Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 9c99d2ab

History | View | Annotate | Download (9.7 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
register struct CPUX86State *env asm(AREG0);
33

    
34
#include "qemu-log.h"
35

    
36
#define EAX (env->regs[R_EAX])
37
#define ECX (env->regs[R_ECX])
38
#define EDX (env->regs[R_EDX])
39
#define EBX (env->regs[R_EBX])
40
#define ESP (env->regs[R_ESP])
41
#define EBP (env->regs[R_EBP])
42
#define ESI (env->regs[R_ESI])
43
#define EDI (env->regs[R_EDI])
44
#define EIP (env->eip)
45
#define DF  (env->df)
46

    
47
#define CC_SRC (env->cc_src)
48
#define CC_DST (env->cc_dst)
49
#define CC_OP  (env->cc_op)
50

    
51
/* float macros */
52
#define FT0    (env->ft0)
53
#define ST0    (env->fpregs[env->fpstt].d)
54
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
55
#define ST1    ST(1)
56

    
57
#include "cpu.h"
58
#include "exec-all.h"
59

    
60
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
63
                             int is_write, int mmu_idx, int is_softmmu);
64
void __hidden cpu_lock(void);
65
void __hidden cpu_unlock(void);
66
void do_interrupt(int intno, int is_int, int error_code,
67
                  target_ulong next_eip, int is_hw);
68
void do_interrupt_user(int intno, int is_int, int error_code,
69
                       target_ulong next_eip);
70
void raise_interrupt(int intno, int is_int, int error_code,
71
                     int next_eip_addend);
72
void raise_exception_err(int exception_index, int error_code);
73
void raise_exception(int exception_index);
74
void do_smm_enter(void);
75
void __hidden cpu_loop_exit(void);
76

    
77
/* n must be a constant to be efficient */
78
static inline target_long lshift(target_long x, int n)
79
{
80
    if (n >= 0)
81
        return x << n;
82
    else
83
        return x >> (-n);
84
}
85

    
86
#include "helper.h"
87

    
88
static inline void svm_check_intercept(uint32_t type)
89
{
90
    helper_svm_check_intercept_param(type, 0);
91
}
92

    
93
#if !defined(CONFIG_USER_ONLY)
94

    
95
#include "softmmu_exec.h"
96

    
97
#endif /* !defined(CONFIG_USER_ONLY) */
98

    
99
#ifdef USE_X86LDOUBLE
100
/* use long double functions */
101
#define floatx_to_int32 floatx80_to_int32
102
#define floatx_to_int64 floatx80_to_int64
103
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
104
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
105
#define int32_to_floatx int32_to_floatx80
106
#define int64_to_floatx int64_to_floatx80
107
#define float32_to_floatx float32_to_floatx80
108
#define float64_to_floatx float64_to_floatx80
109
#define floatx_to_float32 floatx80_to_float32
110
#define floatx_to_float64 floatx80_to_float64
111
#define floatx_abs floatx80_abs
112
#define floatx_chs floatx80_chs
113
#define floatx_round_to_int floatx80_round_to_int
114
#define floatx_compare floatx80_compare
115
#define floatx_compare_quiet floatx80_compare_quiet
116
#else
117
#define floatx_to_int32 float64_to_int32
118
#define floatx_to_int64 float64_to_int64
119
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
120
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
121
#define int32_to_floatx int32_to_float64
122
#define int64_to_floatx int64_to_float64
123
#define float32_to_floatx float32_to_float64
124
#define float64_to_floatx(x, e) (x)
125
#define floatx_to_float32 float64_to_float32
126
#define floatx_to_float64(x, e) (x)
127
#define floatx_abs float64_abs
128
#define floatx_chs float64_chs
129
#define floatx_round_to_int float64_round_to_int
130
#define floatx_compare float64_compare
131
#define floatx_compare_quiet float64_compare_quiet
132
#endif
133

    
134
#define RC_MASK         0xc00
135
#define RC_NEAR                0x000
136
#define RC_DOWN                0x400
137
#define RC_UP                0x800
138
#define RC_CHOP                0xc00
139

    
140
#define MAXTAN 9223372036854775808.0
141

    
142
#ifdef USE_X86LDOUBLE
143

    
144
/* only for x86 */
145
typedef union {
146
    long double d;
147
    struct {
148
        unsigned long long lower;
149
        unsigned short upper;
150
    } l;
151
} CPU86_LDoubleU;
152

    
153
/* the following deal with x86 long double-precision numbers */
154
#define MAXEXPD 0x7fff
155
#define EXPBIAS 16383
156
#define EXPD(fp)        (fp.l.upper & 0x7fff)
157
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
158
#define MANTD(fp)       (fp.l.lower)
159
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
160

    
161
#else
162

    
163
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
164
typedef union {
165
    double d;
166
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
167
    struct {
168
        uint32_t lower;
169
        int32_t upper;
170
    } l;
171
#else
172
    struct {
173
        int32_t upper;
174
        uint32_t lower;
175
    } l;
176
#endif
177
#ifndef __arm__
178
    int64_t ll;
179
#endif
180
} CPU86_LDoubleU;
181

    
182
/* the following deal with IEEE double-precision numbers */
183
#define MAXEXPD 0x7ff
184
#define EXPBIAS 1023
185
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
186
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
187
#ifdef __arm__
188
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
189
#else
190
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
191
#endif
192
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
193
#endif
194

    
195
static inline void fpush(void)
196
{
197
    env->fpstt = (env->fpstt - 1) & 7;
198
    env->fptags[env->fpstt] = 0; /* validate stack entry */
199
}
200

    
201
static inline void fpop(void)
202
{
203
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
204
    env->fpstt = (env->fpstt + 1) & 7;
205
}
206

    
207
#ifndef USE_X86LDOUBLE
208
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
209
{
210
    CPU86_LDoubleU temp;
211
    int upper, e;
212
    uint64_t ll;
213

    
214
    /* mantissa */
215
    upper = lduw(ptr + 8);
216
    /* XXX: handle overflow ? */
217
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
218
    e |= (upper >> 4) & 0x800; /* sign */
219
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
220
#ifdef __arm__
221
    temp.l.upper = (e << 20) | (ll >> 32);
222
    temp.l.lower = ll;
223
#else
224
    temp.ll = ll | ((uint64_t)e << 52);
225
#endif
226
    return temp.d;
227
}
228

    
229
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
230
{
231
    CPU86_LDoubleU temp;
232
    int e;
233

    
234
    temp.d = f;
235
    /* mantissa */
236
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
237
    /* exponent + sign */
238
    e = EXPD(temp) - EXPBIAS + 16383;
239
    e |= SIGND(temp) >> 16;
240
    stw(ptr + 8, e);
241
}
242
#else
243

    
244
/* we use memory access macros */
245

    
246
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
247
{
248
    CPU86_LDoubleU temp;
249

    
250
    temp.l.lower = ldq(ptr);
251
    temp.l.upper = lduw(ptr + 8);
252
    return temp.d;
253
}
254

    
255
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
256
{
257
    CPU86_LDoubleU temp;
258

    
259
    temp.d = f;
260
    stq(ptr, temp.l.lower);
261
    stw(ptr + 8, temp.l.upper);
262
}
263

    
264
#endif /* USE_X86LDOUBLE */
265

    
266
#define FPUS_IE (1 << 0)
267
#define FPUS_DE (1 << 1)
268
#define FPUS_ZE (1 << 2)
269
#define FPUS_OE (1 << 3)
270
#define FPUS_UE (1 << 4)
271
#define FPUS_PE (1 << 5)
272
#define FPUS_SF (1 << 6)
273
#define FPUS_SE (1 << 7)
274
#define FPUS_B  (1 << 15)
275

    
276
#define FPUC_EM 0x3f
277

    
278
extern const CPU86_LDouble f15rk[7];
279

    
280
void fpu_raise_exception(void);
281
void restore_native_fp_state(CPUState *env);
282
void save_native_fp_state(CPUState *env);
283

    
284
extern const uint8_t parity_table[256];
285
extern const uint8_t rclw_table[32];
286
extern const uint8_t rclb_table[32];
287

    
288
static inline uint32_t compute_eflags(void)
289
{
290
    return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
291
}
292

    
293
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
294
static inline void load_eflags(int eflags, int update_mask)
295
{
296
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
297
    DF = 1 - (2 * ((eflags >> 10) & 1));
298
    env->eflags = (env->eflags & ~update_mask) |
299
        (eflags & update_mask) | 0x2;
300
}
301

    
302
static inline void env_to_regs(void)
303
{
304
#ifdef reg_EAX
305
    EAX = env->regs[R_EAX];
306
#endif
307
#ifdef reg_ECX
308
    ECX = env->regs[R_ECX];
309
#endif
310
#ifdef reg_EDX
311
    EDX = env->regs[R_EDX];
312
#endif
313
#ifdef reg_EBX
314
    EBX = env->regs[R_EBX];
315
#endif
316
#ifdef reg_ESP
317
    ESP = env->regs[R_ESP];
318
#endif
319
#ifdef reg_EBP
320
    EBP = env->regs[R_EBP];
321
#endif
322
#ifdef reg_ESI
323
    ESI = env->regs[R_ESI];
324
#endif
325
#ifdef reg_EDI
326
    EDI = env->regs[R_EDI];
327
#endif
328
}
329

    
330
static inline void regs_to_env(void)
331
{
332
#ifdef reg_EAX
333
    env->regs[R_EAX] = EAX;
334
#endif
335
#ifdef reg_ECX
336
    env->regs[R_ECX] = ECX;
337
#endif
338
#ifdef reg_EDX
339
    env->regs[R_EDX] = EDX;
340
#endif
341
#ifdef reg_EBX
342
    env->regs[R_EBX] = EBX;
343
#endif
344
#ifdef reg_ESP
345
    env->regs[R_ESP] = ESP;
346
#endif
347
#ifdef reg_EBP
348
    env->regs[R_EBP] = EBP;
349
#endif
350
#ifdef reg_ESI
351
    env->regs[R_ESI] = ESI;
352
#endif
353
#ifdef reg_EDI
354
    env->regs[R_EDI] = EDI;
355
#endif
356
}
357

    
358
static inline int cpu_halted(CPUState *env) {
359
    /* handle exit of HALTED state */
360
    if (!env->halted)
361
        return 0;
362
    /* disable halt condition */
363
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
364
         (env->eflags & IF_MASK)) ||
365
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
366
        env->halted = 0;
367
        return 0;
368
    }
369
    return EXCP_HALTED;
370
}
371

    
372
/* load efer and update the corresponding hflags. XXX: do consistency
373
   checks with cpuid bits ? */
374
static inline void cpu_load_efer(CPUState *env, uint64_t val)
375
{
376
    env->efer = val;
377
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
378
    if (env->efer & MSR_EFER_LMA)
379
        env->hflags |= HF_LMA_MASK;
380
    if (env->efer & MSR_EFER_SVME)
381
        env->hflags |= HF_SVME_MASK;
382
}