099
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1100
                                        24);
1101
            break;
1102
        case 0x01c00200: /* MXCC stream destination */
1103
            if (size == 8)
1104
                env->mxccregs[1] = val;
1105
            else
1106
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1107
                             size);
1108
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1109
                     env->mxccdata[0]);
1110
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1111
                     env->mxccdata[1]);
1112
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1113
                     env->mxccdata[2]);
1114
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1115
                     env->mxccdata[3]);
1116
            break;
1117
        case 0x01c00a00: /* MXCC control register */
1118
            if (size == 8)
1119
                env->mxccregs[3] = val;
1120
            else
1121
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1122
                             size);
1123
            break;
1124
        case 0x01c00a04: /* MXCC control register */
1125
            if (size == 4)
1126
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1127
                    | val;
1128
            else
1129
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1130
                             size);
1131
            break;
1132
        case 0x01c00e00: /* MXCC error register  */
1133
            // writing a 1 bit clears the error
1134
            if (size == 8)
1135
                env->mxccregs[6] &= ~val;
1136
            else
1137
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1138
                             size);
1139
            break;
1140
        case 0x01c00f00: /* MBus port address register */
1141
            if (size == 8)
1142
                env->mxccregs[7] = val;
1143
            else
1144
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1145
                             size);
1146
            break;
1147
        default:
1148
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1149
                         size);
1150
            break;
1151
        }
1152
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1153
                     size, addr, val);
1154
#ifdef DEBUG_MXCC
1155
        dump_mxcc(env);
1156
#endif
1157
        break;
1158
    case 3: /* MMU flush */
1159
        {
1160
            int mmulev;
1161

    
1162
            mmulev = (addr >> 8) & 15;
1163
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1164
            switch (mmulev) {
1165
            case 0: // flush page
1166
                tlb_flush_page(env, addr & 0xfffff000);
1167
                break;
1168
            case 1: // flush segment (256k)
1169
            case 2: // flush region (16M)
1170
            case 3: // flush context (4G)
1171
            case 4: // flush entire
1172
                tlb_flush(env, 1);
1173
                break;
1174
            default:
1175
                break;
1176
            }
1177
#ifdef DEBUG_MMU
1178
            dump_mmu(env);
1179
#endif
1180
        }
1181
        break;
1182
    case 4: /* write MMU regs */
1183
        {
1184
            int reg = (addr >> 8) & 0x1f;
1185
            uint32_t oldreg;
1186

    
1187
            oldreg = env->mmuregs[reg];
1188
            switch(reg) {
1189
            case 0: // Control Register
1190
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1191
                                    (val & 0x00ffffff);
1192
                // Mappings generated during no-fault mode or MMU
1193
                // disabled mode are invalid in normal mode
1194
                if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
1195
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
1196
                    tlb_flush(env, 1);
1197
                break;
1198
            case 1: // Context Table Pointer Register
1199
                env->mmuregs[reg] = val & env->mmu_ctpr_mask;
1200
                break;
1201
            case 2: // Context Register
1202
                env->mmuregs[reg] = val & env->mmu_cxr_mask;
1203
                if (oldreg != env->mmuregs[reg]) {
1204
                    /* we flush when the MMU context changes because
1205
                       QEMU has no MMU context support */
1206
                    tlb_flush(env, 1);
1207
                }
1208
                break;
1209
            case 3: // Synchronous Fault Status Register with Clear
1210
            case 4: // Synchronous Fault Address Register
1211
                break;
1212
            case 0x10: // TLB Replacement Control Register
1213
                env->mmuregs[reg] = val & env->mmu_trcr_mask;
1214
                break;
1215
            case 0x13: // Synchronous Fault Status Register with Read and Clear
1216
                env->mmuregs[3] = val & env->mmu_sfsr_mask;
1217
                break;
1218
            case 0x14: // Synchronous Fault Address Register
1219
                env->mmuregs[4] = val;
1220
                break;
1221
            default:
1222
                env->mmuregs[reg] = val;
1223
                break;
1224
            }
1225
            if (oldreg != env->mmuregs[reg]) {
1226
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1227
                            reg, oldreg, env->mmuregs[reg]);
1228
            }
1229
#ifdef DEBUG_MMU
1230
            dump_mmu(env);
1231
#endif
1232
        }
1233
        break;
1234
    case 5: // Turbosparc ITLB Diagnostic
1235
    case 6: // Turbosparc DTLB Diagnostic
1236
    case 7: // Turbosparc IOTLB Diagnostic
1237
        break;
1238
    case 0xa: /* User data access */
1239
        switch(size) {
1240
        case 1:
1241
            stb_user(addr, val);
1242
            break;
1243
        case 2:
1244
            stw_user(addr, val);
1245
            break;
1246
        default:
1247
        case 4:
1248
            stl_user(addr, val);
1249
            break;
1250
        case 8:
1251
            stq_user(addr, val);
1252
            break;
1253
        }
1254
        break;
1255
    case 0xb: /* Supervisor data access */
1256
        switch(size) {
1257
        case 1:
1258
            stb_kernel(addr, val);
1259
            break;
1260
        case 2:
1261
            stw_kernel(addr, val);
1262
            break;
1263
        default:
1264
        case 4:
1265
            stl_kernel(addr, val);
1266
            break;
1267
        case 8:
1268
            stq_kernel(addr, val);
1269
            break;
1270
        }
1271
        break;
1272
    case 0xc: /* I-cache tag */
1273
    case 0xd: /* I-cache data */
1274
    case 0xe: /* D-cache tag */
1275
    case 0xf: /* D-cache data */
1276
    case 0x10: /* I/D-cache flush page */
1277
    case 0x11: /* I/D-cache flush segment */
1278
    case 0x12: /* I/D-cache flush region */
1279
    case 0x13: /* I/D-cache flush context */
1280
    case 0x14: /* I/D-cache flush user */
1281
        break;
1282
    case 0x17: /* Block copy, sta access */
1283
        {
1284
            // val = src
1285
            // addr = dst
1286
            // copy 32 bytes
1287
            unsigned int i;
1288
            uint32_t src = val & ~3, dst = addr & ~3, temp;
1289

    
1290
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1291
                temp = ldl_kernel(src);
1292
                stl_kernel(dst, temp);
1293
            }
1294
        }
1295
        break;
1296
    case 0x1f: /* Block fill, stda access */
1297
        {
1298
            // addr = dst
1299
            // fill 32 bytes with val
1300
            unsigned int i;
1301
            uint32_t dst = addr & 7;
1302

    
1303
            for (i = 0; i < 32; i += 8, dst += 8)
1304
                stq_kernel(dst, val);
1305
        }
1306
        break;
1307
    case 0x20: /* MMU passthrough */
1308
        {
1309
            switch(size) {
1310
            case 1:
1311
                stb_phys(addr, val);
1312
                break;
1313
            case 2:
1314
                stw_phys(addr, val);
1315
                break;
1316
            case 4:
1317
            default:
1318
                stl_phys(addr, val);
1319
                break;
1320
            case 8:
1321
                stq_phys(addr, val);
1322
                break;
1323
            }
1324
        }
1325
        break;
1326
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1327
        {
1328
            switch(size) {
1329
            case 1:
1330
                stb_phys((target_phys_addr_t)addr
1331
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1332
                break;
1333
            case 2:
1334
                stw_phys((target_phys_addr_t)addr
1335
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1336
                break;
1337
            case 4:
1338
            default:
1339
                stl_phys((target_phys_addr_t)addr
1340
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1341
                break;
1342
            case 8:
1343
                stq_phys((target_phys_addr_t)addr
1344
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1345
                break;
1346
            }
1347
        }
1348
        break;
1349
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1350
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
1351
               // Turbosparc snoop RAM
1352
    case 0x32: // store buffer control or Turbosparc page table
1353
               // descriptor diagnostic
1354
    case 0x36: /* I-cache flash clear */
1355
    case 0x37: /* D-cache flash clear */
1356
    case 0x38: /* breakpoint diagnostics */
1357
    case 0x4c: /* breakpoint action */
1358
        break;
1359
    case 8: /* User code access, XXX */
1360
    case 9: /* Supervisor code access, XXX */
1361
    default:
1362
        do_unassigned_access(addr, 1, 0, asi);
1363
        break;
1364
    }
1365
#ifdef DEBUG_ASI
1366
    dump_asi("write", addr, asi, size, val);
1367
#endif
1368
}
1369

    
1370
#endif /* CONFIG_USER_ONLY */
1371
#else /* TARGET_SPARC64 */
1372

    
1373
#ifdef CONFIG_USER_ONLY
1374
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1375
{
1376
    uint64_t ret = 0;
1377
#if defined(DEBUG_ASI)
1378
    target_ulong last_addr = addr;
1379
#endif
1380

    
1381
    if (asi < 0x80)
1382
        raise_exception(TT_PRIV_ACT);
1383

    
1384
    helper_check_align(addr, size - 1);
1385
    ABI32_MASK(addr);
1386

    
1387
    switch (asi) {
1388
    case 0x80: // Primary
1389
    case 0x82: // Primary no-fault
1390
    case 0x88: // Primary LE
1391
    case 0x8a: // Primary no-fault LE
1392
        {
1393
            switch(size) {
1394
            case 1:
1395
                ret = ldub_raw(addr);
1396
                break;
1397
            case 2:
1398
                ret = lduw_raw(addr);
1399
                break;
1400
            case 4:
1401
                ret = ldl_raw(addr);
1402
                break;
1403
            default:
1404
            case 8:
1405
                ret = ldq_raw(addr);
1406
                break;
1407
            }
1408
        }
1409
        break;
1410
    case 0x81: // Secondary
1411
    case 0x83: // Secondary no-fault
1412
    case 0x89: // Secondary LE
1413
    case 0x8b: // Secondary no-fault LE
1414
        // XXX
1415
        break;
1416
    default:
1417
        break;
1418
    }
1419

    
1420
    /* Convert from little endian */
1421
    switch (asi) {
1422
    case 0x88: // Primary LE
1423
    case 0x89: // Secondary LE
1424
    case 0x8a: // Primary no-fault LE
1425
    case 0x8b: // Secondary no-fault LE
1426
        switch(size) {
1427
        case 2:
1428
            ret = bswap16(ret);
1429
            break;
1430
        case 4:
1431
            ret = bswap32(ret);
1432
            break;
1433
        case 8:
1434
            ret = bswap64(ret);
1435
            break;
1436
        default:
1437
            break;
1438
        }
1439
    default:
1440
        break;
1441
    }
1442

    
1443
    /* Convert to signed number */
1444
    if (sign) {
1445
        switch(size) {
1446
        case 1:
1447
            ret = (int8_t) ret;
1448
            break;
1449
        case 2:
1450
            ret = (int16_t) ret;
1451
            break;
1452
        case 4:
1453
            ret = (int32_t) ret;
1454
            break;
1455
        default:
1456
            break;
1457
        }
1458
    }
1459
#ifdef DEBUG_ASI
1460
    dump_asi("read ", last_addr, asi, size, ret);
1461
#endif
1462
    return ret;
1463
}
1464

    
1465
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1466
{
1467
#ifdef DEBUG_ASI
1468
    dump_asi("write", addr, asi, size, val);
1469
#endif
1470
    if (asi < 0x80)
1471
        raise_exception(TT_PRIV_ACT);
1472

    
1473
    helper_check_align(addr, size - 1);
1474
    ABI32_MASK(addr);
1475

    
1476
    /* Convert to little endian */
1477
    switch (asi) {
1478
    case 0x88: // Primary LE
1479
    case 0x89: // Secondary LE
1480
        switch(size) {
1481
        case 2:
1482
            addr = bswap16(addr);
1483
            break;
1484
        case 4:
1485
            addr = bswap32(addr);
1486
            break;
1487
        case 8:
1488
            addr = bswap64(addr);
1489
            break;
1490
        default:
1491
            break;
1492
        }
1493
    default:
1494
        break;
1495
    }
1496

    
1497
    switch(asi) {
1498
    case 0x80: // Primary
1499
    case 0x88: // Primary LE
1500
        {
1501
            switch(size) {
1502
            case 1:
1503
                stb_raw(addr, val);
1504
                break;
1505
            case 2:
1506
                stw_raw(addr, val);
1507
                break;
1508
            case 4:
1509
                stl_raw(addr, val);
1510
                break;
1511
            case 8:
1512
            default:
1513
                stq_raw(addr, val);
1514
                break;
1515
            }
1516
        }
1517
        break;
1518
    case 0x81: // Secondary
1519
    case 0x89: // Secondary LE
1520
        // XXX
1521
        return;
1522

    
1523
    case 0x82: // Primary no-fault, RO
1524
    case 0x83: // Secondary no-fault, RO
1525
    case 0x8a: // Primary no-fault LE, RO
1526
    case 0x8b: // Secondary no-fault LE, RO
1527
    default:
1528
        do_unassigned_access(addr, 1, 0, 1);
1529
        return;
1530
    }
1531
}
1532

    
1533
#else /* CONFIG_USER_ONLY */
1534

    
1535
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1536
{
1537
    uint64_t ret = 0;
1538
#if defined(DEBUG_ASI)
1539
    target_ulong last_addr = addr;
1540
#endif
1541

    
1542
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1543
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1544
        raise_exception(TT_PRIV_ACT);
1545

    
1546
    helper_check_align(addr, size - 1);
1547
    switch (asi) {
1548
    case 0x10: // As if user primary
1549
    case 0x18: // As if user primary LE
1550
    case 0x80: // Primary
1551
    case 0x82: // Primary no-fault
1552
    case 0x88: // Primary LE
1553
    case 0x8a: // Primary no-fault LE
1554
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1555
            if (env->hpstate & HS_PRIV) {
1556
                switch(size) {
1557
                case 1:
1558
                    ret = ldub_hypv(addr);
1559
                    break;
1560
                case 2:
1561
                    ret = lduw_hypv(addr);
1562
                    break;
1563
                case 4:
1564
                    ret = ldl_hypv(addr);
1565
                    break;
1566
                default:
1567
                case 8:
1568
                    ret = ldq_hypv(addr);
1569
                    break;
1570
                }
1571
            } else {
1572
                switch(size) {
1573
                case 1:
1574
                    ret = ldub_kernel(addr);
1575
                    break;
1576
                case 2:
1577
                    ret = lduw_kernel(addr);
1578
                    break;
1579
                case 4:
1580
                    ret = ldl_kernel(addr);
1581
                    break;
1582
                default:
1583
                case 8:
1584
                    ret = ldq_kernel(addr);
1585
                    break;
1586
                }
1587
            }
1588
        } else {
1589
            switch(size) {
1590
            case 1:
1591
                ret = ldub_user(addr);
1592
                break;
1593
            case 2:
1594
                ret = lduw_user(addr);
1595
                break;
1596
            case 4:
1597
                ret = ldl_user(addr);
1598
                break;
1599
            default:
1600
            case 8:
1601
                ret = ldq_user(addr);
1602
                break;
1603
            }
1604
        }
1605
        break;
1606
    case 0x14: // Bypass
1607
    case 0x15: // Bypass, non-cacheable
1608
    case 0x1c: // Bypass LE
1609
    case 0x1d: // Bypass, non-cacheable LE
1610
        {
1611
            switch(size) {
1612
            case 1:
1613
                ret = ldub_phys(addr);
1614
                break;
1615
            case 2:
1616
                ret = lduw_phys(addr);
1617
                break;
1618
            case 4:
1619
                ret = ldl_phys(addr);
1620
                break;
1621
            default:
1622
            case 8:
1623
                ret = ldq_phys(addr);
1624
                break;
1625
            }
1626
            break;
1627
        }
1628
    case 0x04: // Nucleus
1629
    case 0x0c: // Nucleus Little Endian (LE)
1630
    case 0x11: // As if user secondary
1631
    case 0x19: // As if user secondary LE
1632
    case 0x24: // Nucleus quad LDD 128 bit atomic
1633
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1634
    case 0x4a: // UPA config
1635
    case 0x81: // Secondary
1636
    case 0x83: // Secondary no-fault
1637
    case 0x89: // Secondary LE
1638
    case 0x8b: // Secondary no-fault LE
1639
        // XXX
1640
        break;
1641
    case 0x45: // LSU
1642
        ret = env->lsu;
1643
        break;
1644
    case 0x50: // I-MMU regs
1645
        {
1646
            int reg = (addr >> 3) & 0xf;
1647

    
1648
            ret = env->immuregs[reg];
1649
            break;
1650
        }
1651
    case 0x51: // I-MMU 8k TSB pointer
1652
    case 0x52: // I-MMU 64k TSB pointer
1653
    case 0x55: // I-MMU data access
1654
        // XXX
1655
        break;
1656
    case 0x56: // I-MMU tag read
1657
        {
1658
            unsigned int i;
1659

    
1660
            for (i = 0; i < 64; i++) {
1661
                // Valid, ctx match, vaddr match
1662
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1663
                    env->itlb_tag[i] == addr) {
1664
                    ret = env->itlb_tag[i];
1665
                    break;
1666
                }
1667
            }
1668
            break;
1669
        }
1670
    case 0x58: // D-MMU regs
1671
        {
1672
            int reg = (addr >> 3) & 0xf;
1673

    
1674
            ret = env->dmmuregs[reg];
1675
            break;
1676
        }
1677
    case 0x5e: // D-MMU tag read
1678
        {
1679
            unsigned int i;
1680

    
1681
            for (i = 0; i < 64; i++) {
1682
                // Valid, ctx match, vaddr match
1683
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1684
                    env->dtlb_tag[i] == addr) {
1685
                    ret = env->dtlb_tag[i];
1686
                    break;
1687
                }
1688
            }
1689
            break;
1690
        }
1691
    case 0x59: // D-MMU 8k TSB pointer
1692
    case 0x5a: // D-MMU 64k TSB pointer
1693
    case 0x5b: // D-MMU data pointer
1694
    case 0x5d: // D-MMU data access
1695
    case 0x48: // Interrupt dispatch, RO
1696
    case 0x49: // Interrupt data receive
1697
    case 0x7f: // Incoming interrupt vector, RO
1698
        // XXX
1699
        break;
1700
    case 0x54: // I-MMU data in, WO
1701
    case 0x57: // I-MMU demap, WO
1702
    case 0x5c: // D-MMU data in, WO
1703
    case 0x5f: // D-MMU demap, WO
1704
    case 0x77: // Interrupt vector, WO
1705
    default:
1706
        do_unassigned_access(addr, 0, 0, 1);
1707
        ret = 0;
1708
        break;
1709
    }
1710

    
1711
    /* Convert from little endian */
1712
    switch (asi) {
1713
    case 0x0c: // Nucleus Little Endian (LE)
1714
    case 0x18: // As if user primary LE
1715
    case 0x19: // As if user secondary LE
1716
    case 0x1c: // Bypass LE
1717
    case 0x1d: // Bypass, non-cacheable LE
1718
    case 0x88: // Primary LE
1719
    case 0x89: // Secondary LE
1720
    case 0x8a: // Primary no-fault LE
1721
    case 0x8b: // Secondary no-fault LE
1722
        switch(size) {
1723
        case 2:
1724
            ret = bswap16(ret);
1725
            break;
1726
        case 4:
1727
            ret = bswap32(ret);
1728
            break;
1729
        case 8:
1730
            ret = bswap64(ret);
1731
            break;
1732
        default:
1733
            break;
1734
        }
1735
    default:
1736
        break;
1737
    }
1738

    
1739
    /* Convert to signed number */
1740
    if (sign) {
1741
        switch(size) {
1742
        case 1:
1743
            ret = (int8_t) ret;
1744
            break;
1745
        case 2:
1746
            ret = (int16_t) ret;
1747
            break;
1748
        case 4:
1749
            ret = (int32_t) ret;
1750
            break;
1751
        default:
1752
            break;
1753
        }
1754
    }
1755
#ifdef DEBUG_ASI
1756
    dump_asi("read ", last_addr, asi, size, ret);
1757
#endif
1758
    return ret;
1759
}
1760

    
1761
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1762
{
1763
#ifdef DEBUG_ASI
1764
    dump_asi("write", addr, asi, size, val);
1765
#endif
1766
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1767
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1768
        raise_exception(TT_PRIV_ACT);
1769

    
1770
    helper_check_align(addr, size - 1);
1771
    /* Convert to little endian */
1772
    switch (asi) {
1773
    case 0x0c: // Nucleus Little Endian (LE)
1774
    case 0x18: // As if user primary LE
1775
    case 0x19: // As if user secondary LE
1776
    case 0x1c: // Bypass LE
1777
    case 0x1d: // Bypass, non-cacheable LE
1778
    case 0x88: // Primary LE
1779
    case 0x89: // Secondary LE
1780
        switch(size) {
1781
        case 2:
1782
            addr = bswap16(addr);
1783
            break;
1784
        case 4:
1785
            addr = bswap32(addr);
1786
            break;
1787
        case 8:
1788
            addr = bswap64(addr);
1789
            break;
1790
        default:
1791
            break;
1792
        }
1793
    default:
1794
        break;
1795
    }
1796

    
1797
    switch(asi) {
1798
    case 0x10: // As if user primary
1799
    case 0x18: // As if user primary LE
1800
    case 0x80: // Primary
1801
    case 0x88: // Primary LE
1802
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1803
            if (env->hpstate & HS_PRIV) {
1804
                switch(size) {
1805
                case 1:
1806
                    stb_hypv(addr, val);
1807
                    break;
1808
                case 2:
1809
                    stw_hypv(addr, val);
1810
                    break;
1811
                case 4:
1812
                    stl_hypv(addr, val);
1813
                    break;
1814
                case 8:
1815
                default:
1816
                    stq_hypv(addr, val);
1817
                    break;
1818
                }
1819
            } else {
1820
                switch(size) {
1821
                case 1:
1822
                    stb_kernel(addr, val);
1823
                    break;
1824
                case 2:
1825
                    stw_kernel(addr, val);
1826
                    break;
1827
                case 4:
1828
                    stl_kernel(addr, val);
1829
                    break;
1830
                case 8:
1831
                default:
1832
                    stq_kernel(addr, val);
1833
                    break;
1834
                }
1835
            }
1836
        } else {
1837
            switch(size) {
1838
            case 1:
1839
                stb_user(addr, val);
1840
                break;
1841
            case 2:
1842
                stw_user(addr, val);
1843
                break;
1844
            case 4:
1845
                stl_user(addr, val);
1846
                break;
1847
            case 8:
1848
            default:
1849
                stq_user(addr, val);
1850
                break;
1851
            }
1852
        }
1853
        break;
1854
    case 0x14: // Bypass
1855
    case 0x15: // Bypass, non-cacheable
1856
    case 0x1c: // Bypass LE
1857
    case 0x1d: // Bypass, non-cacheable LE
1858
        {
1859
            switch(size) {
1860
            case 1:
1861
                stb_phys(addr, val);
1862
                break;
1863
            case 2:
1864
                stw_phys(addr, val);
1865
                break;
1866
            case 4:
1867
                stl_phys(addr, val);
1868
                break;
1869
            case 8:
1870
            default:
1871
                stq_phys(addr, val);
1872
                break;
1873
            }
1874
        }
1875
        return;
1876
    case 0x04: // Nucleus
1877
    case 0x0c: // Nucleus Little Endian (LE)
1878
    case 0x11: // As if user secondary
1879
    case 0x19: // As if user secondary LE
1880
    case 0x24: // Nucleus quad LDD 128 bit atomic
1881
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1882
    case 0x4a: // UPA config
1883
    case 0x81: // Secondary
1884
    case 0x89: // Secondary LE
1885
        // XXX
1886
        return;
1887
    case 0x45: // LSU
1888
        {
1889
            uint64_t oldreg;
1890

    
1891
            oldreg = env->lsu;
1892
            env->lsu = val & (DMMU_E | IMMU_E);
1893
            // Mappings generated during D/I MMU disabled mode are
1894
            // invalid in normal mode
1895
            if (oldreg != env->lsu) {
1896
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1897
                            oldreg, env->lsu);
1898
#ifdef DEBUG_MMU
1899
                dump_mmu(env);
1900
#endif
1901
                tlb_flush(env, 1);
1902
            }
1903
            return;
1904
        }
1905
    case 0x50: // I-MMU regs
1906
        {
1907
            int reg = (addr >> 3) & 0xf;
1908
            uint64_t oldreg;
1909

    
1910
            oldreg = env->immuregs[reg];
1911
            switch(reg) {
1912
            case 0: // RO
1913
            case 4:
1914
                return;
1915
            case 1: // Not in I-MMU
1916
            case 2:
1917
            case 7:
1918
            case 8:
1919
                return;
1920
            case 3: // SFSR
1921
                if ((val & 1) == 0)
1922
                    val = 0; // Clear SFSR
1923
                break;
1924
            case 5: // TSB access
1925
            case 6: // Tag access
1926
            default:
1927
                break;
1928
            }
1929
            env->immuregs[reg] = val;
1930
            if (oldreg != env->immuregs[reg]) {
1931
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1932
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1933
            }
1934
#ifdef DEBUG_MMU
1935
            dump_mmu(env);
1936
#endif
1937
            return;
1938
        }
1939
    case 0x54: // I-MMU data in
1940
        {
1941
            unsigned int i;
1942

    
1943
            // Try finding an invalid entry
1944
            for (i = 0; i < 64; i++) {
1945
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1946
                    env->itlb_tag[i] = env->immuregs[6];
1947
                    env->itlb_tte[i] = val;
1948
                    return;
1949
                }
1950
            }
1951
            // Try finding an unlocked entry
1952
            for (i = 0; i < 64; i++) {
1953
                if ((env->itlb_tte[i] & 0x40) == 0) {
1954
                    env->itlb_tag[i] = env->immuregs[6];
1955
                    env->itlb_tte[i] = val;
1956
                    return;
1957
                }
1958
            }
1959
            // error state?
1960
            return;
1961
        }
1962
    case 0x55: // I-MMU data access
1963
        {
1964
            unsigned int i = (addr >> 3) & 0x3f;
1965

    
1966
            env->itlb_tag[i] = env->immuregs[6];
1967
            env->itlb_tte[i] = val;
1968
            return;
1969
        }
1970
    case 0x57: // I-MMU demap
1971
        // XXX
1972
        return;
1973
    case 0x58: // D-MMU regs
1974
        {
1975
            int reg = (addr >> 3) & 0xf;
1976
            uint64_t oldreg;
1977

    
1978
            oldreg = env->dmmuregs[reg];
1979
            switch(reg) {
1980
            case 0: // RO
1981
            case 4:
1982
                return;
1983
            case 3: // SFSR
1984
                if ((val & 1) == 0) {
1985
                    val = 0; // Clear SFSR, Fault address
1986
                    env->dmmuregs[4] = 0;
1987
                }
1988
                env->dmmuregs[reg] = val;
1989
                break;
1990
            case 1: // Primary context
1991
            case 2: // Secondary context
1992
            case 5: // TSB access
1993
            case 6: // Tag access
1994
            case 7: // Virtual Watchpoint
1995
            case 8: // Physical Watchpoint
1996
            default:
1997
                break;
1998
            }
1999
            env->dmmuregs[reg] = val;
2000
            if (oldreg != env->dmmuregs[reg]) {
2001
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2002
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2003
            }
2004
#ifdef DEBUG_MMU
2005
            dump_mmu(env);
2006
#endif
2007
            return;
2008
        }
2009
    case 0x5c: // D-MMU data in
2010
        {
2011
            unsigned int i;
2012

    
2013
            // Try finding an invalid entry
2014
            for (i = 0; i < 64; i++) {
2015
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2016
                    env->dtlb_tag[i] = env->dmmuregs[6];
2017
                    env->dtlb_tte[i] = val;
2018
                    return;
2019
                }
2020
            }
2021
            // Try finding an unlocked entry
2022
            for (i = 0; i < 64; i++) {
2023
                if ((env->dtlb_tte[i] & 0x40) == 0) {
2024
                    env->dtlb_tag[i] = env->dmmuregs[6];
2025
                    env->dtlb_tte[i] = val;
2026
                    return;
2027
                }
2028
            }
2029
            // error state?
2030
            return;
2031
        }
2032
    case 0x5d: // D-MMU data access
2033
        {
2034
            unsigned int i = (addr >> 3) & 0x3f;
2035

    
2036
            env->dtlb_tag[i] = env->dmmuregs[6];
2037
            env->dtlb_tte[i] = val;
2038
            return;
2039
        }
2040
    case 0x5f: // D-MMU demap
2041
    case 0x49: // Interrupt data receive
2042
        // XXX
2043
        return;
2044
    case 0x51: // I-MMU 8k TSB pointer, RO
2045
    case 0x52: // I-MMU 64k TSB pointer, RO
2046
    case 0x56: // I-MMU tag read, RO
2047
    case 0x59: // D-MMU 8k TSB pointer, RO
2048
    case 0x5a: // D-MMU 64k TSB pointer, RO
2049
    case 0x5b: // D-MMU data pointer, RO
2050
    case 0x5e: // D-MMU tag read, RO
2051
    case 0x48: // Interrupt dispatch, RO
2052
    case 0x7f: // Incoming interrupt vector, RO
2053
    case 0x82: // Primary no-fault, RO
2054
    case 0x83: // Secondary no-fault, RO
2055
    case 0x8a: // Primary no-fault LE, RO
2056
    case 0x8b: // Secondary no-fault LE, RO
2057
    default:
2058
        do_unassigned_access(addr, 1, 0, 1);
2059
        return;
2060
    }
2061
}
2062
#endif /* CONFIG_USER_ONLY */
2063

    
2064
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2065
{
2066
    unsigned int i;
2067
    target_ulong val;
2068

    
2069
    helper_check_align(addr, 3);
2070
    switch (asi) {
2071
    case 0xf0: // Block load primary
2072
    case 0xf1: // Block load secondary
2073
    case 0xf8: // Block load primary LE
2074
    case 0xf9: // Block load secondary LE
2075
        if (rd & 7) {
2076
            raise_exception(TT_ILL_INSN);
2077
            return;
2078
        }
2079
        helper_check_align(addr, 0x3f);
2080
        for (i = 0; i < 16; i++) {
2081
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2082
                                                         0);
2083
            addr += 4;
2084
        }
2085

    
2086
        return;
2087
    default:
2088
        break;
2089
    }
2090

    
2091
    val = helper_ld_asi(addr, asi, size, 0);
2092
    switch(size) {
2093
    default:
2094
    case 4:
2095
        *((uint32_t *)&FT0) = val;
2096
        break;
2097
    case 8:
2098
        *((int64_t *)&DT0) = val;
2099
        break;
2100
    case 16:
2101
        // XXX
2102
        break;
2103
    }
2104
}
2105

    
2106
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2107
{
2108
    unsigned int i;
2109
    target_ulong val = 0;
2110

    
2111
    helper_check_align(addr, 3);
2112
    switch (asi) {
2113
    case 0xf0: // Block store primary
2114
    case 0xf1: // Block store secondary
2115
    case 0xf8: // Block store primary LE
2116
    case 0xf9: // Block store secondary LE
2117
        if (rd & 7) {
2118
            raise_exception(TT_ILL_INSN);
2119
            return;
2120
        }
2121
        helper_check_align(addr, 0x3f);
2122
        for (i = 0; i < 16; i++) {
2123
            val = *(uint32_t *)&env->fpr[rd++];
2124
            helper_st_asi(addr, val, asi & 0x8f, 4);
2125
            addr += 4;
2126
        }
2127

    
2128
        return;
2129
    default:
2130
        break;
2131
    }
2132

    
2133
    switch(size) {
2134
    default:
2135
    case 4:
2136
        val = *((uint32_t *)&FT0);
2137
        break;
2138
    case 8:
2139
        val = *((int64_t *)&DT0);
2140
        break;
2141
    case 16:
2142
        // XXX
2143
        break;
2144
    }
2145
    helper_st_asi(addr, val, asi, size);
2146
}
2147

    
2148
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2149
                            target_ulong val2, uint32_t asi)
2150
{
2151
    target_ulong ret;
2152

    
2153
    val1 &= 0xffffffffUL;
2154
    ret = helper_ld_asi(addr, asi, 4, 0);
2155
    ret &= 0xffffffffUL;
2156
    if (val1 == ret)
2157
        helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2158
    return ret;
2159
}
2160

    
2161
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2162
                             target_ulong val2, uint32_t asi)
2163
{
2164
    target_ulong ret;
2165

    
2166
    ret = helper_ld_asi(addr, asi, 8, 0);
2167
    if (val1 == ret)
2168
        helper_st_asi(addr, val2, asi, 8);
2169
    return ret;
2170
}
2171
#endif /* TARGET_SPARC64 */
2172

    
2173
#ifndef TARGET_SPARC64
2174
void helper_rett(void)
2175
{
2176
    unsigned int cwp;
2177

    
2178
    if (env->psret == 1)
2179
        raise_exception(TT_ILL_INSN);
2180

    
2181
    env->psret = 1;
2182
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
2183
    if (env->wim & (1 << cwp)) {
2184
        raise_exception(TT_WIN_UNF);
2185
    }
2186
    set_cwp(cwp);
2187
    env->psrs = env->psrps;
2188
}
2189
#endif
2190

    
2191
target_ulong helper_udiv(target_ulong a, target_ulong b)
2192
{
2193
    uint64_t x0;
2194
    uint32_t x1;
2195

    
2196
    x0 = a | ((uint64_t) (env->y) << 32);
2197
    x1 = b;
2198

    
2199
    if (x1 == 0) {
2200
        raise_exception(TT_DIV_ZERO);
2201
    }
2202

    
2203
    x0 = x0 / x1;
2204
    if (x0 > 0xffffffff) {
2205
        env->cc_src2 = 1;
2206
        return 0xffffffff;
2207
    } else {
2208
        env->cc_src2 = 0;
2209
        return x0;
2210
    }
2211
}
2212

    
2213
target_ulong helper_sdiv(target_ulong a, target_ulong b)
2214
{
2215
    int64_t x0;
2216
    int32_t x1;
2217

    
2218
    x0 = a | ((int64_t) (env->y) << 32);
2219
    x1 = b;
2220

    
2221
    if (x1 == 0) {
2222
        raise_exception(TT_DIV_ZERO);
2223
    }
2224

    
2225
    x0 = x0 / x1;
2226
    if ((int32_t) x0 != x0) {
2227
        env->cc_src2 = 1;
2228
        return x0 < 0? 0x80000000: 0x7fffffff;
2229
    } else {
2230
        env->cc_src2 = 0;
2231
        return x0;
2232
    }
2233
}
2234

    
2235
uint64_t helper_pack64(target_ulong high, target_ulong low)
2236
{
2237
    return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2238
}
2239

    
2240
void helper_stdf(target_ulong addr, int mem_idx)
2241
{
2242
    helper_check_align(addr, 7);
2243
#if !defined(CONFIG_USER_ONLY)
2244
    switch (mem_idx) {
2245
    case 0:
2246
        stfq_user(addr, DT0);
2247
        break;
2248
    case 1:
2249
        stfq_kernel(addr, DT0);
2250
        break;
2251
#ifdef TARGET_SPARC64
2252
    case 2:
2253
        stfq_hypv(addr, DT0);
2254
        break;
2255
#endif
2256
    default:
2257
        break;
2258
    }
2259
#else
2260
    ABI32_MASK(addr);
2261
    stfq_raw(addr, DT0);
2262
#endif
2263
}
2264

    
2265
void helper_lddf(target_ulong addr, int mem_idx)
2266
{
2267
    helper_check_align(addr, 7);
2268
#if !defined(CONFIG_USER_ONLY)
2269
    switch (mem_idx) {
2270
    case 0:
2271
        DT0 = ldfq_user(addr);
2272
        break;
2273
    case 1:
2274
        DT0 = ldfq_kernel(addr);
2275
        break;
2276
#ifdef TARGET_SPARC64
2277
    case 2:
2278
        DT0 = ldfq_hypv(addr);
2279
        break;
2280
#endif
2281
    default:
2282
        break;
2283
    }
2284
#else
2285
    ABI32_MASK(addr);
2286
    DT0 = ldfq_raw(addr);
2287
#endif
2288
}
2289

    
2290
void helper_ldqf(target_ulong addr, int mem_idx)
2291
{
2292
    // XXX add 128 bit load
2293
    CPU_QuadU u;
2294

    
2295
    helper_check_align(addr, 7);
2296
#if !defined(CONFIG_USER_ONLY)
2297
    switch (mem_idx) {
2298
    case 0:
2299
        u.ll.upper = ldq_user(addr);
2300
        u.ll.lower = ldq_user(addr + 8);
2301
        QT0 = u.q;
2302
        break;
2303
    case 1:
2304
        u.ll.upper = ldq_kernel(addr);
2305
        u.ll.lower = ldq_kernel(addr + 8);
2306
        QT0 = u.q;
2307
        break;
2308
#ifdef TARGET_SPARC64
2309
    case 2:
2310
        u.ll.upper = ldq_hypv(addr);
2311
        u.ll.lower = ldq_hypv(addr + 8);
2312
        QT0 = u.q;
2313
        break;
2314
#endif
2315
    default:
2316
        break;
2317
    }
2318
#else
2319
    ABI32_MASK(addr);
2320
    u.ll.upper = ldq_raw(addr);
2321
    u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2322
    QT0 = u.q;
2323
#endif
2324
}
2325

    
2326
void helper_stqf(target_ulong addr, int mem_idx)
2327
{
2328
    // XXX add 128 bit store
2329
    CPU_QuadU u;
2330

    
2331
    helper_check_align(addr, 7);
2332
#if !defined(CONFIG_USER_ONLY)
2333
    switch (mem_idx) {
2334
    case 0:
2335
        u.q = QT0;
2336
        stq_user(addr, u.ll.upper);
2337
        stq_user(addr + 8, u.ll.lower);
2338
        break;
2339
    case 1:
2340
        u.q = QT0;
2341
        stq_kernel(addr, u.ll.upper);
2342
        stq_kernel(addr + 8, u.ll.lower);
2343
        break;
2344
#ifdef TARGET_SPARC64
2345
    case 2:
2346
        u.q = QT0;
2347
        stq_hypv(addr, u.ll.upper);
2348
        stq_hypv(addr + 8, u.ll.lower);
2349
        break;
2350
#endif
2351
    default:
2352
        break;
2353
    }
2354
#else
2355
    u.q = QT0;
2356
    ABI32_MASK(addr);
2357
    stq_raw(addr, u.ll.upper);
2358
    stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2359
#endif
2360
}
2361

    
2362
void helper_ldfsr(void)
2363
{
2364
    int rnd_mode;
2365

    
2366
    PUT_FSR32(env, *((uint32_t *) &FT0));
2367
    switch (env->fsr & FSR_RD_MASK) {
2368
    case FSR_RD_NEAREST:
2369
        rnd_mode = float_round_nearest_even;
2370
        break;
2371
    default:
2372
    case FSR_RD_ZERO:
2373
        rnd_mode = float_round_to_zero;
2374
        break;
2375
    case FSR_RD_POS:
2376
        rnd_mode = float_round_up;
2377
        break;
2378
    case FSR_RD_NEG:
2379
        rnd_mode = float_round_down;
2380
        break;
2381
    }
2382
    set_float_rounding_mode(rnd_mode, &env->fp_status);
2383
}
2384

    
2385
void helper_stfsr(void)
2386
{
2387
    *((uint32_t *) &FT0) = GET_FSR32(env);
2388
}
2389

    
2390
void helper_debug(void)
2391
{
2392
    env->exception_index = EXCP_DEBUG;
2393
    cpu_loop_exit();
2394
}
2395

    
2396
#ifndef TARGET_SPARC64
2397
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2398
   handling ? */
2399
void helper_save(void)
2400
{
2401
    uint32_t cwp;
2402

    
2403
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
2404
    if (env->wim & (1 << cwp)) {
2405
        raise_exception(TT_WIN_OVF);
2406
    }
2407
    set_cwp(cwp);
2408
}
2409

    
2410
void helper_restore(void)
2411
{
2412
    uint32_t cwp;
2413

    
2414
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
2415
    if (env->wim & (1 << cwp)) {
2416
        raise_exception(TT_WIN_UNF);
2417
    }
2418
    set_cwp(cwp);
2419
}
2420

    
2421
void helper_wrpsr(target_ulong new_psr)
2422
{
2423
    if ((new_psr & PSR_CWP) >= NWINDOWS)
2424
        raise_exception(TT_ILL_INSN);
2425
    else
2426
        PUT_PSR(env, new_psr);
2427
}
2428

    
2429
target_ulong helper_rdpsr(void)
2430
{
2431
    return GET_PSR(env);
2432
}
2433

    
2434
#else
2435
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2436
   handling ? */
2437
void helper_save(void)
2438
{
2439
    uint32_t cwp;
2440

    
2441
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
2442
    if (env->cansave == 0) {
2443
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2444
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2445
                                    ((env->wstate & 0x7) << 2)));
2446
    } else {
2447
        if (env->cleanwin - env->canrestore == 0) {
2448
            // XXX Clean windows without trap
2449
            raise_exception(TT_CLRWIN);
2450
        } else {
2451
            env->cansave--;
2452
            env->canrestore++;
2453
            set_cwp(cwp);
2454
        }
2455
    }
2456
}
2457

    
2458
void helper_restore(void)
2459
{
2460
    uint32_t cwp;
2461

    
2462
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
2463
    if (env->canrestore == 0) {
2464
        raise_exception(TT_FILL | (env->otherwin != 0 ?
2465
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2466
                                   ((env->wstate & 0x7) << 2)));
2467
    } else {
2468
        env->cansave++;
2469
        env->canrestore--;
2470
        set_cwp(cwp);
2471
    }
2472
}
2473

    
2474
void helper_flushw(void)
2475
{
2476
    if (env->cansave != NWINDOWS - 2) {
2477
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2478
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2479
                                    ((env->wstate & 0x7) << 2)));
2480
    }
2481
}
2482

    
2483
void helper_saved(void)
2484
{
2485
    env->cansave++;
2486
    if (env->otherwin == 0)
2487
        env->canrestore--;
2488
    else
2489
        env->otherwin--;
2490
}
2491

    
2492
void helper_restored(void)
2493
{
2494
    env->canrestore++;
2495
    if (env->cleanwin < NWINDOWS - 1)
2496
        env->cleanwin++;
2497
    if (env->otherwin == 0)
2498
        env->cansave--;
2499
    else
2500
        env->otherwin--;
2501
}
2502

    
2503
target_ulong helper_rdccr(void)
2504
{
2505
    return GET_CCR(env);
2506
}
2507

    
2508
void helper_wrccr(target_ulong new_ccr)
2509
{
2510
    PUT_CCR(env, new_ccr);
2511
}
2512

    
2513
// CWP handling is reversed in V9, but we still use the V8 register
2514
// order.
2515
target_ulong helper_rdcwp(void)
2516
{
2517
    return GET_CWP64(env);
2518
}
2519

    
2520
void helper_wrcwp(target_ulong new_cwp)
2521
{
2522
    PUT_CWP64(env, new_cwp);
2523
}
2524

    
2525
// This function uses non-native bit order
2526
#define GET_FIELD(X, FROM, TO)                                  \
2527
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2528

    
2529
// This function uses the order in the manuals, i.e. bit 0 is 2^0
2530
#define GET_FIELD_SP(X, FROM, TO)               \
2531
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
2532

    
2533
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2534
{
2535
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2536
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2537
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2538
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2539
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2540
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2541
        (((pixel_addr >> 55) & 1) << 4) |
2542
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2543
        GET_FIELD_SP(pixel_addr, 11, 12);
2544
}
2545

    
2546
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2547
{
2548
    uint64_t tmp;
2549

    
2550
    tmp = addr + offset;
2551
    env->gsr &= ~7ULL;
2552
    env->gsr |= tmp & 7ULL;
2553
    return tmp & ~7ULL;
2554
}
2555

    
2556
target_ulong helper_popc(target_ulong val)
2557
{
2558
    return ctpop64(val);
2559
}
2560

    
2561
static inline uint64_t *get_gregset(uint64_t pstate)
2562
{
2563
    switch (pstate) {
2564
    default:
2565
    case 0:
2566
        return env->bgregs;
2567
    case PS_AG:
2568
        return env->agregs;
2569
    case PS_MG:
2570
        return env->mgregs;
2571
    case PS_IG:
2572
        return env->igregs;
2573
    }
2574
}
2575

    
2576
static inline void change_pstate(uint64_t new_pstate)
2577
{
2578
    uint64_t pstate_regs, new_pstate_regs;
2579
    uint64_t *src, *dst;
2580

    
2581
    pstate_regs = env->pstate & 0xc01;
2582
    new_pstate_regs = new_pstate & 0xc01;
2583
    if (new_pstate_regs != pstate_regs) {
2584
        // Switch global register bank
2585
        src = get_gregset(new_pstate_regs);
2586
        dst = get_gregset(pstate_regs);
2587
        memcpy32(dst, env->gregs);
2588
        memcpy32(env->gregs, src);
2589
    }
2590
    env->pstate = new_pstate;
2591
}
2592

    
2593
void helper_wrpstate(target_ulong new_state)
2594
{
2595
    change_pstate(new_state & 0xf3f);
2596
}
2597

    
2598
void helper_done(void)
2599
{
2600
    env->tl--;
2601
    env->tsptr = &env->ts[env->tl];
2602
    env->pc = env->tsptr->tpc;
2603
    env->npc = env->tsptr->tnpc + 4;
2604
    PUT_CCR(env, env->tsptr->tstate >> 32);
2605
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2606
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2607
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2608
}
2609

    
2610
void helper_retry(void)
2611
{
2612
    env->tl--;
2613
    env->tsptr = &env->ts[env->tl];
2614
    env->pc = env->tsptr->tpc;
2615
    env->npc = env->tsptr->tnpc;
2616
    PUT_CCR(env, env->tsptr->tstate >> 32);
2617
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2618
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2619
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2620
}
2621
#endif
2622

    
2623
void set_cwp(int new_cwp)
2624
{
2625
    /* put the modified wrap registers at their proper location */
2626
    if (env->cwp == (NWINDOWS - 1))
2627
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
2628
    env->cwp = new_cwp;
2629
    /* put the wrap registers at their temporary location */
2630
    if (new_cwp == (NWINDOWS - 1))
2631
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
2632
    env->regwptr = env->regbase + (new_cwp * 16);
2633
    REGWPTR = env->regwptr;
2634
}
2635

    
2636
void cpu_set_cwp(CPUState *env1, int new_cwp)
2637
{
2638
    CPUState *saved_env;
2639
#ifdef reg_REGWPTR
2640
    target_ulong *saved_regwptr;
2641
#endif
2642

    
2643
    saved_env = env;
2644
#ifdef reg_REGWPTR
2645
    saved_regwptr = REGWPTR;
2646
#endif
2647
    env = env1;
2648
    set_cwp(new_cwp);
2649
    env = saved_env;
2650
#ifdef reg_REGWPTR
2651
    REGWPTR = saved_regwptr;
2652
#endif
2653
}
2654

    
2655
#ifdef TARGET_SPARC64
2656
#ifdef DEBUG_PCALL
2657
static const char * const excp_names[0x50] = {
2658
    [TT_TFAULT] = "Instruction Access Fault",
2659
    [TT_TMISS] = "Instruction Access MMU Miss",
2660
    [TT_CODE_ACCESS] = "Instruction Access Error",
2661
    [TT_ILL_INSN] = "Illegal Instruction",
2662
    [TT_PRIV_INSN] = "Privileged Instruction",
2663
    [TT_NFPU_INSN] = "FPU Disabled",
2664
    [TT_FP_EXCP] = "FPU Exception",
2665
    [TT_TOVF] = "Tag Overflow",
2666
    [TT_CLRWIN] = "Clean Windows",
2667
    [TT_DIV_ZERO] = "Division By Zero",
2668
    [TT_DFAULT] = "Data Access Fault",
2669
    [TT_DMISS] = "Data Access MMU Miss",
2670
    [TT_DATA_ACCESS] = "Data Access Error",
2671
    [TT_DPROT] = "Data Protection Error",
2672
    [TT_UNALIGNED] = "Unaligned Memory Access",
2673
    [TT_PRIV_ACT] = "Privileged Action",
2674
    [TT_EXTINT | 0x1] = "External Interrupt 1",
2675
    [TT_EXTINT | 0x2] = "External Interrupt 2",
2676
    [TT_EXTINT | 0x3] = "External Interrupt 3",
2677
    [TT_EXTINT | 0x4] = "External Interrupt 4",
2678
    [TT_EXTINT | 0x5] = "External Interrupt 5",
2679
    [TT_EXTINT | 0x6] = "External Interrupt 6",
2680
    [TT_EXTINT | 0x7] = "External Interrupt 7",
2681
    [TT_EXTINT | 0x8] = "External Interrupt 8",
2682
    [TT_EXTINT | 0x9] = "External Interrupt 9",
2683
    [TT_EXTINT | 0xa] = "External Interrupt 10",
2684
    [TT_EXTINT | 0xb] = "External Interrupt 11",
2685
    [TT_EXTINT | 0xc] = "External Interrupt 12",
2686
    [TT_EXTINT | 0xd] = "External Interrupt 13",
2687
    [TT_EXTINT | 0xe] = "External Interrupt 14",
2688
    [TT_EXTINT | 0xf] = "External Interrupt 15",
2689
};
2690
#endif
2691

    
2692
void do_interrupt(int intno)
2693
{
2694
#ifdef DEBUG_PCALL
2695
    if (loglevel & CPU_LOG_INT) {
2696
        static int count;
2697
        const char *name;
2698

    
2699
        if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80))
2700
            name = "Unknown";
2701
        else if (intno >= 0x100)
2702
            name = "Trap Instruction";
2703
        else if (intno >= 0xc0)
2704
            name = "Window Fill";
2705
        else if (intno >= 0x80)
2706
            name = "Window Spill";
2707
        else {
2708
            name = excp_names[intno];
2709
            if (!name)
2710
                name = "Unknown";
2711
        }
2712

    
2713
        fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2714
                " SP=%016" PRIx64 "\n",
2715
                count, name, intno,
2716
                env->pc,
2717
                env->npc, env->regwptr[6]);
2718
        cpu_dump_state(env, logfile, fprintf, 0);
2719
#if 0
2720
        {
2721
            int i;
2722
            uint8_t *ptr;
2723

2724
            fprintf(logfile, "       code=");
2725
            ptr = (uint8_t *)env->pc;
2726
            for(i = 0; i < 16; i++) {
2727
                fprintf(logfile, " %02x", ldub(ptr + i));
2728
            }
2729
            fprintf(logfile, "\n");
2730
        }
2731
#endif
2732
        count++;
2733
    }
2734
#endif
2735
#if !defined(CONFIG_USER_ONLY)
2736
    if (env->tl == MAXTL) {
2737
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state",
2738
                  env->exception_index);
2739
        return;
2740
    }
2741
#endif
2742
    env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2743
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2744
        GET_CWP64(env);
2745
    env->tsptr->tpc = env->pc;
2746
    env->tsptr->tnpc = env->npc;
2747
    env->tsptr->tt = intno;
2748
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
2749

    
2750
    if (intno == TT_CLRWIN)
2751
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
2752
    else if ((intno & 0x1c0) == TT_SPILL)
2753
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
2754
    else if ((intno & 0x1c0) == TT_FILL)
2755
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
2756
    env->tbr &= ~0x7fffULL;
2757
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2758
    if (env->tl < MAXTL - 1) {
2759
        env->tl++;
2760
    } else {
2761
        env->pstate |= PS_RED;
2762
        if (env->tl != MAXTL)
2763
            env->tl++;
2764
    }
2765
    env->tsptr = &env->ts[env->tl];
2766
    env->pc = env->tbr;
2767
    env->npc = env->pc + 4;
2768
    env->exception_index = 0;
2769
}
2770
#else
2771
#ifdef DEBUG_PCALL
2772
static const char * const excp_names[0x80] = {
2773
    [TT_TFAULT] = "Instruction Access Fault",
2774
    [TT_ILL_INSN] = "Illegal Instruction",
2775
    [TT_PRIV_INSN] = "Privileged Instruction",
2776
    [TT_NFPU_INSN] = "FPU Disabled",
2777
    [TT_WIN_OVF] = "Window Overflow",
2778
    [TT_WIN_UNF] = "Window Underflow",
2779
    [TT_UNALIGNED] = "Unaligned Memory Access",
2780
    [TT_FP_EXCP] = "FPU Exception",
2781
    [TT_DFAULT] = "Data Access Fault",
2782
    [TT_TOVF] = "Tag Overflow",
2783
    [TT_EXTINT | 0x1] = "External Interrupt 1",
2784
    [TT_EXTINT | 0x2] = "External Interrupt 2",
2785
    [TT_EXTINT | 0x3] = "External Interrupt 3",
2786
    [TT_EXTINT | 0x4] = "External Interrupt 4",
2787
    [TT_EXTINT | 0x5] = "External Interrupt 5",
2788
    [TT_EXTINT | 0x6] = "External Interrupt 6",
2789
    [TT_EXTINT | 0x7] = "External Interrupt 7",
2790
    [TT_EXTINT | 0x8] = "External Interrupt 8",
2791
    [TT_EXTINT | 0x9] = "External Interrupt 9",
2792
    [TT_EXTINT | 0xa] = "External Interrupt 10",
2793
    [TT_EXTINT | 0xb] = "External Interrupt 11",
2794
    [TT_EXTINT | 0xc] = "External Interrupt 12",
2795
    [TT_EXTINT | 0xd] = "External Interrupt 13",
2796
    [TT_EXTINT | 0xe] = "External Interrupt 14",
2797
    [TT_EXTINT | 0xf] = "External Interrupt 15",
2798
    [TT_TOVF] = "Tag Overflow",
2799
    [TT_CODE_ACCESS] = "Instruction Access Error",
2800
    [TT_DATA_ACCESS] = "Data Access Error",
2801
    [TT_DIV_ZERO] = "Division By Zero",
2802
    [TT_NCP_INSN] = "Coprocessor Disabled",
2803
};
2804
#endif
2805

    
2806
void do_interrupt(int intno)
2807
{
2808
    int cwp;
2809

    
2810
#ifdef DEBUG_PCALL
2811
    if (loglevel & CPU_LOG_INT) {
2812
        static int count;
2813
        const char *name;
2814

    
2815
        if (intno < 0 || intno >= 0x100)
2816
            name = "Unknown";
2817
        else if (intno >= 0x80)
2818
            name = "Trap Instruction";
2819
        else {
2820
            name = excp_names[intno];
2821
            if (!name)
2822
                name = "Unknown";
2823
        }
2824

    
2825
        fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2826
                count, name, intno,
2827
                env->pc,
2828
                env->npc, env->regwptr[6]);
2829
        cpu_dump_state(env, logfile, fprintf, 0);
2830
#if 0
2831
        {
2832
            int i;
2833
            uint8_t *ptr;
2834

2835
            fprintf(logfile, "       code=");
2836
            ptr = (uint8_t *)env->pc;
2837
            for(i = 0; i < 16; i++) {
2838
                fprintf(logfile, " %02x", ldub(ptr + i));
2839
            }
2840
            fprintf(logfile, "\n");
2841
        }
2842
#endif
2843
        count++;
2844
    }
2845
#endif
2846
#if !defined(CONFIG_USER_ONLY)
2847
    if (env->psret == 0) {
2848
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2849
                  env->exception_index);
2850
        return;
2851
    }
2852
#endif
2853
    env->psret = 0;
2854
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
2855
    set_cwp(cwp);
2856
    env->regwptr[9] = env->pc;
2857
    env->regwptr[10] = env->npc;
2858
    env->psrps = env->psrs;
2859
    env->psrs = 1;
2860
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2861
    env->pc = env->tbr;
2862
    env->npc = env->pc + 4;
2863
    env->exception_index = 0;
2864
}
2865
#endif
2866

    
2867
#if !defined(CONFIG_USER_ONLY)
2868

    
2869
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2870
                                void *retaddr);
2871

    
2872
#define MMUSUFFIX _mmu
2873
#define ALIGNED_ONLY
2874

    
2875
#define SHIFT 0
2876
#include "softmmu_template.h"
2877

    
2878
#define SHIFT 1
2879
#include "softmmu_template.h"
2880

    
2881
#define SHIFT 2
2882
#include "softmmu_template.h"
2883

    
2884
#define SHIFT 3
2885
#include "softmmu_template.h"
2886

    
2887
/* XXX: make it generic ? */
2888
static void cpu_restore_state2(void *retaddr)
2889
{
2890
    TranslationBlock *tb;
2891
    unsigned long pc;
2892

    
2893
    if (retaddr) {
2894
        /* now we have a real cpu fault */
2895
        pc = (unsigned long)retaddr;
2896
        tb = tb_find_pc(pc);
2897
        if (tb) {
2898
            /* the PC is inside the translated code. It means that we have
2899
               a virtual CPU fault */
2900
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2901
        }
2902
    }
2903
}
2904

    
2905
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2906
                                void *retaddr)
2907
{
2908
#ifdef DEBUG_UNALIGNED
2909
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2910
           "\n", addr, env->pc);
2911
#endif
2912
    cpu_restore_state2(retaddr);
2913
    raise_exception(TT_UNALIGNED);
2914
}
2915

    
2916
/* try to fill the TLB and return an exception if error. If retaddr is
2917
   NULL, it means that the function was called in C code (i.e. not
2918
   from generated code or from helper.c) */
2919
/* XXX: fix it to restore all registers */
2920
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2921
{
2922
    int ret;
2923
    CPUState *saved_env;
2924

    
2925
    /* XXX: hack to restore env in all cases, even if not called from
2926
       generated code */
2927
    saved_env = env;
2928
    env = cpu_single_env;
2929

    
2930
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2931
    if (ret) {
2932
        cpu_restore_state2(retaddr);
2933
        cpu_loop_exit();
2934
    }
2935
    env = saved_env;
2936
}
2937

    
2938
#endif
2939

    
2940
#ifndef TARGET_SPARC64
2941
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2942
                          int is_asi)
2943
{
2944
    CPUState *saved_env;
2945

    
2946
    /* XXX: hack to restore env in all cases, even if not called from
2947
       generated code */
2948
    saved_env = env;
2949
    env = cpu_single_env;
2950
#ifdef DEBUG_UNASSIGNED
2951
    if (is_asi)
2952
        printf("Unassigned mem %s access to " TARGET_FMT_plx
2953
               " asi 0x%02x from " TARGET_FMT_lx "\n",
2954
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2955
               env->pc);
2956
    else
2957
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2958
               TARGET_FMT_lx "\n",
2959
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2960
#endif
2961
    if (env->mmuregs[3]) /* Fault status register */
2962
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
2963
    if (is_asi)
2964
        env->mmuregs[3] |= 1 << 16;
2965
    if (env->psrs)
2966
        env->mmuregs[3] |= 1 << 5;
2967
    if (is_exec)
2968
        env->mmuregs[3] |= 1 << 6;
2969
    if (is_write)
2970
        env->mmuregs[3] |= 1 << 7;
2971
    env->mmuregs[3] |= (5 << 2) | 2;
2972
    env->mmuregs[4] = addr; /* Fault address register */
2973
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2974
        if (is_exec)
2975
            raise_exception(TT_CODE_ACCESS);
2976
        else
2977
            raise_exception(TT_DATA_ACCESS);
2978
    }
2979
    env = saved_env;
2980
}
2981
#else
2982
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2983
                          int is_asi)
2984
{
2985
#ifdef DEBUG_UNASSIGNED
2986
    CPUState *saved_env;
2987

    
2988
    /* XXX: hack to restore env in all cases, even if not called from
2989
       generated code */
2990
    saved_env = env;
2991
    env = cpu_single_env;
2992
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2993
           "\n", addr, env->pc);
2994
    env = saved_env;
2995
#endif
2996
    if (is_exec)
2997
        raise_exception(TT_CODE_ACCESS);
2998
    else
2999
        raise_exception(TT_DATA_ACCESS);
3000
}
3001
#endif
3002