Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ a15fdf86

History | View | Annotate | Download (60.2 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi.h"
18
#include "block_int.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_MAX_DEVS 7
35

    
36
#define LSI_SCNTL0_TRG    0x01
37
#define LSI_SCNTL0_AAP    0x02
38
#define LSI_SCNTL0_EPC    0x08
39
#define LSI_SCNTL0_WATN   0x10
40
#define LSI_SCNTL0_START  0x20
41

    
42
#define LSI_SCNTL1_SST    0x01
43
#define LSI_SCNTL1_IARB   0x02
44
#define LSI_SCNTL1_AESP   0x04
45
#define LSI_SCNTL1_RST    0x08
46
#define LSI_SCNTL1_CON    0x10
47
#define LSI_SCNTL1_DHP    0x20
48
#define LSI_SCNTL1_ADB    0x40
49
#define LSI_SCNTL1_EXC    0x80
50

    
51
#define LSI_SCNTL2_WSR    0x01
52
#define LSI_SCNTL2_VUE0   0x02
53
#define LSI_SCNTL2_VUE1   0x04
54
#define LSI_SCNTL2_WSS    0x08
55
#define LSI_SCNTL2_SLPHBEN 0x10
56
#define LSI_SCNTL2_SLPMD  0x20
57
#define LSI_SCNTL2_CHM    0x40
58
#define LSI_SCNTL2_SDU    0x80
59

    
60
#define LSI_ISTAT0_DIP    0x01
61
#define LSI_ISTAT0_SIP    0x02
62
#define LSI_ISTAT0_INTF   0x04
63
#define LSI_ISTAT0_CON    0x08
64
#define LSI_ISTAT0_SEM    0x10
65
#define LSI_ISTAT0_SIGP   0x20
66
#define LSI_ISTAT0_SRST   0x40
67
#define LSI_ISTAT0_ABRT   0x80
68

    
69
#define LSI_ISTAT1_SI     0x01
70
#define LSI_ISTAT1_SRUN   0x02
71
#define LSI_ISTAT1_FLSH   0x04
72

    
73
#define LSI_SSTAT0_SDP0   0x01
74
#define LSI_SSTAT0_RST    0x02
75
#define LSI_SSTAT0_WOA    0x04
76
#define LSI_SSTAT0_LOA    0x08
77
#define LSI_SSTAT0_AIP    0x10
78
#define LSI_SSTAT0_OLF    0x20
79
#define LSI_SSTAT0_ORF    0x40
80
#define LSI_SSTAT0_ILF    0x80
81

    
82
#define LSI_SIST0_PAR     0x01
83
#define LSI_SIST0_RST     0x02
84
#define LSI_SIST0_UDC     0x04
85
#define LSI_SIST0_SGE     0x08
86
#define LSI_SIST0_RSL     0x10
87
#define LSI_SIST0_SEL     0x20
88
#define LSI_SIST0_CMP     0x40
89
#define LSI_SIST0_MA      0x80
90

    
91
#define LSI_SIST1_HTH     0x01
92
#define LSI_SIST1_GEN     0x02
93
#define LSI_SIST1_STO     0x04
94
#define LSI_SIST1_SBMC    0x10
95

    
96
#define LSI_SOCL_IO       0x01
97
#define LSI_SOCL_CD       0x02
98
#define LSI_SOCL_MSG      0x04
99
#define LSI_SOCL_ATN      0x08
100
#define LSI_SOCL_SEL      0x10
101
#define LSI_SOCL_BSY      0x20
102
#define LSI_SOCL_ACK      0x40
103
#define LSI_SOCL_REQ      0x80
104

    
105
#define LSI_DSTAT_IID     0x01
106
#define LSI_DSTAT_SIR     0x04
107
#define LSI_DSTAT_SSI     0x08
108
#define LSI_DSTAT_ABRT    0x10
109
#define LSI_DSTAT_BF      0x20
110
#define LSI_DSTAT_MDPE    0x40
111
#define LSI_DSTAT_DFE     0x80
112

    
113
#define LSI_DCNTL_COM     0x01
114
#define LSI_DCNTL_IRQD    0x02
115
#define LSI_DCNTL_STD     0x04
116
#define LSI_DCNTL_IRQM    0x08
117
#define LSI_DCNTL_SSM     0x10
118
#define LSI_DCNTL_PFEN    0x20
119
#define LSI_DCNTL_PFF     0x40
120
#define LSI_DCNTL_CLSE    0x80
121

    
122
#define LSI_DMODE_MAN     0x01
123
#define LSI_DMODE_BOF     0x02
124
#define LSI_DMODE_ERMP    0x04
125
#define LSI_DMODE_ERL     0x08
126
#define LSI_DMODE_DIOM    0x10
127
#define LSI_DMODE_SIOM    0x20
128

    
129
#define LSI_CTEST2_DACK   0x01
130
#define LSI_CTEST2_DREQ   0x02
131
#define LSI_CTEST2_TEOP   0x04
132
#define LSI_CTEST2_PCICIE 0x08
133
#define LSI_CTEST2_CM     0x10
134
#define LSI_CTEST2_CIO    0x20
135
#define LSI_CTEST2_SIGP   0x40
136
#define LSI_CTEST2_DDIR   0x80
137

    
138
#define LSI_CTEST5_BL2    0x04
139
#define LSI_CTEST5_DDIR   0x08
140
#define LSI_CTEST5_MASR   0x10
141
#define LSI_CTEST5_DFSN   0x20
142
#define LSI_CTEST5_BBCK   0x40
143
#define LSI_CTEST5_ADCK   0x80
144

    
145
#define LSI_CCNTL0_DILS   0x01
146
#define LSI_CCNTL0_DISFC  0x10
147
#define LSI_CCNTL0_ENNDJ  0x20
148
#define LSI_CCNTL0_PMJCTL 0x40
149
#define LSI_CCNTL0_ENPMJ  0x80
150

    
151
#define LSI_CCNTL1_EN64DBMV  0x01
152
#define LSI_CCNTL1_EN64TIBMV 0x02
153
#define LSI_CCNTL1_64TIMOD   0x04
154
#define LSI_CCNTL1_DDAC      0x08
155
#define LSI_CCNTL1_ZMOD      0x80
156

    
157
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
158

    
159
#define PHASE_DO          0
160
#define PHASE_DI          1
161
#define PHASE_CMD         2
162
#define PHASE_ST          3
163
#define PHASE_MO          6
164
#define PHASE_MI          7
165
#define PHASE_MASK        7
166

    
167
/* Maximum length of MSG IN data.  */
168
#define LSI_MAX_MSGIN_LEN 8
169

    
170
/* Flag set if this is a tagged command.  */
171
#define LSI_TAG_VALID     (1 << 16)
172

    
173
typedef struct {
174
    uint32_t tag;
175
    uint32_t pending;
176
    int out;
177
} lsi_queue;
178

    
179
typedef struct {
180
    PCIDevice dev;
181
    int mmio_io_addr;
182
    int ram_io_addr;
183
    uint32_t script_ram_base;
184

    
185
    int carry; /* ??? Should this be an a visible register somewhere?  */
186
    int sense;
187
    /* Action to take at the end of a MSG IN phase.
188
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
189
    int msg_action;
190
    int msg_len;
191
    uint8_t msg[LSI_MAX_MSGIN_LEN];
192
    /* 0 if SCRIPTS are running or stopped.
193
     * 1 if a Wait Reselect instruction has been issued.
194
     * 2 if processing DMA from lsi_execute_script.
195
     * 3 if a DMA operation is in progress.  */
196
    int waiting;
197
    SCSIBus bus;
198
    SCSIDevice *current_dev;
199
    int current_lun;
200
    /* The tag is a combination of the device ID and the SCSI tag.  */
201
    uint32_t current_tag;
202
    uint32_t current_dma_len;
203
    int command_complete;
204
    uint8_t *dma_buf;
205
    lsi_queue *queue;
206
    int queue_len;
207
    int active_commands;
208

    
209
    uint32_t dsa;
210
    uint32_t temp;
211
    uint32_t dnad;
212
    uint32_t dbc;
213
    uint8_t istat0;
214
    uint8_t istat1;
215
    uint8_t dcmd;
216
    uint8_t dstat;
217
    uint8_t dien;
218
    uint8_t sist0;
219
    uint8_t sist1;
220
    uint8_t sien0;
221
    uint8_t sien1;
222
    uint8_t mbox0;
223
    uint8_t mbox1;
224
    uint8_t dfifo;
225
    uint8_t ctest2;
226
    uint8_t ctest3;
227
    uint8_t ctest4;
228
    uint8_t ctest5;
229
    uint8_t ccntl0;
230
    uint8_t ccntl1;
231
    uint32_t dsp;
232
    uint32_t dsps;
233
    uint8_t dmode;
234
    uint8_t dcntl;
235
    uint8_t scntl0;
236
    uint8_t scntl1;
237
    uint8_t scntl2;
238
    uint8_t scntl3;
239
    uint8_t sstat0;
240
    uint8_t sstat1;
241
    uint8_t scid;
242
    uint8_t sxfer;
243
    uint8_t socl;
244
    uint8_t sdid;
245
    uint8_t ssid;
246
    uint8_t sfbr;
247
    uint8_t stest1;
248
    uint8_t stest2;
249
    uint8_t stest3;
250
    uint8_t sidl;
251
    uint8_t stime0;
252
    uint8_t respid0;
253
    uint8_t respid1;
254
    uint32_t mmrs;
255
    uint32_t mmws;
256
    uint32_t sfs;
257
    uint32_t drs;
258
    uint32_t sbms;
259
    uint32_t dbms;
260
    uint32_t dnad64;
261
    uint32_t pmjad1;
262
    uint32_t pmjad2;
263
    uint32_t rbc;
264
    uint32_t ua;
265
    uint32_t ia;
266
    uint32_t sbc;
267
    uint32_t csbc;
268
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
269
    uint8_t sbr;
270

    
271
    /* Script ram is stored as 32-bit words in host byteorder.  */
272
    uint32_t script_ram[2048];
273
} LSIState;
274

    
275
static void lsi_soft_reset(LSIState *s)
276
{
277
    DPRINTF("Reset\n");
278
    s->carry = 0;
279

    
280
    s->waiting = 0;
281
    s->dsa = 0;
282
    s->dnad = 0;
283
    s->dbc = 0;
284
    s->temp = 0;
285
    memset(s->scratch, 0, sizeof(s->scratch));
286
    s->istat0 = 0;
287
    s->istat1 = 0;
288
    s->dcmd = 0;
289
    s->dstat = 0;
290
    s->dien = 0;
291
    s->sist0 = 0;
292
    s->sist1 = 0;
293
    s->sien0 = 0;
294
    s->sien1 = 0;
295
    s->mbox0 = 0;
296
    s->mbox1 = 0;
297
    s->dfifo = 0;
298
    s->ctest2 = 0;
299
    s->ctest3 = 0;
300
    s->ctest4 = 0;
301
    s->ctest5 = 0;
302
    s->ccntl0 = 0;
303
    s->ccntl1 = 0;
304
    s->dsp = 0;
305
    s->dsps = 0;
306
    s->dmode = 0;
307
    s->dcntl = 0;
308
    s->scntl0 = 0xc0;
309
    s->scntl1 = 0;
310
    s->scntl2 = 0;
311
    s->scntl3 = 0;
312
    s->sstat0 = 0;
313
    s->sstat1 = 0;
314
    s->scid = 7;
315
    s->sxfer = 0;
316
    s->socl = 0;
317
    s->stest1 = 0;
318
    s->stest2 = 0;
319
    s->stest3 = 0;
320
    s->sidl = 0;
321
    s->stime0 = 0;
322
    s->respid0 = 0x80;
323
    s->respid1 = 0;
324
    s->mmrs = 0;
325
    s->mmws = 0;
326
    s->sfs = 0;
327
    s->drs = 0;
328
    s->sbms = 0;
329
    s->dbms = 0;
330
    s->dnad64 = 0;
331
    s->pmjad1 = 0;
332
    s->pmjad2 = 0;
333
    s->rbc = 0;
334
    s->ua = 0;
335
    s->ia = 0;
336
    s->sbc = 0;
337
    s->csbc = 0;
338
    s->sbr = 0;
339
}
340

    
341
static int lsi_dma_40bit(LSIState *s)
342
{
343
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
344
        return 1;
345
    return 0;
346
}
347

    
348
static int lsi_dma_ti64bit(LSIState *s)
349
{
350
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
351
        return 1;
352
    return 0;
353
}
354

    
355
static int lsi_dma_64bit(LSIState *s)
356
{
357
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
358
        return 1;
359
    return 0;
360
}
361

    
362
static uint8_t lsi_reg_readb(LSIState *s, int offset);
363
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
364
static void lsi_execute_script(LSIState *s);
365

    
366
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
367
{
368
    uint32_t buf;
369

    
370
    /* Optimize reading from SCRIPTS RAM.  */
371
    if ((addr & 0xffffe000) == s->script_ram_base) {
372
        return s->script_ram[(addr & 0x1fff) >> 2];
373
    }
374
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
375
    return cpu_to_le32(buf);
376
}
377

    
378
static void lsi_stop_script(LSIState *s)
379
{
380
    s->istat1 &= ~LSI_ISTAT1_SRUN;
381
}
382

    
383
static void lsi_update_irq(LSIState *s)
384
{
385
    int level;
386
    static int last_level;
387

    
388
    /* It's unclear whether the DIP/SIP bits should be cleared when the
389
       Interrupt Status Registers are cleared or when istat0 is read.
390
       We currently do the formwer, which seems to work.  */
391
    level = 0;
392
    if (s->dstat) {
393
        if (s->dstat & s->dien)
394
            level = 1;
395
        s->istat0 |= LSI_ISTAT0_DIP;
396
    } else {
397
        s->istat0 &= ~LSI_ISTAT0_DIP;
398
    }
399

    
400
    if (s->sist0 || s->sist1) {
401
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
402
            level = 1;
403
        s->istat0 |= LSI_ISTAT0_SIP;
404
    } else {
405
        s->istat0 &= ~LSI_ISTAT0_SIP;
406
    }
407
    if (s->istat0 & LSI_ISTAT0_INTF)
408
        level = 1;
409

    
410
    if (level != last_level) {
411
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
412
                level, s->dstat, s->sist1, s->sist0);
413
        last_level = level;
414
    }
415
    qemu_set_irq(s->dev.irq[0], level);
416
}
417

    
418
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
419
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
420
{
421
    uint32_t mask0;
422
    uint32_t mask1;
423

    
424
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
425
            stat1, stat0, s->sist1, s->sist0);
426
    s->sist0 |= stat0;
427
    s->sist1 |= stat1;
428
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
429
       we don't stop processing when raising STO.  Instead continue
430
       execution and stop at the next insn that accesses the SCSI bus.  */
431
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
432
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
433
    mask1 &= ~LSI_SIST1_STO;
434
    if (s->sist0 & mask0 || s->sist1 & mask1) {
435
        lsi_stop_script(s);
436
    }
437
    lsi_update_irq(s);
438
}
439

    
440
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
441
static void lsi_script_dma_interrupt(LSIState *s, int stat)
442
{
443
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
444
    s->dstat |= stat;
445
    lsi_update_irq(s);
446
    lsi_stop_script(s);
447
}
448

    
449
static inline void lsi_set_phase(LSIState *s, int phase)
450
{
451
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
452
}
453

    
454
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
455
{
456
    /* Trigger a phase mismatch.  */
457
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
458
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
459
            s->dsp = s->pmjad1;
460
        } else {
461
            s->dsp = s->pmjad2;
462
        }
463
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
464
    } else {
465
        DPRINTF("Phase mismatch interrupt\n");
466
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
467
        lsi_stop_script(s);
468
    }
469
    lsi_set_phase(s, new_phase);
470
}
471

    
472

    
473
/* Resume SCRIPTS execution after a DMA operation.  */
474
static void lsi_resume_script(LSIState *s)
475
{
476
    if (s->waiting != 2) {
477
        s->waiting = 0;
478
        lsi_execute_script(s);
479
    } else {
480
        s->waiting = 0;
481
    }
482
}
483

    
484
/* Initiate a SCSI layer data transfer.  */
485
static void lsi_do_dma(LSIState *s, int out)
486
{
487
    uint32_t count;
488
    target_phys_addr_t addr;
489

    
490
    if (!s->current_dma_len) {
491
        /* Wait until data is available.  */
492
        DPRINTF("DMA no data available\n");
493
        return;
494
    }
495

    
496
    count = s->dbc;
497
    if (count > s->current_dma_len)
498
        count = s->current_dma_len;
499

    
500
    addr = s->dnad;
501
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
502
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
503
        addr |= ((uint64_t)s->dnad64 << 32);
504
    else if (s->dbms)
505
        addr |= ((uint64_t)s->dbms << 32);
506
    else if (s->sbms)
507
        addr |= ((uint64_t)s->sbms << 32);
508

    
509
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
510
    s->csbc += count;
511
    s->dnad += count;
512
    s->dbc -= count;
513

    
514
    if (s->dma_buf == NULL) {
515
        s->dma_buf = s->current_dev->info->get_buf(s->current_dev,
516
                                                   s->current_tag);
517
    }
518

    
519
    /* ??? Set SFBR to first data byte.  */
520
    if (out) {
521
        cpu_physical_memory_read(addr, s->dma_buf, count);
522
    } else {
523
        cpu_physical_memory_write(addr, s->dma_buf, count);
524
    }
525
    s->current_dma_len -= count;
526
    if (s->current_dma_len == 0) {
527
        s->dma_buf = NULL;
528
        if (out) {
529
            /* Write the data.  */
530
            s->current_dev->info->write_data(s->current_dev, s->current_tag);
531
        } else {
532
            /* Request any remaining data.  */
533
            s->current_dev->info->read_data(s->current_dev, s->current_tag);
534
        }
535
    } else {
536
        s->dma_buf += count;
537
        lsi_resume_script(s);
538
    }
539
}
540

    
541

    
542
/* Add a command to the queue.  */
543
static void lsi_queue_command(LSIState *s)
544
{
545
    lsi_queue *p;
546

    
547
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
548
    if (s->queue_len == s->active_commands) {
549
        s->queue_len++;
550
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
551
    }
552
    p = &s->queue[s->active_commands++];
553
    p->tag = s->current_tag;
554
    p->pending = 0;
555
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
556
}
557

    
558
/* Queue a byte for a MSG IN phase.  */
559
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
560
{
561
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
562
        BADF("MSG IN data too long\n");
563
    } else {
564
        DPRINTF("MSG IN 0x%02x\n", data);
565
        s->msg[s->msg_len++] = data;
566
    }
567
}
568

    
569
/* Perform reselection to continue a command.  */
570
static void lsi_reselect(LSIState *s, uint32_t tag)
571
{
572
    lsi_queue *p;
573
    int n;
574
    int id;
575

    
576
    p = NULL;
577
    for (n = 0; n < s->active_commands; n++) {
578
        p = &s->queue[n];
579
        if (p->tag == tag)
580
            break;
581
    }
582
    if (n == s->active_commands) {
583
        BADF("Reselected non-existant command tag=0x%x\n", tag);
584
        return;
585
    }
586
    id = (tag >> 8) & 0xf;
587
    s->ssid = id | 0x80;
588
    DPRINTF("Reselected target %d\n", id);
589
    s->current_dev = s->bus.devs[id];
590
    s->current_tag = tag;
591
    s->scntl1 |= LSI_SCNTL1_CON;
592
    lsi_set_phase(s, PHASE_MI);
593
    s->msg_action = p->out ? 2 : 3;
594
    s->current_dma_len = p->pending;
595
    s->dma_buf = NULL;
596
    lsi_add_msg_byte(s, 0x80);
597
    if (s->current_tag & LSI_TAG_VALID) {
598
        lsi_add_msg_byte(s, 0x20);
599
        lsi_add_msg_byte(s, tag & 0xff);
600
    }
601

    
602
    s->active_commands--;
603
    if (n != s->active_commands) {
604
        s->queue[n] = s->queue[s->active_commands];
605
    }
606
}
607

    
608
/* Record that data is available for a queued command.  Returns zero if
609
   the device was reselected, nonzero if the IO is deferred.  */
610
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
611
{
612
    lsi_queue *p;
613
    int i;
614
    for (i = 0; i < s->active_commands; i++) {
615
        p = &s->queue[i];
616
        if (p->tag == tag) {
617
            if (p->pending) {
618
                BADF("Multiple IO pending for tag %d\n", tag);
619
            }
620
            p->pending = arg;
621
            if (s->waiting == 1) {
622
                /* Reselect device.  */
623
                lsi_reselect(s, tag);
624
                return 0;
625
            } else {
626
               DPRINTF("Queueing IO tag=0x%x\n", tag);
627
                p->pending = arg;
628
                return 1;
629
            }
630
        }
631
    }
632
    BADF("IO with unknown tag %d\n", tag);
633
    return 1;
634
}
635

    
636
/* Callback to indicate that the SCSI layer has completed a transfer.  */
637
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
638
                                 uint32_t arg)
639
{
640
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
641
    int out;
642

    
643
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
644
    if (reason == SCSI_REASON_DONE) {
645
        DPRINTF("Command complete sense=%d\n", (int)arg);
646
        s->sense = arg;
647
        s->command_complete = 2;
648
        if (s->waiting && s->dbc != 0) {
649
            /* Raise phase mismatch for short transfers.  */
650
            lsi_bad_phase(s, out, PHASE_ST);
651
        } else {
652
            lsi_set_phase(s, PHASE_ST);
653
        }
654
        lsi_resume_script(s);
655
        return;
656
    }
657

    
658
    if (s->waiting == 1 || tag != s->current_tag) {
659
        if (lsi_queue_tag(s, tag, arg))
660
            return;
661
    }
662
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
663
    s->current_dma_len = arg;
664
    s->command_complete = 1;
665
    if (!s->waiting)
666
        return;
667
    if (s->waiting == 1 || s->dbc == 0) {
668
        lsi_resume_script(s);
669
    } else {
670
        lsi_do_dma(s, out);
671
    }
672
}
673

    
674
static void lsi_do_command(LSIState *s)
675
{
676
    uint8_t buf[16];
677
    int n;
678

    
679
    DPRINTF("Send command len=%d\n", s->dbc);
680
    if (s->dbc > 16)
681
        s->dbc = 16;
682
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
683
    s->sfbr = buf[0];
684
    s->command_complete = 0;
685
    n = s->current_dev->info->send_command(s->current_dev, s->current_tag, buf,
686
                                           s->current_lun);
687
    if (n > 0) {
688
        lsi_set_phase(s, PHASE_DI);
689
        s->current_dev->info->read_data(s->current_dev, s->current_tag);
690
    } else if (n < 0) {
691
        lsi_set_phase(s, PHASE_DO);
692
        s->current_dev->info->write_data(s->current_dev, s->current_tag);
693
    }
694

    
695
    if (!s->command_complete) {
696
        if (n) {
697
            /* Command did not complete immediately so disconnect.  */
698
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
699
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
700
            /* wait data */
701
            lsi_set_phase(s, PHASE_MI);
702
            s->msg_action = 1;
703
            lsi_queue_command(s);
704
        } else {
705
            /* wait command complete */
706
            lsi_set_phase(s, PHASE_DI);
707
        }
708
    }
709
}
710

    
711
static void lsi_do_status(LSIState *s)
712
{
713
    uint8_t sense;
714
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
715
    if (s->dbc != 1)
716
        BADF("Bad Status move\n");
717
    s->dbc = 1;
718
    sense = s->sense;
719
    s->sfbr = sense;
720
    cpu_physical_memory_write(s->dnad, &sense, 1);
721
    lsi_set_phase(s, PHASE_MI);
722
    s->msg_action = 1;
723
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
724
}
725

    
726
static void lsi_disconnect(LSIState *s)
727
{
728
    s->scntl1 &= ~LSI_SCNTL1_CON;
729
    s->sstat1 &= ~PHASE_MASK;
730
}
731

    
732
static void lsi_do_msgin(LSIState *s)
733
{
734
    int len;
735
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
736
    s->sfbr = s->msg[0];
737
    len = s->msg_len;
738
    if (len > s->dbc)
739
        len = s->dbc;
740
    cpu_physical_memory_write(s->dnad, s->msg, len);
741
    /* Linux drivers rely on the last byte being in the SIDL.  */
742
    s->sidl = s->msg[len - 1];
743
    s->msg_len -= len;
744
    if (s->msg_len) {
745
        memmove(s->msg, s->msg + len, s->msg_len);
746
    } else {
747
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
748
           switch to PHASE_MO.  */
749
        switch (s->msg_action) {
750
        case 0:
751
            lsi_set_phase(s, PHASE_CMD);
752
            break;
753
        case 1:
754
            lsi_disconnect(s);
755
            break;
756
        case 2:
757
            lsi_set_phase(s, PHASE_DO);
758
            break;
759
        case 3:
760
            lsi_set_phase(s, PHASE_DI);
761
            break;
762
        default:
763
            abort();
764
        }
765
    }
766
}
767

    
768
/* Read the next byte during a MSGOUT phase.  */
769
static uint8_t lsi_get_msgbyte(LSIState *s)
770
{
771
    uint8_t data;
772
    cpu_physical_memory_read(s->dnad, &data, 1);
773
    s->dnad++;
774
    s->dbc--;
775
    return data;
776
}
777

    
778
static void lsi_do_msgout(LSIState *s)
779
{
780
    uint8_t msg;
781
    int len;
782

    
783
    DPRINTF("MSG out len=%d\n", s->dbc);
784
    while (s->dbc) {
785
        msg = lsi_get_msgbyte(s);
786
        s->sfbr = msg;
787

    
788
        switch (msg) {
789
        case 0x00:
790
            DPRINTF("MSG: Disconnect\n");
791
            lsi_disconnect(s);
792
            break;
793
        case 0x08:
794
            DPRINTF("MSG: No Operation\n");
795
            lsi_set_phase(s, PHASE_CMD);
796
            break;
797
        case 0x01:
798
            len = lsi_get_msgbyte(s);
799
            msg = lsi_get_msgbyte(s);
800
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
801
            switch (msg) {
802
            case 1:
803
                DPRINTF("SDTR (ignored)\n");
804
                s->dbc -= 2;
805
                break;
806
            case 3:
807
                DPRINTF("WDTR (ignored)\n");
808
                s->dbc -= 1;
809
                break;
810
            default:
811
                goto bad;
812
            }
813
            break;
814
        case 0x20: /* SIMPLE queue */
815
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
816
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
817
            break;
818
        case 0x21: /* HEAD of queue */
819
            BADF("HEAD queue not implemented\n");
820
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
821
            break;
822
        case 0x22: /* ORDERED queue */
823
            BADF("ORDERED queue not implemented\n");
824
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
825
            break;
826
        default:
827
            if ((msg & 0x80) == 0) {
828
                goto bad;
829
            }
830
            s->current_lun = msg & 7;
831
            DPRINTF("Select LUN %d\n", s->current_lun);
832
            lsi_set_phase(s, PHASE_CMD);
833
            break;
834
        }
835
    }
836
    return;
837
bad:
838
    BADF("Unimplemented message 0x%02x\n", msg);
839
    lsi_set_phase(s, PHASE_MI);
840
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
841
    s->msg_action = 0;
842
}
843

    
844
/* Sign extend a 24-bit value.  */
845
static inline int32_t sxt24(int32_t n)
846
{
847
    return (n << 8) >> 8;
848
}
849

    
850
#define LSI_BUF_SIZE 4096
851
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
852
{
853
    int n;
854
    uint8_t buf[LSI_BUF_SIZE];
855

    
856
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
857
    while (count) {
858
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
859
        cpu_physical_memory_read(src, buf, n);
860
        cpu_physical_memory_write(dest, buf, n);
861
        src += n;
862
        dest += n;
863
        count -= n;
864
    }
865
}
866

    
867
static void lsi_wait_reselect(LSIState *s)
868
{
869
    int i;
870
    DPRINTF("Wait Reselect\n");
871
    if (s->current_dma_len)
872
        BADF("Reselect with pending DMA\n");
873
    for (i = 0; i < s->active_commands; i++) {
874
        if (s->queue[i].pending) {
875
            lsi_reselect(s, s->queue[i].tag);
876
            break;
877
        }
878
    }
879
    if (s->current_dma_len == 0) {
880
        s->waiting = 1;
881
    }
882
}
883

    
884
static void lsi_execute_script(LSIState *s)
885
{
886
    uint32_t insn;
887
    uint32_t addr, addr_high;
888
    int opcode;
889
    int insn_processed = 0;
890

    
891
    s->istat1 |= LSI_ISTAT1_SRUN;
892
again:
893
    insn_processed++;
894
    insn = read_dword(s, s->dsp);
895
    if (!insn) {
896
        /* If we receive an empty opcode increment the DSP by 4 bytes
897
           instead of 8 and execute the next opcode at that location */
898
        s->dsp += 4;
899
        goto again;
900
    }
901
    addr = read_dword(s, s->dsp + 4);
902
    addr_high = 0;
903
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
904
    s->dsps = addr;
905
    s->dcmd = insn >> 24;
906
    s->dsp += 8;
907
    switch (insn >> 30) {
908
    case 0: /* Block move.  */
909
        if (s->sist1 & LSI_SIST1_STO) {
910
            DPRINTF("Delayed select timeout\n");
911
            lsi_stop_script(s);
912
            break;
913
        }
914
        s->dbc = insn & 0xffffff;
915
        s->rbc = s->dbc;
916
        /* ??? Set ESA.  */
917
        s->ia = s->dsp - 8;
918
        if (insn & (1 << 29)) {
919
            /* Indirect addressing.  */
920
            addr = read_dword(s, addr);
921
        } else if (insn & (1 << 28)) {
922
            uint32_t buf[2];
923
            int32_t offset;
924
            /* Table indirect addressing.  */
925

    
926
            /* 32-bit Table indirect */
927
            offset = sxt24(addr);
928
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
929
            /* byte count is stored in bits 0:23 only */
930
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
931
            s->rbc = s->dbc;
932
            addr = cpu_to_le32(buf[1]);
933

    
934
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
935
             * table, bits [31:24] */
936
            if (lsi_dma_40bit(s))
937
                addr_high = cpu_to_le32(buf[0]) >> 24;
938
            else if (lsi_dma_ti64bit(s)) {
939
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
940
                switch (selector) {
941
                case 0 ... 0x0f:
942
                    /* offset index into scratch registers since
943
                     * TI64 mode can use registers C to R */
944
                    addr_high = s->scratch[2 + selector];
945
                    break;
946
                case 0x10:
947
                    addr_high = s->mmrs;
948
                    break;
949
                case 0x11:
950
                    addr_high = s->mmws;
951
                    break;
952
                case 0x12:
953
                    addr_high = s->sfs;
954
                    break;
955
                case 0x13:
956
                    addr_high = s->drs;
957
                    break;
958
                case 0x14:
959
                    addr_high = s->sbms;
960
                    break;
961
                case 0x15:
962
                    addr_high = s->dbms;
963
                    break;
964
                default:
965
                    BADF("Illegal selector specified (0x%x > 0x15)"
966
                         " for 64-bit DMA block move", selector);
967
                    break;
968
                }
969
            }
970
        } else if (lsi_dma_64bit(s)) {
971
            /* fetch a 3rd dword if 64-bit direct move is enabled and
972
               only if we're not doing table indirect or indirect addressing */
973
            s->dbms = read_dword(s, s->dsp);
974
            s->dsp += 4;
975
            s->ia = s->dsp - 12;
976
        }
977
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
978
            DPRINTF("Wrong phase got %d expected %d\n",
979
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
980
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
981
            break;
982
        }
983
        s->dnad = addr;
984
        s->dnad64 = addr_high;
985
        switch (s->sstat1 & 0x7) {
986
        case PHASE_DO:
987
            s->waiting = 2;
988
            lsi_do_dma(s, 1);
989
            if (s->waiting)
990
                s->waiting = 3;
991
            break;
992
        case PHASE_DI:
993
            s->waiting = 2;
994
            lsi_do_dma(s, 0);
995
            if (s->waiting)
996
                s->waiting = 3;
997
            break;
998
        case PHASE_CMD:
999
            lsi_do_command(s);
1000
            break;
1001
        case PHASE_ST:
1002
            lsi_do_status(s);
1003
            break;
1004
        case PHASE_MO:
1005
            lsi_do_msgout(s);
1006
            break;
1007
        case PHASE_MI:
1008
            lsi_do_msgin(s);
1009
            break;
1010
        default:
1011
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1012
            exit(1);
1013
        }
1014
        s->dfifo = s->dbc & 0xff;
1015
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1016
        s->sbc = s->dbc;
1017
        s->rbc -= s->dbc;
1018
        s->ua = addr + s->dbc;
1019
        break;
1020

    
1021
    case 1: /* IO or Read/Write instruction.  */
1022
        opcode = (insn >> 27) & 7;
1023
        if (opcode < 5) {
1024
            uint32_t id;
1025

    
1026
            if (insn & (1 << 25)) {
1027
                id = read_dword(s, s->dsa + sxt24(insn));
1028
            } else {
1029
                id = addr;
1030
            }
1031
            id = (id >> 16) & 0xf;
1032
            if (insn & (1 << 26)) {
1033
                addr = s->dsp + sxt24(addr);
1034
            }
1035
            s->dnad = addr;
1036
            switch (opcode) {
1037
            case 0: /* Select */
1038
                s->sdid = id;
1039
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1040
                    DPRINTF("Already reselected by target %d\n", id);
1041
                    break;
1042
                }
1043
                s->sstat0 |= LSI_SSTAT0_WOA;
1044
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1045
                if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1046
                    DPRINTF("Selected absent target %d\n", id);
1047
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1048
                    lsi_disconnect(s);
1049
                    break;
1050
                }
1051
                DPRINTF("Selected target %d%s\n",
1052
                        id, insn & (1 << 3) ? " ATN" : "");
1053
                /* ??? Linux drivers compain when this is set.  Maybe
1054
                   it only applies in low-level mode (unimplemented).
1055
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1056
                s->current_dev = s->bus.devs[id];
1057
                s->current_tag = id << 8;
1058
                s->scntl1 |= LSI_SCNTL1_CON;
1059
                if (insn & (1 << 3)) {
1060
                    s->socl |= LSI_SOCL_ATN;
1061
                }
1062
                lsi_set_phase(s, PHASE_MO);
1063
                break;
1064
            case 1: /* Disconnect */
1065
                DPRINTF("Wait Disconnect\n");
1066
                s->scntl1 &= ~LSI_SCNTL1_CON;
1067
                break;
1068
            case 2: /* Wait Reselect */
1069
                lsi_wait_reselect(s);
1070
                break;
1071
            case 3: /* Set */
1072
                DPRINTF("Set%s%s%s%s\n",
1073
                        insn & (1 << 3) ? " ATN" : "",
1074
                        insn & (1 << 6) ? " ACK" : "",
1075
                        insn & (1 << 9) ? " TM" : "",
1076
                        insn & (1 << 10) ? " CC" : "");
1077
                if (insn & (1 << 3)) {
1078
                    s->socl |= LSI_SOCL_ATN;
1079
                    lsi_set_phase(s, PHASE_MO);
1080
                }
1081
                if (insn & (1 << 9)) {
1082
                    BADF("Target mode not implemented\n");
1083
                    exit(1);
1084
                }
1085
                if (insn & (1 << 10))
1086
                    s->carry = 1;
1087
                break;
1088
            case 4: /* Clear */
1089
                DPRINTF("Clear%s%s%s%s\n",
1090
                        insn & (1 << 3) ? " ATN" : "",
1091
                        insn & (1 << 6) ? " ACK" : "",
1092
                        insn & (1 << 9) ? " TM" : "",
1093
                        insn & (1 << 10) ? " CC" : "");
1094
                if (insn & (1 << 3)) {
1095
                    s->socl &= ~LSI_SOCL_ATN;
1096
                }
1097
                if (insn & (1 << 10))
1098
                    s->carry = 0;
1099
                break;
1100
            }
1101
        } else {
1102
            uint8_t op0;
1103
            uint8_t op1;
1104
            uint8_t data8;
1105
            int reg;
1106
            int operator;
1107
#ifdef DEBUG_LSI
1108
            static const char *opcode_names[3] =
1109
                {"Write", "Read", "Read-Modify-Write"};
1110
            static const char *operator_names[8] =
1111
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1112
#endif
1113

    
1114
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1115
            data8 = (insn >> 8) & 0xff;
1116
            opcode = (insn >> 27) & 7;
1117
            operator = (insn >> 24) & 7;
1118
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1119
                    opcode_names[opcode - 5], reg,
1120
                    operator_names[operator], data8, s->sfbr,
1121
                    (insn & (1 << 23)) ? " SFBR" : "");
1122
            op0 = op1 = 0;
1123
            switch (opcode) {
1124
            case 5: /* From SFBR */
1125
                op0 = s->sfbr;
1126
                op1 = data8;
1127
                break;
1128
            case 6: /* To SFBR */
1129
                if (operator)
1130
                    op0 = lsi_reg_readb(s, reg);
1131
                op1 = data8;
1132
                break;
1133
            case 7: /* Read-modify-write */
1134
                if (operator)
1135
                    op0 = lsi_reg_readb(s, reg);
1136
                if (insn & (1 << 23)) {
1137
                    op1 = s->sfbr;
1138
                } else {
1139
                    op1 = data8;
1140
                }
1141
                break;
1142
            }
1143

    
1144
            switch (operator) {
1145
            case 0: /* move */
1146
                op0 = op1;
1147
                break;
1148
            case 1: /* Shift left */
1149
                op1 = op0 >> 7;
1150
                op0 = (op0 << 1) | s->carry;
1151
                s->carry = op1;
1152
                break;
1153
            case 2: /* OR */
1154
                op0 |= op1;
1155
                break;
1156
            case 3: /* XOR */
1157
                op0 ^= op1;
1158
                break;
1159
            case 4: /* AND */
1160
                op0 &= op1;
1161
                break;
1162
            case 5: /* SHR */
1163
                op1 = op0 & 1;
1164
                op0 = (op0 >> 1) | (s->carry << 7);
1165
                s->carry = op1;
1166
                break;
1167
            case 6: /* ADD */
1168
                op0 += op1;
1169
                s->carry = op0 < op1;
1170
                break;
1171
            case 7: /* ADC */
1172
                op0 += op1 + s->carry;
1173
                if (s->carry)
1174
                    s->carry = op0 <= op1;
1175
                else
1176
                    s->carry = op0 < op1;
1177
                break;
1178
            }
1179

    
1180
            switch (opcode) {
1181
            case 5: /* From SFBR */
1182
            case 7: /* Read-modify-write */
1183
                lsi_reg_writeb(s, reg, op0);
1184
                break;
1185
            case 6: /* To SFBR */
1186
                s->sfbr = op0;
1187
                break;
1188
            }
1189
        }
1190
        break;
1191

    
1192
    case 2: /* Transfer Control.  */
1193
        {
1194
            int cond;
1195
            int jmp;
1196

    
1197
            if ((insn & 0x002e0000) == 0) {
1198
                DPRINTF("NOP\n");
1199
                break;
1200
            }
1201
            if (s->sist1 & LSI_SIST1_STO) {
1202
                DPRINTF("Delayed select timeout\n");
1203
                lsi_stop_script(s);
1204
                break;
1205
            }
1206
            cond = jmp = (insn & (1 << 19)) != 0;
1207
            if (cond == jmp && (insn & (1 << 21))) {
1208
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1209
                cond = s->carry != 0;
1210
            }
1211
            if (cond == jmp && (insn & (1 << 17))) {
1212
                DPRINTF("Compare phase %d %c= %d\n",
1213
                        (s->sstat1 & PHASE_MASK),
1214
                        jmp ? '=' : '!',
1215
                        ((insn >> 24) & 7));
1216
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1217
            }
1218
            if (cond == jmp && (insn & (1 << 18))) {
1219
                uint8_t mask;
1220

    
1221
                mask = (~insn >> 8) & 0xff;
1222
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1223
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1224
                cond = (s->sfbr & mask) == (insn & mask);
1225
            }
1226
            if (cond == jmp) {
1227
                if (insn & (1 << 23)) {
1228
                    /* Relative address.  */
1229
                    addr = s->dsp + sxt24(addr);
1230
                }
1231
                switch ((insn >> 27) & 7) {
1232
                case 0: /* Jump */
1233
                    DPRINTF("Jump to 0x%08x\n", addr);
1234
                    s->dsp = addr;
1235
                    break;
1236
                case 1: /* Call */
1237
                    DPRINTF("Call 0x%08x\n", addr);
1238
                    s->temp = s->dsp;
1239
                    s->dsp = addr;
1240
                    break;
1241
                case 2: /* Return */
1242
                    DPRINTF("Return to 0x%08x\n", s->temp);
1243
                    s->dsp = s->temp;
1244
                    break;
1245
                case 3: /* Interrupt */
1246
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1247
                    if ((insn & (1 << 20)) != 0) {
1248
                        s->istat0 |= LSI_ISTAT0_INTF;
1249
                        lsi_update_irq(s);
1250
                    } else {
1251
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1252
                    }
1253
                    break;
1254
                default:
1255
                    DPRINTF("Illegal transfer control\n");
1256
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1257
                    break;
1258
                }
1259
            } else {
1260
                DPRINTF("Control condition failed\n");
1261
            }
1262
        }
1263
        break;
1264

    
1265
    case 3:
1266
        if ((insn & (1 << 29)) == 0) {
1267
            /* Memory move.  */
1268
            uint32_t dest;
1269
            /* ??? The docs imply the destination address is loaded into
1270
               the TEMP register.  However the Linux drivers rely on
1271
               the value being presrved.  */
1272
            dest = read_dword(s, s->dsp);
1273
            s->dsp += 4;
1274
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1275
        } else {
1276
            uint8_t data[7];
1277
            int reg;
1278
            int n;
1279
            int i;
1280

    
1281
            if (insn & (1 << 28)) {
1282
                addr = s->dsa + sxt24(addr);
1283
            }
1284
            n = (insn & 7);
1285
            reg = (insn >> 16) & 0xff;
1286
            if (insn & (1 << 24)) {
1287
                cpu_physical_memory_read(addr, data, n);
1288
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1289
                        addr, *(int *)data);
1290
                for (i = 0; i < n; i++) {
1291
                    lsi_reg_writeb(s, reg + i, data[i]);
1292
                }
1293
            } else {
1294
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1295
                for (i = 0; i < n; i++) {
1296
                    data[i] = lsi_reg_readb(s, reg + i);
1297
                }
1298
                cpu_physical_memory_write(addr, data, n);
1299
            }
1300
        }
1301
    }
1302
    if (insn_processed > 10000 && !s->waiting) {
1303
        /* Some windows drivers make the device spin waiting for a memory
1304
           location to change.  If we have been executed a lot of code then
1305
           assume this is the case and force an unexpected device disconnect.
1306
           This is apparently sufficient to beat the drivers into submission.
1307
         */
1308
        if (!(s->sien0 & LSI_SIST0_UDC))
1309
            fprintf(stderr, "inf. loop with UDC masked\n");
1310
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1311
        lsi_disconnect(s);
1312
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1313
        if (s->dcntl & LSI_DCNTL_SSM) {
1314
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1315
        } else {
1316
            goto again;
1317
        }
1318
    }
1319
    DPRINTF("SCRIPTS execution stopped\n");
1320
}
1321

    
1322
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1323
{
1324
    uint8_t tmp;
1325
#define CASE_GET_REG24(name, addr) \
1326
    case addr: return s->name & 0xff; \
1327
    case addr + 1: return (s->name >> 8) & 0xff; \
1328
    case addr + 2: return (s->name >> 16) & 0xff;
1329

    
1330
#define CASE_GET_REG32(name, addr) \
1331
    case addr: return s->name & 0xff; \
1332
    case addr + 1: return (s->name >> 8) & 0xff; \
1333
    case addr + 2: return (s->name >> 16) & 0xff; \
1334
    case addr + 3: return (s->name >> 24) & 0xff;
1335

    
1336
#ifdef DEBUG_LSI_REG
1337
    DPRINTF("Read reg %x\n", offset);
1338
#endif
1339
    switch (offset) {
1340
    case 0x00: /* SCNTL0 */
1341
        return s->scntl0;
1342
    case 0x01: /* SCNTL1 */
1343
        return s->scntl1;
1344
    case 0x02: /* SCNTL2 */
1345
        return s->scntl2;
1346
    case 0x03: /* SCNTL3 */
1347
        return s->scntl3;
1348
    case 0x04: /* SCID */
1349
        return s->scid;
1350
    case 0x05: /* SXFER */
1351
        return s->sxfer;
1352
    case 0x06: /* SDID */
1353
        return s->sdid;
1354
    case 0x07: /* GPREG0 */
1355
        return 0x7f;
1356
    case 0x08: /* Revision ID */
1357
        return 0x00;
1358
    case 0xa: /* SSID */
1359
        return s->ssid;
1360
    case 0xb: /* SBCL */
1361
        /* ??? This is not correct. However it's (hopefully) only
1362
           used for diagnostics, so should be ok.  */
1363
        return 0;
1364
    case 0xc: /* DSTAT */
1365
        tmp = s->dstat | 0x80;
1366
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1367
            s->dstat = 0;
1368
        lsi_update_irq(s);
1369
        return tmp;
1370
    case 0x0d: /* SSTAT0 */
1371
        return s->sstat0;
1372
    case 0x0e: /* SSTAT1 */
1373
        return s->sstat1;
1374
    case 0x0f: /* SSTAT2 */
1375
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1376
    CASE_GET_REG32(dsa, 0x10)
1377
    case 0x14: /* ISTAT0 */
1378
        return s->istat0;
1379
    case 0x15: /* ISTAT1 */
1380
        return s->istat1;
1381
    case 0x16: /* MBOX0 */
1382
        return s->mbox0;
1383
    case 0x17: /* MBOX1 */
1384
        return s->mbox1;
1385
    case 0x18: /* CTEST0 */
1386
        return 0xff;
1387
    case 0x19: /* CTEST1 */
1388
        return 0;
1389
    case 0x1a: /* CTEST2 */
1390
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1391
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1392
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1393
            tmp |= LSI_CTEST2_SIGP;
1394
        }
1395
        return tmp;
1396
    case 0x1b: /* CTEST3 */
1397
        return s->ctest3;
1398
    CASE_GET_REG32(temp, 0x1c)
1399
    case 0x20: /* DFIFO */
1400
        return 0;
1401
    case 0x21: /* CTEST4 */
1402
        return s->ctest4;
1403
    case 0x22: /* CTEST5 */
1404
        return s->ctest5;
1405
    case 0x23: /* CTEST6 */
1406
         return 0;
1407
    CASE_GET_REG24(dbc, 0x24)
1408
    case 0x27: /* DCMD */
1409
        return s->dcmd;
1410
    CASE_GET_REG32(dnad, 0x28)
1411
    CASE_GET_REG32(dsp, 0x2c)
1412
    CASE_GET_REG32(dsps, 0x30)
1413
    CASE_GET_REG32(scratch[0], 0x34)
1414
    case 0x38: /* DMODE */
1415
        return s->dmode;
1416
    case 0x39: /* DIEN */
1417
        return s->dien;
1418
    case 0x3a: /* SBR */
1419
        return s->sbr;
1420
    case 0x3b: /* DCNTL */
1421
        return s->dcntl;
1422
    case 0x40: /* SIEN0 */
1423
        return s->sien0;
1424
    case 0x41: /* SIEN1 */
1425
        return s->sien1;
1426
    case 0x42: /* SIST0 */
1427
        tmp = s->sist0;
1428
        s->sist0 = 0;
1429
        lsi_update_irq(s);
1430
        return tmp;
1431
    case 0x43: /* SIST1 */
1432
        tmp = s->sist1;
1433
        s->sist1 = 0;
1434
        lsi_update_irq(s);
1435
        return tmp;
1436
    case 0x46: /* MACNTL */
1437
        return 0x0f;
1438
    case 0x47: /* GPCNTL0 */
1439
        return 0x0f;
1440
    case 0x48: /* STIME0 */
1441
        return s->stime0;
1442
    case 0x4a: /* RESPID0 */
1443
        return s->respid0;
1444
    case 0x4b: /* RESPID1 */
1445
        return s->respid1;
1446
    case 0x4d: /* STEST1 */
1447
        return s->stest1;
1448
    case 0x4e: /* STEST2 */
1449
        return s->stest2;
1450
    case 0x4f: /* STEST3 */
1451
        return s->stest3;
1452
    case 0x50: /* SIDL */
1453
        /* This is needed by the linux drivers.  We currently only update it
1454
           during the MSG IN phase.  */
1455
        return s->sidl;
1456
    case 0x52: /* STEST4 */
1457
        return 0xe0;
1458
    case 0x56: /* CCNTL0 */
1459
        return s->ccntl0;
1460
    case 0x57: /* CCNTL1 */
1461
        return s->ccntl1;
1462
    case 0x58: /* SBDL */
1463
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1464
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1465
            return s->msg[0];
1466
        return 0;
1467
    case 0x59: /* SBDL high */
1468
        return 0;
1469
    CASE_GET_REG32(mmrs, 0xa0)
1470
    CASE_GET_REG32(mmws, 0xa4)
1471
    CASE_GET_REG32(sfs, 0xa8)
1472
    CASE_GET_REG32(drs, 0xac)
1473
    CASE_GET_REG32(sbms, 0xb0)
1474
    CASE_GET_REG32(dbms, 0xb4)
1475
    CASE_GET_REG32(dnad64, 0xb8)
1476
    CASE_GET_REG32(pmjad1, 0xc0)
1477
    CASE_GET_REG32(pmjad2, 0xc4)
1478
    CASE_GET_REG32(rbc, 0xc8)
1479
    CASE_GET_REG32(ua, 0xcc)
1480
    CASE_GET_REG32(ia, 0xd4)
1481
    CASE_GET_REG32(sbc, 0xd8)
1482
    CASE_GET_REG32(csbc, 0xdc)
1483
    }
1484
    if (offset >= 0x5c && offset < 0xa0) {
1485
        int n;
1486
        int shift;
1487
        n = (offset - 0x58) >> 2;
1488
        shift = (offset & 3) * 8;
1489
        return (s->scratch[n] >> shift) & 0xff;
1490
    }
1491
    BADF("readb 0x%x\n", offset);
1492
    exit(1);
1493
#undef CASE_GET_REG24
1494
#undef CASE_GET_REG32
1495
}
1496

    
1497
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1498
{
1499
#define CASE_SET_REG24(name, addr) \
1500
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1501
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1502
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1503

    
1504
#define CASE_SET_REG32(name, addr) \
1505
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1506
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1507
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1508
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1509

    
1510
#ifdef DEBUG_LSI_REG
1511
    DPRINTF("Write reg %x = %02x\n", offset, val);
1512
#endif
1513
    switch (offset) {
1514
    case 0x00: /* SCNTL0 */
1515
        s->scntl0 = val;
1516
        if (val & LSI_SCNTL0_START) {
1517
            BADF("Start sequence not implemented\n");
1518
        }
1519
        break;
1520
    case 0x01: /* SCNTL1 */
1521
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1522
        if (val & LSI_SCNTL1_IARB) {
1523
            BADF("Immediate Arbritration not implemented\n");
1524
        }
1525
        if (val & LSI_SCNTL1_RST) {
1526
            s->sstat0 |= LSI_SSTAT0_RST;
1527
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1528
        } else {
1529
            s->sstat0 &= ~LSI_SSTAT0_RST;
1530
        }
1531
        break;
1532
    case 0x02: /* SCNTL2 */
1533
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1534
        s->scntl2 = val;
1535
        break;
1536
    case 0x03: /* SCNTL3 */
1537
        s->scntl3 = val;
1538
        break;
1539
    case 0x04: /* SCID */
1540
        s->scid = val;
1541
        break;
1542
    case 0x05: /* SXFER */
1543
        s->sxfer = val;
1544
        break;
1545
    case 0x06: /* SDID */
1546
        if ((val & 0xf) != (s->ssid & 0xf))
1547
            BADF("Destination ID does not match SSID\n");
1548
        s->sdid = val & 0xf;
1549
        break;
1550
    case 0x07: /* GPREG0 */
1551
        break;
1552
    case 0x08: /* SFBR */
1553
        /* The CPU is not allowed to write to this register.  However the
1554
           SCRIPTS register move instructions are.  */
1555
        s->sfbr = val;
1556
        break;
1557
    case 0x0a: case 0x0b:
1558
        /* Openserver writes to these readonly registers on startup */
1559
        return;
1560
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1561
        /* Linux writes to these readonly registers on startup.  */
1562
        return;
1563
    CASE_SET_REG32(dsa, 0x10)
1564
    case 0x14: /* ISTAT0 */
1565
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1566
        if (val & LSI_ISTAT0_ABRT) {
1567
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1568
        }
1569
        if (val & LSI_ISTAT0_INTF) {
1570
            s->istat0 &= ~LSI_ISTAT0_INTF;
1571
            lsi_update_irq(s);
1572
        }
1573
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1574
            DPRINTF("Woken by SIGP\n");
1575
            s->waiting = 0;
1576
            s->dsp = s->dnad;
1577
            lsi_execute_script(s);
1578
        }
1579
        if (val & LSI_ISTAT0_SRST) {
1580
            lsi_soft_reset(s);
1581
        }
1582
        break;
1583
    case 0x16: /* MBOX0 */
1584
        s->mbox0 = val;
1585
        break;
1586
    case 0x17: /* MBOX1 */
1587
        s->mbox1 = val;
1588
        break;
1589
    case 0x1a: /* CTEST2 */
1590
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1591
        break;
1592
    case 0x1b: /* CTEST3 */
1593
        s->ctest3 = val & 0x0f;
1594
        break;
1595
    CASE_SET_REG32(temp, 0x1c)
1596
    case 0x21: /* CTEST4 */
1597
        if (val & 7) {
1598
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1599
        }
1600
        s->ctest4 = val;
1601
        break;
1602
    case 0x22: /* CTEST5 */
1603
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1604
            BADF("CTEST5 DMA increment not implemented\n");
1605
        }
1606
        s->ctest5 = val;
1607
        break;
1608
    CASE_SET_REG24(dbc, 0x24)
1609
    CASE_SET_REG32(dnad, 0x28)
1610
    case 0x2c: /* DSP[0:7] */
1611
        s->dsp &= 0xffffff00;
1612
        s->dsp |= val;
1613
        break;
1614
    case 0x2d: /* DSP[8:15] */
1615
        s->dsp &= 0xffff00ff;
1616
        s->dsp |= val << 8;
1617
        break;
1618
    case 0x2e: /* DSP[16:23] */
1619
        s->dsp &= 0xff00ffff;
1620
        s->dsp |= val << 16;
1621
        break;
1622
    case 0x2f: /* DSP[24:31] */
1623
        s->dsp &= 0x00ffffff;
1624
        s->dsp |= val << 24;
1625
        if ((s->dmode & LSI_DMODE_MAN) == 0
1626
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1627
            lsi_execute_script(s);
1628
        break;
1629
    CASE_SET_REG32(dsps, 0x30)
1630
    CASE_SET_REG32(scratch[0], 0x34)
1631
    case 0x38: /* DMODE */
1632
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1633
            BADF("IO mappings not implemented\n");
1634
        }
1635
        s->dmode = val;
1636
        break;
1637
    case 0x39: /* DIEN */
1638
        s->dien = val;
1639
        lsi_update_irq(s);
1640
        break;
1641
    case 0x3a: /* SBR */
1642
        s->sbr = val;
1643
        break;
1644
    case 0x3b: /* DCNTL */
1645
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1646
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1647
            lsi_execute_script(s);
1648
        break;
1649
    case 0x40: /* SIEN0 */
1650
        s->sien0 = val;
1651
        lsi_update_irq(s);
1652
        break;
1653
    case 0x41: /* SIEN1 */
1654
        s->sien1 = val;
1655
        lsi_update_irq(s);
1656
        break;
1657
    case 0x47: /* GPCNTL0 */
1658
        break;
1659
    case 0x48: /* STIME0 */
1660
        s->stime0 = val;
1661
        break;
1662
    case 0x49: /* STIME1 */
1663
        if (val & 0xf) {
1664
            DPRINTF("General purpose timer not implemented\n");
1665
            /* ??? Raising the interrupt immediately seems to be sufficient
1666
               to keep the FreeBSD driver happy.  */
1667
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1668
        }
1669
        break;
1670
    case 0x4a: /* RESPID0 */
1671
        s->respid0 = val;
1672
        break;
1673
    case 0x4b: /* RESPID1 */
1674
        s->respid1 = val;
1675
        break;
1676
    case 0x4d: /* STEST1 */
1677
        s->stest1 = val;
1678
        break;
1679
    case 0x4e: /* STEST2 */
1680
        if (val & 1) {
1681
            BADF("Low level mode not implemented\n");
1682
        }
1683
        s->stest2 = val;
1684
        break;
1685
    case 0x4f: /* STEST3 */
1686
        if (val & 0x41) {
1687
            BADF("SCSI FIFO test mode not implemented\n");
1688
        }
1689
        s->stest3 = val;
1690
        break;
1691
    case 0x56: /* CCNTL0 */
1692
        s->ccntl0 = val;
1693
        break;
1694
    case 0x57: /* CCNTL1 */
1695
        s->ccntl1 = val;
1696
        break;
1697
    CASE_SET_REG32(mmrs, 0xa0)
1698
    CASE_SET_REG32(mmws, 0xa4)
1699
    CASE_SET_REG32(sfs, 0xa8)
1700
    CASE_SET_REG32(drs, 0xac)
1701
    CASE_SET_REG32(sbms, 0xb0)
1702
    CASE_SET_REG32(dbms, 0xb4)
1703
    CASE_SET_REG32(dnad64, 0xb8)
1704
    CASE_SET_REG32(pmjad1, 0xc0)
1705
    CASE_SET_REG32(pmjad2, 0xc4)
1706
    CASE_SET_REG32(rbc, 0xc8)
1707
    CASE_SET_REG32(ua, 0xcc)
1708
    CASE_SET_REG32(ia, 0xd4)
1709
    CASE_SET_REG32(sbc, 0xd8)
1710
    CASE_SET_REG32(csbc, 0xdc)
1711
    default:
1712
        if (offset >= 0x5c && offset < 0xa0) {
1713
            int n;
1714
            int shift;
1715
            n = (offset - 0x58) >> 2;
1716
            shift = (offset & 3) * 8;
1717
            s->scratch[n] &= ~(0xff << shift);
1718
            s->scratch[n] |= (val & 0xff) << shift;
1719
        } else {
1720
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1721
        }
1722
    }
1723
#undef CASE_SET_REG24
1724
#undef CASE_SET_REG32
1725
}
1726

    
1727
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1728
{
1729
    LSIState *s = opaque;
1730

    
1731
    lsi_reg_writeb(s, addr & 0xff, val);
1732
}
1733

    
1734
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1735
{
1736
    LSIState *s = opaque;
1737

    
1738
    addr &= 0xff;
1739
    lsi_reg_writeb(s, addr, val & 0xff);
1740
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1741
}
1742

    
1743
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1744
{
1745
    LSIState *s = opaque;
1746

    
1747
    addr &= 0xff;
1748
    lsi_reg_writeb(s, addr, val & 0xff);
1749
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1750
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1751
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1752
}
1753

    
1754
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1755
{
1756
    LSIState *s = opaque;
1757

    
1758
    return lsi_reg_readb(s, addr & 0xff);
1759
}
1760

    
1761
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1762
{
1763
    LSIState *s = opaque;
1764
    uint32_t val;
1765

    
1766
    addr &= 0xff;
1767
    val = lsi_reg_readb(s, addr);
1768
    val |= lsi_reg_readb(s, addr + 1) << 8;
1769
    return val;
1770
}
1771

    
1772
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1773
{
1774
    LSIState *s = opaque;
1775
    uint32_t val;
1776
    addr &= 0xff;
1777
    val = lsi_reg_readb(s, addr);
1778
    val |= lsi_reg_readb(s, addr + 1) << 8;
1779
    val |= lsi_reg_readb(s, addr + 2) << 16;
1780
    val |= lsi_reg_readb(s, addr + 3) << 24;
1781
    return val;
1782
}
1783

    
1784
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1785
    lsi_mmio_readb,
1786
    lsi_mmio_readw,
1787
    lsi_mmio_readl,
1788
};
1789

    
1790
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1791
    lsi_mmio_writeb,
1792
    lsi_mmio_writew,
1793
    lsi_mmio_writel,
1794
};
1795

    
1796
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1797
{
1798
    LSIState *s = opaque;
1799
    uint32_t newval;
1800
    int shift;
1801

    
1802
    addr &= 0x1fff;
1803
    newval = s->script_ram[addr >> 2];
1804
    shift = (addr & 3) * 8;
1805
    newval &= ~(0xff << shift);
1806
    newval |= val << shift;
1807
    s->script_ram[addr >> 2] = newval;
1808
}
1809

    
1810
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1811
{
1812
    LSIState *s = opaque;
1813
    uint32_t newval;
1814

    
1815
    addr &= 0x1fff;
1816
    newval = s->script_ram[addr >> 2];
1817
    if (addr & 2) {
1818
        newval = (newval & 0xffff) | (val << 16);
1819
    } else {
1820
        newval = (newval & 0xffff0000) | val;
1821
    }
1822
    s->script_ram[addr >> 2] = newval;
1823
}
1824

    
1825

    
1826
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1827
{
1828
    LSIState *s = opaque;
1829

    
1830
    addr &= 0x1fff;
1831
    s->script_ram[addr >> 2] = val;
1832
}
1833

    
1834
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1835
{
1836
    LSIState *s = opaque;
1837
    uint32_t val;
1838

    
1839
    addr &= 0x1fff;
1840
    val = s->script_ram[addr >> 2];
1841
    val >>= (addr & 3) * 8;
1842
    return val & 0xff;
1843
}
1844

    
1845
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1846
{
1847
    LSIState *s = opaque;
1848
    uint32_t val;
1849

    
1850
    addr &= 0x1fff;
1851
    val = s->script_ram[addr >> 2];
1852
    if (addr & 2)
1853
        val >>= 16;
1854
    return le16_to_cpu(val);
1855
}
1856

    
1857
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1858
{
1859
    LSIState *s = opaque;
1860

    
1861
    addr &= 0x1fff;
1862
    return le32_to_cpu(s->script_ram[addr >> 2]);
1863
}
1864

    
1865
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1866
    lsi_ram_readb,
1867
    lsi_ram_readw,
1868
    lsi_ram_readl,
1869
};
1870

    
1871
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1872
    lsi_ram_writeb,
1873
    lsi_ram_writew,
1874
    lsi_ram_writel,
1875
};
1876

    
1877
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1878
{
1879
    LSIState *s = opaque;
1880
    return lsi_reg_readb(s, addr & 0xff);
1881
}
1882

    
1883
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1884
{
1885
    LSIState *s = opaque;
1886
    uint32_t val;
1887
    addr &= 0xff;
1888
    val = lsi_reg_readb(s, addr);
1889
    val |= lsi_reg_readb(s, addr + 1) << 8;
1890
    return val;
1891
}
1892

    
1893
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1894
{
1895
    LSIState *s = opaque;
1896
    uint32_t val;
1897
    addr &= 0xff;
1898
    val = lsi_reg_readb(s, addr);
1899
    val |= lsi_reg_readb(s, addr + 1) << 8;
1900
    val |= lsi_reg_readb(s, addr + 2) << 16;
1901
    val |= lsi_reg_readb(s, addr + 3) << 24;
1902
    return val;
1903
}
1904

    
1905
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1906
{
1907
    LSIState *s = opaque;
1908
    lsi_reg_writeb(s, addr & 0xff, val);
1909
}
1910

    
1911
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1912
{
1913
    LSIState *s = opaque;
1914
    addr &= 0xff;
1915
    lsi_reg_writeb(s, addr, val & 0xff);
1916
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1917
}
1918

    
1919
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1920
{
1921
    LSIState *s = opaque;
1922
    addr &= 0xff;
1923
    lsi_reg_writeb(s, addr, val & 0xff);
1924
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1925
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1926
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1927
}
1928

    
1929
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1930
                           pcibus_t addr, pcibus_t size, int type)
1931
{
1932
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1933

    
1934
    DPRINTF("Mapping IO at %08x\n", addr);
1935

    
1936
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1937
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1938
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1939
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1940
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1941
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1942
}
1943

    
1944
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1945
                            pcibus_t addr, pcibus_t size, int type)
1946
{
1947
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1948

    
1949
    DPRINTF("Mapping ram at %08x\n", addr);
1950
    s->script_ram_base = addr;
1951
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1952
}
1953

    
1954
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1955
                             pcibus_t addr, pcibus_t size, int type)
1956
{
1957
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1958

    
1959
    DPRINTF("Mapping registers at %08x\n", addr);
1960
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1961
}
1962

    
1963
static void lsi_pre_save(void *opaque)
1964
{
1965
    LSIState *s = opaque;
1966

    
1967
    assert(s->dma_buf == NULL);
1968
    assert(s->current_dma_len == 0);
1969
    assert(s->active_commands == 0);
1970
}
1971

    
1972
static const VMStateDescription vmstate_lsi_scsi = {
1973
    .name = "lsiscsi",
1974
    .version_id = 0,
1975
    .minimum_version_id = 0,
1976
    .minimum_version_id_old = 0,
1977
    .pre_save = lsi_pre_save,
1978
    .fields      = (VMStateField []) {
1979
        VMSTATE_PCI_DEVICE(dev, LSIState),
1980

    
1981
        VMSTATE_INT32(carry, LSIState),
1982
        VMSTATE_INT32(sense, LSIState),
1983
        VMSTATE_INT32(msg_action, LSIState),
1984
        VMSTATE_INT32(msg_len, LSIState),
1985
        VMSTATE_BUFFER(msg, LSIState),
1986
        VMSTATE_INT32(waiting, LSIState),
1987

    
1988
        VMSTATE_UINT32(dsa, LSIState),
1989
        VMSTATE_UINT32(temp, LSIState),
1990
        VMSTATE_UINT32(dnad, LSIState),
1991
        VMSTATE_UINT32(dbc, LSIState),
1992
        VMSTATE_UINT8(istat0, LSIState),
1993
        VMSTATE_UINT8(istat1, LSIState),
1994
        VMSTATE_UINT8(dcmd, LSIState),
1995
        VMSTATE_UINT8(dstat, LSIState),
1996
        VMSTATE_UINT8(dien, LSIState),
1997
        VMSTATE_UINT8(sist0, LSIState),
1998
        VMSTATE_UINT8(sist1, LSIState),
1999
        VMSTATE_UINT8(sien0, LSIState),
2000
        VMSTATE_UINT8(sien1, LSIState),
2001
        VMSTATE_UINT8(mbox0, LSIState),
2002
        VMSTATE_UINT8(mbox1, LSIState),
2003
        VMSTATE_UINT8(dfifo, LSIState),
2004
        VMSTATE_UINT8(ctest2, LSIState),
2005
        VMSTATE_UINT8(ctest3, LSIState),
2006
        VMSTATE_UINT8(ctest4, LSIState),
2007
        VMSTATE_UINT8(ctest5, LSIState),
2008
        VMSTATE_UINT8(ccntl0, LSIState),
2009
        VMSTATE_UINT8(ccntl1, LSIState),
2010
        VMSTATE_UINT32(dsp, LSIState),
2011
        VMSTATE_UINT32(dsps, LSIState),
2012
        VMSTATE_UINT8(dmode, LSIState),
2013
        VMSTATE_UINT8(dcntl, LSIState),
2014
        VMSTATE_UINT8(scntl0, LSIState),
2015
        VMSTATE_UINT8(scntl1, LSIState),
2016
        VMSTATE_UINT8(scntl2, LSIState),
2017
        VMSTATE_UINT8(scntl3, LSIState),
2018
        VMSTATE_UINT8(sstat0, LSIState),
2019
        VMSTATE_UINT8(sstat1, LSIState),
2020
        VMSTATE_UINT8(scid, LSIState),
2021
        VMSTATE_UINT8(sxfer, LSIState),
2022
        VMSTATE_UINT8(socl, LSIState),
2023
        VMSTATE_UINT8(sdid, LSIState),
2024
        VMSTATE_UINT8(ssid, LSIState),
2025
        VMSTATE_UINT8(sfbr, LSIState),
2026
        VMSTATE_UINT8(stest1, LSIState),
2027
        VMSTATE_UINT8(stest2, LSIState),
2028
        VMSTATE_UINT8(stest3, LSIState),
2029
        VMSTATE_UINT8(sidl, LSIState),
2030
        VMSTATE_UINT8(stime0, LSIState),
2031
        VMSTATE_UINT8(respid0, LSIState),
2032
        VMSTATE_UINT8(respid1, LSIState),
2033
        VMSTATE_UINT32(mmrs, LSIState),
2034
        VMSTATE_UINT32(mmws, LSIState),
2035
        VMSTATE_UINT32(sfs, LSIState),
2036
        VMSTATE_UINT32(drs, LSIState),
2037
        VMSTATE_UINT32(sbms, LSIState),
2038
        VMSTATE_UINT32(dbms, LSIState),
2039
        VMSTATE_UINT32(dnad64, LSIState),
2040
        VMSTATE_UINT32(pmjad1, LSIState),
2041
        VMSTATE_UINT32(pmjad2, LSIState),
2042
        VMSTATE_UINT32(rbc, LSIState),
2043
        VMSTATE_UINT32(ua, LSIState),
2044
        VMSTATE_UINT32(ia, LSIState),
2045
        VMSTATE_UINT32(sbc, LSIState),
2046
        VMSTATE_UINT32(csbc, LSIState),
2047
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2048
        VMSTATE_UINT8(sbr, LSIState),
2049

    
2050
        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2051
        VMSTATE_END_OF_LIST()
2052
    }
2053
};
2054

    
2055
static int lsi_scsi_uninit(PCIDevice *d)
2056
{
2057
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2058

    
2059
    cpu_unregister_io_memory(s->mmio_io_addr);
2060
    cpu_unregister_io_memory(s->ram_io_addr);
2061

    
2062
    qemu_free(s->queue);
2063

    
2064
    return 0;
2065
}
2066

    
2067
static int lsi_scsi_init(PCIDevice *dev)
2068
{
2069
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2070
    uint8_t *pci_conf;
2071

    
2072
    pci_conf = s->dev.config;
2073

    
2074
    /* PCI Vendor ID (word) */
2075
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2076
    /* PCI device ID (word) */
2077
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2078
    /* PCI base class code */
2079
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2080
    /* PCI subsystem ID */
2081
    pci_conf[0x2e] = 0x00;
2082
    pci_conf[0x2f] = 0x10;
2083
    /* PCI latency timer = 255 */
2084
    pci_conf[0x0d] = 0xff;
2085
    /* Interrupt pin 1 */
2086
    pci_conf[0x3d] = 0x01;
2087

    
2088
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2089
                                             lsi_mmio_writefn, s);
2090
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2091
                                            lsi_ram_writefn, s);
2092

    
2093
    pci_register_bar((struct PCIDevice *)s, 0, 256,
2094
                           PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2095
    pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2096
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2097
    pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2098
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2099
    s->queue = qemu_malloc(sizeof(lsi_queue));
2100
    s->queue_len = 1;
2101
    s->active_commands = 0;
2102

    
2103
    lsi_soft_reset(s);
2104

    
2105
    scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2106
    if (!dev->qdev.hotplugged) {
2107
        scsi_bus_legacy_handle_cmdline(&s->bus);
2108
    }
2109
    vmstate_register(-1, &vmstate_lsi_scsi, s);
2110
    return 0;
2111
}
2112

    
2113
static PCIDeviceInfo lsi_info = {
2114
    .qdev.name  = "lsi53c895a",
2115
    .qdev.alias = "lsi",
2116
    .qdev.size  = sizeof(LSIState),
2117
    .init       = lsi_scsi_init,
2118
    .exit       = lsi_scsi_uninit,
2119
};
2120

    
2121
static void lsi53c895a_register_devices(void)
2122
{
2123
    pci_qdev_register(&lsi_info);
2124
}
2125

    
2126
device_init(lsi53c895a_register_devices);