Statistics
| Branch: | Revision:

root / hw / pc.c @ a0f42610

History | View | Annotate | Download (33.3 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "apic.h"
27
#include "fdc.h"
28
#include "ide.h"
29
#include "pci.h"
30
#include "vmware_vga.h"
31
#include "monitor.h"
32
#include "fw_cfg.h"
33
#include "hpet_emul.h"
34
#include "smbios.h"
35
#include "loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "mc146818rtc.h"
39
#include "msix.h"
40
#include "sysbus.h"
41
#include "sysemu.h"
42
#include "blockdev.h"
43
#include "ui/qemu-spice.h"
44
#include "memory.h"
45
#include "exec-memory.h"
46

    
47
/* output Bochs bios info messages */
48
//#define DEBUG_BIOS
49

    
50
/* debug PC/ISA interrupts */
51
//#define DEBUG_IRQ
52

    
53
#ifdef DEBUG_IRQ
54
#define DPRINTF(fmt, ...)                                       \
55
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
56
#else
57
#define DPRINTF(fmt, ...)
58
#endif
59

    
60
#define BIOS_FILENAME "bios.bin"
61

    
62
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
63

    
64
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
65
#define ACPI_DATA_SIZE       0x10000
66
#define BIOS_CFG_IOPORT 0x510
67
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
68
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
69
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
70
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
71
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
72

    
73
#define MSI_ADDR_BASE 0xfee00000
74

    
75
#define E820_NR_ENTRIES                16
76

    
77
struct e820_entry {
78
    uint64_t address;
79
    uint64_t length;
80
    uint32_t type;
81
} QEMU_PACKED __attribute((__aligned__(4)));
82

    
83
struct e820_table {
84
    uint32_t count;
85
    struct e820_entry entry[E820_NR_ENTRIES];
86
} QEMU_PACKED __attribute((__aligned__(4)));
87

    
88
static struct e820_table e820_table;
89
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
90

    
91
void gsi_handler(void *opaque, int n, int level)
92
{
93
    GSIState *s = opaque;
94

    
95
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
96
    if (n < ISA_NUM_IRQS) {
97
        qemu_set_irq(s->i8259_irq[n], level);
98
    }
99
    qemu_set_irq(s->ioapic_irq[n], level);
100
}
101

    
102
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
103
{
104
}
105

    
106
/* MSDOS compatibility mode FPU exception support */
107
static qemu_irq ferr_irq;
108

    
109
void pc_register_ferr_irq(qemu_irq irq)
110
{
111
    ferr_irq = irq;
112
}
113

    
114
/* XXX: add IGNNE support */
115
void cpu_set_ferr(CPUX86State *s)
116
{
117
    qemu_irq_raise(ferr_irq);
118
}
119

    
120
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
121
{
122
    qemu_irq_lower(ferr_irq);
123
}
124

    
125
/* TSC handling */
126
uint64_t cpu_get_tsc(CPUX86State *env)
127
{
128
    return cpu_get_ticks();
129
}
130

    
131
/* SMM support */
132

    
133
static cpu_set_smm_t smm_set;
134
static void *smm_arg;
135

    
136
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
137
{
138
    assert(smm_set == NULL);
139
    assert(smm_arg == NULL);
140
    smm_set = callback;
141
    smm_arg = arg;
142
}
143

    
144
void cpu_smm_update(CPUState *env)
145
{
146
    if (smm_set && smm_arg && env == first_cpu)
147
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
148
}
149

    
150

    
151
/* IRQ handling */
152
int cpu_get_pic_interrupt(CPUState *env)
153
{
154
    int intno;
155

    
156
    intno = apic_get_interrupt(env->apic_state);
157
    if (intno >= 0) {
158
        return intno;
159
    }
160
    /* read the irq from the PIC */
161
    if (!apic_accept_pic_intr(env->apic_state)) {
162
        return -1;
163
    }
164

    
165
    intno = pic_read_irq(isa_pic);
166
    return intno;
167
}
168

    
169
static void pic_irq_request(void *opaque, int irq, int level)
170
{
171
    CPUState *env = first_cpu;
172

    
173
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
174
    if (env->apic_state) {
175
        while (env) {
176
            if (apic_accept_pic_intr(env->apic_state)) {
177
                apic_deliver_pic_intr(env->apic_state, level);
178
            }
179
            env = env->next_cpu;
180
        }
181
    } else {
182
        if (level)
183
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
184
        else
185
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
186
    }
187
}
188

    
189
/* PC cmos mappings */
190

    
191
#define REG_EQUIPMENT_BYTE          0x14
192

    
193
static int cmos_get_fd_drive_type(FDriveType fd0)
194
{
195
    int val;
196

    
197
    switch (fd0) {
198
    case FDRIVE_DRV_144:
199
        /* 1.44 Mb 3"5 drive */
200
        val = 4;
201
        break;
202
    case FDRIVE_DRV_288:
203
        /* 2.88 Mb 3"5 drive */
204
        val = 5;
205
        break;
206
    case FDRIVE_DRV_120:
207
        /* 1.2 Mb 5"5 drive */
208
        val = 2;
209
        break;
210
    case FDRIVE_DRV_NONE:
211
    default:
212
        val = 0;
213
        break;
214
    }
215
    return val;
216
}
217

    
218
static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd,
219
                         ISADevice *s)
220
{
221
    int cylinders, heads, sectors;
222
    bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
223
    rtc_set_memory(s, type_ofs, 47);
224
    rtc_set_memory(s, info_ofs, cylinders);
225
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
226
    rtc_set_memory(s, info_ofs + 2, heads);
227
    rtc_set_memory(s, info_ofs + 3, 0xff);
228
    rtc_set_memory(s, info_ofs + 4, 0xff);
229
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
230
    rtc_set_memory(s, info_ofs + 6, cylinders);
231
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
232
    rtc_set_memory(s, info_ofs + 8, sectors);
233
}
234

    
235
/* convert boot_device letter to something recognizable by the bios */
236
static int boot_device2nibble(char boot_device)
237
{
238
    switch(boot_device) {
239
    case 'a':
240
    case 'b':
241
        return 0x01; /* floppy boot */
242
    case 'c':
243
        return 0x02; /* hard drive boot */
244
    case 'd':
245
        return 0x03; /* CD-ROM boot */
246
    case 'n':
247
        return 0x04; /* Network boot */
248
    }
249
    return 0;
250
}
251

    
252
static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
253
{
254
#define PC_MAX_BOOT_DEVICES 3
255
    int nbds, bds[3] = { 0, };
256
    int i;
257

    
258
    nbds = strlen(boot_device);
259
    if (nbds > PC_MAX_BOOT_DEVICES) {
260
        error_report("Too many boot devices for PC");
261
        return(1);
262
    }
263
    for (i = 0; i < nbds; i++) {
264
        bds[i] = boot_device2nibble(boot_device[i]);
265
        if (bds[i] == 0) {
266
            error_report("Invalid boot device for PC: '%c'",
267
                         boot_device[i]);
268
            return(1);
269
        }
270
    }
271
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
272
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
273
    return(0);
274
}
275

    
276
static int pc_boot_set(void *opaque, const char *boot_device)
277
{
278
    return set_boot_dev(opaque, boot_device, 0);
279
}
280

    
281
typedef struct pc_cmos_init_late_arg {
282
    ISADevice *rtc_state;
283
    BusState *idebus0, *idebus1;
284
} pc_cmos_init_late_arg;
285

    
286
static void pc_cmos_init_late(void *opaque)
287
{
288
    pc_cmos_init_late_arg *arg = opaque;
289
    ISADevice *s = arg->rtc_state;
290
    int val;
291
    BlockDriverState *hd_table[4];
292
    int i;
293

    
294
    ide_get_bs(hd_table, arg->idebus0);
295
    ide_get_bs(hd_table + 2, arg->idebus1);
296

    
297
    rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
298
    if (hd_table[0])
299
        cmos_init_hd(0x19, 0x1b, hd_table[0], s);
300
    if (hd_table[1])
301
        cmos_init_hd(0x1a, 0x24, hd_table[1], s);
302

    
303
    val = 0;
304
    for (i = 0; i < 4; i++) {
305
        if (hd_table[i]) {
306
            int cylinders, heads, sectors, translation;
307
            /* NOTE: bdrv_get_geometry_hint() returns the physical
308
                geometry.  It is always such that: 1 <= sects <= 63, 1
309
                <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
310
                geometry can be different if a translation is done. */
311
            translation = bdrv_get_translation_hint(hd_table[i]);
312
            if (translation == BIOS_ATA_TRANSLATION_AUTO) {
313
                bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, &sectors);
314
                if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
315
                    /* No translation. */
316
                    translation = 0;
317
                } else {
318
                    /* LBA translation. */
319
                    translation = 1;
320
                }
321
            } else {
322
                translation--;
323
            }
324
            val |= translation << (i * 2);
325
        }
326
    }
327
    rtc_set_memory(s, 0x39, val);
328

    
329
    qemu_unregister_reset(pc_cmos_init_late, opaque);
330
}
331

    
332
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
333
                  const char *boot_device,
334
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
335
                  ISADevice *s)
336
{
337
    int val, nb, nb_heads, max_track, last_sect, i;
338
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
339
    BlockDriverState *fd[MAX_FD];
340
    static pc_cmos_init_late_arg arg;
341

    
342
    /* various important CMOS locations needed by PC/Bochs bios */
343

    
344
    /* memory size */
345
    val = 640; /* base memory in K */
346
    rtc_set_memory(s, 0x15, val);
347
    rtc_set_memory(s, 0x16, val >> 8);
348

    
349
    val = (ram_size / 1024) - 1024;
350
    if (val > 65535)
351
        val = 65535;
352
    rtc_set_memory(s, 0x17, val);
353
    rtc_set_memory(s, 0x18, val >> 8);
354
    rtc_set_memory(s, 0x30, val);
355
    rtc_set_memory(s, 0x31, val >> 8);
356

    
357
    if (above_4g_mem_size) {
358
        rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
359
        rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
360
        rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
361
    }
362

    
363
    if (ram_size > (16 * 1024 * 1024))
364
        val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
365
    else
366
        val = 0;
367
    if (val > 65535)
368
        val = 65535;
369
    rtc_set_memory(s, 0x34, val);
370
    rtc_set_memory(s, 0x35, val >> 8);
371

    
372
    /* set the number of CPU */
373
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
374

    
375
    /* set boot devices, and disable floppy signature check if requested */
376
    if (set_boot_dev(s, boot_device, fd_bootchk)) {
377
        exit(1);
378
    }
379

    
380
    /* floppy type */
381
    if (floppy) {
382
        fdc_get_bs(fd, floppy);
383
        for (i = 0; i < 2; i++) {
384
            if (fd[i] && bdrv_is_inserted(fd[i])) {
385
                bdrv_get_floppy_geometry_hint(fd[i], &nb_heads, &max_track,
386
                                              &last_sect, FDRIVE_DRV_NONE,
387
                                              &fd_type[i]);
388
            }
389
        }
390
    }
391
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
392
        cmos_get_fd_drive_type(fd_type[1]);
393
    rtc_set_memory(s, 0x10, val);
394

    
395
    val = 0;
396
    nb = 0;
397
    if (fd_type[0] < FDRIVE_DRV_NONE) {
398
        nb++;
399
    }
400
    if (fd_type[1] < FDRIVE_DRV_NONE) {
401
        nb++;
402
    }
403
    switch (nb) {
404
    case 0:
405
        break;
406
    case 1:
407
        val |= 0x01; /* 1 drive, ready for boot */
408
        break;
409
    case 2:
410
        val |= 0x41; /* 2 drives, ready for boot */
411
        break;
412
    }
413
    val |= 0x02; /* FPU is there */
414
    val |= 0x04; /* PS/2 mouse installed */
415
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
416

    
417
    /* hard drives */
418
    arg.rtc_state = s;
419
    arg.idebus0 = idebus0;
420
    arg.idebus1 = idebus1;
421
    qemu_register_reset(pc_cmos_init_late, &arg);
422
}
423

    
424
/* port 92 stuff: could be split off */
425
typedef struct Port92State {
426
    ISADevice dev;
427
    MemoryRegion io;
428
    uint8_t outport;
429
    qemu_irq *a20_out;
430
} Port92State;
431

    
432
static void port92_write(void *opaque, uint32_t addr, uint32_t val)
433
{
434
    Port92State *s = opaque;
435

    
436
    DPRINTF("port92: write 0x%02x\n", val);
437
    s->outport = val;
438
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
439
    if (val & 1) {
440
        qemu_system_reset_request();
441
    }
442
}
443

    
444
static uint32_t port92_read(void *opaque, uint32_t addr)
445
{
446
    Port92State *s = opaque;
447
    uint32_t ret;
448

    
449
    ret = s->outport;
450
    DPRINTF("port92: read 0x%02x\n", ret);
451
    return ret;
452
}
453

    
454
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
455
{
456
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
457

    
458
    s->a20_out = a20_out;
459
}
460

    
461
static const VMStateDescription vmstate_port92_isa = {
462
    .name = "port92",
463
    .version_id = 1,
464
    .minimum_version_id = 1,
465
    .minimum_version_id_old = 1,
466
    .fields      = (VMStateField []) {
467
        VMSTATE_UINT8(outport, Port92State),
468
        VMSTATE_END_OF_LIST()
469
    }
470
};
471

    
472
static void port92_reset(DeviceState *d)
473
{
474
    Port92State *s = container_of(d, Port92State, dev.qdev);
475

    
476
    s->outport &= ~1;
477
}
478

    
479
static const MemoryRegionPortio port92_portio[] = {
480
    { 0, 1, 1, .read = port92_read, .write = port92_write },
481
    PORTIO_END_OF_LIST(),
482
};
483

    
484
static const MemoryRegionOps port92_ops = {
485
    .old_portio = port92_portio
486
};
487

    
488
static int port92_initfn(ISADevice *dev)
489
{
490
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
491

    
492
    memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
493
    isa_register_ioport(dev, &s->io, 0x92);
494

    
495
    s->outport = 0;
496
    return 0;
497
}
498

    
499
static ISADeviceInfo port92_info = {
500
    .qdev.name     = "port92",
501
    .qdev.size     = sizeof(Port92State),
502
    .qdev.vmsd     = &vmstate_port92_isa,
503
    .qdev.no_user  = 1,
504
    .qdev.reset    = port92_reset,
505
    .init          = port92_initfn,
506
};
507

    
508
static void port92_register(void)
509
{
510
    isa_qdev_register(&port92_info);
511
}
512
device_init(port92_register)
513

    
514
static void handle_a20_line_change(void *opaque, int irq, int level)
515
{
516
    CPUState *cpu = opaque;
517

    
518
    /* XXX: send to all CPUs ? */
519
    /* XXX: add logic to handle multiple A20 line sources */
520
    cpu_x86_set_a20(cpu, level);
521
}
522

    
523
/***********************************************************/
524
/* Bochs BIOS debug ports */
525

    
526
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
527
{
528
    static const char shutdown_str[8] = "Shutdown";
529
    static int shutdown_index = 0;
530

    
531
    switch(addr) {
532
        /* Bochs BIOS messages */
533
    case 0x400:
534
    case 0x401:
535
        /* used to be panic, now unused */
536
        break;
537
    case 0x402:
538
    case 0x403:
539
#ifdef DEBUG_BIOS
540
        fprintf(stderr, "%c", val);
541
#endif
542
        break;
543
    case 0x8900:
544
        /* same as Bochs power off */
545
        if (val == shutdown_str[shutdown_index]) {
546
            shutdown_index++;
547
            if (shutdown_index == 8) {
548
                shutdown_index = 0;
549
                qemu_system_shutdown_request();
550
            }
551
        } else {
552
            shutdown_index = 0;
553
        }
554
        break;
555

    
556
        /* LGPL'ed VGA BIOS messages */
557
    case 0x501:
558
    case 0x502:
559
        exit((val << 1) | 1);
560
    case 0x500:
561
    case 0x503:
562
#ifdef DEBUG_BIOS
563
        fprintf(stderr, "%c", val);
564
#endif
565
        break;
566
    }
567
}
568

    
569
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
570
{
571
    int index = le32_to_cpu(e820_table.count);
572
    struct e820_entry *entry;
573

    
574
    if (index >= E820_NR_ENTRIES)
575
        return -EBUSY;
576
    entry = &e820_table.entry[index++];
577

    
578
    entry->address = cpu_to_le64(address);
579
    entry->length = cpu_to_le64(length);
580
    entry->type = cpu_to_le32(type);
581

    
582
    e820_table.count = cpu_to_le32(index);
583
    return index;
584
}
585

    
586
static void *bochs_bios_init(void)
587
{
588
    void *fw_cfg;
589
    uint8_t *smbios_table;
590
    size_t smbios_len;
591
    uint64_t *numa_fw_cfg;
592
    int i, j;
593

    
594
    register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
595
    register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
596
    register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
597
    register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
598
    register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
599

    
600
    register_ioport_write(0x501, 1, 1, bochs_bios_write, NULL);
601
    register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
602
    register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
603
    register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
604
    register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
605

    
606
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
607

    
608
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
609
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
610
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
611
                     acpi_tables_len);
612
    fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1);
613

    
614
    smbios_table = smbios_get_table(&smbios_len);
615
    if (smbios_table)
616
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
617
                         smbios_table, smbios_len);
618
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, (uint8_t *)&e820_table,
619
                     sizeof(struct e820_table));
620

    
621
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, (uint8_t *)&hpet_cfg,
622
                     sizeof(struct hpet_fw_config));
623
    /* allocate memory for the NUMA channel: one (64bit) word for the number
624
     * of nodes, one word for each VCPU->node and one word for each node to
625
     * hold the amount of memory.
626
     */
627
    numa_fw_cfg = g_malloc0((1 + max_cpus + nb_numa_nodes) * 8);
628
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
629
    for (i = 0; i < max_cpus; i++) {
630
        for (j = 0; j < nb_numa_nodes; j++) {
631
            if (node_cpumask[j] & (1 << i)) {
632
                numa_fw_cfg[i + 1] = cpu_to_le64(j);
633
                break;
634
            }
635
        }
636
    }
637
    for (i = 0; i < nb_numa_nodes; i++) {
638
        numa_fw_cfg[max_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
639
    }
640
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
641
                     (1 + max_cpus + nb_numa_nodes) * 8);
642

    
643
    return fw_cfg;
644
}
645

    
646
static long get_file_size(FILE *f)
647
{
648
    long where, size;
649

    
650
    /* XXX: on Unix systems, using fstat() probably makes more sense */
651

    
652
    where = ftell(f);
653
    fseek(f, 0, SEEK_END);
654
    size = ftell(f);
655
    fseek(f, where, SEEK_SET);
656

    
657
    return size;
658
}
659

    
660
static void load_linux(void *fw_cfg,
661
                       const char *kernel_filename,
662
                       const char *initrd_filename,
663
                       const char *kernel_cmdline,
664
                       target_phys_addr_t max_ram_size)
665
{
666
    uint16_t protocol;
667
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
668
    uint32_t initrd_max;
669
    uint8_t header[8192], *setup, *kernel, *initrd_data;
670
    target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
671
    FILE *f;
672
    char *vmode;
673

    
674
    /* Align to 16 bytes as a paranoia measure */
675
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
676

    
677
    /* load the kernel header */
678
    f = fopen(kernel_filename, "rb");
679
    if (!f || !(kernel_size = get_file_size(f)) ||
680
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
681
        MIN(ARRAY_SIZE(header), kernel_size)) {
682
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
683
                kernel_filename, strerror(errno));
684
        exit(1);
685
    }
686

    
687
    /* kernel protocol version */
688
#if 0
689
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
690
#endif
691
    if (ldl_p(header+0x202) == 0x53726448)
692
        protocol = lduw_p(header+0x206);
693
    else {
694
        /* This looks like a multiboot kernel. If it is, let's stop
695
           treating it like a Linux kernel. */
696
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
697
                           kernel_cmdline, kernel_size, header))
698
            return;
699
        protocol = 0;
700
    }
701

    
702
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
703
        /* Low kernel */
704
        real_addr    = 0x90000;
705
        cmdline_addr = 0x9a000 - cmdline_size;
706
        prot_addr    = 0x10000;
707
    } else if (protocol < 0x202) {
708
        /* High but ancient kernel */
709
        real_addr    = 0x90000;
710
        cmdline_addr = 0x9a000 - cmdline_size;
711
        prot_addr    = 0x100000;
712
    } else {
713
        /* High and recent kernel */
714
        real_addr    = 0x10000;
715
        cmdline_addr = 0x20000;
716
        prot_addr    = 0x100000;
717
    }
718

    
719
#if 0
720
    fprintf(stderr,
721
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
722
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
723
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
724
            real_addr,
725
            cmdline_addr,
726
            prot_addr);
727
#endif
728

    
729
    /* highest address for loading the initrd */
730
    if (protocol >= 0x203)
731
        initrd_max = ldl_p(header+0x22c);
732
    else
733
        initrd_max = 0x37ffffff;
734

    
735
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
736
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
737

    
738
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
739
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
740
    fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
741
                     (uint8_t*)strdup(kernel_cmdline),
742
                     strlen(kernel_cmdline)+1);
743

    
744
    if (protocol >= 0x202) {
745
        stl_p(header+0x228, cmdline_addr);
746
    } else {
747
        stw_p(header+0x20, 0xA33F);
748
        stw_p(header+0x22, cmdline_addr-real_addr);
749
    }
750

    
751
    /* handle vga= parameter */
752
    vmode = strstr(kernel_cmdline, "vga=");
753
    if (vmode) {
754
        unsigned int video_mode;
755
        /* skip "vga=" */
756
        vmode += 4;
757
        if (!strncmp(vmode, "normal", 6)) {
758
            video_mode = 0xffff;
759
        } else if (!strncmp(vmode, "ext", 3)) {
760
            video_mode = 0xfffe;
761
        } else if (!strncmp(vmode, "ask", 3)) {
762
            video_mode = 0xfffd;
763
        } else {
764
            video_mode = strtol(vmode, NULL, 0);
765
        }
766
        stw_p(header+0x1fa, video_mode);
767
    }
768

    
769
    /* loader type */
770
    /* High nybble = B reserved for Qemu; low nybble is revision number.
771
       If this code is substantially changed, you may want to consider
772
       incrementing the revision. */
773
    if (protocol >= 0x200)
774
        header[0x210] = 0xB0;
775

    
776
    /* heap */
777
    if (protocol >= 0x201) {
778
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
779
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
780
    }
781

    
782
    /* load initrd */
783
    if (initrd_filename) {
784
        if (protocol < 0x200) {
785
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
786
            exit(1);
787
        }
788

    
789
        initrd_size = get_image_size(initrd_filename);
790
        if (initrd_size < 0) {
791
            fprintf(stderr, "qemu: error reading initrd %s\n",
792
                    initrd_filename);
793
            exit(1);
794
        }
795

    
796
        initrd_addr = (initrd_max-initrd_size) & ~4095;
797

    
798
        initrd_data = g_malloc(initrd_size);
799
        load_image(initrd_filename, initrd_data);
800

    
801
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
802
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
803
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
804

    
805
        stl_p(header+0x218, initrd_addr);
806
        stl_p(header+0x21c, initrd_size);
807
    }
808

    
809
    /* load kernel and setup */
810
    setup_size = header[0x1f1];
811
    if (setup_size == 0)
812
        setup_size = 4;
813
    setup_size = (setup_size+1)*512;
814
    kernel_size -= setup_size;
815

    
816
    setup  = g_malloc(setup_size);
817
    kernel = g_malloc(kernel_size);
818
    fseek(f, 0, SEEK_SET);
819
    if (fread(setup, 1, setup_size, f) != setup_size) {
820
        fprintf(stderr, "fread() failed\n");
821
        exit(1);
822
    }
823
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
824
        fprintf(stderr, "fread() failed\n");
825
        exit(1);
826
    }
827
    fclose(f);
828
    memcpy(setup, header, MIN(sizeof(header), setup_size));
829

    
830
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
831
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
832
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
833

    
834
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
835
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
836
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
837

    
838
    option_rom[nb_option_roms].name = "linuxboot.bin";
839
    option_rom[nb_option_roms].bootindex = 0;
840
    nb_option_roms++;
841
}
842

    
843
#define NE2000_NB_MAX 6
844

    
845
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
846
                                              0x280, 0x380 };
847
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
848

    
849
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
850
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
851

    
852
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
853
{
854
    static int nb_ne2k = 0;
855

    
856
    if (nb_ne2k == NE2000_NB_MAX)
857
        return;
858
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
859
                    ne2000_irq[nb_ne2k], nd);
860
    nb_ne2k++;
861
}
862

    
863
int cpu_is_bsp(CPUState *env)
864
{
865
    /* We hard-wire the BSP to the first CPU. */
866
    return env->cpu_index == 0;
867
}
868

    
869
DeviceState *cpu_get_current_apic(void)
870
{
871
    if (cpu_single_env) {
872
        return cpu_single_env->apic_state;
873
    } else {
874
        return NULL;
875
    }
876
}
877

    
878
static DeviceState *apic_init(void *env, uint8_t apic_id)
879
{
880
    DeviceState *dev;
881
    SysBusDevice *d;
882
    static int apic_mapped;
883

    
884
    dev = qdev_create(NULL, "apic");
885
    qdev_prop_set_uint8(dev, "id", apic_id);
886
    qdev_prop_set_ptr(dev, "cpu_env", env);
887
    qdev_init_nofail(dev);
888
    d = sysbus_from_qdev(dev);
889

    
890
    /* XXX: mapping more APICs at the same memory location */
891
    if (apic_mapped == 0) {
892
        /* NOTE: the APIC is directly connected to the CPU - it is not
893
           on the global memory bus. */
894
        /* XXX: what if the base changes? */
895
        sysbus_mmio_map(d, 0, MSI_ADDR_BASE);
896
        apic_mapped = 1;
897
    }
898

    
899
    msix_supported = 1;
900

    
901
    return dev;
902
}
903

    
904
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
905
   BIOS will read it and start S3 resume at POST Entry */
906
void pc_cmos_set_s3_resume(void *opaque, int irq, int level)
907
{
908
    ISADevice *s = opaque;
909

    
910
    if (level) {
911
        rtc_set_memory(s, 0xF, 0xFE);
912
    }
913
}
914

    
915
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
916
{
917
    CPUState *s = opaque;
918

    
919
    if (level) {
920
        cpu_interrupt(s, CPU_INTERRUPT_SMI);
921
    }
922
}
923

    
924
static void pc_cpu_reset(void *opaque)
925
{
926
    CPUState *env = opaque;
927

    
928
    cpu_reset(env);
929
    env->halted = !cpu_is_bsp(env);
930
}
931

    
932
static CPUState *pc_new_cpu(const char *cpu_model)
933
{
934
    CPUState *env;
935

    
936
    env = cpu_init(cpu_model);
937
    if (!env) {
938
        fprintf(stderr, "Unable to find x86 CPU definition\n");
939
        exit(1);
940
    }
941
    if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
942
        env->apic_state = apic_init(env, env->cpuid_apic_id);
943
    }
944
    qemu_register_reset(pc_cpu_reset, env);
945
    pc_cpu_reset(env);
946
    return env;
947
}
948

    
949
void pc_cpus_init(const char *cpu_model)
950
{
951
    int i;
952

    
953
    /* init CPUs */
954
    if (cpu_model == NULL) {
955
#ifdef TARGET_X86_64
956
        cpu_model = "qemu64";
957
#else
958
        cpu_model = "qemu32";
959
#endif
960
    }
961

    
962
    for(i = 0; i < smp_cpus; i++) {
963
        pc_new_cpu(cpu_model);
964
    }
965
}
966

    
967
void pc_memory_init(MemoryRegion *system_memory,
968
                    const char *kernel_filename,
969
                    const char *kernel_cmdline,
970
                    const char *initrd_filename,
971
                    ram_addr_t below_4g_mem_size,
972
                    ram_addr_t above_4g_mem_size,
973
                    MemoryRegion *rom_memory,
974
                    MemoryRegion **ram_memory)
975
{
976
    char *filename;
977
    int ret, linux_boot, i;
978
    MemoryRegion *ram, *bios, *isa_bios, *option_rom_mr;
979
    MemoryRegion *ram_below_4g, *ram_above_4g;
980
    int bios_size, isa_bios_size;
981
    void *fw_cfg;
982

    
983
    linux_boot = (kernel_filename != NULL);
984

    
985
    /* Allocate RAM.  We allocate it as a single memory region and use
986
     * aliases to address portions of it, mostly for backwards compatibility
987
     * with older qemus that used qemu_ram_alloc().
988
     */
989
    ram = g_malloc(sizeof(*ram));
990
    memory_region_init_ram(ram, "pc.ram",
991
                           below_4g_mem_size + above_4g_mem_size);
992
    vmstate_register_ram_global(ram);
993
    *ram_memory = ram;
994
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
995
    memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
996
                             0, below_4g_mem_size);
997
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
998
    if (above_4g_mem_size > 0) {
999
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1000
        memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
1001
                                 below_4g_mem_size, above_4g_mem_size);
1002
        memory_region_add_subregion(system_memory, 0x100000000ULL,
1003
                                    ram_above_4g);
1004
    }
1005

    
1006
    /* BIOS load */
1007
    if (bios_name == NULL)
1008
        bios_name = BIOS_FILENAME;
1009
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1010
    if (filename) {
1011
        bios_size = get_image_size(filename);
1012
    } else {
1013
        bios_size = -1;
1014
    }
1015
    if (bios_size <= 0 ||
1016
        (bios_size % 65536) != 0) {
1017
        goto bios_error;
1018
    }
1019
    bios = g_malloc(sizeof(*bios));
1020
    memory_region_init_ram(bios, "pc.bios", bios_size);
1021
    vmstate_register_ram_global(bios);
1022
    memory_region_set_readonly(bios, true);
1023
    ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1024
    if (ret != 0) {
1025
    bios_error:
1026
        fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1027
        exit(1);
1028
    }
1029
    if (filename) {
1030
        g_free(filename);
1031
    }
1032
    /* map the last 128KB of the BIOS in ISA space */
1033
    isa_bios_size = bios_size;
1034
    if (isa_bios_size > (128 * 1024))
1035
        isa_bios_size = 128 * 1024;
1036
    isa_bios = g_malloc(sizeof(*isa_bios));
1037
    memory_region_init_alias(isa_bios, "isa-bios", bios,
1038
                             bios_size - isa_bios_size, isa_bios_size);
1039
    memory_region_add_subregion_overlap(rom_memory,
1040
                                        0x100000 - isa_bios_size,
1041
                                        isa_bios,
1042
                                        1);
1043
    memory_region_set_readonly(isa_bios, true);
1044

    
1045
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1046
    memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
1047
    vmstate_register_ram_global(option_rom_mr);
1048
    memory_region_add_subregion_overlap(rom_memory,
1049
                                        PC_ROM_MIN_VGA,
1050
                                        option_rom_mr,
1051
                                        1);
1052

    
1053
    /* map all the bios at the top of memory */
1054
    memory_region_add_subregion(rom_memory,
1055
                                (uint32_t)(-bios_size),
1056
                                bios);
1057

    
1058
    fw_cfg = bochs_bios_init();
1059
    rom_set_fw(fw_cfg);
1060

    
1061
    if (linux_boot) {
1062
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1063
    }
1064

    
1065
    for (i = 0; i < nb_option_roms; i++) {
1066
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1067
    }
1068
}
1069

    
1070
qemu_irq *pc_allocate_cpu_irq(void)
1071
{
1072
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1073
}
1074

    
1075
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1076
{
1077
    DeviceState *dev = NULL;
1078

    
1079
    if (cirrus_vga_enabled) {
1080
        if (pci_bus) {
1081
            dev = pci_cirrus_vga_init(pci_bus);
1082
        } else {
1083
            dev = isa_cirrus_vga_init(get_system_memory());
1084
        }
1085
    } else if (vmsvga_enabled) {
1086
        if (pci_bus) {
1087
            dev = pci_vmsvga_init(pci_bus);
1088
            if (!dev) {
1089
                fprintf(stderr, "Warning: vmware_vga not available,"
1090
                        " using standard VGA instead\n");
1091
                dev = pci_vga_init(pci_bus);
1092
            }
1093
        } else {
1094
            fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1095
        }
1096
#ifdef CONFIG_SPICE
1097
    } else if (qxl_enabled) {
1098
        if (pci_bus) {
1099
            dev = &pci_create_simple(pci_bus, -1, "qxl-vga")->qdev;
1100
        } else {
1101
            fprintf(stderr, "%s: qxl: no PCI bus\n", __FUNCTION__);
1102
        }
1103
#endif
1104
    } else if (std_vga_enabled) {
1105
        if (pci_bus) {
1106
            dev = pci_vga_init(pci_bus);
1107
        } else {
1108
            dev = isa_vga_init(isa_bus);
1109
        }
1110
    }
1111

    
1112
    return dev;
1113
}
1114

    
1115
static void cpu_request_exit(void *opaque, int irq, int level)
1116
{
1117
    CPUState *env = cpu_single_env;
1118

    
1119
    if (env && level) {
1120
        cpu_exit(env);
1121
    }
1122
}
1123

    
1124
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1125
                          ISADevice **rtc_state,
1126
                          ISADevice **floppy,
1127
                          bool no_vmport)
1128
{
1129
    int i;
1130
    DriveInfo *fd[MAX_FD];
1131
    qemu_irq rtc_irq = NULL;
1132
    qemu_irq *a20_line;
1133
    ISADevice *i8042, *port92, *vmmouse, *pit;
1134
    qemu_irq *cpu_exit_irq;
1135

    
1136
    register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1137

    
1138
    register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1139

    
1140
    if (!no_hpet) {
1141
        DeviceState *hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1142

    
1143
        if (hpet) {
1144
            for (i = 0; i < GSI_NUM_PINS; i++) {
1145
                sysbus_connect_irq(sysbus_from_qdev(hpet), i, gsi[i]);
1146
            }
1147
            rtc_irq = qdev_get_gpio_in(hpet, 0);
1148
        }
1149
    }
1150
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1151

    
1152
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1153

    
1154
    pit = pit_init(isa_bus, 0x40, 0);
1155
    pcspk_init(pit);
1156

    
1157
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1158
        if (serial_hds[i]) {
1159
            serial_isa_init(isa_bus, i, serial_hds[i]);
1160
        }
1161
    }
1162

    
1163
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1164
        if (parallel_hds[i]) {
1165
            parallel_init(isa_bus, i, parallel_hds[i]);
1166
        }
1167
    }
1168

    
1169
    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1170
    i8042 = isa_create_simple(isa_bus, "i8042");
1171
    i8042_setup_a20_line(i8042, &a20_line[0]);
1172
    if (!no_vmport) {
1173
        vmport_init(isa_bus);
1174
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1175
    } else {
1176
        vmmouse = NULL;
1177
    }
1178
    if (vmmouse) {
1179
        qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1180
        qdev_init_nofail(&vmmouse->qdev);
1181
    }
1182
    port92 = isa_create_simple(isa_bus, "port92");
1183
    port92_init(port92, &a20_line[1]);
1184

    
1185
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1186
    DMA_init(0, cpu_exit_irq);
1187

    
1188
    for(i = 0; i < MAX_FD; i++) {
1189
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1190
    }
1191
    *floppy = fdctrl_init_isa(isa_bus, fd);
1192
}
1193

    
1194
void pc_pci_device_init(PCIBus *pci_bus)
1195
{
1196
    int max_bus;
1197
    int bus;
1198

    
1199
    max_bus = drive_get_max_bus(IF_SCSI);
1200
    for (bus = 0; bus <= max_bus; bus++) {
1201
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1202
    }
1203
}