Revision 9fc7577a hw/etraxfs_eth.c

b/hw/etraxfs_eth.c
35 35
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
36 36
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
37 37

  
38
/* 
39
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
38
/*
39
 * The MDIO extensions in the TDK PHY model were reversed engineered from the
40 40
 * linux driver (PHYID and Diagnostics reg).
41 41
 * TODO: Add friendly names for the register nums.
42 42
 */
43 43
struct qemu_phy
44 44
{
45
	uint32_t regs[32];
45
    uint32_t regs[32];
46 46

  
47
	int link;
47
    int link;
48 48

  
49
	unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50
	void (*write)(struct qemu_phy *phy, unsigned int req, 
51
		      unsigned int data);
49
    unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50
    void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
52 51
};
53 52

  
54 53
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55 54
{
56
	int regnum;
57
	unsigned r = 0;
58

  
59
	regnum = req & 0x1f;
60

  
61
	switch (regnum) {
62
		case 1:
63
			if (!phy->link)
64
				break;
65
			/* MR1.	 */
66
			/* Speeds and modes.  */
67
			r |= (1 << 13) | (1 << 14);
68
			r |= (1 << 11) | (1 << 12);
69
			r |= (1 << 5); /* Autoneg complete.  */
70
			r |= (1 << 3); /* Autoneg able.	 */
71
			r |= (1 << 2); /* link.	 */
72
			break;
73
		case 5:
74
			/* Link partner ability.
75
			   We are kind; always agree with whatever best mode
76
			   the guest advertises.  */
77
			r = 1 << 14; /* Success.  */
78
			/* Copy advertised modes.  */
79
			r |= phy->regs[4] & (15 << 5);
80
			/* Autoneg support.  */
81
			r |= 1;
82
			break;
83
		case 18:
84
		{
85
			/* Diagnostics reg.  */
86
			int duplex = 0;
87
			int speed_100 = 0;
88

  
89
			if (!phy->link)
90
				break;
91

  
92
			/* Are we advertising 100 half or 100 duplex ? */
93
			speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
94
			speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
95

  
96
			/* Are we advertising 10 duplex or 100 duplex ? */
97
			duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
98
			duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
99
			r = (speed_100 << 10) | (duplex << 11);
100
		}
101
		break;
102

  
103
		default:
104
			r = phy->regs[regnum];
105
			break;
106
	}
107
	D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
108
	return r;
55
    int regnum;
56
    unsigned r = 0;
57

  
58
    regnum = req & 0x1f;
59

  
60
    switch (regnum) {
61
    case 1:
62
        if (!phy->link) {
63
            break;
64
        }
65
        /* MR1.     */
66
        /* Speeds and modes.  */
67
        r |= (1 << 13) | (1 << 14);
68
        r |= (1 << 11) | (1 << 12);
69
        r |= (1 << 5); /* Autoneg complete.  */
70
        r |= (1 << 3); /* Autoneg able.     */
71
        r |= (1 << 2); /* link.     */
72
        break;
73
    case 5:
74
        /* Link partner ability.
75
           We are kind; always agree with whatever best mode
76
           the guest advertises.  */
77
        r = 1 << 14; /* Success.  */
78
        /* Copy advertised modes.  */
79
        r |= phy->regs[4] & (15 << 5);
80
        /* Autoneg support.  */
81
        r |= 1;
82
        break;
83
    case 18:
84
    {
85
        /* Diagnostics reg.  */
86
        int duplex = 0;
87
        int speed_100 = 0;
88

  
89
        if (!phy->link) {
90
            break;
91
        }
92

  
93
        /* Are we advertising 100 half or 100 duplex ? */
94
        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
95
        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
96

  
97
        /* Are we advertising 10 duplex or 100 duplex ? */
98
        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
99
        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
100
        r = (speed_100 << 10) | (duplex << 11);
101
    }
102
    break;
103

  
104
    default:
105
        r = phy->regs[regnum];
106
        break;
107
    }
108
    D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
109
    return r;
109 110
}
110 111

  
111
static void 
112
static void
112 113
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
113 114
{
114
	int regnum;
115

  
116
	regnum = req & 0x1f;
117
	D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
118
	switch (regnum) {
119
		default:
120
			phy->regs[regnum] = data;
121
			break;
122
	}
115
    int regnum;
116

  
117
    regnum = req & 0x1f;
118
    D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
119
    switch (regnum) {
120
    default:
121
        phy->regs[regnum] = data;
122
        break;
123
    }
123 124
}
124 125

  
125
static void 
126
static void
126 127
tdk_init(struct qemu_phy *phy)
127 128
{
128
	phy->regs[0] = 0x3100;
129
	/* PHY Id.  */
130
	phy->regs[2] = 0x0300;
131
	phy->regs[3] = 0xe400;
132
	/* Autonegotiation advertisement reg.  */
133
	phy->regs[4] = 0x01E1;
134
	phy->link = 1;
135

  
136
	phy->read = tdk_read;
137
	phy->write = tdk_write;
129
    phy->regs[0] = 0x3100;
130
    /* PHY Id.  */
131
    phy->regs[2] = 0x0300;
132
    phy->regs[3] = 0xe400;
133
    /* Autonegotiation advertisement reg.  */
134
    phy->regs[4] = 0x01E1;
135
    phy->link = 1;
136

  
137
    phy->read = tdk_read;
138
    phy->write = tdk_write;
138 139
}
139 140

  
140 141
struct qemu_mdio
141 142
{
142
	/* bus.	 */
143
	int mdc;
144
	int mdio;
145

  
146
	/* decoder.  */
147
	enum {
148
		PREAMBLE,
149
		SOF,
150
		OPC,
151
		ADDR,
152
		REQ,
153
		TURNAROUND,
154
		DATA
155
	} state;
156
	unsigned int drive;
157

  
158
	unsigned int cnt;
159
	unsigned int addr;
160
	unsigned int opc;
161
	unsigned int req;
162
	unsigned int data;
163

  
164
	struct qemu_phy *devs[32];
143
    /* bus.     */
144
    int mdc;
145
    int mdio;
146

  
147
    /* decoder.  */
148
    enum {
149
        PREAMBLE,
150
        SOF,
151
        OPC,
152
        ADDR,
153
        REQ,
154
        TURNAROUND,
155
        DATA
156
    } state;
157
    unsigned int drive;
158

  
159
    unsigned int cnt;
160
    unsigned int addr;
161
    unsigned int opc;
162
    unsigned int req;
163
    unsigned int data;
164

  
165
    struct qemu_phy *devs[32];
165 166
};
166 167

  
167
static void 
168
static void
168 169
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169 170
{
170
	bus->devs[addr & 0x1f] = phy;
171
    bus->devs[addr & 0x1f] = phy;
171 172
}
172 173

  
173 174
#ifdef USE_THIS_DEAD_CODE
174
static void 
175
static void
175 176
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
176 177
{
177
	bus->devs[addr & 0x1f] = NULL;	
178
    bus->devs[addr & 0x1f] = NULL;
178 179
}
179 180
#endif
180 181

  
181 182
static void mdio_read_req(struct qemu_mdio *bus)
182 183
{
183
	struct qemu_phy *phy;
184

  
185
	phy = bus->devs[bus->addr];
186
	if (phy && phy->read)
187
		bus->data = phy->read(phy, bus->req);
188
	else 
189
		bus->data = 0xffff;
184
    struct qemu_phy *phy;
185

  
186
    phy = bus->devs[bus->addr];
187
    if (phy && phy->read) {
188
        bus->data = phy->read(phy, bus->req);
189
    } else {
190
        bus->data = 0xffff;
191
    }
190 192
}
191 193

  
192 194
static void mdio_write_req(struct qemu_mdio *bus)
193 195
{
194
	struct qemu_phy *phy;
196
    struct qemu_phy *phy;
195 197

  
196
	phy = bus->devs[bus->addr];
197
	if (phy && phy->write)
198
		phy->write(phy, bus->req, bus->data);
198
    phy = bus->devs[bus->addr];
199
    if (phy && phy->write) {
200
        phy->write(phy, bus->req, bus->data);
201
    }
199 202
}
200 203

  
201 204
static void mdio_cycle(struct qemu_mdio *bus)
202 205
{
203
	bus->cnt++;
206
    bus->cnt++;
204 207

  
205
	D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
206
		bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
208
    D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
209
        bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
207 210
#if 0
208
	if (bus->mdc)
209
		printf("%d", bus->mdio);
211
    if (bus->mdc) {
212
        printf("%d", bus->mdio);
213
    }
210 214
#endif
211
	switch (bus->state)
212
	{
213
		case PREAMBLE:
214
			if (bus->mdc) {
215
				if (bus->cnt >= (32 * 2) && !bus->mdio) {
216
					bus->cnt = 0;
217
					bus->state = SOF;
218
					bus->data = 0;
219
				}
220
			}
221
			break;
222
		case SOF:
223
			if (bus->mdc) {
224
				if (bus->mdio != 1)
225
					printf("WARNING: no SOF\n");
226
				if (bus->cnt == 1*2) {
227
					bus->cnt = 0;
228
					bus->opc = 0;
229
					bus->state = OPC;
230
				}
231
			}
232
			break;
233
		case OPC:
234
			if (bus->mdc) {
235
				bus->opc <<= 1;
236
				bus->opc |= bus->mdio & 1;
237
				if (bus->cnt == 2*2) {
238
					bus->cnt = 0;
239
					bus->addr = 0;
240
					bus->state = ADDR;
241
				}
242
			}
243
			break;
244
		case ADDR:
245
			if (bus->mdc) {
246
				bus->addr <<= 1;
247
				bus->addr |= bus->mdio & 1;
248

  
249
				if (bus->cnt == 5*2) {
250
					bus->cnt = 0;
251
					bus->req = 0;
252
					bus->state = REQ;
253
				}
254
			}
255
			break;
256
		case REQ:
257
			if (bus->mdc) {
258
				bus->req <<= 1;
259
				bus->req |= bus->mdio & 1;
260
				if (bus->cnt == 5*2) {
261
					bus->cnt = 0;
262
					bus->state = TURNAROUND;
263
				}
264
			}
265
			break;
266
		case TURNAROUND:
267
			if (bus->mdc && bus->cnt == 2*2) {
268
				bus->mdio = 0;
269
				bus->cnt = 0;
270

  
271
				if (bus->opc == 2) {
272
					bus->drive = 1;
273
					mdio_read_req(bus);
274
					bus->mdio = bus->data & 1;
275
				}
276
				bus->state = DATA;
277
			}
278
			break;
279
		case DATA:			
280
			if (!bus->mdc) {
281
				if (bus->drive) {
282
					bus->mdio = !!(bus->data & (1 << 15));
283
					bus->data <<= 1;
284
				}
285
			} else {
286
				if (!bus->drive) {
287
					bus->data <<= 1;
288
					bus->data |= bus->mdio;
289
				}
290
				if (bus->cnt == 16 * 2) {
291
					bus->cnt = 0;
292
					bus->state = PREAMBLE;
293
					if (!bus->drive)
294
						mdio_write_req(bus);
295
					bus->drive = 0;
296
				}
297
			}
298
			break;
299
		default:
300
			break;
301
	}
215
    switch (bus->state) {
216
    case PREAMBLE:
217
        if (bus->mdc) {
218
            if (bus->cnt >= (32 * 2) && !bus->mdio) {
219
                bus->cnt = 0;
220
                bus->state = SOF;
221
                bus->data = 0;
222
            }
223
        }
224
        break;
225
    case SOF:
226
        if (bus->mdc) {
227
            if (bus->mdio != 1) {
228
                printf("WARNING: no SOF\n");
229
            }
230
            if (bus->cnt == 1*2) {
231
                bus->cnt = 0;
232
                bus->opc = 0;
233
                bus->state = OPC;
234
            }
235
        }
236
        break;
237
    case OPC:
238
        if (bus->mdc) {
239
            bus->opc <<= 1;
240
            bus->opc |= bus->mdio & 1;
241
            if (bus->cnt == 2*2) {
242
                bus->cnt = 0;
243
                bus->addr = 0;
244
                bus->state = ADDR;
245
            }
246
        }
247
        break;
248
    case ADDR:
249
        if (bus->mdc) {
250
            bus->addr <<= 1;
251
            bus->addr |= bus->mdio & 1;
252

  
253
            if (bus->cnt == 5*2) {
254
                bus->cnt = 0;
255
                bus->req = 0;
256
                bus->state = REQ;
257
            }
258
        }
259
        break;
260
    case REQ:
261
        if (bus->mdc) {
262
            bus->req <<= 1;
263
            bus->req |= bus->mdio & 1;
264
            if (bus->cnt == 5*2) {
265
                bus->cnt = 0;
266
                bus->state = TURNAROUND;
267
            }
268
        }
269
        break;
270
    case TURNAROUND:
271
        if (bus->mdc && bus->cnt == 2*2) {
272
            bus->mdio = 0;
273
            bus->cnt = 0;
274

  
275
            if (bus->opc == 2) {
276
                bus->drive = 1;
277
                mdio_read_req(bus);
278
                bus->mdio = bus->data & 1;
279
            }
280
            bus->state = DATA;
281
        }
282
        break;
283
    case DATA:
284
        if (!bus->mdc) {
285
            if (bus->drive) {
286
                bus->mdio = !!(bus->data & (1 << 15));
287
                bus->data <<= 1;
288
            }
289
        } else {
290
            if (!bus->drive) {
291
                bus->data <<= 1;
292
                bus->data |= bus->mdio;
293
            }
294
            if (bus->cnt == 16 * 2) {
295
                bus->cnt = 0;
296
                bus->state = PREAMBLE;
297
                if (!bus->drive) {
298
                    mdio_write_req(bus);
299
                }
300
                bus->drive = 0;
301
            }
302
        }
303
        break;
304
    default:
305
        break;
306
    }
302 307
}
303 308

  
304 309
/* ETRAX-FS Ethernet MAC block starts here.  */
305 310

  
306
#define RW_MA0_LO	  0x00
307
#define RW_MA0_HI	  0x01
308
#define RW_MA1_LO	  0x02
309
#define RW_MA1_HI	  0x03
310
#define RW_GA_LO	  0x04
311
#define RW_GA_HI	  0x05
312
#define RW_GEN_CTRL	  0x06
313
#define RW_REC_CTRL	  0x07
314
#define RW_TR_CTRL	  0x08
315
#define RW_CLR_ERR	  0x09
316
#define RW_MGM_CTRL	  0x0a
317
#define R_STAT		  0x0b
318
#define FS_ETH_MAX_REGS	  0x17
311
#define RW_MA0_LO      0x00
312
#define RW_MA0_HI      0x01
313
#define RW_MA1_LO      0x02
314
#define RW_MA1_HI      0x03
315
#define RW_GA_LO      0x04
316
#define RW_GA_HI      0x05
317
#define RW_GEN_CTRL      0x06
318
#define RW_REC_CTRL      0x07
319
#define RW_TR_CTRL      0x08
320
#define RW_CLR_ERR      0x09
321
#define RW_MGM_CTRL      0x0a
322
#define R_STAT          0x0b
323
#define FS_ETH_MAX_REGS      0x17
319 324

  
320 325
struct fs_eth
321 326
{
322
	SysBusDevice busdev;
323
	MemoryRegion mmio;
324
	NICState *nic;
325
	NICConf conf;
326

  
327
	/* Two addrs in the filter.  */
328
	uint8_t macaddr[2][6];
329
	uint32_t regs[FS_ETH_MAX_REGS];
330

  
331
	union {
332
		void *vdma_out;
333
		struct etraxfs_dma_client *dma_out;
334
	};
335
	union {
336
		void *vdma_in;
337
		struct etraxfs_dma_client *dma_in;
338
	};
339

  
340
	/* MDIO bus.  */
341
	struct qemu_mdio mdio_bus;
342
	unsigned int phyaddr;
343
	int duplex_mismatch;
344

  
345
	/* PHY.	 */
346
	struct qemu_phy phy;
327
    SysBusDevice busdev;
328
    MemoryRegion mmio;
329
    NICState *nic;
330
    NICConf conf;
331

  
332
    /* Two addrs in the filter.  */
333
    uint8_t macaddr[2][6];
334
    uint32_t regs[FS_ETH_MAX_REGS];
335

  
336
    union {
337
        void *vdma_out;
338
        struct etraxfs_dma_client *dma_out;
339
    };
340
    union {
341
        void *vdma_in;
342
        struct etraxfs_dma_client *dma_in;
343
    };
344

  
345
    /* MDIO bus.  */
346
    struct qemu_mdio mdio_bus;
347
    unsigned int phyaddr;
348
    int duplex_mismatch;
349

  
350
    /* PHY.     */
351
    struct qemu_phy phy;
347 352
};
348 353

  
349 354
static void eth_validate_duplex(struct fs_eth *eth)
350 355
{
351
	struct qemu_phy *phy;
352
	unsigned int phy_duplex;
353
	unsigned int mac_duplex;
354
	int new_mm = 0;
355

  
356
	phy = eth->mdio_bus.devs[eth->phyaddr];
357
	phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
358
	mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
359

  
360
	if (mac_duplex != phy_duplex)
361
		new_mm = 1;
362

  
363
	if (eth->regs[RW_GEN_CTRL] & 1) {
364
		if (new_mm != eth->duplex_mismatch) {
365
			if (new_mm)
366
				printf("HW: WARNING "
367
				       "ETH duplex mismatch MAC=%d PHY=%d\n",
368
				       mac_duplex, phy_duplex);
369
			else
370
				printf("HW: ETH duplex ok.\n");
371
		}
372
		eth->duplex_mismatch = new_mm;
373
	}
356
    struct qemu_phy *phy;
357
    unsigned int phy_duplex;
358
    unsigned int mac_duplex;
359
    int new_mm = 0;
360

  
361
    phy = eth->mdio_bus.devs[eth->phyaddr];
362
    phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
363
    mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
364

  
365
    if (mac_duplex != phy_duplex) {
366
        new_mm = 1;
367
    }
368

  
369
    if (eth->regs[RW_GEN_CTRL] & 1) {
370
        if (new_mm != eth->duplex_mismatch) {
371
            if (new_mm) {
372
                printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
373
                       mac_duplex, phy_duplex);
374
            } else {
375
                printf("HW: ETH duplex ok.\n");
376
            }
377
        }
378
        eth->duplex_mismatch = new_mm;
379
    }
374 380
}
375 381

  
376 382
static uint64_t
377 383
eth_read(void *opaque, hwaddr addr, unsigned int size)
378 384
{
379
	struct fs_eth *eth = opaque;
380
	uint32_t r = 0;
381

  
382
	addr >>= 2;
383

  
384
	switch (addr) {
385
		case R_STAT:
386
			r = eth->mdio_bus.mdio & 1;
387
			break;
388
	default:
389
		r = eth->regs[addr];
390
		D(printf ("%s %x\n", __func__, addr * 4));
391
		break;
392
	}
393
	return r;
385
    struct fs_eth *eth = opaque;
386
    uint32_t r = 0;
387

  
388
    addr >>= 2;
389

  
390
    switch (addr) {
391
    case R_STAT:
392
        r = eth->mdio_bus.mdio & 1;
393
        break;
394
    default:
395
        r = eth->regs[addr];
396
        D(printf("%s %x\n", __func__, addr * 4));
397
        break;
398
    }
399
    return r;
394 400
}
395 401

  
396 402
static void eth_update_ma(struct fs_eth *eth, int ma)
397 403
{
398
	int reg;
399
	int i = 0;
400

  
401
	ma &= 1;
402

  
403
	reg = RW_MA0_LO;
404
	if (ma)
405
		reg = RW_MA1_LO;
406

  
407
	eth->macaddr[ma][i++] = eth->regs[reg];
408
	eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
409
	eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
410
	eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
411
	eth->macaddr[ma][i++] = eth->regs[reg + 1];
412
	eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
413

  
414
	D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
415
		 eth->macaddr[ma][0], eth->macaddr[ma][1],
416
		 eth->macaddr[ma][2], eth->macaddr[ma][3],
417
		 eth->macaddr[ma][4], eth->macaddr[ma][5]));
404
    int reg;
405
    int i = 0;
406

  
407
    ma &= 1;
408

  
409
    reg = RW_MA0_LO;
410
    if (ma) {
411
        reg = RW_MA1_LO;
412
    }
413

  
414
    eth->macaddr[ma][i++] = eth->regs[reg];
415
    eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
416
    eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
417
    eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
418
    eth->macaddr[ma][i++] = eth->regs[reg + 1];
419
    eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
420

  
421
    D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
422
             eth->macaddr[ma][0], eth->macaddr[ma][1],
423
             eth->macaddr[ma][2], eth->macaddr[ma][3],
424
             eth->macaddr[ma][4], eth->macaddr[ma][5]));
418 425
}
419 426

  
420 427
static void
421 428
eth_write(void *opaque, hwaddr addr,
422 429
          uint64_t val64, unsigned int size)
423 430
{
424
	struct fs_eth *eth = opaque;
425
	uint32_t value = val64;
426

  
427
	addr >>= 2;
428
	switch (addr)
429
	{
430
		case RW_MA0_LO:
431
		case RW_MA0_HI:
432
			eth->regs[addr] = value;
433
			eth_update_ma(eth, 0);
434
			break;
435
		case RW_MA1_LO:
436
		case RW_MA1_HI:
437
			eth->regs[addr] = value;
438
			eth_update_ma(eth, 1);
439
			break;
440

  
441
		case RW_MGM_CTRL:
442
			/* Attach an MDIO/PHY abstraction.  */
443
			if (value & 2)
444
				eth->mdio_bus.mdio = value & 1;
445
			if (eth->mdio_bus.mdc != (value & 4)) {
446
				mdio_cycle(&eth->mdio_bus);
447
				eth_validate_duplex(eth);
448
			}
449
			eth->mdio_bus.mdc = !!(value & 4);
450
			eth->regs[addr] = value;
451
			break;
452

  
453
		case RW_REC_CTRL:
454
			eth->regs[addr] = value;
455
			eth_validate_duplex(eth);
456
			break;
457

  
458
		default:
459
			eth->regs[addr] = value;
460
			D(printf ("%s %x %x\n",
461
				  __func__, addr, value));
462
			break;
463
	}
431
    struct fs_eth *eth = opaque;
432
    uint32_t value = val64;
433

  
434
    addr >>= 2;
435
    switch (addr) {
436
    case RW_MA0_LO:
437
    case RW_MA0_HI:
438
        eth->regs[addr] = value;
439
        eth_update_ma(eth, 0);
440
        break;
441
    case RW_MA1_LO:
442
    case RW_MA1_HI:
443
        eth->regs[addr] = value;
444
        eth_update_ma(eth, 1);
445
        break;
446

  
447
    case RW_MGM_CTRL:
448
        /* Attach an MDIO/PHY abstraction.  */
449
        if (value & 2) {
450
            eth->mdio_bus.mdio = value & 1;
451
        }
452
        if (eth->mdio_bus.mdc != (value & 4)) {
453
            mdio_cycle(&eth->mdio_bus);
454
            eth_validate_duplex(eth);
455
        }
456
        eth->mdio_bus.mdc = !!(value & 4);
457
        eth->regs[addr] = value;
458
        break;
459

  
460
    case RW_REC_CTRL:
461
        eth->regs[addr] = value;
462
        eth_validate_duplex(eth);
463
        break;
464

  
465
    default:
466
        eth->regs[addr] = value;
467
        D(printf("%s %x %x\n", __func__, addr, value));
468
        break;
469
    }
464 470
}
465 471

  
466 472
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
467
   filter dropping group addresses we have not joined.	The filter has 64
468
   bits (m). The has function is a simple nible xor of the group addr.	*/
473
   filter dropping group addresses we have not joined.    The filter has 64
474
   bits (m). The has function is a simple nible xor of the group addr.    */
469 475
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
470 476
{
471
	unsigned int hsh;
472
	int m_individual = eth->regs[RW_REC_CTRL] & 4;
473
	int match;
474

  
475
	/* First bit on the wire of a MAC address signals multicast or
476
	   physical address.  */
477
	if (!m_individual && !(sa[0] & 1))
478
		return 0;
479

  
480
	/* Calculate the hash index for the GA registers. */
481
	hsh = 0;
482
	hsh ^= (*sa) & 0x3f;
483
	hsh ^= ((*sa) >> 6) & 0x03;
484
	++sa;
485
	hsh ^= ((*sa) << 2) & 0x03c;
486
	hsh ^= ((*sa) >> 4) & 0xf;
487
	++sa;
488
	hsh ^= ((*sa) << 4) & 0x30;
489
	hsh ^= ((*sa) >> 2) & 0x3f;
490
	++sa;
491
	hsh ^= (*sa) & 0x3f;
492
	hsh ^= ((*sa) >> 6) & 0x03;
493
	++sa;
494
	hsh ^= ((*sa) << 2) & 0x03c;
495
	hsh ^= ((*sa) >> 4) & 0xf;
496
	++sa;
497
	hsh ^= ((*sa) << 4) & 0x30;
498
	hsh ^= ((*sa) >> 2) & 0x3f;
499

  
500
	hsh &= 63;
501
	if (hsh > 31)
502
		match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
503
	else
504
		match = eth->regs[RW_GA_LO] & (1 << hsh);
505
	D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
506
		 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
507
	return match;
477
    unsigned int hsh;
478
    int m_individual = eth->regs[RW_REC_CTRL] & 4;
479
    int match;
480

  
481
    /* First bit on the wire of a MAC address signals multicast or
482
       physical address.  */
483
    if (!m_individual && !(sa[0] & 1)) {
484
        return 0;
485
    }
486

  
487
    /* Calculate the hash index for the GA registers. */
488
    hsh = 0;
489
    hsh ^= (*sa) & 0x3f;
490
    hsh ^= ((*sa) >> 6) & 0x03;
491
    ++sa;
492
    hsh ^= ((*sa) << 2) & 0x03c;
493
    hsh ^= ((*sa) >> 4) & 0xf;
494
    ++sa;
495
    hsh ^= ((*sa) << 4) & 0x30;
496
    hsh ^= ((*sa) >> 2) & 0x3f;
497
    ++sa;
498
    hsh ^= (*sa) & 0x3f;
499
    hsh ^= ((*sa) >> 6) & 0x03;
500
    ++sa;
501
    hsh ^= ((*sa) << 2) & 0x03c;
502
    hsh ^= ((*sa) >> 4) & 0xf;
503
    ++sa;
504
    hsh ^= ((*sa) << 4) & 0x30;
505
    hsh ^= ((*sa) >> 2) & 0x3f;
506

  
507
    hsh &= 63;
508
    if (hsh > 31) {
509
        match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
510
    } else {
511
        match = eth->regs[RW_GA_LO] & (1 << hsh);
512
    }
513
    D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
514
             eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
515
    return match;
508 516
}
509 517

  
510 518
static int eth_can_receive(NetClientState *nc)
511 519
{
512
	return 1;
520
    return 1;
513 521
}
514 522

  
515 523
static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
516 524
{
517
	unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
518
	struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
519
	int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
520
	int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
521
	int r_bcast = eth->regs[RW_REC_CTRL] & 8;
522

  
523
	if (size < 12)
524
		return -1;
525

  
526
	D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
527
		 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
528
		 use_ma0, use_ma1, r_bcast));
529
	       
530
	/* Does the frame get through the address filters?  */
531
	if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
532
	    && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
533
	    && (!r_bcast || memcmp(buf, sa_bcast, 6))
534
	    && !eth_match_groupaddr(eth, buf))
535
		return size;
536

  
537
	/* FIXME: Find another way to pass on the fake csum.  */
538
	etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
525
    unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
526
    struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
527
    int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
528
    int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
529
    int r_bcast = eth->regs[RW_REC_CTRL] & 8;
530

  
531
    if (size < 12) {
532
        return -1;
533
    }
534

  
535
    D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
536
         buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
537
         use_ma0, use_ma1, r_bcast));
538

  
539
    /* Does the frame get through the address filters?  */
540
    if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
541
        && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
542
        && (!r_bcast || memcmp(buf, sa_bcast, 6))
543
        && !eth_match_groupaddr(eth, buf)) {
544
        return size;
545
    }
546

  
547
    /* FIXME: Find another way to pass on the fake csum.  */
548
    etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
539 549

  
540 550
        return size;
541 551
}
542 552

  
543 553
static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
544 554
{
545
	struct fs_eth *eth = opaque;
555
    struct fs_eth *eth = opaque;
546 556

  
547
	D(printf("%s buf=%p len=%d\n", __func__, buf, len));
548
	qemu_send_packet(&eth->nic->nc, buf, len);
549
	return len;
557
    D(printf("%s buf=%p len=%d\n", __func__, buf, len));
558
    qemu_send_packet(&eth->nic->nc, buf, len);
559
    return len;
550 560
}
551 561

  
552 562
static void eth_set_link(NetClientState *nc)
553 563
{
554
	struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
555
	D(printf("%s %d\n", __func__, nc->link_down));
556
	eth->phy.link = !nc->link_down;
564
    struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
565
    D(printf("%s %d\n", __func__, nc->link_down));
566
    eth->phy.link = !nc->link_down;
557 567
}
558 568

  
559 569
static const MemoryRegionOps eth_ops = {
560
	.read = eth_read,
561
	.write = eth_write,
562
	.endianness = DEVICE_LITTLE_ENDIAN,
563
	.valid = {
564
		.min_access_size = 4,
565
		.max_access_size = 4
566
	}
570
    .read = eth_read,
571
    .write = eth_write,
572
    .endianness = DEVICE_LITTLE_ENDIAN,
573
    .valid = {
574
        .min_access_size = 4,
575
        .max_access_size = 4
576
    }
567 577
};
568 578

  
569 579
static void eth_cleanup(NetClientState *nc)
570 580
{
571
	struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
581
    struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
572 582

  
573
	/* Disconnect the client.  */
574
	eth->dma_out->client.push = NULL;
575
	eth->dma_out->client.opaque = NULL;
576
	eth->dma_in->client.opaque = NULL;
577
	eth->dma_in->client.pull = NULL;
583
    /* Disconnect the client.  */
584
    eth->dma_out->client.push = NULL;
585
    eth->dma_out->client.opaque = NULL;
586
    eth->dma_in->client.opaque = NULL;
587
    eth->dma_in->client.pull = NULL;
578 588
        g_free(eth);
579 589
}
580 590

  
581 591
static NetClientInfo net_etraxfs_info = {
582
	.type = NET_CLIENT_OPTIONS_KIND_NIC,
583
	.size = sizeof(NICState),
584
	.can_receive = eth_can_receive,
585
	.receive = eth_receive,
586
	.cleanup = eth_cleanup,
587
	.link_status_changed = eth_set_link,
592
    .type = NET_CLIENT_OPTIONS_KIND_NIC,
593
    .size = sizeof(NICState),
594
    .can_receive = eth_can_receive,
595
    .receive = eth_receive,
596
    .cleanup = eth_cleanup,
597
    .link_status_changed = eth_set_link,
588 598
};
589 599

  
590 600
static int fs_eth_init(SysBusDevice *dev)
591 601
{
592
	struct fs_eth *s = FROM_SYSBUS(typeof(*s), dev);
602
    struct fs_eth *s = FROM_SYSBUS(typeof(*s), dev);
593 603

  
594
	if (!s->dma_out || !s->dma_in) {
595
		hw_error("Unconnected ETRAX-FS Ethernet MAC.\n");
596
	}
604
    if (!s->dma_out || !s->dma_in) {
605
        hw_error("Unconnected ETRAX-FS Ethernet MAC.\n");
606
    }
597 607

  
598
	s->dma_out->client.push = eth_tx_push;
599
	s->dma_out->client.opaque = s;
600
	s->dma_in->client.opaque = s;
601
	s->dma_in->client.pull = NULL;
608
    s->dma_out->client.push = eth_tx_push;
609
    s->dma_out->client.opaque = s;
610
    s->dma_in->client.opaque = s;
611
    s->dma_in->client.pull = NULL;
602 612

  
603
	memory_region_init_io(&s->mmio, &eth_ops, s, "etraxfs-eth", 0x5c);
604
	sysbus_init_mmio(dev, &s->mmio);
613
    memory_region_init_io(&s->mmio, &eth_ops, s, "etraxfs-eth", 0x5c);
614
    sysbus_init_mmio(dev, &s->mmio);
605 615

  
606
	qemu_macaddr_default_if_unset(&s->conf.macaddr);
607
	s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
608
			      object_get_typename(OBJECT(s)), dev->qdev.id, s);
609
	qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
616
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
617
    s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
618
                          object_get_typename(OBJECT(s)), dev->qdev.id, s);
619
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
610 620

  
611
	tdk_init(&s->phy);
612
	mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
613
	return 0;
621
    tdk_init(&s->phy);
622
    mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
623
    return 0;
614 624
}
615 625

  
616 626
static Property etraxfs_eth_properties[] = {

Also available in: Unified diff