Statistics
| Branch: | Revision:

root / cpu-exec.c @ 9fddaa0c

History | View | Annotate | Download (30.4 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    uint8_t *tc_ptr, *cs_base, *pc;
110
    unsigned int flags;
111

    
112
    /* first we save global registers */
113
    saved_T0 = T0;
114
    saved_T1 = T1;
115
    saved_T2 = T2;
116
    saved_env = env;
117
    env = env1;
118
#ifdef __sparc__
119
    /* we also save i7 because longjmp may not restore it */
120
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
121
#endif
122

    
123
#if defined(TARGET_I386)
124
#ifdef reg_EAX
125
    saved_EAX = EAX;
126
    EAX = env->regs[R_EAX];
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
    ECX = env->regs[R_ECX];
131
#endif
132
#ifdef reg_EDX
133
    saved_EDX = EDX;
134
    EDX = env->regs[R_EDX];
135
#endif
136
#ifdef reg_EBX
137
    saved_EBX = EBX;
138
    EBX = env->regs[R_EBX];
139
#endif
140
#ifdef reg_ESP
141
    saved_ESP = ESP;
142
    ESP = env->regs[R_ESP];
143
#endif
144
#ifdef reg_EBP
145
    saved_EBP = EBP;
146
    EBP = env->regs[R_EBP];
147
#endif
148
#ifdef reg_ESI
149
    saved_ESI = ESI;
150
    ESI = env->regs[R_ESI];
151
#endif
152
#ifdef reg_EDI
153
    saved_EDI = EDI;
154
    EDI = env->regs[R_EDI];
155
#endif
156
    
157
    /* put eflags in CPU temporary format */
158
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
159
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
160
    CC_OP = CC_OP_EFLAGS;
161
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
162
#elif defined(TARGET_ARM)
163
    {
164
        unsigned int psr;
165
        psr = env->cpsr;
166
        env->CF = (psr >> 29) & 1;
167
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
168
        env->VF = (psr << 3) & 0x80000000;
169
        env->cpsr = psr & ~0xf0000000;
170
    }
171
#elif defined(TARGET_SPARC)
172
#elif defined(TARGET_PPC)
173
#else
174
#error unsupported target CPU
175
#endif
176
    env->exception_index = -1;
177

    
178
    /* prepare setjmp context for exception handling */
179
    for(;;) {
180
        if (setjmp(env->jmp_env) == 0) {
181
            env->current_tb = NULL;
182
            /* if an exception is pending, we execute it here */
183
            if (env->exception_index >= 0) {
184
                if (env->exception_index >= EXCP_INTERRUPT) {
185
                    /* exit request from the cpu execution loop */
186
                    ret = env->exception_index;
187
                    break;
188
                } else if (env->user_mode_only) {
189
                    /* if user mode only, we simulate a fake exception
190
                       which will be hanlded outside the cpu execution
191
                       loop */
192
#if defined(TARGET_I386)
193
                    do_interrupt_user(env->exception_index, 
194
                                      env->exception_is_int, 
195
                                      env->error_code, 
196
                                      env->exception_next_eip);
197
#endif
198
                    ret = env->exception_index;
199
                    break;
200
                } else {
201
#if defined(TARGET_I386)
202
                    /* simulate a real cpu exception. On i386, it can
203
                       trigger new exceptions, but we do not handle
204
                       double or triple faults yet. */
205
                    do_interrupt(env->exception_index, 
206
                                 env->exception_is_int, 
207
                                 env->error_code, 
208
                                 env->exception_next_eip, 0);
209
#elif defined(TARGET_PPC)
210
                    do_interrupt(env);
211
#endif
212
                }
213
                env->exception_index = -1;
214
            }
215
            T0 = 0; /* force lookup of first TB */
216
            for(;;) {
217
#ifdef __sparc__
218
                /* g1 can be modified by some libc? functions */ 
219
                tmp_T0 = T0;
220
#endif            
221
                interrupt_request = env->interrupt_request;
222
                if (__builtin_expect(interrupt_request, 0)) {
223
#if defined(TARGET_I386)
224
                    /* if hardware interrupt pending, we execute it */
225
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
226
                        (env->eflags & IF_MASK) && 
227
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
228
                        int intno;
229
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
230
                        intno = cpu_get_pic_interrupt(env);
231
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
232
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
233
                        }
234
                        do_interrupt(intno, 0, 0, 0, 1);
235
                        /* ensure that no TB jump will be modified as
236
                           the program flow was changed */
237
#ifdef __sparc__
238
                        tmp_T0 = 0;
239
#else
240
                        T0 = 0;
241
#endif
242
                    }
243
#elif defined(TARGET_PPC)
244
#if 0
245
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
246
                        cpu_ppc_reset(env);
247
                    }
248
#endif
249
                    if (msr_ee != 0) {
250
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
251
                            /* Raise it */
252
                            env->exception_index = EXCP_EXTERNAL;
253
                            env->error_code = 0;
254
                            do_interrupt(env);
255
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
256
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
257
                            /* Raise it */
258
                            env->exception_index = EXCP_DECR;
259
                            env->error_code = 0;
260
                            do_interrupt(env);
261
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
262
                        }
263
                    }
264
#endif
265
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
266
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
267
                        /* ensure that no TB jump will be modified as
268
                           the program flow was changed */
269
#ifdef __sparc__
270
                        tmp_T0 = 0;
271
#else
272
                        T0 = 0;
273
#endif
274
                    }
275
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
276
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
277
                        env->exception_index = EXCP_INTERRUPT;
278
                        cpu_loop_exit();
279
                    }
280
                }
281
#ifdef DEBUG_EXEC
282
                if (loglevel & CPU_LOG_EXEC) {
283
#if defined(TARGET_I386)
284
                    /* restore flags in standard format */
285
                    env->regs[R_EAX] = EAX;
286
                    env->regs[R_EBX] = EBX;
287
                    env->regs[R_ECX] = ECX;
288
                    env->regs[R_EDX] = EDX;
289
                    env->regs[R_ESI] = ESI;
290
                    env->regs[R_EDI] = EDI;
291
                    env->regs[R_EBP] = EBP;
292
                    env->regs[R_ESP] = ESP;
293
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
294
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
295
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
296
#elif defined(TARGET_ARM)
297
                    env->cpsr = compute_cpsr();
298
                    cpu_arm_dump_state(env, logfile, 0);
299
                    env->cpsr &= ~0xf0000000;
300
#elif defined(TARGET_SPARC)
301
                    cpu_sparc_dump_state (env, logfile, 0);
302
#elif defined(TARGET_PPC)
303
                    cpu_ppc_dump_state(env, logfile, 0);
304
#else
305
#error unsupported target CPU 
306
#endif
307
                }
308
#endif
309
                /* we record a subset of the CPU state. It will
310
                   always be the same before a given translated block
311
                   is executed. */
312
#if defined(TARGET_I386)
313
                flags = env->hflags;
314
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
315
                cs_base = env->segs[R_CS].base;
316
                pc = cs_base + env->eip;
317
#elif defined(TARGET_ARM)
318
                flags = 0;
319
                cs_base = 0;
320
                pc = (uint8_t *)env->regs[15];
321
#elif defined(TARGET_SPARC)
322
                flags = 0;
323
                cs_base = (uint8_t *)env->npc;
324
                pc = (uint8_t *) env->pc;
325
#elif defined(TARGET_PPC)
326
                flags = 0;
327
                cs_base = 0;
328
                pc = (uint8_t *)env->nip;
329
#else
330
#error unsupported CPU
331
#endif
332
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
333
                             flags);
334
                if (!tb) {
335
                    TranslationBlock **ptb1;
336
                    unsigned int h;
337
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
338
                    
339
                    
340
                    spin_lock(&tb_lock);
341

    
342
                    tb_invalidated_flag = 0;
343

    
344
                    /* find translated block using physical mappings */
345
                    phys_pc = get_phys_addr_code(env, (unsigned long)pc);
346
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
347
                    phys_page2 = -1;
348
                    h = tb_phys_hash_func(phys_pc);
349
                    ptb1 = &tb_phys_hash[h];
350
                    for(;;) {
351
                        tb = *ptb1;
352
                        if (!tb)
353
                            goto not_found;
354
                        if (tb->pc == (unsigned long)pc && 
355
                            tb->page_addr[0] == phys_page1 &&
356
                            tb->cs_base == (unsigned long)cs_base && 
357
                            tb->flags == flags) {
358
                            /* check next page if needed */
359
                            if (tb->page_addr[1] != -1) {
360
                                virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) + 
361
                                    TARGET_PAGE_SIZE;
362
                                phys_page2 = get_phys_addr_code(env, virt_page2);
363
                                if (tb->page_addr[1] == phys_page2)
364
                                    goto found;
365
                            } else {
366
                                goto found;
367
                            }
368
                        }
369
                        ptb1 = &tb->phys_hash_next;
370
                    }
371
                not_found:
372
                    /* if no translated code available, then translate it now */
373
                    tb = tb_alloc((unsigned long)pc);
374
                    if (!tb) {
375
                        /* flush must be done */
376
                        tb_flush(env);
377
                        /* cannot fail at this point */
378
                        tb = tb_alloc((unsigned long)pc);
379
                        /* don't forget to invalidate previous TB info */
380
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
381
                        T0 = 0;
382
                    }
383
                    tc_ptr = code_gen_ptr;
384
                    tb->tc_ptr = tc_ptr;
385
                    tb->cs_base = (unsigned long)cs_base;
386
                    tb->flags = flags;
387
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
388
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
389
                    
390
                    /* check next page if needed */
391
                    virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
392
                    phys_page2 = -1;
393
                    if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
394
                        phys_page2 = get_phys_addr_code(env, virt_page2);
395
                    }
396
                    tb_link_phys(tb, phys_pc, phys_page2);
397

    
398
                found:
399
                    if (tb_invalidated_flag) {
400
                        /* as some TB could have been invalidated because
401
                           of memory exceptions while generating the code, we
402
                           must recompute the hash index here */
403
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
404
                        while (*ptb != NULL)
405
                            ptb = &(*ptb)->hash_next;
406
                        T0 = 0;
407
                    }
408
                    /* we add the TB in the virtual pc hash table */
409
                    *ptb = tb;
410
                    tb->hash_next = NULL;
411
                    tb_link(tb);
412
                    spin_unlock(&tb_lock);
413
                }
414
#ifdef DEBUG_EXEC
415
                if (loglevel & CPU_LOG_EXEC) {
416
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
417
                            (long)tb->tc_ptr, (long)tb->pc,
418
                            lookup_symbol((void *)tb->pc));
419
                }
420
#endif
421
#ifdef __sparc__
422
                T0 = tmp_T0;
423
#endif            
424
                /* see if we can patch the calling TB. */
425
                if (T0 != 0
426
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
427
                    && (tb->cflags & CF_CODE_COPY) == 
428
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
429
#endif
430
                    ) {
431
                    spin_lock(&tb_lock);
432
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
433
#if defined(USE_CODE_COPY)
434
                    /* propagates the FP use info */
435
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
436
                        (tb->cflags & CF_FP_USED);
437
#endif
438
                    spin_unlock(&tb_lock);
439
                }
440
                tc_ptr = tb->tc_ptr;
441
                env->current_tb = tb;
442
                /* execute the generated code */
443
                gen_func = (void *)tc_ptr;
444
#if defined(__sparc__)
445
                __asm__ __volatile__("call        %0\n\t"
446
                                     "mov        %%o7,%%i0"
447
                                     : /* no outputs */
448
                                     : "r" (gen_func) 
449
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
450
#elif defined(__arm__)
451
                asm volatile ("mov pc, %0\n\t"
452
                              ".global exec_loop\n\t"
453
                              "exec_loop:\n\t"
454
                              : /* no outputs */
455
                              : "r" (gen_func)
456
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
457
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
458
{
459
    if (!(tb->cflags & CF_CODE_COPY)) {
460
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
461
            save_native_fp_state(env);
462
        }
463
        gen_func();
464
    } else {
465
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
466
            restore_native_fp_state(env);
467
        }
468
        /* we work with native eflags */
469
        CC_SRC = cc_table[CC_OP].compute_all();
470
        CC_OP = CC_OP_EFLAGS;
471
        asm(".globl exec_loop\n"
472
            "\n"
473
            "debug1:\n"
474
            "    pushl %%ebp\n"
475
            "    fs movl %10, %9\n"
476
            "    fs movl %11, %%eax\n"
477
            "    andl $0x400, %%eax\n"
478
            "    fs orl %8, %%eax\n"
479
            "    pushl %%eax\n"
480
            "    popf\n"
481
            "    fs movl %%esp, %12\n"
482
            "    fs movl %0, %%eax\n"
483
            "    fs movl %1, %%ecx\n"
484
            "    fs movl %2, %%edx\n"
485
            "    fs movl %3, %%ebx\n"
486
            "    fs movl %4, %%esp\n"
487
            "    fs movl %5, %%ebp\n"
488
            "    fs movl %6, %%esi\n"
489
            "    fs movl %7, %%edi\n"
490
            "    fs jmp *%9\n"
491
            "exec_loop:\n"
492
            "    fs movl %%esp, %4\n"
493
            "    fs movl %12, %%esp\n"
494
            "    fs movl %%eax, %0\n"
495
            "    fs movl %%ecx, %1\n"
496
            "    fs movl %%edx, %2\n"
497
            "    fs movl %%ebx, %3\n"
498
            "    fs movl %%ebp, %5\n"
499
            "    fs movl %%esi, %6\n"
500
            "    fs movl %%edi, %7\n"
501
            "    pushf\n"
502
            "    popl %%eax\n"
503
            "    movl %%eax, %%ecx\n"
504
            "    andl $0x400, %%ecx\n"
505
            "    shrl $9, %%ecx\n"
506
            "    andl $0x8d5, %%eax\n"
507
            "    fs movl %%eax, %8\n"
508
            "    movl $1, %%eax\n"
509
            "    subl %%ecx, %%eax\n"
510
            "    fs movl %%eax, %11\n"
511
            "    fs movl %9, %%ebx\n" /* get T0 value */
512
            "    popl %%ebp\n"
513
            :
514
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
515
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
516
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
517
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
518
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
519
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
520
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
521
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
522
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
523
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
524
            "a" (gen_func),
525
            "m" (*(uint8_t *)offsetof(CPUState, df)),
526
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
527
            : "%ecx", "%edx"
528
            );
529
    }
530
}
531
#else
532
                gen_func();
533
#endif
534
                env->current_tb = NULL;
535
                /* reset soft MMU for next block (it can currently
536
                   only be set by a memory fault) */
537
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
538
                if (env->hflags & HF_SOFTMMU_MASK) {
539
                    env->hflags &= ~HF_SOFTMMU_MASK;
540
                    /* do not allow linking to another block */
541
                    T0 = 0;
542
                }
543
#endif
544
            }
545
        } else {
546
        }
547
    } /* for(;;) */
548

    
549

    
550
#if defined(TARGET_I386)
551
#if defined(USE_CODE_COPY)
552
    if (env->native_fp_regs) {
553
        save_native_fp_state(env);
554
    }
555
#endif
556
    /* restore flags in standard format */
557
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
558

    
559
    /* restore global registers */
560
#ifdef reg_EAX
561
    EAX = saved_EAX;
562
#endif
563
#ifdef reg_ECX
564
    ECX = saved_ECX;
565
#endif
566
#ifdef reg_EDX
567
    EDX = saved_EDX;
568
#endif
569
#ifdef reg_EBX
570
    EBX = saved_EBX;
571
#endif
572
#ifdef reg_ESP
573
    ESP = saved_ESP;
574
#endif
575
#ifdef reg_EBP
576
    EBP = saved_EBP;
577
#endif
578
#ifdef reg_ESI
579
    ESI = saved_ESI;
580
#endif
581
#ifdef reg_EDI
582
    EDI = saved_EDI;
583
#endif
584
#elif defined(TARGET_ARM)
585
    env->cpsr = compute_cpsr();
586
#elif defined(TARGET_SPARC)
587
#elif defined(TARGET_PPC)
588
#else
589
#error unsupported target CPU
590
#endif
591
#ifdef __sparc__
592
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
593
#endif
594
    T0 = saved_T0;
595
    T1 = saved_T1;
596
    T2 = saved_T2;
597
    env = saved_env;
598
    return ret;
599
}
600

    
601
/* must only be called from the generated code as an exception can be
602
   generated */
603
void tb_invalidate_page_range(target_ulong start, target_ulong end)
604
{
605
    target_ulong phys_addr;
606
    phys_addr = get_phys_addr_code(env, start);
607
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
608
}
609

    
610
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
611

    
612
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
613
{
614
    CPUX86State *saved_env;
615

    
616
    saved_env = env;
617
    env = s;
618
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
619
        selector &= 0xffff;
620
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
621
                               (uint8_t *)(selector << 4), 0xffff, 0);
622
    } else {
623
        load_seg(seg_reg, selector);
624
    }
625
    env = saved_env;
626
}
627

    
628
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
629
{
630
    CPUX86State *saved_env;
631

    
632
    saved_env = env;
633
    env = s;
634
    
635
    helper_fsave(ptr, data32);
636

    
637
    env = saved_env;
638
}
639

    
640
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
641
{
642
    CPUX86State *saved_env;
643

    
644
    saved_env = env;
645
    env = s;
646
    
647
    helper_frstor(ptr, data32);
648

    
649
    env = saved_env;
650
}
651

    
652
#endif /* TARGET_I386 */
653

    
654
#if !defined(CONFIG_SOFTMMU)
655

    
656
#if defined(TARGET_I386)
657

    
658
/* 'pc' is the host PC at which the exception was raised. 'address' is
659
   the effective address of the memory exception. 'is_write' is 1 if a
660
   write caused the exception and otherwise 0'. 'old_set' is the
661
   signal set which should be restored */
662
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
663
                                    int is_write, sigset_t *old_set, 
664
                                    void *puc)
665
{
666
    TranslationBlock *tb;
667
    int ret;
668

    
669
    if (cpu_single_env)
670
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
671
#if defined(DEBUG_SIGNAL)
672
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
673
                pc, address, is_write, *(unsigned long *)old_set);
674
#endif
675
    /* XXX: locking issue */
676
    if (is_write && page_unprotect(address, pc, puc)) {
677
        return 1;
678
    }
679

    
680
    /* see if it is an MMU fault */
681
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
682
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
683
    if (ret < 0)
684
        return 0; /* not an MMU fault */
685
    if (ret == 0)
686
        return 1; /* the MMU fault was handled without causing real CPU fault */
687
    /* now we have a real cpu fault */
688
    tb = tb_find_pc(pc);
689
    if (tb) {
690
        /* the PC is inside the translated code. It means that we have
691
           a virtual CPU fault */
692
        cpu_restore_state(tb, env, pc, puc);
693
    }
694
    if (ret == 1) {
695
#if 0
696
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
697
               env->eip, env->cr[2], env->error_code);
698
#endif
699
        /* we restore the process signal mask as the sigreturn should
700
           do it (XXX: use sigsetjmp) */
701
        sigprocmask(SIG_SETMASK, old_set, NULL);
702
        raise_exception_err(EXCP0E_PAGE, env->error_code);
703
    } else {
704
        /* activate soft MMU for this block */
705
        env->hflags |= HF_SOFTMMU_MASK;
706
        cpu_resume_from_signal(env, puc);
707
    }
708
    /* never comes here */
709
    return 1;
710
}
711

    
712
#elif defined(TARGET_ARM)
713
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
714
                                    int is_write, sigset_t *old_set,
715
                                    void *puc)
716
{
717
    /* XXX: do more */
718
    return 0;
719
}
720
#elif defined(TARGET_SPARC)
721
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
722
                                    int is_write, sigset_t *old_set,
723
                                    void *puc)
724
{
725
    /* XXX: locking issue */
726
    if (is_write && page_unprotect(address, pc, puc)) {
727
        return 1;
728
    }
729
    return 0;
730
}
731
#elif defined (TARGET_PPC)
732
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
733
                                    int is_write, sigset_t *old_set,
734
                                    void *puc)
735
{
736
    TranslationBlock *tb;
737
    int ret;
738
    
739
#if 1
740
    if (cpu_single_env)
741
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
742
#endif
743
#if defined(DEBUG_SIGNAL)
744
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
745
           pc, address, is_write, *(unsigned long *)old_set);
746
#endif
747
    /* XXX: locking issue */
748
    if (is_write && page_unprotect(address, pc, puc)) {
749
        return 1;
750
    }
751

    
752
    /* see if it is an MMU fault */
753
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
754
    if (ret < 0)
755
        return 0; /* not an MMU fault */
756
    if (ret == 0)
757
        return 1; /* the MMU fault was handled without causing real CPU fault */
758

    
759
    /* now we have a real cpu fault */
760
    tb = tb_find_pc(pc);
761
    if (tb) {
762
        /* the PC is inside the translated code. It means that we have
763
           a virtual CPU fault */
764
        cpu_restore_state(tb, env, pc, puc);
765
    }
766
    if (ret == 1) {
767
#if 0
768
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
769
               env->nip, env->error_code, tb);
770
#endif
771
    /* we restore the process signal mask as the sigreturn should
772
       do it (XXX: use sigsetjmp) */
773
        sigprocmask(SIG_SETMASK, old_set, NULL);
774
        do_raise_exception_err(env->exception_index, env->error_code);
775
    } else {
776
        /* activate soft MMU for this block */
777
        cpu_resume_from_signal(env, puc);
778
    }
779
    /* never comes here */
780
    return 1;
781
}
782
#else
783
#error unsupported target CPU
784
#endif
785

    
786
#if defined(__i386__)
787

    
788
#if defined(USE_CODE_COPY)
789
static void cpu_send_trap(unsigned long pc, int trap, 
790
                          struct ucontext *uc)
791
{
792
    TranslationBlock *tb;
793

    
794
    if (cpu_single_env)
795
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
796
    /* now we have a real cpu fault */
797
    tb = tb_find_pc(pc);
798
    if (tb) {
799
        /* the PC is inside the translated code. It means that we have
800
           a virtual CPU fault */
801
        cpu_restore_state(tb, env, pc, uc);
802
    }
803
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
804
    raise_exception_err(trap, env->error_code);
805
}
806
#endif
807

    
808
int cpu_signal_handler(int host_signum, struct siginfo *info, 
809
                       void *puc)
810
{
811
    struct ucontext *uc = puc;
812
    unsigned long pc;
813
    int trapno;
814

    
815
#ifndef REG_EIP
816
/* for glibc 2.1 */
817
#define REG_EIP    EIP
818
#define REG_ERR    ERR
819
#define REG_TRAPNO TRAPNO
820
#endif
821
    pc = uc->uc_mcontext.gregs[REG_EIP];
822
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
823
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
824
    if (trapno == 0x00 || trapno == 0x05) {
825
        /* send division by zero or bound exception */
826
        cpu_send_trap(pc, trapno, uc);
827
        return 1;
828
    } else
829
#endif
830
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
831
                                 trapno == 0xe ? 
832
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
833
                                 &uc->uc_sigmask, puc);
834
}
835

    
836
#elif defined(__x86_64__)
837

    
838
int cpu_signal_handler(int host_signum, struct siginfo *info,
839
                       void *puc)
840
{
841
    struct ucontext *uc = puc;
842
    unsigned long pc;
843

    
844
    pc = uc->uc_mcontext.gregs[REG_RIP];
845
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
846
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
847
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
848
                             &uc->uc_sigmask, puc);
849
}
850

    
851
#elif defined(__powerpc)
852

    
853
int cpu_signal_handler(int host_signum, struct siginfo *info, 
854
                       void *puc)
855
{
856
    struct ucontext *uc = puc;
857
    struct pt_regs *regs = uc->uc_mcontext.regs;
858
    unsigned long pc;
859
    int is_write;
860

    
861
    pc = regs->nip;
862
    is_write = 0;
863
#if 0
864
    /* ppc 4xx case */
865
    if (regs->dsisr & 0x00800000)
866
        is_write = 1;
867
#else
868
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
869
        is_write = 1;
870
#endif
871
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
872
                             is_write, &uc->uc_sigmask, puc);
873
}
874

    
875
#elif defined(__alpha__)
876

    
877
int cpu_signal_handler(int host_signum, struct siginfo *info, 
878
                           void *puc)
879
{
880
    struct ucontext *uc = puc;
881
    uint32_t *pc = uc->uc_mcontext.sc_pc;
882
    uint32_t insn = *pc;
883
    int is_write = 0;
884

    
885
    /* XXX: need kernel patch to get write flag faster */
886
    switch (insn >> 26) {
887
    case 0x0d: // stw
888
    case 0x0e: // stb
889
    case 0x0f: // stq_u
890
    case 0x24: // stf
891
    case 0x25: // stg
892
    case 0x26: // sts
893
    case 0x27: // stt
894
    case 0x2c: // stl
895
    case 0x2d: // stq
896
    case 0x2e: // stl_c
897
    case 0x2f: // stq_c
898
        is_write = 1;
899
    }
900

    
901
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
902
                             is_write, &uc->uc_sigmask, puc);
903
}
904
#elif defined(__sparc__)
905

    
906
int cpu_signal_handler(int host_signum, struct siginfo *info, 
907
                       void *puc)
908
{
909
    uint32_t *regs = (uint32_t *)(info + 1);
910
    void *sigmask = (regs + 20);
911
    unsigned long pc;
912
    int is_write;
913
    uint32_t insn;
914
    
915
    /* XXX: is there a standard glibc define ? */
916
    pc = regs[1];
917
    /* XXX: need kernel patch to get write flag faster */
918
    is_write = 0;
919
    insn = *(uint32_t *)pc;
920
    if ((insn >> 30) == 3) {
921
      switch((insn >> 19) & 0x3f) {
922
      case 0x05: // stb
923
      case 0x06: // sth
924
      case 0x04: // st
925
      case 0x07: // std
926
      case 0x24: // stf
927
      case 0x27: // stdf
928
      case 0x25: // stfsr
929
        is_write = 1;
930
        break;
931
      }
932
    }
933
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
934
                             is_write, sigmask, NULL);
935
}
936

    
937
#elif defined(__arm__)
938

    
939
int cpu_signal_handler(int host_signum, struct siginfo *info, 
940
                       void *puc)
941
{
942
    struct ucontext *uc = puc;
943
    unsigned long pc;
944
    int is_write;
945
    
946
    pc = uc->uc_mcontext.gregs[R15];
947
    /* XXX: compute is_write */
948
    is_write = 0;
949
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
950
                             is_write,
951
                             &uc->uc_sigmask);
952
}
953

    
954
#elif defined(__mc68000)
955

    
956
int cpu_signal_handler(int host_signum, struct siginfo *info, 
957
                       void *puc)
958
{
959
    struct ucontext *uc = puc;
960
    unsigned long pc;
961
    int is_write;
962
    
963
    pc = uc->uc_mcontext.gregs[16];
964
    /* XXX: compute is_write */
965
    is_write = 0;
966
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
967
                             is_write,
968
                             &uc->uc_sigmask, puc);
969
}
970

    
971
#else
972

    
973
#error host CPU specific signal handler needed
974

    
975
#endif
976

    
977
#endif /* !defined(CONFIG_SOFTMMU) */