Statistics
| Branch: | Revision:

root / qemu-doc.texi @ a1b87fe0

History | View | Annotate | Download (76.3 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without an host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item Syborg SVP base model (ARM Cortex-A8).
111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113
@end itemize
114

    
115
@cindex supported user mode targets
116
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119

    
120
@node Installation
121
@chapter Installation
122

    
123
If you want to compile QEMU yourself, see @ref{compilation}.
124

    
125
@menu
126
* install_linux::   Linux
127
* install_windows:: Windows
128
* install_mac::     Macintosh
129
@end menu
130

    
131
@node install_linux
132
@section Linux
133
@cindex installation (Linux)
134

    
135
If a precompiled package is available for your distribution - you just
136
have to install it. Otherwise, see @ref{compilation}.
137

    
138
@node install_windows
139
@section Windows
140
@cindex installation (Windows)
141

    
142
Download the experimental binary installer at
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

    
146
@node install_mac
147
@section Mac OS X
148

    
149
Download the experimental binary installer at
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
152

    
153
@node QEMU PC System emulator
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
156

    
157
@menu
158
* pcsys_introduction:: Introduction
159
* pcsys_quickstart::   Quick Start
160
* sec_invocation::     Invocation
161
* pcsys_keys::         Keys
162
* pcsys_monitor::      QEMU Monitor
163
* disk_images::        Disk Images
164
* pcsys_network::      Network emulation
165
* pcsys_other_devs::   Other Devices
166
* direct_linux_boot::  Direct Linux Boot
167
* pcsys_usb::          USB emulation
168
* vnc_security::       VNC security
169
* gdb_usage::          GDB usage
170
* pcsys_os_specific::  Target OS specific information
171
@end menu
172

    
173
@node pcsys_introduction
174
@section Introduction
175

    
176
@c man begin DESCRIPTION
177

    
178
The QEMU PC System emulator simulates the
179
following peripherals:
180

    
181
@itemize @minus
182
@item
183
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184
@item
185
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186
extensions (hardware level, including all non standard modes).
187
@item
188
PS/2 mouse and keyboard
189
@item
190
2 PCI IDE interfaces with hard disk and CD-ROM support
191
@item
192
Floppy disk
193
@item
194
PCI and ISA network adapters
195
@item
196
Serial ports
197
@item
198
Creative SoundBlaster 16 sound card
199
@item
200
ENSONIQ AudioPCI ES1370 sound card
201
@item
202
Intel 82801AA AC97 Audio compatible sound card
203
@item
204
Intel HD Audio Controller and HDA codec
205
@item
206
Adlib (OPL2) - Yamaha YM3812 compatible chip
207
@item
208
Gravis Ultrasound GF1 sound card
209
@item
210
CS4231A compatible sound card
211
@item
212
PCI UHCI USB controller and a virtual USB hub.
213
@end itemize
214

    
215
SMP is supported with up to 255 CPUs.
216

    
217
Note that adlib, gus and cs4231a are only available when QEMU was
218
configured with --audio-card-list option containing the name(s) of
219
required card(s).
220

    
221
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222
VGA BIOS.
223

    
224
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225

    
226
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227
by Tibor "TS" Schütz.
228

    
229
Not that, by default, GUS shares IRQ(7) with parallel ports and so
230
qemu must be told to not have parallel ports to have working GUS
231

    
232
@example
233
qemu dos.img -soundhw gus -parallel none
234
@end example
235

    
236
Alternatively:
237
@example
238
qemu dos.img -device gus,irq=5
239
@end example
240

    
241
Or some other unclaimed IRQ.
242

    
243
CS4231A is the chip used in Windows Sound System and GUSMAX products
244

    
245
@c man end
246

    
247
@node pcsys_quickstart
248
@section Quick Start
249
@cindex quick start
250

    
251
Download and uncompress the linux image (@file{linux.img}) and type:
252

    
253
@example
254
qemu linux.img
255
@end example
256

    
257
Linux should boot and give you a prompt.
258

    
259
@node sec_invocation
260
@section Invocation
261

    
262
@example
263
@c man begin SYNOPSIS
264
usage: qemu [options] [@var{disk_image}]
265
@c man end
266
@end example
267

    
268
@c man begin OPTIONS
269
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270
targets do not need a disk image.
271

    
272
@include qemu-options.texi
273

    
274
@c man end
275

    
276
@node pcsys_keys
277
@section Keys
278

    
279
@c man begin OPTIONS
280

    
281
During the graphical emulation, you can use the following keys:
282
@table @key
283
@item Ctrl-Alt-f
284
@kindex Ctrl-Alt-f
285
Toggle full screen
286

    
287
@item Ctrl-Alt-u
288
@kindex Ctrl-Alt-u
289
Restore the screen's un-scaled dimensions
290

    
291
@item Ctrl-Alt-n
292
@kindex Ctrl-Alt-n
293
Switch to virtual console 'n'. Standard console mappings are:
294
@table @emph
295
@item 1
296
Target system display
297
@item 2
298
Monitor
299
@item 3
300
Serial port
301
@end table
302

    
303
@item Ctrl-Alt
304
@kindex Ctrl-Alt
305
Toggle mouse and keyboard grab.
306
@end table
307

    
308
@kindex Ctrl-Up
309
@kindex Ctrl-Down
310
@kindex Ctrl-PageUp
311
@kindex Ctrl-PageDown
312
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
313
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314

    
315
@kindex Ctrl-a h
316
During emulation, if you are using the @option{-nographic} option, use
317
@key{Ctrl-a h} to get terminal commands:
318

    
319
@table @key
320
@item Ctrl-a h
321
@kindex Ctrl-a h
322
@item Ctrl-a ?
323
@kindex Ctrl-a ?
324
Print this help
325
@item Ctrl-a x
326
@kindex Ctrl-a x
327
Exit emulator
328
@item Ctrl-a s
329
@kindex Ctrl-a s
330
Save disk data back to file (if -snapshot)
331
@item Ctrl-a t
332
@kindex Ctrl-a t
333
Toggle console timestamps
334
@item Ctrl-a b
335
@kindex Ctrl-a b
336
Send break (magic sysrq in Linux)
337
@item Ctrl-a c
338
@kindex Ctrl-a c
339
Switch between console and monitor
340
@item Ctrl-a Ctrl-a
341
@kindex Ctrl-a a
342
Send Ctrl-a
343
@end table
344
@c man end
345

    
346
@ignore
347

    
348
@c man begin SEEALSO
349
The HTML documentation of QEMU for more precise information and Linux
350
user mode emulator invocation.
351
@c man end
352

    
353
@c man begin AUTHOR
354
Fabrice Bellard
355
@c man end
356

    
357
@end ignore
358

    
359
@node pcsys_monitor
360
@section QEMU Monitor
361
@cindex QEMU monitor
362

    
363
The QEMU monitor is used to give complex commands to the QEMU
364
emulator. You can use it to:
365

    
366
@itemize @minus
367

    
368
@item
369
Remove or insert removable media images
370
(such as CD-ROM or floppies).
371

    
372
@item
373
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
374
from a disk file.
375

    
376
@item Inspect the VM state without an external debugger.
377

    
378
@end itemize
379

    
380
@subsection Commands
381

    
382
The following commands are available:
383

    
384
@include qemu-monitor.texi
385

    
386
@subsection Integer expressions
387

    
388
The monitor understands integers expressions for every integer
389
argument. You can use register names to get the value of specifics
390
CPU registers by prefixing them with @emph{$}.
391

    
392
@node disk_images
393
@section Disk Images
394

    
395
Since version 0.6.1, QEMU supports many disk image formats, including
396
growable disk images (their size increase as non empty sectors are
397
written), compressed and encrypted disk images. Version 0.8.3 added
398
the new qcow2 disk image format which is essential to support VM
399
snapshots.
400

    
401
@menu
402
* disk_images_quickstart::    Quick start for disk image creation
403
* disk_images_snapshot_mode:: Snapshot mode
404
* vm_snapshots::              VM snapshots
405
* qemu_img_invocation::       qemu-img Invocation
406
* qemu_nbd_invocation::       qemu-nbd Invocation
407
* host_drives::               Using host drives
408
* disk_images_fat_images::    Virtual FAT disk images
409
* disk_images_nbd::           NBD access
410
* disk_images_sheepdog::      Sheepdog disk images
411
@end menu
412

    
413
@node disk_images_quickstart
414
@subsection Quick start for disk image creation
415

    
416
You can create a disk image with the command:
417
@example
418
qemu-img create myimage.img mysize
419
@end example
420
where @var{myimage.img} is the disk image filename and @var{mysize} is its
421
size in kilobytes. You can add an @code{M} suffix to give the size in
422
megabytes and a @code{G} suffix for gigabytes.
423

    
424
See @ref{qemu_img_invocation} for more information.
425

    
426
@node disk_images_snapshot_mode
427
@subsection Snapshot mode
428

    
429
If you use the option @option{-snapshot}, all disk images are
430
considered as read only. When sectors in written, they are written in
431
a temporary file created in @file{/tmp}. You can however force the
432
write back to the raw disk images by using the @code{commit} monitor
433
command (or @key{C-a s} in the serial console).
434

    
435
@node vm_snapshots
436
@subsection VM snapshots
437

    
438
VM snapshots are snapshots of the complete virtual machine including
439
CPU state, RAM, device state and the content of all the writable
440
disks. In order to use VM snapshots, you must have at least one non
441
removable and writable block device using the @code{qcow2} disk image
442
format. Normally this device is the first virtual hard drive.
443

    
444
Use the monitor command @code{savevm} to create a new VM snapshot or
445
replace an existing one. A human readable name can be assigned to each
446
snapshot in addition to its numerical ID.
447

    
448
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
449
a VM snapshot. @code{info snapshots} lists the available snapshots
450
with their associated information:
451

    
452
@example
453
(qemu) info snapshots
454
Snapshot devices: hda
455
Snapshot list (from hda):
456
ID        TAG                 VM SIZE                DATE       VM CLOCK
457
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
458
2                                 40M 2006-08-06 12:43:29   00:00:18.633
459
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
460
@end example
461

    
462
A VM snapshot is made of a VM state info (its size is shown in
463
@code{info snapshots}) and a snapshot of every writable disk image.
464
The VM state info is stored in the first @code{qcow2} non removable
465
and writable block device. The disk image snapshots are stored in
466
every disk image. The size of a snapshot in a disk image is difficult
467
to evaluate and is not shown by @code{info snapshots} because the
468
associated disk sectors are shared among all the snapshots to save
469
disk space (otherwise each snapshot would need a full copy of all the
470
disk images).
471

    
472
When using the (unrelated) @code{-snapshot} option
473
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
474
but they are deleted as soon as you exit QEMU.
475

    
476
VM snapshots currently have the following known limitations:
477
@itemize
478
@item
479
They cannot cope with removable devices if they are removed or
480
inserted after a snapshot is done.
481
@item
482
A few device drivers still have incomplete snapshot support so their
483
state is not saved or restored properly (in particular USB).
484
@end itemize
485

    
486
@node qemu_img_invocation
487
@subsection @code{qemu-img} Invocation
488

    
489
@include qemu-img.texi
490

    
491
@node qemu_nbd_invocation
492
@subsection @code{qemu-nbd} Invocation
493

    
494
@include qemu-nbd.texi
495

    
496
@node host_drives
497
@subsection Using host drives
498

    
499
In addition to disk image files, QEMU can directly access host
500
devices. We describe here the usage for QEMU version >= 0.8.3.
501

    
502
@subsubsection Linux
503

    
504
On Linux, you can directly use the host device filename instead of a
505
disk image filename provided you have enough privileges to access
506
it. For example, use @file{/dev/cdrom} to access to the CDROM or
507
@file{/dev/fd0} for the floppy.
508

    
509
@table @code
510
@item CD
511
You can specify a CDROM device even if no CDROM is loaded. QEMU has
512
specific code to detect CDROM insertion or removal. CDROM ejection by
513
the guest OS is supported. Currently only data CDs are supported.
514
@item Floppy
515
You can specify a floppy device even if no floppy is loaded. Floppy
516
removal is currently not detected accurately (if you change floppy
517
without doing floppy access while the floppy is not loaded, the guest
518
OS will think that the same floppy is loaded).
519
@item Hard disks
520
Hard disks can be used. Normally you must specify the whole disk
521
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
522
see it as a partitioned disk. WARNING: unless you know what you do, it
523
is better to only make READ-ONLY accesses to the hard disk otherwise
524
you may corrupt your host data (use the @option{-snapshot} command
525
line option or modify the device permissions accordingly).
526
@end table
527

    
528
@subsubsection Windows
529

    
530
@table @code
531
@item CD
532
The preferred syntax is the drive letter (e.g. @file{d:}). The
533
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
534
supported as an alias to the first CDROM drive.
535

    
536
Currently there is no specific code to handle removable media, so it
537
is better to use the @code{change} or @code{eject} monitor commands to
538
change or eject media.
539
@item Hard disks
540
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
541
where @var{N} is the drive number (0 is the first hard disk).
542

    
543
WARNING: unless you know what you do, it is better to only make
544
READ-ONLY accesses to the hard disk otherwise you may corrupt your
545
host data (use the @option{-snapshot} command line so that the
546
modifications are written in a temporary file).
547
@end table
548

    
549

    
550
@subsubsection Mac OS X
551

    
552
@file{/dev/cdrom} is an alias to the first CDROM.
553

    
554
Currently there is no specific code to handle removable media, so it
555
is better to use the @code{change} or @code{eject} monitor commands to
556
change or eject media.
557

    
558
@node disk_images_fat_images
559
@subsection Virtual FAT disk images
560

    
561
QEMU can automatically create a virtual FAT disk image from a
562
directory tree. In order to use it, just type:
563

    
564
@example
565
qemu linux.img -hdb fat:/my_directory
566
@end example
567

    
568
Then you access access to all the files in the @file{/my_directory}
569
directory without having to copy them in a disk image or to export
570
them via SAMBA or NFS. The default access is @emph{read-only}.
571

    
572
Floppies can be emulated with the @code{:floppy:} option:
573

    
574
@example
575
qemu linux.img -fda fat:floppy:/my_directory
576
@end example
577

    
578
A read/write support is available for testing (beta stage) with the
579
@code{:rw:} option:
580

    
581
@example
582
qemu linux.img -fda fat:floppy:rw:/my_directory
583
@end example
584

    
585
What you should @emph{never} do:
586
@itemize
587
@item use non-ASCII filenames ;
588
@item use "-snapshot" together with ":rw:" ;
589
@item expect it to work when loadvm'ing ;
590
@item write to the FAT directory on the host system while accessing it with the guest system.
591
@end itemize
592

    
593
@node disk_images_nbd
594
@subsection NBD access
595

    
596
QEMU can access directly to block device exported using the Network Block Device
597
protocol.
598

    
599
@example
600
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
601
@end example
602

    
603
If the NBD server is located on the same host, you can use an unix socket instead
604
of an inet socket:
605

    
606
@example
607
qemu linux.img -hdb nbd:unix:/tmp/my_socket
608
@end example
609

    
610
In this case, the block device must be exported using qemu-nbd:
611

    
612
@example
613
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
614
@end example
615

    
616
The use of qemu-nbd allows to share a disk between several guests:
617
@example
618
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
619
@end example
620

    
621
and then you can use it with two guests:
622
@example
623
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
624
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
625
@end example
626

    
627
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
628
"exportname" option:
629
@example
630
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
631
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
632
@end example
633

    
634
@node disk_images_sheepdog
635
@subsection Sheepdog disk images
636

    
637
Sheepdog is a distributed storage system for QEMU.  It provides highly
638
available block level storage volumes that can be attached to
639
QEMU-based virtual machines.
640

    
641
You can create a Sheepdog disk image with the command:
642
@example
643
qemu-img create sheepdog:@var{image} @var{size}
644
@end example
645
where @var{image} is the Sheepdog image name and @var{size} is its
646
size.
647

    
648
To import the existing @var{filename} to Sheepdog, you can use a
649
convert command.
650
@example
651
qemu-img convert @var{filename} sheepdog:@var{image}
652
@end example
653

    
654
You can boot from the Sheepdog disk image with the command:
655
@example
656
qemu sheepdog:@var{image}
657
@end example
658

    
659
You can also create a snapshot of the Sheepdog image like qcow2.
660
@example
661
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
662
@end example
663
where @var{tag} is a tag name of the newly created snapshot.
664

    
665
To boot from the Sheepdog snapshot, specify the tag name of the
666
snapshot.
667
@example
668
qemu sheepdog:@var{image}:@var{tag}
669
@end example
670

    
671
You can create a cloned image from the existing snapshot.
672
@example
673
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
674
@end example
675
where @var{base} is a image name of the source snapshot and @var{tag}
676
is its tag name.
677

    
678
If the Sheepdog daemon doesn't run on the local host, you need to
679
specify one of the Sheepdog servers to connect to.
680
@example
681
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
682
qemu sheepdog:@var{hostname}:@var{port}:@var{image}
683
@end example
684

    
685
@node pcsys_network
686
@section Network emulation
687

    
688
QEMU can simulate several network cards (PCI or ISA cards on the PC
689
target) and can connect them to an arbitrary number of Virtual Local
690
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
691
VLAN. VLAN can be connected between separate instances of QEMU to
692
simulate large networks. For simpler usage, a non privileged user mode
693
network stack can replace the TAP device to have a basic network
694
connection.
695

    
696
@subsection VLANs
697

    
698
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
699
connection between several network devices. These devices can be for
700
example QEMU virtual Ethernet cards or virtual Host ethernet devices
701
(TAP devices).
702

    
703
@subsection Using TAP network interfaces
704

    
705
This is the standard way to connect QEMU to a real network. QEMU adds
706
a virtual network device on your host (called @code{tapN}), and you
707
can then configure it as if it was a real ethernet card.
708

    
709
@subsubsection Linux host
710

    
711
As an example, you can download the @file{linux-test-xxx.tar.gz}
712
archive and copy the script @file{qemu-ifup} in @file{/etc} and
713
configure properly @code{sudo} so that the command @code{ifconfig}
714
contained in @file{qemu-ifup} can be executed as root. You must verify
715
that your host kernel supports the TAP network interfaces: the
716
device @file{/dev/net/tun} must be present.
717

    
718
See @ref{sec_invocation} to have examples of command lines using the
719
TAP network interfaces.
720

    
721
@subsubsection Windows host
722

    
723
There is a virtual ethernet driver for Windows 2000/XP systems, called
724
TAP-Win32. But it is not included in standard QEMU for Windows,
725
so you will need to get it separately. It is part of OpenVPN package,
726
so download OpenVPN from : @url{http://openvpn.net/}.
727

    
728
@subsection Using the user mode network stack
729

    
730
By using the option @option{-net user} (default configuration if no
731
@option{-net} option is specified), QEMU uses a completely user mode
732
network stack (you don't need root privilege to use the virtual
733
network). The virtual network configuration is the following:
734

    
735
@example
736

    
737
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
738
                           |          (10.0.2.2)
739
                           |
740
                           ---->  DNS server (10.0.2.3)
741
                           |
742
                           ---->  SMB server (10.0.2.4)
743
@end example
744

    
745
The QEMU VM behaves as if it was behind a firewall which blocks all
746
incoming connections. You can use a DHCP client to automatically
747
configure the network in the QEMU VM. The DHCP server assign addresses
748
to the hosts starting from 10.0.2.15.
749

    
750
In order to check that the user mode network is working, you can ping
751
the address 10.0.2.2 and verify that you got an address in the range
752
10.0.2.x from the QEMU virtual DHCP server.
753

    
754
Note that @code{ping} is not supported reliably to the internet as it
755
would require root privileges. It means you can only ping the local
756
router (10.0.2.2).
757

    
758
When using the built-in TFTP server, the router is also the TFTP
759
server.
760

    
761
When using the @option{-redir} option, TCP or UDP connections can be
762
redirected from the host to the guest. It allows for example to
763
redirect X11, telnet or SSH connections.
764

    
765
@subsection Connecting VLANs between QEMU instances
766

    
767
Using the @option{-net socket} option, it is possible to make VLANs
768
that span several QEMU instances. See @ref{sec_invocation} to have a
769
basic example.
770

    
771
@node pcsys_other_devs
772
@section Other Devices
773

    
774
@subsection Inter-VM Shared Memory device
775

    
776
With KVM enabled on a Linux host, a shared memory device is available.  Guests
777
map a POSIX shared memory region into the guest as a PCI device that enables
778
zero-copy communication to the application level of the guests.  The basic
779
syntax is:
780

    
781
@example
782
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
783
@end example
784

    
785
If desired, interrupts can be sent between guest VMs accessing the same shared
786
memory region.  Interrupt support requires using a shared memory server and
787
using a chardev socket to connect to it.  The code for the shared memory server
788
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
789
memory server is:
790

    
791
@example
792
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
793
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
794
qemu -chardev socket,path=<path>,id=<id>
795
@end example
796

    
797
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
798
using the same server to communicate via interrupts.  Guests can read their
799
VM ID from a device register (see example code).  Since receiving the shared
800
memory region from the server is asynchronous, there is a (small) chance the
801
guest may boot before the shared memory is attached.  To allow an application
802
to ensure shared memory is attached, the VM ID register will return -1 (an
803
invalid VM ID) until the memory is attached.  Once the shared memory is
804
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
805
the guest application can check to ensure the shared memory is attached to the
806
guest before proceeding.
807

    
808
The @option{role} argument can be set to either master or peer and will affect
809
how the shared memory is migrated.  With @option{role=master}, the guest will
810
copy the shared memory on migration to the destination host.  With
811
@option{role=peer}, the guest will not be able to migrate with the device attached.
812
With the @option{peer} case, the device should be detached and then reattached
813
after migration using the PCI hotplug support.
814

    
815
@node direct_linux_boot
816
@section Direct Linux Boot
817

    
818
This section explains how to launch a Linux kernel inside QEMU without
819
having to make a full bootable image. It is very useful for fast Linux
820
kernel testing.
821

    
822
The syntax is:
823
@example
824
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
825
@end example
826

    
827
Use @option{-kernel} to provide the Linux kernel image and
828
@option{-append} to give the kernel command line arguments. The
829
@option{-initrd} option can be used to provide an INITRD image.
830

    
831
When using the direct Linux boot, a disk image for the first hard disk
832
@file{hda} is required because its boot sector is used to launch the
833
Linux kernel.
834

    
835
If you do not need graphical output, you can disable it and redirect
836
the virtual serial port and the QEMU monitor to the console with the
837
@option{-nographic} option. The typical command line is:
838
@example
839
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
840
     -append "root=/dev/hda console=ttyS0" -nographic
841
@end example
842

    
843
Use @key{Ctrl-a c} to switch between the serial console and the
844
monitor (@pxref{pcsys_keys}).
845

    
846
@node pcsys_usb
847
@section USB emulation
848

    
849
QEMU emulates a PCI UHCI USB controller. You can virtually plug
850
virtual USB devices or real host USB devices (experimental, works only
851
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
852
as necessary to connect multiple USB devices.
853

    
854
@menu
855
* usb_devices::
856
* host_usb_devices::
857
@end menu
858
@node usb_devices
859
@subsection Connecting USB devices
860

    
861
USB devices can be connected with the @option{-usbdevice} commandline option
862
or the @code{usb_add} monitor command.  Available devices are:
863

    
864
@table @code
865
@item mouse
866
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
867
@item tablet
868
Pointer device that uses absolute coordinates (like a touchscreen).
869
This means qemu is able to report the mouse position without having
870
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
871
@item disk:@var{file}
872
Mass storage device based on @var{file} (@pxref{disk_images})
873
@item host:@var{bus.addr}
874
Pass through the host device identified by @var{bus.addr}
875
(Linux only)
876
@item host:@var{vendor_id:product_id}
877
Pass through the host device identified by @var{vendor_id:product_id}
878
(Linux only)
879
@item wacom-tablet
880
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
881
above but it can be used with the tslib library because in addition to touch
882
coordinates it reports touch pressure.
883
@item keyboard
884
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
885
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
886
Serial converter. This emulates an FTDI FT232BM chip connected to host character
887
device @var{dev}. The available character devices are the same as for the
888
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
889
used to override the default 0403:6001. For instance,
890
@example
891
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
892
@end example
893
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
894
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
895
@item braille
896
Braille device.  This will use BrlAPI to display the braille output on a real
897
or fake device.
898
@item net:@var{options}
899
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
900
specifies NIC options as with @code{-net nic,}@var{options} (see description).
901
For instance, user-mode networking can be used with
902
@example
903
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
904
@end example
905
Currently this cannot be used in machines that support PCI NICs.
906
@item bt[:@var{hci-type}]
907
Bluetooth dongle whose type is specified in the same format as with
908
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
909
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
910
This USB device implements the USB Transport Layer of HCI.  Example
911
usage:
912
@example
913
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
914
@end example
915
@end table
916

    
917
@node host_usb_devices
918
@subsection Using host USB devices on a Linux host
919

    
920
WARNING: this is an experimental feature. QEMU will slow down when
921
using it. USB devices requiring real time streaming (i.e. USB Video
922
Cameras) are not supported yet.
923

    
924
@enumerate
925
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
926
is actually using the USB device. A simple way to do that is simply to
927
disable the corresponding kernel module by renaming it from @file{mydriver.o}
928
to @file{mydriver.o.disabled}.
929

    
930
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
931
@example
932
ls /proc/bus/usb
933
001  devices  drivers
934
@end example
935

    
936
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
937
@example
938
chown -R myuid /proc/bus/usb
939
@end example
940

    
941
@item Launch QEMU and do in the monitor:
942
@example
943
info usbhost
944
  Device 1.2, speed 480 Mb/s
945
    Class 00: USB device 1234:5678, USB DISK
946
@end example
947
You should see the list of the devices you can use (Never try to use
948
hubs, it won't work).
949

    
950
@item Add the device in QEMU by using:
951
@example
952
usb_add host:1234:5678
953
@end example
954

    
955
Normally the guest OS should report that a new USB device is
956
plugged. You can use the option @option{-usbdevice} to do the same.
957

    
958
@item Now you can try to use the host USB device in QEMU.
959

    
960
@end enumerate
961

    
962
When relaunching QEMU, you may have to unplug and plug again the USB
963
device to make it work again (this is a bug).
964

    
965
@node vnc_security
966
@section VNC security
967

    
968
The VNC server capability provides access to the graphical console
969
of the guest VM across the network. This has a number of security
970
considerations depending on the deployment scenarios.
971

    
972
@menu
973
* vnc_sec_none::
974
* vnc_sec_password::
975
* vnc_sec_certificate::
976
* vnc_sec_certificate_verify::
977
* vnc_sec_certificate_pw::
978
* vnc_sec_sasl::
979
* vnc_sec_certificate_sasl::
980
* vnc_generate_cert::
981
* vnc_setup_sasl::
982
@end menu
983
@node vnc_sec_none
984
@subsection Without passwords
985

    
986
The simplest VNC server setup does not include any form of authentication.
987
For this setup it is recommended to restrict it to listen on a UNIX domain
988
socket only. For example
989

    
990
@example
991
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
992
@end example
993

    
994
This ensures that only users on local box with read/write access to that
995
path can access the VNC server. To securely access the VNC server from a
996
remote machine, a combination of netcat+ssh can be used to provide a secure
997
tunnel.
998

    
999
@node vnc_sec_password
1000
@subsection With passwords
1001

    
1002
The VNC protocol has limited support for password based authentication. Since
1003
the protocol limits passwords to 8 characters it should not be considered
1004
to provide high security. The password can be fairly easily brute-forced by
1005
a client making repeat connections. For this reason, a VNC server using password
1006
authentication should be restricted to only listen on the loopback interface
1007
or UNIX domain sockets. Password authentication is requested with the @code{password}
1008
option, and then once QEMU is running the password is set with the monitor. Until
1009
the monitor is used to set the password all clients will be rejected.
1010

    
1011
@example
1012
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1013
(qemu) change vnc password
1014
Password: ********
1015
(qemu)
1016
@end example
1017

    
1018
@node vnc_sec_certificate
1019
@subsection With x509 certificates
1020

    
1021
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1022
TLS for encryption of the session, and x509 certificates for authentication.
1023
The use of x509 certificates is strongly recommended, because TLS on its
1024
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1025
support provides a secure session, but no authentication. This allows any
1026
client to connect, and provides an encrypted session.
1027

    
1028
@example
1029
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1030
@end example
1031

    
1032
In the above example @code{/etc/pki/qemu} should contain at least three files,
1033
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1034
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1035
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1036
only be readable by the user owning it.
1037

    
1038
@node vnc_sec_certificate_verify
1039
@subsection With x509 certificates and client verification
1040

    
1041
Certificates can also provide a means to authenticate the client connecting.
1042
The server will request that the client provide a certificate, which it will
1043
then validate against the CA certificate. This is a good choice if deploying
1044
in an environment with a private internal certificate authority.
1045

    
1046
@example
1047
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1048
@end example
1049

    
1050

    
1051
@node vnc_sec_certificate_pw
1052
@subsection With x509 certificates, client verification and passwords
1053

    
1054
Finally, the previous method can be combined with VNC password authentication
1055
to provide two layers of authentication for clients.
1056

    
1057
@example
1058
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1059
(qemu) change vnc password
1060
Password: ********
1061
(qemu)
1062
@end example
1063

    
1064

    
1065
@node vnc_sec_sasl
1066
@subsection With SASL authentication
1067

    
1068
The SASL authentication method is a VNC extension, that provides an
1069
easily extendable, pluggable authentication method. This allows for
1070
integration with a wide range of authentication mechanisms, such as
1071
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1072
The strength of the authentication depends on the exact mechanism
1073
configured. If the chosen mechanism also provides a SSF layer, then
1074
it will encrypt the datastream as well.
1075

    
1076
Refer to the later docs on how to choose the exact SASL mechanism
1077
used for authentication, but assuming use of one supporting SSF,
1078
then QEMU can be launched with:
1079

    
1080
@example
1081
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1082
@end example
1083

    
1084
@node vnc_sec_certificate_sasl
1085
@subsection With x509 certificates and SASL authentication
1086

    
1087
If the desired SASL authentication mechanism does not supported
1088
SSF layers, then it is strongly advised to run it in combination
1089
with TLS and x509 certificates. This provides securely encrypted
1090
data stream, avoiding risk of compromising of the security
1091
credentials. This can be enabled, by combining the 'sasl' option
1092
with the aforementioned TLS + x509 options:
1093

    
1094
@example
1095
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1096
@end example
1097

    
1098

    
1099
@node vnc_generate_cert
1100
@subsection Generating certificates for VNC
1101

    
1102
The GNU TLS packages provides a command called @code{certtool} which can
1103
be used to generate certificates and keys in PEM format. At a minimum it
1104
is necessary to setup a certificate authority, and issue certificates to
1105
each server. If using certificates for authentication, then each client
1106
will also need to be issued a certificate. The recommendation is for the
1107
server to keep its certificates in either @code{/etc/pki/qemu} or for
1108
unprivileged users in @code{$HOME/.pki/qemu}.
1109

    
1110
@menu
1111
* vnc_generate_ca::
1112
* vnc_generate_server::
1113
* vnc_generate_client::
1114
@end menu
1115
@node vnc_generate_ca
1116
@subsubsection Setup the Certificate Authority
1117

    
1118
This step only needs to be performed once per organization / organizational
1119
unit. First the CA needs a private key. This key must be kept VERY secret
1120
and secure. If this key is compromised the entire trust chain of the certificates
1121
issued with it is lost.
1122

    
1123
@example
1124
# certtool --generate-privkey > ca-key.pem
1125
@end example
1126

    
1127
A CA needs to have a public certificate. For simplicity it can be a self-signed
1128
certificate, or one issue by a commercial certificate issuing authority. To
1129
generate a self-signed certificate requires one core piece of information, the
1130
name of the organization.
1131

    
1132
@example
1133
# cat > ca.info <<EOF
1134
cn = Name of your organization
1135
ca
1136
cert_signing_key
1137
EOF
1138
# certtool --generate-self-signed \
1139
           --load-privkey ca-key.pem
1140
           --template ca.info \
1141
           --outfile ca-cert.pem
1142
@end example
1143

    
1144
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1145
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1146

    
1147
@node vnc_generate_server
1148
@subsubsection Issuing server certificates
1149

    
1150
Each server (or host) needs to be issued with a key and certificate. When connecting
1151
the certificate is sent to the client which validates it against the CA certificate.
1152
The core piece of information for a server certificate is the hostname. This should
1153
be the fully qualified hostname that the client will connect with, since the client
1154
will typically also verify the hostname in the certificate. On the host holding the
1155
secure CA private key:
1156

    
1157
@example
1158
# cat > server.info <<EOF
1159
organization = Name  of your organization
1160
cn = server.foo.example.com
1161
tls_www_server
1162
encryption_key
1163
signing_key
1164
EOF
1165
# certtool --generate-privkey > server-key.pem
1166
# certtool --generate-certificate \
1167
           --load-ca-certificate ca-cert.pem \
1168
           --load-ca-privkey ca-key.pem \
1169
           --load-privkey server server-key.pem \
1170
           --template server.info \
1171
           --outfile server-cert.pem
1172
@end example
1173

    
1174
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1175
to the server for which they were generated. The @code{server-key.pem} is security
1176
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1177

    
1178
@node vnc_generate_client
1179
@subsubsection Issuing client certificates
1180

    
1181
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1182
certificates as its authentication mechanism, each client also needs to be issued
1183
a certificate. The client certificate contains enough metadata to uniquely identify
1184
the client, typically organization, state, city, building, etc. On the host holding
1185
the secure CA private key:
1186

    
1187
@example
1188
# cat > client.info <<EOF
1189
country = GB
1190
state = London
1191
locality = London
1192
organiazation = Name of your organization
1193
cn = client.foo.example.com
1194
tls_www_client
1195
encryption_key
1196
signing_key
1197
EOF
1198
# certtool --generate-privkey > client-key.pem
1199
# certtool --generate-certificate \
1200
           --load-ca-certificate ca-cert.pem \
1201
           --load-ca-privkey ca-key.pem \
1202
           --load-privkey client-key.pem \
1203
           --template client.info \
1204
           --outfile client-cert.pem
1205
@end example
1206

    
1207
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1208
copied to the client for which they were generated.
1209

    
1210

    
1211
@node vnc_setup_sasl
1212

    
1213
@subsection Configuring SASL mechanisms
1214

    
1215
The following documentation assumes use of the Cyrus SASL implementation on a
1216
Linux host, but the principals should apply to any other SASL impl. When SASL
1217
is enabled, the mechanism configuration will be loaded from system default
1218
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1219
unprivileged user, an environment variable SASL_CONF_PATH can be used
1220
to make it search alternate locations for the service config.
1221

    
1222
The default configuration might contain
1223

    
1224
@example
1225
mech_list: digest-md5
1226
sasldb_path: /etc/qemu/passwd.db
1227
@end example
1228

    
1229
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1230
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1231
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1232
command. While this mechanism is easy to configure and use, it is not
1233
considered secure by modern standards, so only suitable for developers /
1234
ad-hoc testing.
1235

    
1236
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1237
mechanism
1238

    
1239
@example
1240
mech_list: gssapi
1241
keytab: /etc/qemu/krb5.tab
1242
@end example
1243

    
1244
For this to work the administrator of your KDC must generate a Kerberos
1245
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1246
replacing 'somehost.example.com' with the fully qualified host name of the
1247
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1248

    
1249
Other configurations will be left as an exercise for the reader. It should
1250
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1251
encryption. For all other mechanisms, VNC should always be configured to
1252
use TLS and x509 certificates to protect security credentials from snooping.
1253

    
1254
@node gdb_usage
1255
@section GDB usage
1256

    
1257
QEMU has a primitive support to work with gdb, so that you can do
1258
'Ctrl-C' while the virtual machine is running and inspect its state.
1259

    
1260
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1261
gdb connection:
1262
@example
1263
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1264
       -append "root=/dev/hda"
1265
Connected to host network interface: tun0
1266
Waiting gdb connection on port 1234
1267
@end example
1268

    
1269
Then launch gdb on the 'vmlinux' executable:
1270
@example
1271
> gdb vmlinux
1272
@end example
1273

    
1274
In gdb, connect to QEMU:
1275
@example
1276
(gdb) target remote localhost:1234
1277
@end example
1278

    
1279
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1280
@example
1281
(gdb) c
1282
@end example
1283

    
1284
Here are some useful tips in order to use gdb on system code:
1285

    
1286
@enumerate
1287
@item
1288
Use @code{info reg} to display all the CPU registers.
1289
@item
1290
Use @code{x/10i $eip} to display the code at the PC position.
1291
@item
1292
Use @code{set architecture i8086} to dump 16 bit code. Then use
1293
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1294
@end enumerate
1295

    
1296
Advanced debugging options:
1297

    
1298
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1299
@table @code
1300
@item maintenance packet qqemu.sstepbits
1301

    
1302
This will display the MASK bits used to control the single stepping IE:
1303
@example
1304
(gdb) maintenance packet qqemu.sstepbits
1305
sending: "qqemu.sstepbits"
1306
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1307
@end example
1308
@item maintenance packet qqemu.sstep
1309

    
1310
This will display the current value of the mask used when single stepping IE:
1311
@example
1312
(gdb) maintenance packet qqemu.sstep
1313
sending: "qqemu.sstep"
1314
received: "0x7"
1315
@end example
1316
@item maintenance packet Qqemu.sstep=HEX_VALUE
1317

    
1318
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1319
@example
1320
(gdb) maintenance packet Qqemu.sstep=0x5
1321
sending: "qemu.sstep=0x5"
1322
received: "OK"
1323
@end example
1324
@end table
1325

    
1326
@node pcsys_os_specific
1327
@section Target OS specific information
1328

    
1329
@subsection Linux
1330

    
1331
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1332
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1333
color depth in the guest and the host OS.
1334

    
1335
When using a 2.6 guest Linux kernel, you should add the option
1336
@code{clock=pit} on the kernel command line because the 2.6 Linux
1337
kernels make very strict real time clock checks by default that QEMU
1338
cannot simulate exactly.
1339

    
1340
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1341
not activated because QEMU is slower with this patch. The QEMU
1342
Accelerator Module is also much slower in this case. Earlier Fedora
1343
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1344
patch by default. Newer kernels don't have it.
1345

    
1346
@subsection Windows
1347

    
1348
If you have a slow host, using Windows 95 is better as it gives the
1349
best speed. Windows 2000 is also a good choice.
1350

    
1351
@subsubsection SVGA graphic modes support
1352

    
1353
QEMU emulates a Cirrus Logic GD5446 Video
1354
card. All Windows versions starting from Windows 95 should recognize
1355
and use this graphic card. For optimal performances, use 16 bit color
1356
depth in the guest and the host OS.
1357

    
1358
If you are using Windows XP as guest OS and if you want to use high
1359
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1360
1280x1024x16), then you should use the VESA VBE virtual graphic card
1361
(option @option{-std-vga}).
1362

    
1363
@subsubsection CPU usage reduction
1364

    
1365
Windows 9x does not correctly use the CPU HLT
1366
instruction. The result is that it takes host CPU cycles even when
1367
idle. You can install the utility from
1368
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1369
problem. Note that no such tool is needed for NT, 2000 or XP.
1370

    
1371
@subsubsection Windows 2000 disk full problem
1372

    
1373
Windows 2000 has a bug which gives a disk full problem during its
1374
installation. When installing it, use the @option{-win2k-hack} QEMU
1375
option to enable a specific workaround. After Windows 2000 is
1376
installed, you no longer need this option (this option slows down the
1377
IDE transfers).
1378

    
1379
@subsubsection Windows 2000 shutdown
1380

    
1381
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1382
can. It comes from the fact that Windows 2000 does not automatically
1383
use the APM driver provided by the BIOS.
1384

    
1385
In order to correct that, do the following (thanks to Struan
1386
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1387
Add/Troubleshoot a device => Add a new device & Next => No, select the
1388
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1389
(again) a few times. Now the driver is installed and Windows 2000 now
1390
correctly instructs QEMU to shutdown at the appropriate moment.
1391

    
1392
@subsubsection Share a directory between Unix and Windows
1393

    
1394
See @ref{sec_invocation} about the help of the option @option{-smb}.
1395

    
1396
@subsubsection Windows XP security problem
1397

    
1398
Some releases of Windows XP install correctly but give a security
1399
error when booting:
1400
@example
1401
A problem is preventing Windows from accurately checking the
1402
license for this computer. Error code: 0x800703e6.
1403
@end example
1404

    
1405
The workaround is to install a service pack for XP after a boot in safe
1406
mode. Then reboot, and the problem should go away. Since there is no
1407
network while in safe mode, its recommended to download the full
1408
installation of SP1 or SP2 and transfer that via an ISO or using the
1409
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1410

    
1411
@subsection MS-DOS and FreeDOS
1412

    
1413
@subsubsection CPU usage reduction
1414

    
1415
DOS does not correctly use the CPU HLT instruction. The result is that
1416
it takes host CPU cycles even when idle. You can install the utility
1417
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1418
problem.
1419

    
1420
@node QEMU System emulator for non PC targets
1421
@chapter QEMU System emulator for non PC targets
1422

    
1423
QEMU is a generic emulator and it emulates many non PC
1424
machines. Most of the options are similar to the PC emulator. The
1425
differences are mentioned in the following sections.
1426

    
1427
@menu
1428
* PowerPC System emulator::
1429
* Sparc32 System emulator::
1430
* Sparc64 System emulator::
1431
* MIPS System emulator::
1432
* ARM System emulator::
1433
* ColdFire System emulator::
1434
* Cris System emulator::
1435
* Microblaze System emulator::
1436
* SH4 System emulator::
1437
@end menu
1438

    
1439
@node PowerPC System emulator
1440
@section PowerPC System emulator
1441
@cindex system emulation (PowerPC)
1442

    
1443
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1444
or PowerMac PowerPC system.
1445

    
1446
QEMU emulates the following PowerMac peripherals:
1447

    
1448
@itemize @minus
1449
@item
1450
UniNorth or Grackle PCI Bridge
1451
@item
1452
PCI VGA compatible card with VESA Bochs Extensions
1453
@item
1454
2 PMAC IDE interfaces with hard disk and CD-ROM support
1455
@item
1456
NE2000 PCI adapters
1457
@item
1458
Non Volatile RAM
1459
@item
1460
VIA-CUDA with ADB keyboard and mouse.
1461
@end itemize
1462

    
1463
QEMU emulates the following PREP peripherals:
1464

    
1465
@itemize @minus
1466
@item
1467
PCI Bridge
1468
@item
1469
PCI VGA compatible card with VESA Bochs Extensions
1470
@item
1471
2 IDE interfaces with hard disk and CD-ROM support
1472
@item
1473
Floppy disk
1474
@item
1475
NE2000 network adapters
1476
@item
1477
Serial port
1478
@item
1479
PREP Non Volatile RAM
1480
@item
1481
PC compatible keyboard and mouse.
1482
@end itemize
1483

    
1484
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1485
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1486

    
1487
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1488
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1489
v2) portable firmware implementation. The goal is to implement a 100%
1490
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1491

    
1492
@c man begin OPTIONS
1493

    
1494
The following options are specific to the PowerPC emulation:
1495

    
1496
@table @option
1497

    
1498
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1499

    
1500
Set the initial VGA graphic mode. The default is 800x600x15.
1501

    
1502
@item -prom-env @var{string}
1503

    
1504
Set OpenBIOS variables in NVRAM, for example:
1505

    
1506
@example
1507
qemu-system-ppc -prom-env 'auto-boot?=false' \
1508
 -prom-env 'boot-device=hd:2,\yaboot' \
1509
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1510
@end example
1511

    
1512
These variables are not used by Open Hack'Ware.
1513

    
1514
@end table
1515

    
1516
@c man end
1517

    
1518

    
1519
More information is available at
1520
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1521

    
1522
@node Sparc32 System emulator
1523
@section Sparc32 System emulator
1524
@cindex system emulation (Sparc32)
1525

    
1526
Use the executable @file{qemu-system-sparc} to simulate the following
1527
Sun4m architecture machines:
1528
@itemize @minus
1529
@item
1530
SPARCstation 4
1531
@item
1532
SPARCstation 5
1533
@item
1534
SPARCstation 10
1535
@item
1536
SPARCstation 20
1537
@item
1538
SPARCserver 600MP
1539
@item
1540
SPARCstation LX
1541
@item
1542
SPARCstation Voyager
1543
@item
1544
SPARCclassic
1545
@item
1546
SPARCbook
1547
@end itemize
1548

    
1549
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1550
but Linux limits the number of usable CPUs to 4.
1551

    
1552
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1553
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1554
emulators are not usable yet.
1555

    
1556
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1557

    
1558
@itemize @minus
1559
@item
1560
IOMMU or IO-UNITs
1561
@item
1562
TCX Frame buffer
1563
@item
1564
Lance (Am7990) Ethernet
1565
@item
1566
Non Volatile RAM M48T02/M48T08
1567
@item
1568
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1569
and power/reset logic
1570
@item
1571
ESP SCSI controller with hard disk and CD-ROM support
1572
@item
1573
Floppy drive (not on SS-600MP)
1574
@item
1575
CS4231 sound device (only on SS-5, not working yet)
1576
@end itemize
1577

    
1578
The number of peripherals is fixed in the architecture.  Maximum
1579
memory size depends on the machine type, for SS-5 it is 256MB and for
1580
others 2047MB.
1581

    
1582
Since version 0.8.2, QEMU uses OpenBIOS
1583
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1584
firmware implementation. The goal is to implement a 100% IEEE
1585
1275-1994 (referred to as Open Firmware) compliant firmware.
1586

    
1587
A sample Linux 2.6 series kernel and ram disk image are available on
1588
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1589
some kernel versions work. Please note that currently Solaris kernels
1590
don't work probably due to interface issues between OpenBIOS and
1591
Solaris.
1592

    
1593
@c man begin OPTIONS
1594

    
1595
The following options are specific to the Sparc32 emulation:
1596

    
1597
@table @option
1598

    
1599
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1600

    
1601
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1602
the only other possible mode is 1024x768x24.
1603

    
1604
@item -prom-env @var{string}
1605

    
1606
Set OpenBIOS variables in NVRAM, for example:
1607

    
1608
@example
1609
qemu-system-sparc -prom-env 'auto-boot?=false' \
1610
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1611
@end example
1612

    
1613
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1614

    
1615
Set the emulated machine type. Default is SS-5.
1616

    
1617
@end table
1618

    
1619
@c man end
1620

    
1621
@node Sparc64 System emulator
1622
@section Sparc64 System emulator
1623
@cindex system emulation (Sparc64)
1624

    
1625
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1626
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1627
Niagara (T1) machine. The emulator is not usable for anything yet, but
1628
it can launch some kernels.
1629

    
1630
QEMU emulates the following peripherals:
1631

    
1632
@itemize @minus
1633
@item
1634
UltraSparc IIi APB PCI Bridge
1635
@item
1636
PCI VGA compatible card with VESA Bochs Extensions
1637
@item
1638
PS/2 mouse and keyboard
1639
@item
1640
Non Volatile RAM M48T59
1641
@item
1642
PC-compatible serial ports
1643
@item
1644
2 PCI IDE interfaces with hard disk and CD-ROM support
1645
@item
1646
Floppy disk
1647
@end itemize
1648

    
1649
@c man begin OPTIONS
1650

    
1651
The following options are specific to the Sparc64 emulation:
1652

    
1653
@table @option
1654

    
1655
@item -prom-env @var{string}
1656

    
1657
Set OpenBIOS variables in NVRAM, for example:
1658

    
1659
@example
1660
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1661
@end example
1662

    
1663
@item -M [sun4u|sun4v|Niagara]
1664

    
1665
Set the emulated machine type. The default is sun4u.
1666

    
1667
@end table
1668

    
1669
@c man end
1670

    
1671
@node MIPS System emulator
1672
@section MIPS System emulator
1673
@cindex system emulation (MIPS)
1674

    
1675
Four executables cover simulation of 32 and 64-bit MIPS systems in
1676
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1677
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1678
Five different machine types are emulated:
1679

    
1680
@itemize @minus
1681
@item
1682
A generic ISA PC-like machine "mips"
1683
@item
1684
The MIPS Malta prototype board "malta"
1685
@item
1686
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1687
@item
1688
MIPS emulator pseudo board "mipssim"
1689
@item
1690
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1691
@end itemize
1692

    
1693
The generic emulation is supported by Debian 'Etch' and is able to
1694
install Debian into a virtual disk image. The following devices are
1695
emulated:
1696

    
1697
@itemize @minus
1698
@item
1699
A range of MIPS CPUs, default is the 24Kf
1700
@item
1701
PC style serial port
1702
@item
1703
PC style IDE disk
1704
@item
1705
NE2000 network card
1706
@end itemize
1707

    
1708
The Malta emulation supports the following devices:
1709

    
1710
@itemize @minus
1711
@item
1712
Core board with MIPS 24Kf CPU and Galileo system controller
1713
@item
1714
PIIX4 PCI/USB/SMbus controller
1715
@item
1716
The Multi-I/O chip's serial device
1717
@item
1718
PCI network cards (PCnet32 and others)
1719
@item
1720
Malta FPGA serial device
1721
@item
1722
Cirrus (default) or any other PCI VGA graphics card
1723
@end itemize
1724

    
1725
The ACER Pica emulation supports:
1726

    
1727
@itemize @minus
1728
@item
1729
MIPS R4000 CPU
1730
@item
1731
PC-style IRQ and DMA controllers
1732
@item
1733
PC Keyboard
1734
@item
1735
IDE controller
1736
@end itemize
1737

    
1738
The mipssim pseudo board emulation provides an environment similiar
1739
to what the proprietary MIPS emulator uses for running Linux.
1740
It supports:
1741

    
1742
@itemize @minus
1743
@item
1744
A range of MIPS CPUs, default is the 24Kf
1745
@item
1746
PC style serial port
1747
@item
1748
MIPSnet network emulation
1749
@end itemize
1750

    
1751
The MIPS Magnum R4000 emulation supports:
1752

    
1753
@itemize @minus
1754
@item
1755
MIPS R4000 CPU
1756
@item
1757
PC-style IRQ controller
1758
@item
1759
PC Keyboard
1760
@item
1761
SCSI controller
1762
@item
1763
G364 framebuffer
1764
@end itemize
1765

    
1766

    
1767
@node ARM System emulator
1768
@section ARM System emulator
1769
@cindex system emulation (ARM)
1770

    
1771
Use the executable @file{qemu-system-arm} to simulate a ARM
1772
machine. The ARM Integrator/CP board is emulated with the following
1773
devices:
1774

    
1775
@itemize @minus
1776
@item
1777
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1778
@item
1779
Two PL011 UARTs
1780
@item
1781
SMC 91c111 Ethernet adapter
1782
@item
1783
PL110 LCD controller
1784
@item
1785
PL050 KMI with PS/2 keyboard and mouse.
1786
@item
1787
PL181 MultiMedia Card Interface with SD card.
1788
@end itemize
1789

    
1790
The ARM Versatile baseboard is emulated with the following devices:
1791

    
1792
@itemize @minus
1793
@item
1794
ARM926E, ARM1136 or Cortex-A8 CPU
1795
@item
1796
PL190 Vectored Interrupt Controller
1797
@item
1798
Four PL011 UARTs
1799
@item
1800
SMC 91c111 Ethernet adapter
1801
@item
1802
PL110 LCD controller
1803
@item
1804
PL050 KMI with PS/2 keyboard and mouse.
1805
@item
1806
PCI host bridge.  Note the emulated PCI bridge only provides access to
1807
PCI memory space.  It does not provide access to PCI IO space.
1808
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1809
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1810
mapped control registers.
1811
@item
1812
PCI OHCI USB controller.
1813
@item
1814
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1815
@item
1816
PL181 MultiMedia Card Interface with SD card.
1817
@end itemize
1818

    
1819
Several variants of the ARM RealView baseboard are emulated,
1820
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1821
bootloader, only certain Linux kernel configurations work out
1822
of the box on these boards.
1823

    
1824
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1825
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1826
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1827
disabled and expect 1024M RAM.
1828

    
1829
The following devices are emulated:
1830

    
1831
@itemize @minus
1832
@item
1833
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1834
@item
1835
ARM AMBA Generic/Distributed Interrupt Controller
1836
@item
1837
Four PL011 UARTs
1838
@item
1839
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1840
@item
1841
PL110 LCD controller
1842
@item
1843
PL050 KMI with PS/2 keyboard and mouse
1844
@item
1845
PCI host bridge
1846
@item
1847
PCI OHCI USB controller
1848
@item
1849
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1850
@item
1851
PL181 MultiMedia Card Interface with SD card.
1852
@end itemize
1853

    
1854
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1855
and "Terrier") emulation includes the following peripherals:
1856

    
1857
@itemize @minus
1858
@item
1859
Intel PXA270 System-on-chip (ARM V5TE core)
1860
@item
1861
NAND Flash memory
1862
@item
1863
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1864
@item
1865
On-chip OHCI USB controller
1866
@item
1867
On-chip LCD controller
1868
@item
1869
On-chip Real Time Clock
1870
@item
1871
TI ADS7846 touchscreen controller on SSP bus
1872
@item
1873
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1874
@item
1875
GPIO-connected keyboard controller and LEDs
1876
@item
1877
Secure Digital card connected to PXA MMC/SD host
1878
@item
1879
Three on-chip UARTs
1880
@item
1881
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1882
@end itemize
1883

    
1884
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1885
following elements:
1886

    
1887
@itemize @minus
1888
@item
1889
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1890
@item
1891
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1892
@item
1893
On-chip LCD controller
1894
@item
1895
On-chip Real Time Clock
1896
@item
1897
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1898
CODEC, connected through MicroWire and I@math{^2}S busses
1899
@item
1900
GPIO-connected matrix keypad
1901
@item
1902
Secure Digital card connected to OMAP MMC/SD host
1903
@item
1904
Three on-chip UARTs
1905
@end itemize
1906

    
1907
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1908
emulation supports the following elements:
1909

    
1910
@itemize @minus
1911
@item
1912
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1913
@item
1914
RAM and non-volatile OneNAND Flash memories
1915
@item
1916
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1917
display controller and a LS041y3 MIPI DBI-C controller
1918
@item
1919
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1920
driven through SPI bus
1921
@item
1922
National Semiconductor LM8323-controlled qwerty keyboard driven
1923
through I@math{^2}C bus
1924
@item
1925
Secure Digital card connected to OMAP MMC/SD host
1926
@item
1927
Three OMAP on-chip UARTs and on-chip STI debugging console
1928
@item
1929
A Bluetooth(R) transceiver and HCI connected to an UART
1930
@item
1931
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1932
TUSB6010 chip - only USB host mode is supported
1933
@item
1934
TI TMP105 temperature sensor driven through I@math{^2}C bus
1935
@item
1936
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1937
@item
1938
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1939
through CBUS
1940
@end itemize
1941

    
1942
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1943
devices:
1944

    
1945
@itemize @minus
1946
@item
1947
Cortex-M3 CPU core.
1948
@item
1949
64k Flash and 8k SRAM.
1950
@item
1951
Timers, UARTs, ADC and I@math{^2}C interface.
1952
@item
1953
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1954
@end itemize
1955

    
1956
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1957
devices:
1958

    
1959
@itemize @minus
1960
@item
1961
Cortex-M3 CPU core.
1962
@item
1963
256k Flash and 64k SRAM.
1964
@item
1965
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1966
@item
1967
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1968
@end itemize
1969

    
1970
The Freecom MusicPal internet radio emulation includes the following
1971
elements:
1972

    
1973
@itemize @minus
1974
@item
1975
Marvell MV88W8618 ARM core.
1976
@item
1977
32 MB RAM, 256 KB SRAM, 8 MB flash.
1978
@item
1979
Up to 2 16550 UARTs
1980
@item
1981
MV88W8xx8 Ethernet controller
1982
@item
1983
MV88W8618 audio controller, WM8750 CODEC and mixer
1984
@item
1985
128×64 display with brightness control
1986
@item
1987
2 buttons, 2 navigation wheels with button function
1988
@end itemize
1989

    
1990
The Siemens SX1 models v1 and v2 (default) basic emulation.
1991
The emulation includes the following elements:
1992

    
1993
@itemize @minus
1994
@item
1995
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1996
@item
1997
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1998
V1
1999
1 Flash of 16MB and 1 Flash of 8MB
2000
V2
2001
1 Flash of 32MB
2002
@item
2003
On-chip LCD controller
2004
@item
2005
On-chip Real Time Clock
2006
@item
2007
Secure Digital card connected to OMAP MMC/SD host
2008
@item
2009
Three on-chip UARTs
2010
@end itemize
2011

    
2012
The "Syborg" Symbian Virtual Platform base model includes the following
2013
elements:
2014

    
2015
@itemize @minus
2016
@item
2017
ARM Cortex-A8 CPU
2018
@item
2019
Interrupt controller
2020
@item
2021
Timer
2022
@item
2023
Real Time Clock
2024
@item
2025
Keyboard
2026
@item
2027
Framebuffer
2028
@item
2029
Touchscreen
2030
@item
2031
UARTs
2032
@end itemize
2033

    
2034
A Linux 2.6 test image is available on the QEMU web site. More
2035
information is available in the QEMU mailing-list archive.
2036

    
2037
@c man begin OPTIONS
2038

    
2039
The following options are specific to the ARM emulation:
2040

    
2041
@table @option
2042

    
2043
@item -semihosting
2044
Enable semihosting syscall emulation.
2045

    
2046
On ARM this implements the "Angel" interface.
2047

    
2048
Note that this allows guest direct access to the host filesystem,
2049
so should only be used with trusted guest OS.
2050

    
2051
@end table
2052

    
2053
@node ColdFire System emulator
2054
@section ColdFire System emulator
2055
@cindex system emulation (ColdFire)
2056
@cindex system emulation (M68K)
2057

    
2058
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2059
The emulator is able to boot a uClinux kernel.
2060

    
2061
The M5208EVB emulation includes the following devices:
2062

    
2063
@itemize @minus
2064
@item
2065
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2066
@item
2067
Three Two on-chip UARTs.
2068
@item
2069
Fast Ethernet Controller (FEC)
2070
@end itemize
2071

    
2072
The AN5206 emulation includes the following devices:
2073

    
2074
@itemize @minus
2075
@item
2076
MCF5206 ColdFire V2 Microprocessor.
2077
@item
2078
Two on-chip UARTs.
2079
@end itemize
2080

    
2081
@c man begin OPTIONS
2082

    
2083
The following options are specific to the ColdFire emulation:
2084

    
2085
@table @option
2086

    
2087
@item -semihosting
2088
Enable semihosting syscall emulation.
2089

    
2090
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2091

    
2092
Note that this allows guest direct access to the host filesystem,
2093
so should only be used with trusted guest OS.
2094

    
2095
@end table
2096

    
2097
@node Cris System emulator
2098
@section Cris System emulator
2099
@cindex system emulation (Cris)
2100

    
2101
TODO
2102

    
2103
@node Microblaze System emulator
2104
@section Microblaze System emulator
2105
@cindex system emulation (Microblaze)
2106

    
2107
TODO
2108

    
2109
@node SH4 System emulator
2110
@section SH4 System emulator
2111
@cindex system emulation (SH4)
2112

    
2113
TODO
2114

    
2115
@node QEMU User space emulator
2116
@chapter QEMU User space emulator
2117

    
2118
@menu
2119
* Supported Operating Systems ::
2120
* Linux User space emulator::
2121
* Mac OS X/Darwin User space emulator ::
2122
* BSD User space emulator ::
2123
@end menu
2124

    
2125
@node Supported Operating Systems
2126
@section Supported Operating Systems
2127

    
2128
The following OS are supported in user space emulation:
2129

    
2130
@itemize @minus
2131
@item
2132
Linux (referred as qemu-linux-user)
2133
@item
2134
Mac OS X/Darwin (referred as qemu-darwin-user)
2135
@item
2136
BSD (referred as qemu-bsd-user)
2137
@end itemize
2138

    
2139
@node Linux User space emulator
2140
@section Linux User space emulator
2141

    
2142
@menu
2143
* Quick Start::
2144
* Wine launch::
2145
* Command line options::
2146
* Other binaries::
2147
@end menu
2148

    
2149
@node Quick Start
2150
@subsection Quick Start
2151

    
2152
In order to launch a Linux process, QEMU needs the process executable
2153
itself and all the target (x86) dynamic libraries used by it.
2154

    
2155
@itemize
2156

    
2157
@item On x86, you can just try to launch any process by using the native
2158
libraries:
2159

    
2160
@example
2161
qemu-i386 -L / /bin/ls
2162
@end example
2163

    
2164
@code{-L /} tells that the x86 dynamic linker must be searched with a
2165
@file{/} prefix.
2166

    
2167
@item Since QEMU is also a linux process, you can launch qemu with
2168
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2169

    
2170
@example
2171
qemu-i386 -L / qemu-i386 -L / /bin/ls
2172
@end example
2173

    
2174
@item On non x86 CPUs, you need first to download at least an x86 glibc
2175
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2176
@code{LD_LIBRARY_PATH} is not set:
2177

    
2178
@example
2179
unset LD_LIBRARY_PATH
2180
@end example
2181

    
2182
Then you can launch the precompiled @file{ls} x86 executable:
2183

    
2184
@example
2185
qemu-i386 tests/i386/ls
2186
@end example
2187
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2188
QEMU is automatically launched by the Linux kernel when you try to
2189
launch x86 executables. It requires the @code{binfmt_misc} module in the
2190
Linux kernel.
2191

    
2192
@item The x86 version of QEMU is also included. You can try weird things such as:
2193
@example
2194
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2195
          /usr/local/qemu-i386/bin/ls-i386
2196
@end example
2197

    
2198
@end itemize
2199

    
2200
@node Wine launch
2201
@subsection Wine launch
2202

    
2203
@itemize
2204

    
2205
@item Ensure that you have a working QEMU with the x86 glibc
2206
distribution (see previous section). In order to verify it, you must be
2207
able to do:
2208

    
2209
@example
2210
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2211
@end example
2212

    
2213
@item Download the binary x86 Wine install
2214
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2215

    
2216
@item Configure Wine on your account. Look at the provided script
2217
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2218
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2219

    
2220
@item Then you can try the example @file{putty.exe}:
2221

    
2222
@example
2223
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2224
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2225
@end example
2226

    
2227
@end itemize
2228

    
2229
@node Command line options
2230
@subsection Command line options
2231

    
2232
@example
2233
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2234
@end example
2235

    
2236
@table @option
2237
@item -h
2238
Print the help
2239
@item -L path
2240
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2241
@item -s size
2242
Set the x86 stack size in bytes (default=524288)
2243
@item -cpu model
2244
Select CPU model (-cpu ? for list and additional feature selection)
2245
@item -ignore-environment
2246
Start with an empty environment. Without this option,
2247
the initial environment is a copy of the caller's environment.
2248
@item -E @var{var}=@var{value}
2249
Set environment @var{var} to @var{value}.
2250
@item -U @var{var}
2251
Remove @var{var} from the environment.
2252
@item -B offset
2253
Offset guest address by the specified number of bytes.  This is useful when
2254
the address region required by guest applications is reserved on the host.
2255
This option is currently only supported on some hosts.
2256
@item -R size
2257
Pre-allocate a guest virtual address space of the given size (in bytes).
2258
"G", "M", and "k" suffixes may be used when specifying the size.
2259
@end table
2260

    
2261
Debug options:
2262

    
2263
@table @option
2264
@item -d
2265
Activate log (logfile=/tmp/qemu.log)
2266
@item -p pagesize
2267
Act as if the host page size was 'pagesize' bytes
2268
@item -g port
2269
Wait gdb connection to port
2270
@item -singlestep
2271
Run the emulation in single step mode.
2272
@end table
2273

    
2274
Environment variables:
2275

    
2276
@table @env
2277
@item QEMU_STRACE
2278
Print system calls and arguments similar to the 'strace' program
2279
(NOTE: the actual 'strace' program will not work because the user
2280
space emulator hasn't implemented ptrace).  At the moment this is
2281
incomplete.  All system calls that don't have a specific argument
2282
format are printed with information for six arguments.  Many
2283
flag-style arguments don't have decoders and will show up as numbers.
2284
@end table
2285

    
2286
@node Other binaries
2287
@subsection Other binaries
2288

    
2289
@cindex user mode (Alpha)
2290
@command{qemu-alpha} TODO.
2291

    
2292
@cindex user mode (ARM)
2293
@command{qemu-armeb} TODO.
2294

    
2295
@cindex user mode (ARM)
2296
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2297
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2298
configurations), and arm-uclinux bFLT format binaries.
2299

    
2300
@cindex user mode (ColdFire)
2301
@cindex user mode (M68K)
2302
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2303
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2304
coldfire uClinux bFLT format binaries.
2305

    
2306
The binary format is detected automatically.
2307

    
2308
@cindex user mode (Cris)
2309
@command{qemu-cris} TODO.
2310

    
2311
@cindex user mode (i386)
2312
@command{qemu-i386} TODO.
2313
@command{qemu-x86_64} TODO.
2314

    
2315
@cindex user mode (Microblaze)
2316
@command{qemu-microblaze} TODO.
2317

    
2318
@cindex user mode (MIPS)
2319
@command{qemu-mips} TODO.
2320
@command{qemu-mipsel} TODO.
2321

    
2322
@cindex user mode (PowerPC)
2323
@command{qemu-ppc64abi32} TODO.
2324
@command{qemu-ppc64} TODO.
2325
@command{qemu-ppc} TODO.
2326

    
2327
@cindex user mode (SH4)
2328
@command{qemu-sh4eb} TODO.
2329
@command{qemu-sh4} TODO.
2330

    
2331
@cindex user mode (SPARC)
2332
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2333

    
2334
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2335
(Sparc64 CPU, 32 bit ABI).
2336

    
2337
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2338
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2339

    
2340
@node Mac OS X/Darwin User space emulator
2341
@section Mac OS X/Darwin User space emulator
2342

    
2343
@menu
2344
* Mac OS X/Darwin Status::
2345
* Mac OS X/Darwin Quick Start::
2346
* Mac OS X/Darwin Command line options::
2347
@end menu
2348

    
2349
@node Mac OS X/Darwin Status
2350
@subsection Mac OS X/Darwin Status
2351

    
2352
@itemize @minus
2353
@item
2354
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2355
@item
2356
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2357
@item
2358
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2359
@item
2360
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2361
@end itemize
2362

    
2363
[1] If you're host commpage can be executed by qemu.
2364

    
2365
@node Mac OS X/Darwin Quick Start
2366
@subsection Quick Start
2367

    
2368
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2369
itself and all the target dynamic libraries used by it. If you don't have the FAT
2370
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2371
CD or compile them by hand.
2372

    
2373
@itemize
2374

    
2375
@item On x86, you can just try to launch any process by using the native
2376
libraries:
2377

    
2378
@example
2379
qemu-i386 /bin/ls
2380
@end example
2381

    
2382
or to run the ppc version of the executable:
2383

    
2384
@example
2385
qemu-ppc /bin/ls
2386
@end example
2387

    
2388
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2389
are installed:
2390

    
2391
@example
2392
qemu-i386 -L /opt/x86_root/ /bin/ls
2393
@end example
2394

    
2395
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2396
@file{/opt/x86_root/usr/bin/dyld}.
2397

    
2398
@end itemize
2399

    
2400
@node Mac OS X/Darwin Command line options
2401
@subsection Command line options
2402

    
2403
@example
2404
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2405
@end example
2406

    
2407
@table @option
2408
@item -h
2409
Print the help
2410
@item -L path
2411
Set the library root path (default=/)
2412
@item -s size
2413
Set the stack size in bytes (default=524288)
2414
@end table
2415

    
2416
Debug options:
2417

    
2418
@table @option
2419
@item -d
2420
Activate log (logfile=/tmp/qemu.log)
2421
@item -p pagesize
2422
Act as if the host page size was 'pagesize' bytes
2423
@item -singlestep
2424
Run the emulation in single step mode.
2425
@end table
2426

    
2427
@node BSD User space emulator
2428
@section BSD User space emulator
2429

    
2430
@menu
2431
* BSD Status::
2432
* BSD Quick Start::
2433
* BSD Command line options::
2434
@end menu
2435

    
2436
@node BSD Status
2437
@subsection BSD Status
2438

    
2439
@itemize @minus
2440
@item
2441
target Sparc64 on Sparc64: Some trivial programs work.
2442
@end itemize
2443

    
2444
@node BSD Quick Start
2445
@subsection Quick Start
2446

    
2447
In order to launch a BSD process, QEMU needs the process executable
2448
itself and all the target dynamic libraries used by it.
2449

    
2450
@itemize
2451

    
2452
@item On Sparc64, you can just try to launch any process by using the native
2453
libraries:
2454

    
2455
@example
2456
qemu-sparc64 /bin/ls
2457
@end example
2458

    
2459
@end itemize
2460

    
2461
@node BSD Command line options
2462
@subsection Command line options
2463

    
2464
@example
2465
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2466
@end example
2467

    
2468
@table @option
2469
@item -h
2470
Print the help
2471
@item -L path
2472
Set the library root path (default=/)
2473
@item -s size
2474
Set the stack size in bytes (default=524288)
2475
@item -ignore-environment
2476
Start with an empty environment. Without this option,
2477
the initial environment is a copy of the caller's environment.
2478
@item -E @var{var}=@var{value}
2479
Set environment @var{var} to @var{value}.
2480
@item -U @var{var}
2481
Remove @var{var} from the environment.
2482
@item -bsd type
2483
Set the type of the emulated BSD Operating system. Valid values are
2484
FreeBSD, NetBSD and OpenBSD (default).
2485
@end table
2486

    
2487
Debug options:
2488

    
2489
@table @option
2490
@item -d
2491
Activate log (logfile=/tmp/qemu.log)
2492
@item -p pagesize
2493
Act as if the host page size was 'pagesize' bytes
2494
@item -singlestep
2495
Run the emulation in single step mode.
2496
@end table
2497

    
2498
@node compilation
2499
@chapter Compilation from the sources
2500

    
2501
@menu
2502
* Linux/Unix::
2503
* Windows::
2504
* Cross compilation for Windows with Linux::
2505
* Mac OS X::
2506
* Make targets::
2507
@end menu
2508

    
2509
@node Linux/Unix
2510
@section Linux/Unix
2511

    
2512
@subsection Compilation
2513

    
2514
First you must decompress the sources:
2515
@example
2516
cd /tmp
2517
tar zxvf qemu-x.y.z.tar.gz
2518
cd qemu-x.y.z
2519
@end example
2520

    
2521
Then you configure QEMU and build it (usually no options are needed):
2522
@example
2523
./configure
2524
make
2525
@end example
2526

    
2527
Then type as root user:
2528
@example
2529
make install
2530
@end example
2531
to install QEMU in @file{/usr/local}.
2532

    
2533
@node Windows
2534
@section Windows
2535

    
2536
@itemize
2537
@item Install the current versions of MSYS and MinGW from
2538
@url{http://www.mingw.org/}. You can find detailed installation
2539
instructions in the download section and the FAQ.
2540

    
2541
@item Download
2542
the MinGW development library of SDL 1.2.x
2543
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2544
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2545
edit the @file{sdl-config} script so that it gives the
2546
correct SDL directory when invoked.
2547

    
2548
@item Install the MinGW version of zlib and make sure
2549
@file{zlib.h} and @file{libz.dll.a} are in
2550
MinGW's default header and linker search paths.
2551

    
2552
@item Extract the current version of QEMU.
2553

    
2554
@item Start the MSYS shell (file @file{msys.bat}).
2555

    
2556
@item Change to the QEMU directory. Launch @file{./configure} and
2557
@file{make}.  If you have problems using SDL, verify that
2558
@file{sdl-config} can be launched from the MSYS command line.
2559

    
2560
@item You can install QEMU in @file{Program Files/Qemu} by typing
2561
@file{make install}. Don't forget to copy @file{SDL.dll} in
2562
@file{Program Files/Qemu}.
2563

    
2564
@end itemize
2565

    
2566
@node Cross compilation for Windows with Linux
2567
@section Cross compilation for Windows with Linux
2568

    
2569
@itemize
2570
@item
2571
Install the MinGW cross compilation tools available at
2572
@url{http://www.mingw.org/}.
2573

    
2574
@item Download
2575
the MinGW development library of SDL 1.2.x
2576
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2577
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2578
edit the @file{sdl-config} script so that it gives the
2579
correct SDL directory when invoked.  Set up the @code{PATH} environment
2580
variable so that @file{sdl-config} can be launched by
2581
the QEMU configuration script.
2582

    
2583
@item Install the MinGW version of zlib and make sure
2584
@file{zlib.h} and @file{libz.dll.a} are in
2585
MinGW's default header and linker search paths.
2586

    
2587
@item
2588
Configure QEMU for Windows cross compilation:
2589
@example
2590
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2591
@end example
2592
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2593
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2594
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2595
use --cross-prefix to specify the name of the cross compiler.
2596
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2597

    
2598
Under Fedora Linux, you can run:
2599
@example
2600
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2601
@end example
2602
to get a suitable cross compilation environment.
2603

    
2604
@item You can install QEMU in the installation directory by typing
2605
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2606
installation directory.
2607

    
2608
@end itemize
2609

    
2610
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2611

    
2612
@node Mac OS X
2613
@section Mac OS X
2614

    
2615
The Mac OS X patches are not fully merged in QEMU, so you should look
2616
at the QEMU mailing list archive to have all the necessary
2617
information.
2618

    
2619
@node Make targets
2620
@section Make targets
2621

    
2622
@table @code
2623

    
2624
@item make
2625
@item make all
2626
Make everything which is typically needed.
2627

    
2628
@item install
2629
TODO
2630

    
2631
@item install-doc
2632
TODO
2633

    
2634
@item make clean
2635
Remove most files which were built during make.
2636

    
2637
@item make distclean
2638
Remove everything which was built during make.
2639

    
2640
@item make dvi
2641
@item make html
2642
@item make info
2643
@item make pdf
2644
Create documentation in dvi, html, info or pdf format.
2645

    
2646
@item make cscope
2647
TODO
2648

    
2649
@item make defconfig
2650
(Re-)create some build configuration files.
2651
User made changes will be overwritten.
2652

    
2653
@item tar
2654
@item tarbin
2655
TODO
2656

    
2657
@end table
2658

    
2659
@node License
2660
@appendix License
2661

    
2662
QEMU is a trademark of Fabrice Bellard.
2663

    
2664
QEMU is released under the GNU General Public License (TODO: add link).
2665
Parts of QEMU have specific licenses, see file LICENSE.
2666

    
2667
TODO (refer to file LICENSE, include it, include the GPL?)
2668

    
2669
@node Index
2670
@appendix Index
2671
@menu
2672
* Concept Index::
2673
* Function Index::
2674
* Keystroke Index::
2675
* Program Index::
2676
* Data Type Index::
2677
* Variable Index::
2678
@end menu
2679

    
2680
@node Concept Index
2681
@section Concept Index
2682
This is the main index. Should we combine all keywords in one index? TODO
2683
@printindex cp
2684

    
2685
@node Function Index
2686
@section Function Index
2687
This index could be used for command line options and monitor functions.
2688
@printindex fn
2689

    
2690
@node Keystroke Index
2691
@section Keystroke Index
2692

    
2693
This is a list of all keystrokes which have a special function
2694
in system emulation.
2695

    
2696
@printindex ky
2697

    
2698
@node Program Index
2699
@section Program Index
2700
@printindex pg
2701

    
2702
@node Data Type Index
2703
@section Data Type Index
2704

    
2705
This index could be used for qdev device names and options.
2706

    
2707
@printindex tp
2708

    
2709
@node Variable Index
2710
@section Variable Index
2711
@printindex vr
2712

    
2713
@bye