Statistics
| Branch: | Revision:

root / qemu-doc.texi @ a2502b58

History | View | Annotate | Download (64.4 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Freescale MCF5208EVB (ColdFire V2).
85
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86
@end itemize
87

    
88
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
89

    
90
@node Installation
91
@chapter Installation
92

    
93
If you want to compile QEMU yourself, see @ref{compilation}.
94

    
95
@menu
96
* install_linux::   Linux
97
* install_windows:: Windows
98
* install_mac::     Macintosh
99
@end menu
100

    
101
@node install_linux
102
@section Linux
103

    
104
If a precompiled package is available for your distribution - you just
105
have to install it. Otherwise, see @ref{compilation}.
106

    
107
@node install_windows
108
@section Windows
109

    
110
Download the experimental binary installer at
111
@url{http://www.free.oszoo.org/@/download.html}.
112

    
113
@node install_mac
114
@section Mac OS X
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node QEMU PC System emulator
120
@chapter QEMU PC System emulator
121

    
122
@menu
123
* pcsys_introduction:: Introduction
124
* pcsys_quickstart::   Quick Start
125
* sec_invocation::     Invocation
126
* pcsys_keys::         Keys
127
* pcsys_monitor::      QEMU Monitor
128
* disk_images::        Disk Images
129
* pcsys_network::      Network emulation
130
* direct_linux_boot::  Direct Linux Boot
131
* pcsys_usb::          USB emulation
132
* gdb_usage::          GDB usage
133
* pcsys_os_specific::  Target OS specific information
134
@end menu
135

    
136
@node pcsys_introduction
137
@section Introduction
138

    
139
@c man begin DESCRIPTION
140

    
141
The QEMU PC System emulator simulates the
142
following peripherals:
143

    
144
@itemize @minus
145
@item 
146
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
147
@item
148
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
149
extensions (hardware level, including all non standard modes).
150
@item
151
PS/2 mouse and keyboard
152
@item 
153
2 PCI IDE interfaces with hard disk and CD-ROM support
154
@item
155
Floppy disk
156
@item 
157
PCI/ISA PCI network adapters
158
@item
159
Serial ports
160
@item
161
Creative SoundBlaster 16 sound card
162
@item
163
ENSONIQ AudioPCI ES1370 sound card
164
@item
165
Adlib(OPL2) - Yamaha YM3812 compatible chip
166
@item
167
PCI UHCI USB controller and a virtual USB hub.
168
@end itemize
169

    
170
SMP is supported with up to 255 CPUs.
171

    
172
Note that adlib is only available when QEMU was configured with
173
-enable-adlib
174

    
175
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
176
VGA BIOS.
177

    
178
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
179

    
180
@c man end
181

    
182
@node pcsys_quickstart
183
@section Quick Start
184

    
185
Download and uncompress the linux image (@file{linux.img}) and type:
186

    
187
@example
188
qemu linux.img
189
@end example
190

    
191
Linux should boot and give you a prompt.
192

    
193
@node sec_invocation
194
@section Invocation
195

    
196
@example
197
@c man begin SYNOPSIS
198
usage: qemu [options] [disk_image]
199
@c man end
200
@end example
201

    
202
@c man begin OPTIONS
203
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
204

    
205
General options:
206
@table @option
207
@item -M machine
208
Select the emulated machine (@code{-M ?} for list)
209

    
210
@item -fda file
211
@item -fdb file
212
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
213
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
214

    
215
@item -hda file
216
@item -hdb file
217
@item -hdc file
218
@item -hdd file
219
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
220

    
221
@item -cdrom file
222
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
223
@option{-cdrom} at the same time). You can use the host CD-ROM by
224
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
225

    
226
@item -boot [a|c|d|n]
227
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
228
is the default.
229

    
230
@item -snapshot
231
Write to temporary files instead of disk image files. In this case,
232
the raw disk image you use is not written back. You can however force
233
the write back by pressing @key{C-a s} (@pxref{disk_images}).
234

    
235
@item -no-fd-bootchk
236
Disable boot signature checking for floppy disks in Bochs BIOS. It may
237
be needed to boot from old floppy disks.
238

    
239
@item -m megs
240
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
241

    
242
@item -smp n
243
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
244
CPUs are supported.
245

    
246
@item -nographic
247

    
248
Normally, QEMU uses SDL to display the VGA output. With this option,
249
you can totally disable graphical output so that QEMU is a simple
250
command line application. The emulated serial port is redirected on
251
the console. Therefore, you can still use QEMU to debug a Linux kernel
252
with a serial console.
253

    
254
@item -no-frame
255

    
256
Do not use decorations for SDL windows and start them using the whole
257
available screen space. This makes the using QEMU in a dedicated desktop
258
workspace more convenient.
259

    
260
@item -vnc display
261

    
262
Normally, QEMU uses SDL to display the VGA output.  With this option,
263
you can have QEMU listen on VNC display @var{display} and redirect the VGA
264
display over the VNC session.  It is very useful to enable the usb
265
tablet device when using this option (option @option{-usbdevice
266
tablet}). When using the VNC display, you must use the @option{-k}
267
option to set the keyboard layout if you are not using en-us.
268

    
269
@var{display} may be in the form @var{interface:d}, in which case connections
270
will only be allowed from @var{interface} on display @var{d}. Optionally,
271
@var{interface} can be omitted.  @var{display} can also be in the form
272
@var{unix:path} where @var{path} is the location of a unix socket to listen for
273
connections on.
274

    
275

    
276
@item -k language
277

    
278
Use keyboard layout @var{language} (for example @code{fr} for
279
French). This option is only needed where it is not easy to get raw PC
280
keycodes (e.g. on Macs, with some X11 servers or with a VNC
281
display). You don't normally need to use it on PC/Linux or PC/Windows
282
hosts.
283

    
284
The available layouts are:
285
@example
286
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
287
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
288
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
289
@end example
290

    
291
The default is @code{en-us}.
292

    
293
@item -audio-help
294

    
295
Will show the audio subsystem help: list of drivers, tunable
296
parameters.
297

    
298
@item -soundhw card1,card2,... or -soundhw all
299

    
300
Enable audio and selected sound hardware. Use ? to print all
301
available sound hardware.
302

    
303
@example
304
qemu -soundhw sb16,adlib hda
305
qemu -soundhw es1370 hda
306
qemu -soundhw all hda
307
qemu -soundhw ?
308
@end example
309

    
310
@item -localtime
311
Set the real time clock to local time (the default is to UTC
312
time). This option is needed to have correct date in MS-DOS or
313
Windows.
314

    
315
@item -full-screen
316
Start in full screen.
317

    
318
@item -pidfile file
319
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
320
from a script.
321

    
322
@item -daemonize
323
Daemonize the QEMU process after initialization.  QEMU will not detach from
324
standard IO until it is ready to receive connections on any of its devices.
325
This option is a useful way for external programs to launch QEMU without having
326
to cope with initialization race conditions.
327

    
328
@item -win2k-hack
329
Use it when installing Windows 2000 to avoid a disk full bug. After
330
Windows 2000 is installed, you no longer need this option (this option
331
slows down the IDE transfers).
332

    
333
@item -option-rom file
334
Load the contents of file as an option ROM.  This option is useful to load
335
things like EtherBoot.
336

    
337
@item -name string
338
Sets the name of the guest.  This name will be display in the SDL window
339
caption.  The name will also be used for the VNC server.
340

    
341
@end table
342

    
343
USB options:
344
@table @option
345

    
346
@item -usb
347
Enable the USB driver (will be the default soon)
348

    
349
@item -usbdevice devname
350
Add the USB device @var{devname}. @xref{usb_devices}.
351
@end table
352

    
353
Network options:
354

    
355
@table @option
356

    
357
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
358
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
359
= 0 is the default). The NIC is an ne2k_pci by default on the PC
360
target. Optionally, the MAC address can be changed. If no
361
@option{-net} option is specified, a single NIC is created.
362
Qemu can emulate several different models of network card.
363
Valid values for @var{type} are
364
@code{i82551}, @code{i82557b}, @code{i82559er},
365
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
366
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
367
Not all devices are supported on all targets.  Use -net nic,model=?
368
for a list of available devices for your target.
369

    
370
@item -net user[,vlan=n][,hostname=name]
371
Use the user mode network stack which requires no administrator
372
privilege to run.  @option{hostname=name} can be used to specify the client
373
hostname reported by the builtin DHCP server.
374

    
375
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
376
Connect the host TAP network interface @var{name} to VLAN @var{n} and
377
use the network script @var{file} to configure it. The default
378
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
379
disable script execution. If @var{name} is not
380
provided, the OS automatically provides one.  @option{fd=h} can be
381
used to specify the handle of an already opened host TAP interface. Example:
382

    
383
@example
384
qemu linux.img -net nic -net tap
385
@end example
386

    
387
More complicated example (two NICs, each one connected to a TAP device)
388
@example
389
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
390
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
391
@end example
392

    
393

    
394
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
395

    
396
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
397
machine using a TCP socket connection. If @option{listen} is
398
specified, QEMU waits for incoming connections on @var{port}
399
(@var{host} is optional). @option{connect} is used to connect to
400
another QEMU instance using the @option{listen} option. @option{fd=h}
401
specifies an already opened TCP socket.
402

    
403
Example:
404
@example
405
# launch a first QEMU instance
406
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
407
               -net socket,listen=:1234
408
# connect the VLAN 0 of this instance to the VLAN 0
409
# of the first instance
410
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
411
               -net socket,connect=127.0.0.1:1234
412
@end example
413

    
414
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
415

    
416
Create a VLAN @var{n} shared with another QEMU virtual
417
machines using a UDP multicast socket, effectively making a bus for 
418
every QEMU with same multicast address @var{maddr} and @var{port}.
419
NOTES:
420
@enumerate
421
@item 
422
Several QEMU can be running on different hosts and share same bus (assuming 
423
correct multicast setup for these hosts).
424
@item
425
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
426
@url{http://user-mode-linux.sf.net}.
427
@item
428
Use @option{fd=h} to specify an already opened UDP multicast socket.
429
@end enumerate
430

    
431
Example:
432
@example
433
# launch one QEMU instance
434
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
435
               -net socket,mcast=230.0.0.1:1234
436
# launch another QEMU instance on same "bus"
437
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
438
               -net socket,mcast=230.0.0.1:1234
439
# launch yet another QEMU instance on same "bus"
440
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
441
               -net socket,mcast=230.0.0.1:1234
442
@end example
443

    
444
Example (User Mode Linux compat.):
445
@example
446
# launch QEMU instance (note mcast address selected
447
# is UML's default)
448
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
449
               -net socket,mcast=239.192.168.1:1102
450
# launch UML
451
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
452
@end example
453

    
454
@item -net none
455
Indicate that no network devices should be configured. It is used to
456
override the default configuration (@option{-net nic -net user}) which
457
is activated if no @option{-net} options are provided.
458

    
459
@item -tftp dir
460
When using the user mode network stack, activate a built-in TFTP
461
server. The files in @var{dir} will be exposed as the root of a TFTP server.
462
The TFTP client on the guest must be configured in binary mode (use the command
463
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
464
usual 10.0.2.2.
465

    
466
@item -bootp file
467
When using the user mode network stack, broadcast @var{file} as the BOOTP
468
filename.  In conjunction with @option{-tftp}, this can be used to network boot
469
a guest from a local directory.
470

    
471
Example (using pxelinux):
472
@example
473
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
474
@end example
475

    
476
@item -smb dir
477
When using the user mode network stack, activate a built-in SMB
478
server so that Windows OSes can access to the host files in @file{dir}
479
transparently.
480

    
481
In the guest Windows OS, the line:
482
@example
483
10.0.2.4 smbserver
484
@end example
485
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
486
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
487

    
488
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
489

    
490
Note that a SAMBA server must be installed on the host OS in
491
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
492
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
493

    
494
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
495

    
496
When using the user mode network stack, redirect incoming TCP or UDP
497
connections to the host port @var{host-port} to the guest
498
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
499
is not specified, its value is 10.0.2.15 (default address given by the
500
built-in DHCP server).
501

    
502
For example, to redirect host X11 connection from screen 1 to guest
503
screen 0, use the following:
504

    
505
@example
506
# on the host
507
qemu -redir tcp:6001::6000 [...]
508
# this host xterm should open in the guest X11 server
509
xterm -display :1
510
@end example
511

    
512
To redirect telnet connections from host port 5555 to telnet port on
513
the guest, use the following:
514

    
515
@example
516
# on the host
517
qemu -redir tcp:5555::23 [...]
518
telnet localhost 5555
519
@end example
520

    
521
Then when you use on the host @code{telnet localhost 5555}, you
522
connect to the guest telnet server.
523

    
524
@end table
525

    
526
Linux boot specific: When using these options, you can use a given
527
Linux kernel without installing it in the disk image. It can be useful
528
for easier testing of various kernels.
529

    
530
@table @option
531

    
532
@item -kernel bzImage 
533
Use @var{bzImage} as kernel image.
534

    
535
@item -append cmdline 
536
Use @var{cmdline} as kernel command line
537

    
538
@item -initrd file
539
Use @var{file} as initial ram disk.
540

    
541
@end table
542

    
543
Debug/Expert options:
544
@table @option
545

    
546
@item -serial dev
547
Redirect the virtual serial port to host character device
548
@var{dev}. The default device is @code{vc} in graphical mode and
549
@code{stdio} in non graphical mode.
550

    
551
This option can be used several times to simulate up to 4 serials
552
ports.
553

    
554
Use @code{-serial none} to disable all serial ports.
555

    
556
Available character devices are:
557
@table @code
558
@item vc
559
Virtual console
560
@item pty
561
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
562
@item none
563
No device is allocated.
564
@item null
565
void device
566
@item /dev/XXX
567
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
568
parameters are set according to the emulated ones.
569
@item /dev/parportN
570
[Linux only, parallel port only] Use host parallel port
571
@var{N}. Currently SPP and EPP parallel port features can be used.
572
@item file:filename
573
Write output to filename. No character can be read.
574
@item stdio
575
[Unix only] standard input/output
576
@item pipe:filename
577
name pipe @var{filename}
578
@item COMn
579
[Windows only] Use host serial port @var{n}
580
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
581
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
582

    
583
If you just want a simple readonly console you can use @code{netcat} or
584
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
585
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
586
will appear in the netconsole session.
587

    
588
If you plan to send characters back via netconsole or you want to stop
589
and start qemu a lot of times, you should have qemu use the same
590
source port each time by using something like @code{-serial
591
udp::4555@@:4556} to qemu. Another approach is to use a patched
592
version of netcat which can listen to a TCP port and send and receive
593
characters via udp.  If you have a patched version of netcat which
594
activates telnet remote echo and single char transfer, then you can
595
use the following options to step up a netcat redirector to allow
596
telnet on port 5555 to access the qemu port.
597
@table @code
598
@item Qemu Options:
599
-serial udp::4555@@:4556
600
@item netcat options:
601
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
602
@item telnet options:
603
localhost 5555
604
@end table
605

    
606

    
607
@item tcp:[host]:port[,server][,nowait][,nodelay]
608
The TCP Net Console has two modes of operation.  It can send the serial
609
I/O to a location or wait for a connection from a location.  By default
610
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
611
the @var{server} option QEMU will wait for a client socket application
612
to connect to the port before continuing, unless the @code{nowait}
613
option was specified.  The @code{nodelay} option disables the Nagle buffering
614
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
615
one TCP connection at a time is accepted. You can use @code{telnet} to
616
connect to the corresponding character device.
617
@table @code
618
@item Example to send tcp console to 192.168.0.2 port 4444
619
-serial tcp:192.168.0.2:4444
620
@item Example to listen and wait on port 4444 for connection
621
-serial tcp::4444,server
622
@item Example to not wait and listen on ip 192.168.0.100 port 4444
623
-serial tcp:192.168.0.100:4444,server,nowait
624
@end table
625

    
626
@item telnet:host:port[,server][,nowait][,nodelay]
627
The telnet protocol is used instead of raw tcp sockets.  The options
628
work the same as if you had specified @code{-serial tcp}.  The
629
difference is that the port acts like a telnet server or client using
630
telnet option negotiation.  This will also allow you to send the
631
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
632
sequence.  Typically in unix telnet you do it with Control-] and then
633
type "send break" followed by pressing the enter key.
634

    
635
@item unix:path[,server][,nowait]
636
A unix domain socket is used instead of a tcp socket.  The option works the
637
same as if you had specified @code{-serial tcp} except the unix domain socket
638
@var{path} is used for connections.
639

    
640
@item mon:dev_string
641
This is a special option to allow the monitor to be multiplexed onto
642
another serial port.  The monitor is accessed with key sequence of
643
@key{Control-a} and then pressing @key{c}. See monitor access
644
@ref{pcsys_keys} in the -nographic section for more keys.
645
@var{dev_string} should be any one of the serial devices specified
646
above.  An example to multiplex the monitor onto a telnet server
647
listening on port 4444 would be:
648
@table @code
649
@item -serial mon:telnet::4444,server,nowait
650
@end table
651

    
652
@end table
653

    
654
@item -parallel dev
655
Redirect the virtual parallel port to host device @var{dev} (same
656
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
657
be used to use hardware devices connected on the corresponding host
658
parallel port.
659

    
660
This option can be used several times to simulate up to 3 parallel
661
ports.
662

    
663
Use @code{-parallel none} to disable all parallel ports.
664

    
665
@item -monitor dev
666
Redirect the monitor to host device @var{dev} (same devices as the
667
serial port).
668
The default device is @code{vc} in graphical mode and @code{stdio} in
669
non graphical mode.
670

    
671
@item -echr numeric_ascii_value
672
Change the escape character used for switching to the monitor when using
673
monitor and serial sharing.  The default is @code{0x01} when using the
674
@code{-nographic} option.  @code{0x01} is equal to pressing
675
@code{Control-a}.  You can select a different character from the ascii
676
control keys where 1 through 26 map to Control-a through Control-z.  For
677
instance you could use the either of the following to change the escape
678
character to Control-t.
679
@table @code
680
@item -echr 0x14
681
@item -echr 20
682
@end table
683

    
684
@item -s
685
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
686
@item -p port
687
Change gdb connection port.  @var{port} can be either a decimal number
688
to specify a TCP port, or a host device (same devices as the serial port).
689
@item -S
690
Do not start CPU at startup (you must type 'c' in the monitor).
691
@item -d             
692
Output log in /tmp/qemu.log
693
@item -hdachs c,h,s,[,t]
694
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
695
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
696
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
697
all those parameters. This option is useful for old MS-DOS disk
698
images.
699

    
700
@item -L path
701
Set the directory for the BIOS, VGA BIOS and keymaps.
702

    
703
@item -std-vga
704
Simulate a standard VGA card with Bochs VBE extensions (default is
705
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
706
VBE extensions (e.g. Windows XP) and if you want to use high
707
resolution modes (>= 1280x1024x16) then you should use this option.
708

    
709
@item -no-acpi
710
Disable ACPI (Advanced Configuration and Power Interface) support. Use
711
it if your guest OS complains about ACPI problems (PC target machine
712
only).
713

    
714
@item -no-reboot
715
Exit instead of rebooting.
716

    
717
@item -loadvm file
718
Start right away with a saved state (@code{loadvm} in monitor)
719

    
720
@item -semihosting
721
Enable semihosting syscall emulation (ARM and M68K target machines only).
722

    
723
On ARM this implements the "Angel" interface.
724
On M68K this implements the "ColdFire GDB" interface used by libgloss.
725

    
726
Note that this allows guest direct access to the host filesystem,
727
so should only be used with trusted guest OS.
728
@end table
729

    
730
@c man end
731

    
732
@node pcsys_keys
733
@section Keys
734

    
735
@c man begin OPTIONS
736

    
737
During the graphical emulation, you can use the following keys:
738
@table @key
739
@item Ctrl-Alt-f
740
Toggle full screen
741

    
742
@item Ctrl-Alt-n
743
Switch to virtual console 'n'. Standard console mappings are:
744
@table @emph
745
@item 1
746
Target system display
747
@item 2
748
Monitor
749
@item 3
750
Serial port
751
@end table
752

    
753
@item Ctrl-Alt
754
Toggle mouse and keyboard grab.
755
@end table
756

    
757
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
758
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
759

    
760
During emulation, if you are using the @option{-nographic} option, use
761
@key{Ctrl-a h} to get terminal commands:
762

    
763
@table @key
764
@item Ctrl-a h
765
Print this help
766
@item Ctrl-a x    
767
Exit emulator
768
@item Ctrl-a s    
769
Save disk data back to file (if -snapshot)
770
@item Ctrl-a t
771
toggle console timestamps
772
@item Ctrl-a b
773
Send break (magic sysrq in Linux)
774
@item Ctrl-a c
775
Switch between console and monitor
776
@item Ctrl-a Ctrl-a
777
Send Ctrl-a
778
@end table
779
@c man end
780

    
781
@ignore
782

    
783
@c man begin SEEALSO
784
The HTML documentation of QEMU for more precise information and Linux
785
user mode emulator invocation.
786
@c man end
787

    
788
@c man begin AUTHOR
789
Fabrice Bellard
790
@c man end
791

    
792
@end ignore
793

    
794
@node pcsys_monitor
795
@section QEMU Monitor
796

    
797
The QEMU monitor is used to give complex commands to the QEMU
798
emulator. You can use it to:
799

    
800
@itemize @minus
801

    
802
@item
803
Remove or insert removable media images
804
(such as CD-ROM or floppies)
805

    
806
@item 
807
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
808
from a disk file.
809

    
810
@item Inspect the VM state without an external debugger.
811

    
812
@end itemize
813

    
814
@subsection Commands
815

    
816
The following commands are available:
817

    
818
@table @option
819

    
820
@item help or ? [cmd]
821
Show the help for all commands or just for command @var{cmd}.
822

    
823
@item commit  
824
Commit changes to the disk images (if -snapshot is used)
825

    
826
@item info subcommand 
827
show various information about the system state
828

    
829
@table @option
830
@item info network
831
show the various VLANs and the associated devices
832
@item info block
833
show the block devices
834
@item info registers
835
show the cpu registers
836
@item info history
837
show the command line history
838
@item info pci
839
show emulated PCI device
840
@item info usb
841
show USB devices plugged on the virtual USB hub
842
@item info usbhost
843
show all USB host devices
844
@item info capture
845
show information about active capturing
846
@item info snapshots
847
show list of VM snapshots
848
@item info mice
849
show which guest mouse is receiving events
850
@end table
851

    
852
@item q or quit
853
Quit the emulator.
854

    
855
@item eject [-f] device
856
Eject a removable medium (use -f to force it).
857

    
858
@item change device filename
859
Change a removable medium.
860

    
861
@item screendump filename
862
Save screen into PPM image @var{filename}.
863

    
864
@item mouse_move dx dy [dz]
865
Move the active mouse to the specified coordinates @var{dx} @var{dy}
866
with optional scroll axis @var{dz}.
867

    
868
@item mouse_button val
869
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
870

    
871
@item mouse_set index
872
Set which mouse device receives events at given @var{index}, index
873
can be obtained with
874
@example
875
info mice
876
@end example
877

    
878
@item wavcapture filename [frequency [bits [channels]]]
879
Capture audio into @var{filename}. Using sample rate @var{frequency}
880
bits per sample @var{bits} and number of channels @var{channels}.
881

    
882
Defaults:
883
@itemize @minus
884
@item Sample rate = 44100 Hz - CD quality
885
@item Bits = 16
886
@item Number of channels = 2 - Stereo
887
@end itemize
888

    
889
@item stopcapture index
890
Stop capture with a given @var{index}, index can be obtained with
891
@example
892
info capture
893
@end example
894

    
895
@item log item1[,...]
896
Activate logging of the specified items to @file{/tmp/qemu.log}.
897

    
898
@item savevm [tag|id]
899
Create a snapshot of the whole virtual machine. If @var{tag} is
900
provided, it is used as human readable identifier. If there is already
901
a snapshot with the same tag or ID, it is replaced. More info at
902
@ref{vm_snapshots}.
903

    
904
@item loadvm tag|id
905
Set the whole virtual machine to the snapshot identified by the tag
906
@var{tag} or the unique snapshot ID @var{id}.
907

    
908
@item delvm tag|id
909
Delete the snapshot identified by @var{tag} or @var{id}.
910

    
911
@item stop
912
Stop emulation.
913

    
914
@item c or cont
915
Resume emulation.
916

    
917
@item gdbserver [port]
918
Start gdbserver session (default port=1234)
919

    
920
@item x/fmt addr
921
Virtual memory dump starting at @var{addr}.
922

    
923
@item xp /fmt addr
924
Physical memory dump starting at @var{addr}.
925

    
926
@var{fmt} is a format which tells the command how to format the
927
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
928

    
929
@table @var
930
@item count 
931
is the number of items to be dumped.
932

    
933
@item format
934
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
935
c (char) or i (asm instruction).
936

    
937
@item size
938
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
939
@code{h} or @code{w} can be specified with the @code{i} format to
940
respectively select 16 or 32 bit code instruction size.
941

    
942
@end table
943

    
944
Examples: 
945
@itemize
946
@item
947
Dump 10 instructions at the current instruction pointer:
948
@example 
949
(qemu) x/10i $eip
950
0x90107063:  ret
951
0x90107064:  sti
952
0x90107065:  lea    0x0(%esi,1),%esi
953
0x90107069:  lea    0x0(%edi,1),%edi
954
0x90107070:  ret
955
0x90107071:  jmp    0x90107080
956
0x90107073:  nop
957
0x90107074:  nop
958
0x90107075:  nop
959
0x90107076:  nop
960
@end example
961

    
962
@item
963
Dump 80 16 bit values at the start of the video memory.
964
@smallexample 
965
(qemu) xp/80hx 0xb8000
966
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
967
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
968
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
969
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
970
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
971
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
972
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
973
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
974
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
975
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
976
@end smallexample
977
@end itemize
978

    
979
@item p or print/fmt expr
980

    
981
Print expression value. Only the @var{format} part of @var{fmt} is
982
used.
983

    
984
@item sendkey keys
985

    
986
Send @var{keys} to the emulator. Use @code{-} to press several keys
987
simultaneously. Example:
988
@example
989
sendkey ctrl-alt-f1
990
@end example
991

    
992
This command is useful to send keys that your graphical user interface
993
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
994

    
995
@item system_reset
996

    
997
Reset the system.
998

    
999
@item usb_add devname
1000

    
1001
Add the USB device @var{devname}.  For details of available devices see
1002
@ref{usb_devices}
1003

    
1004
@item usb_del devname
1005

    
1006
Remove the USB device @var{devname} from the QEMU virtual USB
1007
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1008
command @code{info usb} to see the devices you can remove.
1009

    
1010
@end table
1011

    
1012
@subsection Integer expressions
1013

    
1014
The monitor understands integers expressions for every integer
1015
argument. You can use register names to get the value of specifics
1016
CPU registers by prefixing them with @emph{$}.
1017

    
1018
@node disk_images
1019
@section Disk Images
1020

    
1021
Since version 0.6.1, QEMU supports many disk image formats, including
1022
growable disk images (their size increase as non empty sectors are
1023
written), compressed and encrypted disk images. Version 0.8.3 added
1024
the new qcow2 disk image format which is essential to support VM
1025
snapshots.
1026

    
1027
@menu
1028
* disk_images_quickstart::    Quick start for disk image creation
1029
* disk_images_snapshot_mode:: Snapshot mode
1030
* vm_snapshots::              VM snapshots
1031
* qemu_img_invocation::       qemu-img Invocation
1032
* host_drives::               Using host drives
1033
* disk_images_fat_images::    Virtual FAT disk images
1034
@end menu
1035

    
1036
@node disk_images_quickstart
1037
@subsection Quick start for disk image creation
1038

    
1039
You can create a disk image with the command:
1040
@example
1041
qemu-img create myimage.img mysize
1042
@end example
1043
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1044
size in kilobytes. You can add an @code{M} suffix to give the size in
1045
megabytes and a @code{G} suffix for gigabytes.
1046

    
1047
See @ref{qemu_img_invocation} for more information.
1048

    
1049
@node disk_images_snapshot_mode
1050
@subsection Snapshot mode
1051

    
1052
If you use the option @option{-snapshot}, all disk images are
1053
considered as read only. When sectors in written, they are written in
1054
a temporary file created in @file{/tmp}. You can however force the
1055
write back to the raw disk images by using the @code{commit} monitor
1056
command (or @key{C-a s} in the serial console).
1057

    
1058
@node vm_snapshots
1059
@subsection VM snapshots
1060

    
1061
VM snapshots are snapshots of the complete virtual machine including
1062
CPU state, RAM, device state and the content of all the writable
1063
disks. In order to use VM snapshots, you must have at least one non
1064
removable and writable block device using the @code{qcow2} disk image
1065
format. Normally this device is the first virtual hard drive.
1066

    
1067
Use the monitor command @code{savevm} to create a new VM snapshot or
1068
replace an existing one. A human readable name can be assigned to each
1069
snapshot in addition to its numerical ID.
1070

    
1071
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1072
a VM snapshot. @code{info snapshots} lists the available snapshots
1073
with their associated information:
1074

    
1075
@example
1076
(qemu) info snapshots
1077
Snapshot devices: hda
1078
Snapshot list (from hda):
1079
ID        TAG                 VM SIZE                DATE       VM CLOCK
1080
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1081
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1082
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1083
@end example
1084

    
1085
A VM snapshot is made of a VM state info (its size is shown in
1086
@code{info snapshots}) and a snapshot of every writable disk image.
1087
The VM state info is stored in the first @code{qcow2} non removable
1088
and writable block device. The disk image snapshots are stored in
1089
every disk image. The size of a snapshot in a disk image is difficult
1090
to evaluate and is not shown by @code{info snapshots} because the
1091
associated disk sectors are shared among all the snapshots to save
1092
disk space (otherwise each snapshot would need a full copy of all the
1093
disk images).
1094

    
1095
When using the (unrelated) @code{-snapshot} option
1096
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1097
but they are deleted as soon as you exit QEMU.
1098

    
1099
VM snapshots currently have the following known limitations:
1100
@itemize
1101
@item 
1102
They cannot cope with removable devices if they are removed or
1103
inserted after a snapshot is done.
1104
@item 
1105
A few device drivers still have incomplete snapshot support so their
1106
state is not saved or restored properly (in particular USB).
1107
@end itemize
1108

    
1109
@node qemu_img_invocation
1110
@subsection @code{qemu-img} Invocation
1111

    
1112
@include qemu-img.texi
1113

    
1114
@node host_drives
1115
@subsection Using host drives
1116

    
1117
In addition to disk image files, QEMU can directly access host
1118
devices. We describe here the usage for QEMU version >= 0.8.3.
1119

    
1120
@subsubsection Linux
1121

    
1122
On Linux, you can directly use the host device filename instead of a
1123
disk image filename provided you have enough privileges to access
1124
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1125
@file{/dev/fd0} for the floppy.
1126

    
1127
@table @code
1128
@item CD
1129
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1130
specific code to detect CDROM insertion or removal. CDROM ejection by
1131
the guest OS is supported. Currently only data CDs are supported.
1132
@item Floppy
1133
You can specify a floppy device even if no floppy is loaded. Floppy
1134
removal is currently not detected accurately (if you change floppy
1135
without doing floppy access while the floppy is not loaded, the guest
1136
OS will think that the same floppy is loaded).
1137
@item Hard disks
1138
Hard disks can be used. Normally you must specify the whole disk
1139
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1140
see it as a partitioned disk. WARNING: unless you know what you do, it
1141
is better to only make READ-ONLY accesses to the hard disk otherwise
1142
you may corrupt your host data (use the @option{-snapshot} command
1143
line option or modify the device permissions accordingly).
1144
@end table
1145

    
1146
@subsubsection Windows
1147

    
1148
@table @code
1149
@item CD
1150
The preferred syntax is the drive letter (e.g. @file{d:}). The
1151
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1152
supported as an alias to the first CDROM drive.
1153

    
1154
Currently there is no specific code to handle removable media, so it
1155
is better to use the @code{change} or @code{eject} monitor commands to
1156
change or eject media.
1157
@item Hard disks
1158
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1159
where @var{N} is the drive number (0 is the first hard disk).
1160

    
1161
WARNING: unless you know what you do, it is better to only make
1162
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1163
host data (use the @option{-snapshot} command line so that the
1164
modifications are written in a temporary file).
1165
@end table
1166

    
1167

    
1168
@subsubsection Mac OS X
1169

    
1170
@file{/dev/cdrom} is an alias to the first CDROM. 
1171

    
1172
Currently there is no specific code to handle removable media, so it
1173
is better to use the @code{change} or @code{eject} monitor commands to
1174
change or eject media.
1175

    
1176
@node disk_images_fat_images
1177
@subsection Virtual FAT disk images
1178

    
1179
QEMU can automatically create a virtual FAT disk image from a
1180
directory tree. In order to use it, just type:
1181

    
1182
@example 
1183
qemu linux.img -hdb fat:/my_directory
1184
@end example
1185

    
1186
Then you access access to all the files in the @file{/my_directory}
1187
directory without having to copy them in a disk image or to export
1188
them via SAMBA or NFS. The default access is @emph{read-only}.
1189

    
1190
Floppies can be emulated with the @code{:floppy:} option:
1191

    
1192
@example 
1193
qemu linux.img -fda fat:floppy:/my_directory
1194
@end example
1195

    
1196
A read/write support is available for testing (beta stage) with the
1197
@code{:rw:} option:
1198

    
1199
@example 
1200
qemu linux.img -fda fat:floppy:rw:/my_directory
1201
@end example
1202

    
1203
What you should @emph{never} do:
1204
@itemize
1205
@item use non-ASCII filenames ;
1206
@item use "-snapshot" together with ":rw:" ;
1207
@item expect it to work when loadvm'ing ;
1208
@item write to the FAT directory on the host system while accessing it with the guest system.
1209
@end itemize
1210

    
1211
@node pcsys_network
1212
@section Network emulation
1213

    
1214
QEMU can simulate several network cards (PCI or ISA cards on the PC
1215
target) and can connect them to an arbitrary number of Virtual Local
1216
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1217
VLAN. VLAN can be connected between separate instances of QEMU to
1218
simulate large networks. For simpler usage, a non privileged user mode
1219
network stack can replace the TAP device to have a basic network
1220
connection.
1221

    
1222
@subsection VLANs
1223

    
1224
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1225
connection between several network devices. These devices can be for
1226
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1227
(TAP devices).
1228

    
1229
@subsection Using TAP network interfaces
1230

    
1231
This is the standard way to connect QEMU to a real network. QEMU adds
1232
a virtual network device on your host (called @code{tapN}), and you
1233
can then configure it as if it was a real ethernet card.
1234

    
1235
@subsubsection Linux host
1236

    
1237
As an example, you can download the @file{linux-test-xxx.tar.gz}
1238
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1239
configure properly @code{sudo} so that the command @code{ifconfig}
1240
contained in @file{qemu-ifup} can be executed as root. You must verify
1241
that your host kernel supports the TAP network interfaces: the
1242
device @file{/dev/net/tun} must be present.
1243

    
1244
See @ref{sec_invocation} to have examples of command lines using the
1245
TAP network interfaces.
1246

    
1247
@subsubsection Windows host
1248

    
1249
There is a virtual ethernet driver for Windows 2000/XP systems, called
1250
TAP-Win32. But it is not included in standard QEMU for Windows,
1251
so you will need to get it separately. It is part of OpenVPN package,
1252
so download OpenVPN from : @url{http://openvpn.net/}.
1253

    
1254
@subsection Using the user mode network stack
1255

    
1256
By using the option @option{-net user} (default configuration if no
1257
@option{-net} option is specified), QEMU uses a completely user mode
1258
network stack (you don't need root privilege to use the virtual
1259
network). The virtual network configuration is the following:
1260

    
1261
@example
1262

    
1263
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1264
                           |          (10.0.2.2)
1265
                           |
1266
                           ---->  DNS server (10.0.2.3)
1267
                           |     
1268
                           ---->  SMB server (10.0.2.4)
1269
@end example
1270

    
1271
The QEMU VM behaves as if it was behind a firewall which blocks all
1272
incoming connections. You can use a DHCP client to automatically
1273
configure the network in the QEMU VM. The DHCP server assign addresses
1274
to the hosts starting from 10.0.2.15.
1275

    
1276
In order to check that the user mode network is working, you can ping
1277
the address 10.0.2.2 and verify that you got an address in the range
1278
10.0.2.x from the QEMU virtual DHCP server.
1279

    
1280
Note that @code{ping} is not supported reliably to the internet as it
1281
would require root privileges. It means you can only ping the local
1282
router (10.0.2.2).
1283

    
1284
When using the built-in TFTP server, the router is also the TFTP
1285
server.
1286

    
1287
When using the @option{-redir} option, TCP or UDP connections can be
1288
redirected from the host to the guest. It allows for example to
1289
redirect X11, telnet or SSH connections.
1290

    
1291
@subsection Connecting VLANs between QEMU instances
1292

    
1293
Using the @option{-net socket} option, it is possible to make VLANs
1294
that span several QEMU instances. See @ref{sec_invocation} to have a
1295
basic example.
1296

    
1297
@node direct_linux_boot
1298
@section Direct Linux Boot
1299

    
1300
This section explains how to launch a Linux kernel inside QEMU without
1301
having to make a full bootable image. It is very useful for fast Linux
1302
kernel testing.
1303

    
1304
The syntax is:
1305
@example
1306
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1307
@end example
1308

    
1309
Use @option{-kernel} to provide the Linux kernel image and
1310
@option{-append} to give the kernel command line arguments. The
1311
@option{-initrd} option can be used to provide an INITRD image.
1312

    
1313
When using the direct Linux boot, a disk image for the first hard disk
1314
@file{hda} is required because its boot sector is used to launch the
1315
Linux kernel.
1316

    
1317
If you do not need graphical output, you can disable it and redirect
1318
the virtual serial port and the QEMU monitor to the console with the
1319
@option{-nographic} option. The typical command line is:
1320
@example
1321
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1322
     -append "root=/dev/hda console=ttyS0" -nographic
1323
@end example
1324

    
1325
Use @key{Ctrl-a c} to switch between the serial console and the
1326
monitor (@pxref{pcsys_keys}).
1327

    
1328
@node pcsys_usb
1329
@section USB emulation
1330

    
1331
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1332
virtual USB devices or real host USB devices (experimental, works only
1333
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1334
as necessary to connect multiple USB devices.
1335

    
1336
@menu
1337
* usb_devices::
1338
* host_usb_devices::
1339
@end menu
1340
@node usb_devices
1341
@subsection Connecting USB devices
1342

    
1343
USB devices can be connected with the @option{-usbdevice} commandline option
1344
or the @code{usb_add} monitor command.  Available devices are:
1345

    
1346
@table @var
1347
@item @code{mouse}
1348
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1349
@item @code{tablet}
1350
Pointer device that uses absolute coordinates (like a touchscreen).
1351
This means qemu is able to report the mouse position without having
1352
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1353
@item @code{disk:file}
1354
Mass storage device based on @var{file} (@pxref{disk_images})
1355
@item @code{host:bus.addr}
1356
Pass through the host device identified by @var{bus.addr}
1357
(Linux only)
1358
@item @code{host:vendor_id:product_id}
1359
Pass through the host device identified by @var{vendor_id:product_id}
1360
(Linux only)
1361
@end table
1362

    
1363
@node host_usb_devices
1364
@subsection Using host USB devices on a Linux host
1365

    
1366
WARNING: this is an experimental feature. QEMU will slow down when
1367
using it. USB devices requiring real time streaming (i.e. USB Video
1368
Cameras) are not supported yet.
1369

    
1370
@enumerate
1371
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1372
is actually using the USB device. A simple way to do that is simply to
1373
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1374
to @file{mydriver.o.disabled}.
1375

    
1376
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1377
@example
1378
ls /proc/bus/usb
1379
001  devices  drivers
1380
@end example
1381

    
1382
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1383
@example
1384
chown -R myuid /proc/bus/usb
1385
@end example
1386

    
1387
@item Launch QEMU and do in the monitor:
1388
@example 
1389
info usbhost
1390
  Device 1.2, speed 480 Mb/s
1391
    Class 00: USB device 1234:5678, USB DISK
1392
@end example
1393
You should see the list of the devices you can use (Never try to use
1394
hubs, it won't work).
1395

    
1396
@item Add the device in QEMU by using:
1397
@example 
1398
usb_add host:1234:5678
1399
@end example
1400

    
1401
Normally the guest OS should report that a new USB device is
1402
plugged. You can use the option @option{-usbdevice} to do the same.
1403

    
1404
@item Now you can try to use the host USB device in QEMU.
1405

    
1406
@end enumerate
1407

    
1408
When relaunching QEMU, you may have to unplug and plug again the USB
1409
device to make it work again (this is a bug).
1410

    
1411
@node gdb_usage
1412
@section GDB usage
1413

    
1414
QEMU has a primitive support to work with gdb, so that you can do
1415
'Ctrl-C' while the virtual machine is running and inspect its state.
1416

    
1417
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1418
gdb connection:
1419
@example
1420
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1421
       -append "root=/dev/hda"
1422
Connected to host network interface: tun0
1423
Waiting gdb connection on port 1234
1424
@end example
1425

    
1426
Then launch gdb on the 'vmlinux' executable:
1427
@example
1428
> gdb vmlinux
1429
@end example
1430

    
1431
In gdb, connect to QEMU:
1432
@example
1433
(gdb) target remote localhost:1234
1434
@end example
1435

    
1436
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1437
@example
1438
(gdb) c
1439
@end example
1440

    
1441
Here are some useful tips in order to use gdb on system code:
1442

    
1443
@enumerate
1444
@item
1445
Use @code{info reg} to display all the CPU registers.
1446
@item
1447
Use @code{x/10i $eip} to display the code at the PC position.
1448
@item
1449
Use @code{set architecture i8086} to dump 16 bit code. Then use
1450
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1451
@end enumerate
1452

    
1453
@node pcsys_os_specific
1454
@section Target OS specific information
1455

    
1456
@subsection Linux
1457

    
1458
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1459
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1460
color depth in the guest and the host OS.
1461

    
1462
When using a 2.6 guest Linux kernel, you should add the option
1463
@code{clock=pit} on the kernel command line because the 2.6 Linux
1464
kernels make very strict real time clock checks by default that QEMU
1465
cannot simulate exactly.
1466

    
1467
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1468
not activated because QEMU is slower with this patch. The QEMU
1469
Accelerator Module is also much slower in this case. Earlier Fedora
1470
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1471
patch by default. Newer kernels don't have it.
1472

    
1473
@subsection Windows
1474

    
1475
If you have a slow host, using Windows 95 is better as it gives the
1476
best speed. Windows 2000 is also a good choice.
1477

    
1478
@subsubsection SVGA graphic modes support
1479

    
1480
QEMU emulates a Cirrus Logic GD5446 Video
1481
card. All Windows versions starting from Windows 95 should recognize
1482
and use this graphic card. For optimal performances, use 16 bit color
1483
depth in the guest and the host OS.
1484

    
1485
If you are using Windows XP as guest OS and if you want to use high
1486
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1487
1280x1024x16), then you should use the VESA VBE virtual graphic card
1488
(option @option{-std-vga}).
1489

    
1490
@subsubsection CPU usage reduction
1491

    
1492
Windows 9x does not correctly use the CPU HLT
1493
instruction. The result is that it takes host CPU cycles even when
1494
idle. You can install the utility from
1495
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1496
problem. Note that no such tool is needed for NT, 2000 or XP.
1497

    
1498
@subsubsection Windows 2000 disk full problem
1499

    
1500
Windows 2000 has a bug which gives a disk full problem during its
1501
installation. When installing it, use the @option{-win2k-hack} QEMU
1502
option to enable a specific workaround. After Windows 2000 is
1503
installed, you no longer need this option (this option slows down the
1504
IDE transfers).
1505

    
1506
@subsubsection Windows 2000 shutdown
1507

    
1508
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1509
can. It comes from the fact that Windows 2000 does not automatically
1510
use the APM driver provided by the BIOS.
1511

    
1512
In order to correct that, do the following (thanks to Struan
1513
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1514
Add/Troubleshoot a device => Add a new device & Next => No, select the
1515
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1516
(again) a few times. Now the driver is installed and Windows 2000 now
1517
correctly instructs QEMU to shutdown at the appropriate moment. 
1518

    
1519
@subsubsection Share a directory between Unix and Windows
1520

    
1521
See @ref{sec_invocation} about the help of the option @option{-smb}.
1522

    
1523
@subsubsection Windows XP security problem
1524

    
1525
Some releases of Windows XP install correctly but give a security
1526
error when booting:
1527
@example
1528
A problem is preventing Windows from accurately checking the
1529
license for this computer. Error code: 0x800703e6.
1530
@end example
1531

    
1532
The workaround is to install a service pack for XP after a boot in safe
1533
mode. Then reboot, and the problem should go away. Since there is no
1534
network while in safe mode, its recommended to download the full
1535
installation of SP1 or SP2 and transfer that via an ISO or using the
1536
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1537

    
1538
@subsection MS-DOS and FreeDOS
1539

    
1540
@subsubsection CPU usage reduction
1541

    
1542
DOS does not correctly use the CPU HLT instruction. The result is that
1543
it takes host CPU cycles even when idle. You can install the utility
1544
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1545
problem.
1546

    
1547
@node QEMU System emulator for non PC targets
1548
@chapter QEMU System emulator for non PC targets
1549

    
1550
QEMU is a generic emulator and it emulates many non PC
1551
machines. Most of the options are similar to the PC emulator. The
1552
differences are mentioned in the following sections.
1553

    
1554
@menu
1555
* QEMU PowerPC System emulator::
1556
* Sparc32 System emulator invocation::
1557
* Sparc64 System emulator invocation::
1558
* MIPS System emulator invocation::
1559
* ARM System emulator invocation::
1560
* ColdFire System emulator invocation::
1561
@end menu
1562

    
1563
@node QEMU PowerPC System emulator
1564
@section QEMU PowerPC System emulator
1565

    
1566
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1567
or PowerMac PowerPC system.
1568

    
1569
QEMU emulates the following PowerMac peripherals:
1570

    
1571
@itemize @minus
1572
@item 
1573
UniNorth PCI Bridge 
1574
@item
1575
PCI VGA compatible card with VESA Bochs Extensions
1576
@item 
1577
2 PMAC IDE interfaces with hard disk and CD-ROM support
1578
@item 
1579
NE2000 PCI adapters
1580
@item
1581
Non Volatile RAM
1582
@item
1583
VIA-CUDA with ADB keyboard and mouse.
1584
@end itemize
1585

    
1586
QEMU emulates the following PREP peripherals:
1587

    
1588
@itemize @minus
1589
@item 
1590
PCI Bridge
1591
@item
1592
PCI VGA compatible card with VESA Bochs Extensions
1593
@item 
1594
2 IDE interfaces with hard disk and CD-ROM support
1595
@item
1596
Floppy disk
1597
@item 
1598
NE2000 network adapters
1599
@item
1600
Serial port
1601
@item
1602
PREP Non Volatile RAM
1603
@item
1604
PC compatible keyboard and mouse.
1605
@end itemize
1606

    
1607
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1608
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1609

    
1610
@c man begin OPTIONS
1611

    
1612
The following options are specific to the PowerPC emulation:
1613

    
1614
@table @option
1615

    
1616
@item -g WxH[xDEPTH]  
1617

    
1618
Set the initial VGA graphic mode. The default is 800x600x15.
1619

    
1620
@end table
1621

    
1622
@c man end 
1623

    
1624

    
1625
More information is available at
1626
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1627

    
1628
@node Sparc32 System emulator invocation
1629
@section Sparc32 System emulator invocation
1630

    
1631
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1632
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1633

    
1634
QEMU emulates the following sun4m peripherals:
1635

    
1636
@itemize @minus
1637
@item
1638
IOMMU
1639
@item
1640
TCX Frame buffer
1641
@item 
1642
Lance (Am7990) Ethernet
1643
@item
1644
Non Volatile RAM M48T08
1645
@item
1646
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1647
and power/reset logic
1648
@item
1649
ESP SCSI controller with hard disk and CD-ROM support
1650
@item
1651
Floppy drive
1652
@item
1653
CS4231 sound device (only on SS-5, not working yet)
1654
@end itemize
1655

    
1656
The number of peripherals is fixed in the architecture.
1657

    
1658
Since version 0.8.2, QEMU uses OpenBIOS
1659
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1660
firmware implementation. The goal is to implement a 100% IEEE
1661
1275-1994 (referred to as Open Firmware) compliant firmware.
1662

    
1663
A sample Linux 2.6 series kernel and ram disk image are available on
1664
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1665
Solaris kernels don't work.
1666

    
1667
@c man begin OPTIONS
1668

    
1669
The following options are specific to the Sparc32 emulation:
1670

    
1671
@table @option
1672

    
1673
@item -g WxHx[xDEPTH]
1674

    
1675
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1676
the only other possible mode is 1024x768x24.
1677

    
1678
@item -prom-env string
1679

    
1680
Set OpenBIOS variables in NVRAM, for example:
1681

    
1682
@example
1683
qemu-system-sparc -prom-env 'auto-boot?=false' \
1684
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1685
@end example
1686

    
1687
@item -M [SS-5|SS-10]
1688

    
1689
Set the emulated machine type. Default is SS-5.
1690

    
1691
@end table
1692

    
1693
@c man end 
1694

    
1695
@node Sparc64 System emulator invocation
1696
@section Sparc64 System emulator invocation
1697

    
1698
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1699
The emulator is not usable for anything yet.
1700

    
1701
QEMU emulates the following sun4u peripherals:
1702

    
1703
@itemize @minus
1704
@item
1705
UltraSparc IIi APB PCI Bridge 
1706
@item
1707
PCI VGA compatible card with VESA Bochs Extensions
1708
@item
1709
Non Volatile RAM M48T59
1710
@item
1711
PC-compatible serial ports
1712
@end itemize
1713

    
1714
@node MIPS System emulator invocation
1715
@section MIPS System emulator invocation
1716

    
1717
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1718
The emulator is able to boot a Linux kernel and to run a Linux Debian
1719
installation from NFS. The following devices are emulated:
1720

    
1721
@itemize @minus
1722
@item 
1723
MIPS R4K CPU
1724
@item
1725
PC style serial port
1726
@item
1727
NE2000 network card
1728
@end itemize
1729

    
1730
More information is available in the QEMU mailing-list archive.
1731

    
1732
@node ARM System emulator invocation
1733
@section ARM System emulator invocation
1734

    
1735
Use the executable @file{qemu-system-arm} to simulate a ARM
1736
machine. The ARM Integrator/CP board is emulated with the following
1737
devices:
1738

    
1739
@itemize @minus
1740
@item
1741
ARM926E, ARM1026E or ARM946E CPU
1742
@item
1743
Two PL011 UARTs
1744
@item 
1745
SMC 91c111 Ethernet adapter
1746
@item
1747
PL110 LCD controller
1748
@item
1749
PL050 KMI with PS/2 keyboard and mouse.
1750
@item
1751
PL181 MultiMedia Card Interface with SD card.
1752
@end itemize
1753

    
1754
The ARM Versatile baseboard is emulated with the following devices:
1755

    
1756
@itemize @minus
1757
@item
1758
ARM926E CPU
1759
@item
1760
PL190 Vectored Interrupt Controller
1761
@item
1762
Four PL011 UARTs
1763
@item 
1764
SMC 91c111 Ethernet adapter
1765
@item
1766
PL110 LCD controller
1767
@item
1768
PL050 KMI with PS/2 keyboard and mouse.
1769
@item
1770
PCI host bridge.  Note the emulated PCI bridge only provides access to
1771
PCI memory space.  It does not provide access to PCI IO space.
1772
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1773
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1774
mapped control registers.
1775
@item
1776
PCI OHCI USB controller.
1777
@item
1778
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1779
@item
1780
PL181 MultiMedia Card Interface with SD card.
1781
@end itemize
1782

    
1783
The ARM RealView Emulation baseboard is emulated with the following devices:
1784

    
1785
@itemize @minus
1786
@item
1787
ARM926E CPU
1788
@item
1789
ARM AMBA Generic/Distributed Interrupt Controller
1790
@item
1791
Four PL011 UARTs
1792
@item 
1793
SMC 91c111 Ethernet adapter
1794
@item
1795
PL110 LCD controller
1796
@item
1797
PL050 KMI with PS/2 keyboard and mouse
1798
@item
1799
PCI host bridge
1800
@item
1801
PCI OHCI USB controller
1802
@item
1803
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1804
@item
1805
PL181 MultiMedia Card Interface with SD card.
1806
@end itemize
1807

    
1808
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1809
and "Terrier") emulation includes the following peripherals:
1810

    
1811
@itemize @minus
1812
@item
1813
Intel PXA270 System-on-chip (ARM V5TE core)
1814
@item
1815
NAND Flash memory
1816
@item
1817
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1818
@item
1819
On-chip OHCI USB controller
1820
@item
1821
On-chip LCD controller
1822
@item
1823
On-chip Real Time Clock
1824
@item
1825
TI ADS7846 touchscreen controller on SSP bus
1826
@item
1827
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1828
@item
1829
GPIO-connected keyboard controller and LEDs
1830
@item
1831
Secure Digital card connected to PXA MMC/SD host
1832
@item
1833
Three on-chip UARTs
1834
@item
1835
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1836
@end itemize
1837

    
1838
A Linux 2.6 test image is available on the QEMU web site. More
1839
information is available in the QEMU mailing-list archive.
1840

    
1841
@node ColdFire System emulator invocation
1842
@section ColdFire System emulator invocation
1843

    
1844
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1845
The emulator is able to boot a uClinux kernel.
1846

    
1847
The M5208EVB emulation includes the following devices:
1848

    
1849
@itemize @minus
1850
@item 
1851
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1852
@item
1853
Three Two on-chip UARTs.
1854
@item
1855
Fast Ethernet Controller (FEC)
1856
@end itemize
1857

    
1858
The AN5206 emulation includes the following devices:
1859

    
1860
@itemize @minus
1861
@item 
1862
MCF5206 ColdFire V2 Microprocessor.
1863
@item
1864
Two on-chip UARTs.
1865
@end itemize
1866

    
1867
@node QEMU User space emulator 
1868
@chapter QEMU User space emulator 
1869

    
1870
@menu
1871
* Supported Operating Systems ::
1872
* Linux User space emulator::
1873
* Mac OS X/Darwin User space emulator ::
1874
@end menu
1875

    
1876
@node Supported Operating Systems
1877
@section Supported Operating Systems
1878

    
1879
The following OS are supported in user space emulation:
1880

    
1881
@itemize @minus
1882
@item
1883
Linux (referred as qemu-linux-user)
1884
@item
1885
Mac OS X/Darwin (referred as qemu-darwin-user)
1886
@end itemize
1887

    
1888
@node Linux User space emulator
1889
@section Linux User space emulator
1890

    
1891
@menu
1892
* Quick Start::
1893
* Wine launch::
1894
* Command line options::
1895
* Other binaries::
1896
@end menu
1897

    
1898
@node Quick Start
1899
@subsection Quick Start
1900

    
1901
In order to launch a Linux process, QEMU needs the process executable
1902
itself and all the target (x86) dynamic libraries used by it. 
1903

    
1904
@itemize
1905

    
1906
@item On x86, you can just try to launch any process by using the native
1907
libraries:
1908

    
1909
@example 
1910
qemu-i386 -L / /bin/ls
1911
@end example
1912

    
1913
@code{-L /} tells that the x86 dynamic linker must be searched with a
1914
@file{/} prefix.
1915

    
1916
@item Since QEMU is also a linux process, you can launch qemu with
1917
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1918

    
1919
@example 
1920
qemu-i386 -L / qemu-i386 -L / /bin/ls
1921
@end example
1922

    
1923
@item On non x86 CPUs, you need first to download at least an x86 glibc
1924
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1925
@code{LD_LIBRARY_PATH} is not set:
1926

    
1927
@example
1928
unset LD_LIBRARY_PATH 
1929
@end example
1930

    
1931
Then you can launch the precompiled @file{ls} x86 executable:
1932

    
1933
@example
1934
qemu-i386 tests/i386/ls
1935
@end example
1936
You can look at @file{qemu-binfmt-conf.sh} so that
1937
QEMU is automatically launched by the Linux kernel when you try to
1938
launch x86 executables. It requires the @code{binfmt_misc} module in the
1939
Linux kernel.
1940

    
1941
@item The x86 version of QEMU is also included. You can try weird things such as:
1942
@example
1943
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1944
          /usr/local/qemu-i386/bin/ls-i386
1945
@end example
1946

    
1947
@end itemize
1948

    
1949
@node Wine launch
1950
@subsection Wine launch
1951

    
1952
@itemize
1953

    
1954
@item Ensure that you have a working QEMU with the x86 glibc
1955
distribution (see previous section). In order to verify it, you must be
1956
able to do:
1957

    
1958
@example
1959
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1960
@end example
1961

    
1962
@item Download the binary x86 Wine install
1963
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1964

    
1965
@item Configure Wine on your account. Look at the provided script
1966
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1967
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1968

    
1969
@item Then you can try the example @file{putty.exe}:
1970

    
1971
@example
1972
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1973
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1974
@end example
1975

    
1976
@end itemize
1977

    
1978
@node Command line options
1979
@subsection Command line options
1980

    
1981
@example
1982
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1983
@end example
1984

    
1985
@table @option
1986
@item -h
1987
Print the help
1988
@item -L path   
1989
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1990
@item -s size
1991
Set the x86 stack size in bytes (default=524288)
1992
@end table
1993

    
1994
Debug options:
1995

    
1996
@table @option
1997
@item -d
1998
Activate log (logfile=/tmp/qemu.log)
1999
@item -p pagesize
2000
Act as if the host page size was 'pagesize' bytes
2001
@end table
2002

    
2003
@node Other binaries
2004
@subsection Other binaries
2005

    
2006
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2007
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2008
configurations), and arm-uclinux bFLT format binaries.
2009

    
2010
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2011
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2012
coldfire uClinux bFLT format binaries.
2013

    
2014
The binary format is detected automatically.
2015

    
2016
@node Mac OS X/Darwin User space emulator
2017
@section Mac OS X/Darwin User space emulator
2018

    
2019
@menu
2020
* Mac OS X/Darwin Status::
2021
* Mac OS X/Darwin Quick Start::
2022
* Mac OS X/Darwin Command line options::
2023
@end menu
2024

    
2025
@node Mac OS X/Darwin Status
2026
@subsection Mac OS X/Darwin Status
2027

    
2028
@itemize @minus
2029
@item
2030
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2031
@item
2032
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2033
@item
2034
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2035
@item
2036
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2037
@end itemize
2038

    
2039
[1] If you're host commpage can be executed by qemu.
2040

    
2041
@node Mac OS X/Darwin Quick Start
2042
@subsection Quick Start
2043

    
2044
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2045
itself and all the target dynamic libraries used by it. If you don't have the FAT
2046
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2047
CD or compile them by hand.
2048

    
2049
@itemize
2050

    
2051
@item On x86, you can just try to launch any process by using the native
2052
libraries:
2053

    
2054
@example 
2055
qemu-i386 /bin/ls
2056
@end example
2057

    
2058
or to run the ppc version of the executable:
2059

    
2060
@example 
2061
qemu-ppc /bin/ls
2062
@end example
2063

    
2064
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2065
are installed:
2066

    
2067
@example 
2068
qemu-i386 -L /opt/x86_root/ /bin/ls
2069
@end example
2070

    
2071
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2072
@file{/opt/x86_root/usr/bin/dyld}.
2073

    
2074
@end itemize
2075

    
2076
@node Mac OS X/Darwin Command line options
2077
@subsection Command line options
2078

    
2079
@example
2080
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2081
@end example
2082

    
2083
@table @option
2084
@item -h
2085
Print the help
2086
@item -L path   
2087
Set the library root path (default=/)
2088
@item -s size
2089
Set the stack size in bytes (default=524288)
2090
@end table
2091

    
2092
Debug options:
2093

    
2094
@table @option
2095
@item -d
2096
Activate log (logfile=/tmp/qemu.log)
2097
@item -p pagesize
2098
Act as if the host page size was 'pagesize' bytes
2099
@end table
2100

    
2101
@node compilation
2102
@chapter Compilation from the sources
2103

    
2104
@menu
2105
* Linux/Unix::
2106
* Windows::
2107
* Cross compilation for Windows with Linux::
2108
* Mac OS X::
2109
@end menu
2110

    
2111
@node Linux/Unix
2112
@section Linux/Unix
2113

    
2114
@subsection Compilation
2115

    
2116
First you must decompress the sources:
2117
@example
2118
cd /tmp
2119
tar zxvf qemu-x.y.z.tar.gz
2120
cd qemu-x.y.z
2121
@end example
2122

    
2123
Then you configure QEMU and build it (usually no options are needed):
2124
@example
2125
./configure
2126
make
2127
@end example
2128

    
2129
Then type as root user:
2130
@example
2131
make install
2132
@end example
2133
to install QEMU in @file{/usr/local}.
2134

    
2135
@subsection GCC version
2136

    
2137
In order to compile QEMU successfully, it is very important that you
2138
have the right tools. The most important one is gcc. On most hosts and
2139
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2140
Linux distribution includes a gcc 4.x compiler, you can usually
2141
install an older version (it is invoked by @code{gcc32} or
2142
@code{gcc34}). The QEMU configure script automatically probes for
2143
these older versions so that usually you don't have to do anything.
2144

    
2145
@node Windows
2146
@section Windows
2147

    
2148
@itemize
2149
@item Install the current versions of MSYS and MinGW from
2150
@url{http://www.mingw.org/}. You can find detailed installation
2151
instructions in the download section and the FAQ.
2152

    
2153
@item Download 
2154
the MinGW development library of SDL 1.2.x
2155
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2156
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2157
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2158
directory. Edit the @file{sdl-config} script so that it gives the
2159
correct SDL directory when invoked.
2160

    
2161
@item Extract the current version of QEMU.
2162
 
2163
@item Start the MSYS shell (file @file{msys.bat}).
2164

    
2165
@item Change to the QEMU directory. Launch @file{./configure} and 
2166
@file{make}.  If you have problems using SDL, verify that
2167
@file{sdl-config} can be launched from the MSYS command line.
2168

    
2169
@item You can install QEMU in @file{Program Files/Qemu} by typing 
2170
@file{make install}. Don't forget to copy @file{SDL.dll} in
2171
@file{Program Files/Qemu}.
2172

    
2173
@end itemize
2174

    
2175
@node Cross compilation for Windows with Linux
2176
@section Cross compilation for Windows with Linux
2177

    
2178
@itemize
2179
@item
2180
Install the MinGW cross compilation tools available at
2181
@url{http://www.mingw.org/}.
2182

    
2183
@item 
2184
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2185
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2186
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2187
the QEMU configuration script.
2188

    
2189
@item 
2190
Configure QEMU for Windows cross compilation:
2191
@example
2192
./configure --enable-mingw32
2193
@end example
2194
If necessary, you can change the cross-prefix according to the prefix
2195
chosen for the MinGW tools with --cross-prefix. You can also use
2196
--prefix to set the Win32 install path.
2197

    
2198
@item You can install QEMU in the installation directory by typing 
2199
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2200
installation directory. 
2201

    
2202
@end itemize
2203

    
2204
Note: Currently, Wine does not seem able to launch
2205
QEMU for Win32.
2206

    
2207
@node Mac OS X
2208
@section Mac OS X
2209

    
2210
The Mac OS X patches are not fully merged in QEMU, so you should look
2211
at the QEMU mailing list archive to have all the necessary
2212
information.
2213

    
2214
@node Index
2215
@chapter Index
2216
@printindex cp
2217

    
2218
@bye