Statistics
| Branch: | Revision:

root / fpu / softfloat-native.h @ a167ba50

History | View | Annotate | Download (13.3 kB)

1
/* Native implementation of soft float functions */
2
#include <math.h>
3

    
4
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
5
    || defined(CONFIG_SOLARIS)
6
#include <ieeefp.h>
7
#define fabsf(f) ((float)fabs(f))
8
#else
9
#include <fenv.h>
10
#endif
11

    
12
#if defined(__OpenBSD__) || defined(__NetBSD__)
13
#include <sys/param.h>
14
#endif
15

    
16
/*
17
 * Define some C99-7.12.3 classification macros and
18
 *        some C99-.12.4 for Solaris systems OS less than 10,
19
 *        or Solaris 10 systems running GCC 3.x or less.
20
 *   Solaris 10 with GCC4 does not need these macros as they
21
 *   are defined in <iso/math_c99.h> with a compiler directive
22
 */
23
#if defined(CONFIG_SOLARIS) && \
24
           ((CONFIG_SOLARIS_VERSION <= 9 ) || \
25
           ((CONFIG_SOLARIS_VERSION >= 10) && (__GNUC__ < 4))) \
26
    || (defined(__OpenBSD__) && (OpenBSD < 200811))
27
/*
28
 * C99 7.12.3 classification macros
29
 * and
30
 * C99 7.12.14 comparison macros
31
 *
32
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
33
 * Try to workaround the missing / broken C99 math macros.
34
 */
35
#if defined(__OpenBSD__)
36
#define unordered(x, y) (isnan(x) || isnan(y))
37
#endif
38

    
39
#ifdef __NetBSD__
40
#ifndef isgreater
41
#define isgreater(x, y)                __builtin_isgreater(x, y)
42
#endif
43
#ifndef isgreaterequal
44
#define isgreaterequal(x, y)        __builtin_isgreaterequal(x, y)
45
#endif
46
#ifndef isless
47
#define isless(x, y)                __builtin_isless(x, y)
48
#endif
49
#ifndef islessequal
50
#define islessequal(x, y)        __builtin_islessequal(x, y)
51
#endif
52
#ifndef isunordered
53
#define isunordered(x, y)        __builtin_isunordered(x, y)
54
#endif
55
#endif
56

    
57

    
58
#define isnormal(x)             (fpclass(x) >= FP_NZERO)
59
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
60
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
61
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
62
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
63
#define isunordered(x,y)        unordered(x, y)
64
#endif
65

    
66
#if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
67

    
68
#ifndef isnan
69
# define isnan(x) \
70
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
71
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
72
     : isnan_f (x))
73
static inline int isnan_f  (float       x) { return x != x; }
74
static inline int isnan_d  (double      x) { return x != x; }
75
static inline int isnan_ld (long double x) { return x != x; }
76
#endif
77

    
78
#ifndef isinf
79
# define isinf(x) \
80
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
81
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
82
     : isinf_f (x))
83
static inline int isinf_f  (float       x) { return isnan (x - x); }
84
static inline int isinf_d  (double      x) { return isnan (x - x); }
85
static inline int isinf_ld (long double x) { return isnan (x - x); }
86
#endif
87
#endif
88

    
89
typedef float float32;
90
typedef double float64;
91
#ifdef FLOATX80
92
typedef long double floatx80;
93
#endif
94

    
95
typedef union {
96
    float32 f;
97
    uint32_t i;
98
} float32u;
99
typedef union {
100
    float64 f;
101
    uint64_t i;
102
} float64u;
103
#ifdef FLOATX80
104
typedef union {
105
    floatx80 f;
106
    struct {
107
        uint64_t low;
108
        uint16_t high;
109
    } i;
110
} floatx80u;
111
#endif
112

    
113
/*----------------------------------------------------------------------------
114
| Software IEC/IEEE floating-point rounding mode.
115
*----------------------------------------------------------------------------*/
116
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
117
    || defined(CONFIG_SOLARIS)
118
#if defined(__OpenBSD__)
119
#define FE_RM FP_RM
120
#define FE_RP FP_RP
121
#define FE_RZ FP_RZ
122
#endif
123
enum {
124
    float_round_nearest_even = FP_RN,
125
    float_round_down         = FP_RM,
126
    float_round_up           = FP_RP,
127
    float_round_to_zero      = FP_RZ
128
};
129
#elif defined(__arm__)
130
enum {
131
    float_round_nearest_even = 0,
132
    float_round_down         = 1,
133
    float_round_up           = 2,
134
    float_round_to_zero      = 3
135
};
136
#else
137
enum {
138
    float_round_nearest_even = FE_TONEAREST,
139
    float_round_down         = FE_DOWNWARD,
140
    float_round_up           = FE_UPWARD,
141
    float_round_to_zero      = FE_TOWARDZERO
142
};
143
#endif
144

    
145
typedef struct float_status {
146
    int float_rounding_mode;
147
#ifdef FLOATX80
148
    int floatx80_rounding_precision;
149
#endif
150
} float_status;
151

    
152
void set_float_rounding_mode(int val STATUS_PARAM);
153
#ifdef FLOATX80
154
void set_floatx80_rounding_precision(int val STATUS_PARAM);
155
#endif
156

    
157
/*----------------------------------------------------------------------------
158
| Software IEC/IEEE integer-to-floating-point conversion routines.
159
*----------------------------------------------------------------------------*/
160
float32 int32_to_float32( int STATUS_PARAM);
161
float32 uint32_to_float32( unsigned int STATUS_PARAM);
162
float64 int32_to_float64( int STATUS_PARAM);
163
float64 uint32_to_float64( unsigned int STATUS_PARAM);
164
#ifdef FLOATX80
165
floatx80 int32_to_floatx80( int STATUS_PARAM);
166
#endif
167
#ifdef FLOAT128
168
float128 int32_to_float128( int STATUS_PARAM);
169
#endif
170
float32 int64_to_float32( int64_t STATUS_PARAM);
171
float32 uint64_to_float32( uint64_t STATUS_PARAM);
172
float64 int64_to_float64( int64_t STATUS_PARAM);
173
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
174
#ifdef FLOATX80
175
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
176
#endif
177
#ifdef FLOAT128
178
float128 int64_to_float128( int64_t STATUS_PARAM);
179
#endif
180

    
181
/*----------------------------------------------------------------------------
182
| Software IEC/IEEE single-precision conversion routines.
183
*----------------------------------------------------------------------------*/
184
int float32_to_int32( float32  STATUS_PARAM);
185
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
186
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
187
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
188
int64_t float32_to_int64( float32  STATUS_PARAM);
189
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
190
float64 float32_to_float64( float32  STATUS_PARAM);
191
#ifdef FLOATX80
192
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
193
#endif
194
#ifdef FLOAT128
195
float128 float32_to_float128( float32  STATUS_PARAM);
196
#endif
197

    
198
/*----------------------------------------------------------------------------
199
| Software IEC/IEEE single-precision operations.
200
*----------------------------------------------------------------------------*/
201
float32 float32_round_to_int( float32  STATUS_PARAM);
202
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
203
{
204
    return a + b;
205
}
206
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
207
{
208
    return a - b;
209
}
210
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
211
{
212
    return a * b;
213
}
214
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
215
{
216
    return a / b;
217
}
218
float32 float32_rem( float32, float32  STATUS_PARAM);
219
float32 float32_sqrt( float32  STATUS_PARAM);
220
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
221
{
222
    return a == b;
223
}
224
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
225
{
226
    return a <= b;
227
}
228
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
229
{
230
    return a < b;
231
}
232
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
233
{
234
    return a <= b && a >= b;
235
}
236
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
237
{
238
    return islessequal(a, b);
239
}
240
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
241
{
242
    return isless(a, b);
243
}
244
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
245
{
246
    return isunordered(a, b);
247

    
248
}
249
int float32_compare( float32, float32 STATUS_PARAM );
250
int float32_compare_quiet( float32, float32 STATUS_PARAM );
251
int float32_is_signaling_nan( float32 );
252
int float32_is_nan( float32 );
253

    
254
INLINE float32 float32_abs(float32 a)
255
{
256
    return fabsf(a);
257
}
258

    
259
INLINE float32 float32_chs(float32 a)
260
{
261
    return -a;
262
}
263

    
264
INLINE float32 float32_is_infinity(float32 a)
265
{
266
    return fpclassify(a) == FP_INFINITE;
267
}
268

    
269
INLINE float32 float32_is_neg(float32 a)
270
{
271
    float32u u;
272
    u.f = a;
273
    return u.i >> 31;
274
}
275

    
276
INLINE float32 float32_is_zero(float32 a)
277
{
278
    return fpclassify(a) == FP_ZERO;
279
}
280

    
281
INLINE float32 float32_scalbn(float32 a, int n)
282
{
283
    return scalbnf(a, n);
284
}
285

    
286
/*----------------------------------------------------------------------------
287
| Software IEC/IEEE double-precision conversion routines.
288
*----------------------------------------------------------------------------*/
289
int float64_to_int32( float64 STATUS_PARAM );
290
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
291
unsigned int float64_to_uint32( float64 STATUS_PARAM );
292
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
293
int64_t float64_to_int64( float64 STATUS_PARAM );
294
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
295
uint64_t float64_to_uint64( float64 STATUS_PARAM );
296
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
297
float32 float64_to_float32( float64 STATUS_PARAM );
298
#ifdef FLOATX80
299
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
300
#endif
301
#ifdef FLOAT128
302
float128 float64_to_float128( float64 STATUS_PARAM );
303
#endif
304

    
305
/*----------------------------------------------------------------------------
306
| Software IEC/IEEE double-precision operations.
307
*----------------------------------------------------------------------------*/
308
float64 float64_round_to_int( float64 STATUS_PARAM );
309
float64 float64_trunc_to_int( float64 STATUS_PARAM );
310
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
311
{
312
    return a + b;
313
}
314
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
315
{
316
    return a - b;
317
}
318
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
319
{
320
    return a * b;
321
}
322
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
323
{
324
    return a / b;
325
}
326
float64 float64_rem( float64, float64 STATUS_PARAM );
327
float64 float64_sqrt( float64 STATUS_PARAM );
328
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
329
{
330
    return a == b;
331
}
332
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
333
{
334
    return a <= b;
335
}
336
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
337
{
338
    return a < b;
339
}
340
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
341
{
342
    return a <= b && a >= b;
343
}
344
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
345
{
346
    return islessequal(a, b);
347
}
348
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
349
{
350
    return isless(a, b);
351

    
352
}
353
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
354
{
355
    return isunordered(a, b);
356

    
357
}
358
int float64_compare( float64, float64 STATUS_PARAM );
359
int float64_compare_quiet( float64, float64 STATUS_PARAM );
360
int float64_is_signaling_nan( float64 );
361
int float64_is_nan( float64 );
362

    
363
INLINE float64 float64_abs(float64 a)
364
{
365
    return fabs(a);
366
}
367

    
368
INLINE float64 float64_chs(float64 a)
369
{
370
    return -a;
371
}
372

    
373
INLINE float64 float64_is_infinity(float64 a)
374
{
375
    return fpclassify(a) == FP_INFINITE;
376
}
377

    
378
INLINE float64 float64_is_neg(float64 a)
379
{
380
    float64u u;
381
    u.f = a;
382
    return u.i >> 63;
383
}
384

    
385
INLINE float64 float64_is_zero(float64 a)
386
{
387
    return fpclassify(a) == FP_ZERO;
388
}
389

    
390
INLINE float64 float64_scalbn(float64 a, int n)
391
{
392
    return scalbn(a, n);
393
}
394

    
395
#ifdef FLOATX80
396

    
397
/*----------------------------------------------------------------------------
398
| Software IEC/IEEE extended double-precision conversion routines.
399
*----------------------------------------------------------------------------*/
400
int floatx80_to_int32( floatx80 STATUS_PARAM );
401
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
402
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
403
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
404
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
405
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
406
#ifdef FLOAT128
407
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
408
#endif
409

    
410
/*----------------------------------------------------------------------------
411
| Software IEC/IEEE extended double-precision operations.
412
*----------------------------------------------------------------------------*/
413
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
414
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
415
{
416
    return a + b;
417
}
418
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
419
{
420
    return a - b;
421
}
422
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
423
{
424
    return a * b;
425
}
426
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
427
{
428
    return a / b;
429
}
430
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
431
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
432
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
433
{
434
    return a == b;
435
}
436
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
437
{
438
    return a <= b;
439
}
440
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
441
{
442
    return a < b;
443
}
444
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
445
{
446
    return a <= b && a >= b;
447
}
448
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
449
{
450
    return islessequal(a, b);
451
}
452
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
453
{
454
    return isless(a, b);
455

    
456
}
457
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
458
{
459
    return isunordered(a, b);
460

    
461
}
462
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
463
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
464
int floatx80_is_signaling_nan( floatx80 );
465
int floatx80_is_nan( floatx80 );
466

    
467
INLINE floatx80 floatx80_abs(floatx80 a)
468
{
469
    return fabsl(a);
470
}
471

    
472
INLINE floatx80 floatx80_chs(floatx80 a)
473
{
474
    return -a;
475
}
476

    
477
INLINE floatx80 floatx80_is_infinity(floatx80 a)
478
{
479
    return fpclassify(a) == FP_INFINITE;
480
}
481

    
482
INLINE floatx80 floatx80_is_neg(floatx80 a)
483
{
484
    floatx80u u;
485
    u.f = a;
486
    return u.i.high >> 15;
487
}
488

    
489
INLINE floatx80 floatx80_is_zero(floatx80 a)
490
{
491
    return fpclassify(a) == FP_ZERO;
492
}
493

    
494
INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
495
{
496
    return scalbnl(a, n);
497
}
498

    
499
#endif