Statistics
| Branch: | Revision:

root / cpu-exec.c @ 9f0777ed

History | View | Annotate | Download (33.7 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    target_ulong cs_base, pc;
110
    uint8_t *tc_ptr;
111
    unsigned int flags;
112

    
113
    /* first we save global registers */
114
    saved_env = env;
115
    env = env1;
116
    saved_T0 = T0;
117
    saved_T1 = T1;
118
    saved_T2 = T2;
119
#ifdef __sparc__
120
    /* we also save i7 because longjmp may not restore it */
121
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122
#endif
123

    
124
#if defined(TARGET_I386)
125
#ifdef reg_EAX
126
    saved_EAX = EAX;
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
#endif
131
#ifdef reg_EDX
132
    saved_EDX = EDX;
133
#endif
134
#ifdef reg_EBX
135
    saved_EBX = EBX;
136
#endif
137
#ifdef reg_ESP
138
    saved_ESP = ESP;
139
#endif
140
#ifdef reg_EBP
141
    saved_EBP = EBP;
142
#endif
143
#ifdef reg_ESI
144
    saved_ESI = ESI;
145
#endif
146
#ifdef reg_EDI
147
    saved_EDI = EDI;
148
#endif
149

    
150
    env_to_regs();
151
    /* put eflags in CPU temporary format */
152
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
154
    CC_OP = CC_OP_EFLAGS;
155
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156
#elif defined(TARGET_ARM)
157
    {
158
        unsigned int psr;
159
        psr = env->cpsr;
160
        env->CF = (psr >> 29) & 1;
161
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162
        env->VF = (psr << 3) & 0x80000000;
163
        env->QF = (psr >> 27) & 1;
164
        env->cpsr = psr & ~CACHED_CPSR_BITS;
165
    }
166
#elif defined(TARGET_SPARC)
167
#elif defined(TARGET_PPC)
168
#else
169
#error unsupported target CPU
170
#endif
171
    env->exception_index = -1;
172

    
173
    /* prepare setjmp context for exception handling */
174
    for(;;) {
175
        if (setjmp(env->jmp_env) == 0) {
176
            env->current_tb = NULL;
177
            /* if an exception is pending, we execute it here */
178
            if (env->exception_index >= 0) {
179
                if (env->exception_index >= EXCP_INTERRUPT) {
180
                    /* exit request from the cpu execution loop */
181
                    ret = env->exception_index;
182
                    break;
183
                } else if (env->user_mode_only) {
184
                    /* if user mode only, we simulate a fake exception
185
                       which will be hanlded outside the cpu execution
186
                       loop */
187
#if defined(TARGET_I386)
188
                    do_interrupt_user(env->exception_index, 
189
                                      env->exception_is_int, 
190
                                      env->error_code, 
191
                                      env->exception_next_eip);
192
#endif
193
                    ret = env->exception_index;
194
                    break;
195
                } else {
196
#if defined(TARGET_I386)
197
                    /* simulate a real cpu exception. On i386, it can
198
                       trigger new exceptions, but we do not handle
199
                       double or triple faults yet. */
200
                    do_interrupt(env->exception_index, 
201
                                 env->exception_is_int, 
202
                                 env->error_code, 
203
                                 env->exception_next_eip, 0);
204
#elif defined(TARGET_PPC)
205
                    do_interrupt(env);
206
#elif defined(TARGET_SPARC)
207
                    do_interrupt(env->exception_index, 
208
                                 0,
209
                                 env->error_code, 
210
                                 env->exception_next_pc, 0);
211
#endif
212
                }
213
                env->exception_index = -1;
214
            }
215
            T0 = 0; /* force lookup of first TB */
216
            for(;;) {
217
#ifdef __sparc__
218
                /* g1 can be modified by some libc? functions */ 
219
                tmp_T0 = T0;
220
#endif            
221
                interrupt_request = env->interrupt_request;
222
                if (__builtin_expect(interrupt_request, 0)) {
223
#if defined(TARGET_I386)
224
                    /* if hardware interrupt pending, we execute it */
225
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
226
                        (env->eflags & IF_MASK) && 
227
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
228
                        int intno;
229
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
230
                        intno = cpu_get_pic_interrupt(env);
231
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
232
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
233
                        }
234
                        do_interrupt(intno, 0, 0, 0, 1);
235
                        /* ensure that no TB jump will be modified as
236
                           the program flow was changed */
237
#ifdef __sparc__
238
                        tmp_T0 = 0;
239
#else
240
                        T0 = 0;
241
#endif
242
                    }
243
#elif defined(TARGET_PPC)
244
#if 0
245
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
246
                        cpu_ppc_reset(env);
247
                    }
248
#endif
249
                    if (msr_ee != 0) {
250
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
251
                            /* Raise it */
252
                            env->exception_index = EXCP_EXTERNAL;
253
                            env->error_code = 0;
254
                            do_interrupt(env);
255
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
256
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
257
                            /* Raise it */
258
                            env->exception_index = EXCP_DECR;
259
                            env->error_code = 0;
260
                            do_interrupt(env);
261
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
262
                        }
263
                    }
264
#elif defined(TARGET_SPARC)
265
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
266
                        do_interrupt(env->interrupt_index, 0, 0, 0, 0);
267
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
268
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
269
                        //do_interrupt(0, 0, 0, 0, 0);
270
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
271
                    }
272
#endif
273
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
274
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
275
                        /* ensure that no TB jump will be modified as
276
                           the program flow was changed */
277
#ifdef __sparc__
278
                        tmp_T0 = 0;
279
#else
280
                        T0 = 0;
281
#endif
282
                    }
283
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
284
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
285
                        env->exception_index = EXCP_INTERRUPT;
286
                        cpu_loop_exit();
287
                    }
288
                }
289
#ifdef DEBUG_EXEC
290
                if ((loglevel & CPU_LOG_EXEC)) {
291
#if defined(TARGET_I386)
292
                    /* restore flags in standard format */
293
                    env->regs[R_EAX] = EAX;
294
                    env->regs[R_EBX] = EBX;
295
                    env->regs[R_ECX] = ECX;
296
                    env->regs[R_EDX] = EDX;
297
                    env->regs[R_ESI] = ESI;
298
                    env->regs[R_EDI] = EDI;
299
                    env->regs[R_EBP] = EBP;
300
                    env->regs[R_ESP] = ESP;
301
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
302
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
303
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
304
#elif defined(TARGET_ARM)
305
                    env->cpsr = compute_cpsr();
306
                    cpu_dump_state(env, logfile, fprintf, 0);
307
                    env->cpsr &= ~CACHED_CPSR_BITS;
308
#elif defined(TARGET_SPARC)
309
                    cpu_dump_state (env, logfile, fprintf, 0);
310
#elif defined(TARGET_PPC)
311
                    cpu_dump_state(env, logfile, fprintf, 0);
312
#else
313
#error unsupported target CPU 
314
#endif
315
                }
316
#endif
317
                /* we record a subset of the CPU state. It will
318
                   always be the same before a given translated block
319
                   is executed. */
320
#if defined(TARGET_I386)
321
                flags = env->hflags;
322
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
323
                cs_base = env->segs[R_CS].base;
324
                pc = cs_base + env->eip;
325
#elif defined(TARGET_ARM)
326
                flags = env->thumb;
327
                cs_base = 0;
328
                pc = env->regs[15];
329
#elif defined(TARGET_SPARC)
330
                flags = 0;
331
                cs_base = env->npc;
332
                pc = env->pc;
333
#elif defined(TARGET_PPC)
334
                flags = 0;
335
                cs_base = 0;
336
                pc = env->nip;
337
#else
338
#error unsupported CPU
339
#endif
340
                tb = tb_find(&ptb, pc, cs_base, 
341
                             flags);
342
                if (!tb) {
343
                    TranslationBlock **ptb1;
344
                    unsigned int h;
345
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
346
                    
347
                    
348
                    spin_lock(&tb_lock);
349

    
350
                    tb_invalidated_flag = 0;
351
                    
352
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
353

    
354
                    /* find translated block using physical mappings */
355
                    phys_pc = get_phys_addr_code(env, pc);
356
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
357
                    phys_page2 = -1;
358
                    h = tb_phys_hash_func(phys_pc);
359
                    ptb1 = &tb_phys_hash[h];
360
                    for(;;) {
361
                        tb = *ptb1;
362
                        if (!tb)
363
                            goto not_found;
364
                        if (tb->pc == pc && 
365
                            tb->page_addr[0] == phys_page1 &&
366
                            tb->cs_base == cs_base && 
367
                            tb->flags == flags) {
368
                            /* check next page if needed */
369
                            if (tb->page_addr[1] != -1) {
370
                                virt_page2 = (pc & TARGET_PAGE_MASK) + 
371
                                    TARGET_PAGE_SIZE;
372
                                phys_page2 = get_phys_addr_code(env, virt_page2);
373
                                if (tb->page_addr[1] == phys_page2)
374
                                    goto found;
375
                            } else {
376
                                goto found;
377
                            }
378
                        }
379
                        ptb1 = &tb->phys_hash_next;
380
                    }
381
                not_found:
382
                    /* if no translated code available, then translate it now */
383
                    tb = tb_alloc(pc);
384
                    if (!tb) {
385
                        /* flush must be done */
386
                        tb_flush(env);
387
                        /* cannot fail at this point */
388
                        tb = tb_alloc(pc);
389
                        /* don't forget to invalidate previous TB info */
390
                        ptb = &tb_hash[tb_hash_func(pc)];
391
                        T0 = 0;
392
                    }
393
                    tc_ptr = code_gen_ptr;
394
                    tb->tc_ptr = tc_ptr;
395
                    tb->cs_base = cs_base;
396
                    tb->flags = flags;
397
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
398
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
399
                    
400
                    /* check next page if needed */
401
                    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
402
                    phys_page2 = -1;
403
                    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
404
                        phys_page2 = get_phys_addr_code(env, virt_page2);
405
                    }
406
                    tb_link_phys(tb, phys_pc, phys_page2);
407

    
408
                found:
409
                    if (tb_invalidated_flag) {
410
                        /* as some TB could have been invalidated because
411
                           of memory exceptions while generating the code, we
412
                           must recompute the hash index here */
413
                        ptb = &tb_hash[tb_hash_func(pc)];
414
                        while (*ptb != NULL)
415
                            ptb = &(*ptb)->hash_next;
416
                        T0 = 0;
417
                    }
418
                    /* we add the TB in the virtual pc hash table */
419
                    *ptb = tb;
420
                    tb->hash_next = NULL;
421
                    tb_link(tb);
422
                    spin_unlock(&tb_lock);
423
                }
424
#ifdef DEBUG_EXEC
425
                if ((loglevel & CPU_LOG_EXEC)) {
426
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
427
                            (long)tb->tc_ptr, tb->pc,
428
                            lookup_symbol(tb->pc));
429
                }
430
#endif
431
#ifdef __sparc__
432
                T0 = tmp_T0;
433
#endif            
434
                /* see if we can patch the calling TB. */
435
                {
436
                    if (T0 != 0
437
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
438
                    && (tb->cflags & CF_CODE_COPY) == 
439
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
440
#endif
441
                    ) {
442
                    spin_lock(&tb_lock);
443
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
444
#if defined(USE_CODE_COPY)
445
                    /* propagates the FP use info */
446
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
447
                        (tb->cflags & CF_FP_USED);
448
#endif
449
                    spin_unlock(&tb_lock);
450
                }
451
                }
452
                tc_ptr = tb->tc_ptr;
453
                env->current_tb = tb;
454
                /* execute the generated code */
455
                gen_func = (void *)tc_ptr;
456
#if defined(__sparc__)
457
                __asm__ __volatile__("call        %0\n\t"
458
                                     "mov        %%o7,%%i0"
459
                                     : /* no outputs */
460
                                     : "r" (gen_func) 
461
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
462
#elif defined(__arm__)
463
                asm volatile ("mov pc, %0\n\t"
464
                              ".global exec_loop\n\t"
465
                              "exec_loop:\n\t"
466
                              : /* no outputs */
467
                              : "r" (gen_func)
468
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
469
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
470
{
471
    if (!(tb->cflags & CF_CODE_COPY)) {
472
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
473
            save_native_fp_state(env);
474
        }
475
        gen_func();
476
    } else {
477
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
478
            restore_native_fp_state(env);
479
        }
480
        /* we work with native eflags */
481
        CC_SRC = cc_table[CC_OP].compute_all();
482
        CC_OP = CC_OP_EFLAGS;
483
        asm(".globl exec_loop\n"
484
            "\n"
485
            "debug1:\n"
486
            "    pushl %%ebp\n"
487
            "    fs movl %10, %9\n"
488
            "    fs movl %11, %%eax\n"
489
            "    andl $0x400, %%eax\n"
490
            "    fs orl %8, %%eax\n"
491
            "    pushl %%eax\n"
492
            "    popf\n"
493
            "    fs movl %%esp, %12\n"
494
            "    fs movl %0, %%eax\n"
495
            "    fs movl %1, %%ecx\n"
496
            "    fs movl %2, %%edx\n"
497
            "    fs movl %3, %%ebx\n"
498
            "    fs movl %4, %%esp\n"
499
            "    fs movl %5, %%ebp\n"
500
            "    fs movl %6, %%esi\n"
501
            "    fs movl %7, %%edi\n"
502
            "    fs jmp *%9\n"
503
            "exec_loop:\n"
504
            "    fs movl %%esp, %4\n"
505
            "    fs movl %12, %%esp\n"
506
            "    fs movl %%eax, %0\n"
507
            "    fs movl %%ecx, %1\n"
508
            "    fs movl %%edx, %2\n"
509
            "    fs movl %%ebx, %3\n"
510
            "    fs movl %%ebp, %5\n"
511
            "    fs movl %%esi, %6\n"
512
            "    fs movl %%edi, %7\n"
513
            "    pushf\n"
514
            "    popl %%eax\n"
515
            "    movl %%eax, %%ecx\n"
516
            "    andl $0x400, %%ecx\n"
517
            "    shrl $9, %%ecx\n"
518
            "    andl $0x8d5, %%eax\n"
519
            "    fs movl %%eax, %8\n"
520
            "    movl $1, %%eax\n"
521
            "    subl %%ecx, %%eax\n"
522
            "    fs movl %%eax, %11\n"
523
            "    fs movl %9, %%ebx\n" /* get T0 value */
524
            "    popl %%ebp\n"
525
            :
526
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
527
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
528
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
529
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
530
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
531
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
532
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
533
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
534
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
535
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
536
            "a" (gen_func),
537
            "m" (*(uint8_t *)offsetof(CPUState, df)),
538
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
539
            : "%ecx", "%edx"
540
            );
541
    }
542
}
543
#else
544
                gen_func();
545
#endif
546
                env->current_tb = NULL;
547
                /* reset soft MMU for next block (it can currently
548
                   only be set by a memory fault) */
549
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
550
                if (env->hflags & HF_SOFTMMU_MASK) {
551
                    env->hflags &= ~HF_SOFTMMU_MASK;
552
                    /* do not allow linking to another block */
553
                    T0 = 0;
554
                }
555
#endif
556
            }
557
        } else {
558
            env_to_regs();
559
        }
560
    } /* for(;;) */
561

    
562

    
563
#if defined(TARGET_I386)
564
#if defined(USE_CODE_COPY)
565
    if (env->native_fp_regs) {
566
        save_native_fp_state(env);
567
    }
568
#endif
569
    /* restore flags in standard format */
570
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
571

    
572
    /* restore global registers */
573
#ifdef reg_EAX
574
    EAX = saved_EAX;
575
#endif
576
#ifdef reg_ECX
577
    ECX = saved_ECX;
578
#endif
579
#ifdef reg_EDX
580
    EDX = saved_EDX;
581
#endif
582
#ifdef reg_EBX
583
    EBX = saved_EBX;
584
#endif
585
#ifdef reg_ESP
586
    ESP = saved_ESP;
587
#endif
588
#ifdef reg_EBP
589
    EBP = saved_EBP;
590
#endif
591
#ifdef reg_ESI
592
    ESI = saved_ESI;
593
#endif
594
#ifdef reg_EDI
595
    EDI = saved_EDI;
596
#endif
597
#elif defined(TARGET_ARM)
598
    env->cpsr = compute_cpsr();
599
#elif defined(TARGET_SPARC)
600
#elif defined(TARGET_PPC)
601
#else
602
#error unsupported target CPU
603
#endif
604
#ifdef __sparc__
605
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
606
#endif
607
    T0 = saved_T0;
608
    T1 = saved_T1;
609
    T2 = saved_T2;
610
    env = saved_env;
611
    return ret;
612
}
613

    
614
/* must only be called from the generated code as an exception can be
615
   generated */
616
void tb_invalidate_page_range(target_ulong start, target_ulong end)
617
{
618
    /* XXX: cannot enable it yet because it yields to MMU exception
619
       where NIP != read address on PowerPC */
620
#if 0
621
    target_ulong phys_addr;
622
    phys_addr = get_phys_addr_code(env, start);
623
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
624
#endif
625
}
626

    
627
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
628

    
629
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
630
{
631
    CPUX86State *saved_env;
632

    
633
    saved_env = env;
634
    env = s;
635
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
636
        selector &= 0xffff;
637
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
638
                               (selector << 4), 0xffff, 0);
639
    } else {
640
        load_seg(seg_reg, selector);
641
    }
642
    env = saved_env;
643
}
644

    
645
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
646
{
647
    CPUX86State *saved_env;
648

    
649
    saved_env = env;
650
    env = s;
651
    
652
    helper_fsave((target_ulong)ptr, data32);
653

    
654
    env = saved_env;
655
}
656

    
657
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
658
{
659
    CPUX86State *saved_env;
660

    
661
    saved_env = env;
662
    env = s;
663
    
664
    helper_frstor((target_ulong)ptr, data32);
665

    
666
    env = saved_env;
667
}
668

    
669
#endif /* TARGET_I386 */
670

    
671
#if !defined(CONFIG_SOFTMMU)
672

    
673
#if defined(TARGET_I386)
674

    
675
/* 'pc' is the host PC at which the exception was raised. 'address' is
676
   the effective address of the memory exception. 'is_write' is 1 if a
677
   write caused the exception and otherwise 0'. 'old_set' is the
678
   signal set which should be restored */
679
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
680
                                    int is_write, sigset_t *old_set, 
681
                                    void *puc)
682
{
683
    TranslationBlock *tb;
684
    int ret;
685

    
686
    if (cpu_single_env)
687
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
688
#if defined(DEBUG_SIGNAL)
689
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
690
                pc, address, is_write, *(unsigned long *)old_set);
691
#endif
692
    /* XXX: locking issue */
693
    if (is_write && page_unprotect(address, pc, puc)) {
694
        return 1;
695
    }
696

    
697
    /* see if it is an MMU fault */
698
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
699
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
700
    if (ret < 0)
701
        return 0; /* not an MMU fault */
702
    if (ret == 0)
703
        return 1; /* the MMU fault was handled without causing real CPU fault */
704
    /* now we have a real cpu fault */
705
    tb = tb_find_pc(pc);
706
    if (tb) {
707
        /* the PC is inside the translated code. It means that we have
708
           a virtual CPU fault */
709
        cpu_restore_state(tb, env, pc, puc);
710
    }
711
    if (ret == 1) {
712
#if 0
713
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
714
               env->eip, env->cr[2], env->error_code);
715
#endif
716
        /* we restore the process signal mask as the sigreturn should
717
           do it (XXX: use sigsetjmp) */
718
        sigprocmask(SIG_SETMASK, old_set, NULL);
719
        raise_exception_err(EXCP0E_PAGE, env->error_code);
720
    } else {
721
        /* activate soft MMU for this block */
722
        env->hflags |= HF_SOFTMMU_MASK;
723
        cpu_resume_from_signal(env, puc);
724
    }
725
    /* never comes here */
726
    return 1;
727
}
728

    
729
#elif defined(TARGET_ARM)
730
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
731
                                    int is_write, sigset_t *old_set,
732
                                    void *puc)
733
{
734
    /* XXX: locking issue */
735
    if (is_write && page_unprotect(address, pc, puc)) {
736
        return 1;
737
    }
738
    return 0;
739
}
740
#elif defined(TARGET_SPARC)
741
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
742
                                    int is_write, sigset_t *old_set,
743
                                    void *puc)
744
{
745
    /* XXX: locking issue */
746
    if (is_write && page_unprotect(address, pc, puc)) {
747
        return 1;
748
    }
749
    return 0;
750
}
751
#elif defined (TARGET_PPC)
752
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
753
                                    int is_write, sigset_t *old_set,
754
                                    void *puc)
755
{
756
    TranslationBlock *tb;
757
    int ret;
758
    
759
#if 1
760
    if (cpu_single_env)
761
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
762
#endif
763
#if defined(DEBUG_SIGNAL)
764
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
765
           pc, address, is_write, *(unsigned long *)old_set);
766
#endif
767
    /* XXX: locking issue */
768
    if (is_write && page_unprotect(address, pc, puc)) {
769
        return 1;
770
    }
771

    
772
    /* see if it is an MMU fault */
773
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
774
    if (ret < 0)
775
        return 0; /* not an MMU fault */
776
    if (ret == 0)
777
        return 1; /* the MMU fault was handled without causing real CPU fault */
778

    
779
    /* now we have a real cpu fault */
780
    tb = tb_find_pc(pc);
781
    if (tb) {
782
        /* the PC is inside the translated code. It means that we have
783
           a virtual CPU fault */
784
        cpu_restore_state(tb, env, pc, puc);
785
    }
786
    if (ret == 1) {
787
#if 0
788
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
789
               env->nip, env->error_code, tb);
790
#endif
791
    /* we restore the process signal mask as the sigreturn should
792
       do it (XXX: use sigsetjmp) */
793
        sigprocmask(SIG_SETMASK, old_set, NULL);
794
        do_raise_exception_err(env->exception_index, env->error_code);
795
    } else {
796
        /* activate soft MMU for this block */
797
        cpu_resume_from_signal(env, puc);
798
    }
799
    /* never comes here */
800
    return 1;
801
}
802
#else
803
#error unsupported target CPU
804
#endif
805

    
806
#if defined(__i386__)
807

    
808
#if defined(USE_CODE_COPY)
809
static void cpu_send_trap(unsigned long pc, int trap, 
810
                          struct ucontext *uc)
811
{
812
    TranslationBlock *tb;
813

    
814
    if (cpu_single_env)
815
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
816
    /* now we have a real cpu fault */
817
    tb = tb_find_pc(pc);
818
    if (tb) {
819
        /* the PC is inside the translated code. It means that we have
820
           a virtual CPU fault */
821
        cpu_restore_state(tb, env, pc, uc);
822
    }
823
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
824
    raise_exception_err(trap, env->error_code);
825
}
826
#endif
827

    
828
int cpu_signal_handler(int host_signum, struct siginfo *info, 
829
                       void *puc)
830
{
831
    struct ucontext *uc = puc;
832
    unsigned long pc;
833
    int trapno;
834

    
835
#ifndef REG_EIP
836
/* for glibc 2.1 */
837
#define REG_EIP    EIP
838
#define REG_ERR    ERR
839
#define REG_TRAPNO TRAPNO
840
#endif
841
    pc = uc->uc_mcontext.gregs[REG_EIP];
842
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
843
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
844
    if (trapno == 0x00 || trapno == 0x05) {
845
        /* send division by zero or bound exception */
846
        cpu_send_trap(pc, trapno, uc);
847
        return 1;
848
    } else
849
#endif
850
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
851
                                 trapno == 0xe ? 
852
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
853
                                 &uc->uc_sigmask, puc);
854
}
855

    
856
#elif defined(__x86_64__)
857

    
858
int cpu_signal_handler(int host_signum, struct siginfo *info,
859
                       void *puc)
860
{
861
    struct ucontext *uc = puc;
862
    unsigned long pc;
863

    
864
    pc = uc->uc_mcontext.gregs[REG_RIP];
865
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
866
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
867
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
868
                             &uc->uc_sigmask, puc);
869
}
870

    
871
#elif defined(__powerpc__)
872

    
873
/***********************************************************************
874
 * signal context platform-specific definitions
875
 * From Wine
876
 */
877
#ifdef linux
878
/* All Registers access - only for local access */
879
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
880
/* Gpr Registers access  */
881
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
882
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
883
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
884
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
885
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
886
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
887
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
888
/* Float Registers access  */
889
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
890
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
891
/* Exception Registers access */
892
# define DAR_sig(context)                        REG_sig(dar, context)
893
# define DSISR_sig(context)                        REG_sig(dsisr, context)
894
# define TRAP_sig(context)                        REG_sig(trap, context)
895
#endif /* linux */
896

    
897
#ifdef __APPLE__
898
# include <sys/ucontext.h>
899
typedef struct ucontext SIGCONTEXT;
900
/* All Registers access - only for local access */
901
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
902
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
903
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
904
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
905
/* Gpr Registers access */
906
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
907
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
908
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
909
# define CTR_sig(context)                        REG_sig(ctr, context)
910
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
911
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
912
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
913
/* Float Registers access */
914
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
915
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
916
/* Exception Registers access */
917
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
918
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
919
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
920
#endif /* __APPLE__ */
921

    
922
int cpu_signal_handler(int host_signum, struct siginfo *info, 
923
                       void *puc)
924
{
925
    struct ucontext *uc = puc;
926
    unsigned long pc;
927
    int is_write;
928

    
929
    pc = IAR_sig(uc);
930
    is_write = 0;
931
#if 0
932
    /* ppc 4xx case */
933
    if (DSISR_sig(uc) & 0x00800000)
934
        is_write = 1;
935
#else
936
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
937
        is_write = 1;
938
#endif
939
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
940
                             is_write, &uc->uc_sigmask, puc);
941
}
942

    
943
#elif defined(__alpha__)
944

    
945
int cpu_signal_handler(int host_signum, struct siginfo *info, 
946
                           void *puc)
947
{
948
    struct ucontext *uc = puc;
949
    uint32_t *pc = uc->uc_mcontext.sc_pc;
950
    uint32_t insn = *pc;
951
    int is_write = 0;
952

    
953
    /* XXX: need kernel patch to get write flag faster */
954
    switch (insn >> 26) {
955
    case 0x0d: // stw
956
    case 0x0e: // stb
957
    case 0x0f: // stq_u
958
    case 0x24: // stf
959
    case 0x25: // stg
960
    case 0x26: // sts
961
    case 0x27: // stt
962
    case 0x2c: // stl
963
    case 0x2d: // stq
964
    case 0x2e: // stl_c
965
    case 0x2f: // stq_c
966
        is_write = 1;
967
    }
968

    
969
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
970
                             is_write, &uc->uc_sigmask, puc);
971
}
972
#elif defined(__sparc__)
973

    
974
int cpu_signal_handler(int host_signum, struct siginfo *info, 
975
                       void *puc)
976
{
977
    uint32_t *regs = (uint32_t *)(info + 1);
978
    void *sigmask = (regs + 20);
979
    unsigned long pc;
980
    int is_write;
981
    uint32_t insn;
982
    
983
    /* XXX: is there a standard glibc define ? */
984
    pc = regs[1];
985
    /* XXX: need kernel patch to get write flag faster */
986
    is_write = 0;
987
    insn = *(uint32_t *)pc;
988
    if ((insn >> 30) == 3) {
989
      switch((insn >> 19) & 0x3f) {
990
      case 0x05: // stb
991
      case 0x06: // sth
992
      case 0x04: // st
993
      case 0x07: // std
994
      case 0x24: // stf
995
      case 0x27: // stdf
996
      case 0x25: // stfsr
997
        is_write = 1;
998
        break;
999
      }
1000
    }
1001
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1002
                             is_write, sigmask, NULL);
1003
}
1004

    
1005
#elif defined(__arm__)
1006

    
1007
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1008
                       void *puc)
1009
{
1010
    struct ucontext *uc = puc;
1011
    unsigned long pc;
1012
    int is_write;
1013
    
1014
    pc = uc->uc_mcontext.gregs[R15];
1015
    /* XXX: compute is_write */
1016
    is_write = 0;
1017
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1018
                             is_write,
1019
                             &uc->uc_sigmask);
1020
}
1021

    
1022
#elif defined(__mc68000)
1023

    
1024
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1025
                       void *puc)
1026
{
1027
    struct ucontext *uc = puc;
1028
    unsigned long pc;
1029
    int is_write;
1030
    
1031
    pc = uc->uc_mcontext.gregs[16];
1032
    /* XXX: compute is_write */
1033
    is_write = 0;
1034
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1035
                             is_write,
1036
                             &uc->uc_sigmask, puc);
1037
}
1038

    
1039
#else
1040

    
1041
#error host CPU specific signal handler needed
1042

    
1043
#endif
1044

    
1045
#endif /* !defined(CONFIG_SOFTMMU) */