Statistics
| Branch: | Revision:

root / qemu-doc.texi @ a35f3ec7

History | View | Annotate | Download (84.4 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@end itemize
91

    
92
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
93

    
94
@node Installation
95
@chapter Installation
96

    
97
If you want to compile QEMU yourself, see @ref{compilation}.
98

    
99
@menu
100
* install_linux::   Linux
101
* install_windows:: Windows
102
* install_mac::     Macintosh
103
@end menu
104

    
105
@node install_linux
106
@section Linux
107

    
108
If a precompiled package is available for your distribution - you just
109
have to install it. Otherwise, see @ref{compilation}.
110

    
111
@node install_windows
112
@section Windows
113

    
114
Download the experimental binary installer at
115
@url{http://www.free.oszoo.org/@/download.html}.
116

    
117
@node install_mac
118
@section Mac OS X
119

    
120
Download the experimental binary installer at
121
@url{http://www.free.oszoo.org/@/download.html}.
122

    
123
@node QEMU PC System emulator
124
@chapter QEMU PC System emulator
125

    
126
@menu
127
* pcsys_introduction:: Introduction
128
* pcsys_quickstart::   Quick Start
129
* sec_invocation::     Invocation
130
* pcsys_keys::         Keys
131
* pcsys_monitor::      QEMU Monitor
132
* disk_images::        Disk Images
133
* pcsys_network::      Network emulation
134
* direct_linux_boot::  Direct Linux Boot
135
* pcsys_usb::          USB emulation
136
* vnc_security::       VNC security
137
* gdb_usage::          GDB usage
138
* pcsys_os_specific::  Target OS specific information
139
@end menu
140

    
141
@node pcsys_introduction
142
@section Introduction
143

    
144
@c man begin DESCRIPTION
145

    
146
The QEMU PC System emulator simulates the
147
following peripherals:
148

    
149
@itemize @minus
150
@item
151
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
152
@item
153
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
154
extensions (hardware level, including all non standard modes).
155
@item
156
PS/2 mouse and keyboard
157
@item
158
2 PCI IDE interfaces with hard disk and CD-ROM support
159
@item
160
Floppy disk
161
@item
162
PCI/ISA PCI network adapters
163
@item
164
Serial ports
165
@item
166
Creative SoundBlaster 16 sound card
167
@item
168
ENSONIQ AudioPCI ES1370 sound card
169
@item
170
Intel 82801AA AC97 Audio compatible sound card
171
@item
172
Adlib(OPL2) - Yamaha YM3812 compatible chip
173
@item
174
Gravis Ultrasound GF1 sound card
175
@item
176
PCI UHCI USB controller and a virtual USB hub.
177
@end itemize
178

    
179
SMP is supported with up to 255 CPUs.
180

    
181
Note that adlib, ac97 and gus are only available when QEMU was configured
182
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
183

    
184
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
185
VGA BIOS.
186

    
187
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
188

    
189
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
190
by Tibor "TS" Schütz.
191

    
192
@c man end
193

    
194
@node pcsys_quickstart
195
@section Quick Start
196

    
197
Download and uncompress the linux image (@file{linux.img}) and type:
198

    
199
@example
200
qemu linux.img
201
@end example
202

    
203
Linux should boot and give you a prompt.
204

    
205
@node sec_invocation
206
@section Invocation
207

    
208
@example
209
@c man begin SYNOPSIS
210
usage: qemu [options] [@var{disk_image}]
211
@c man end
212
@end example
213

    
214
@c man begin OPTIONS
215
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
216

    
217
General options:
218
@table @option
219
@item -M @var{machine}
220
Select the emulated @var{machine} (@code{-M ?} for list)
221

    
222
@item -fda @var{file}
223
@item -fdb @var{file}
224
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
225
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
226

    
227
@item -hda @var{file}
228
@item -hdb @var{file}
229
@item -hdc @var{file}
230
@item -hdd @var{file}
231
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
232

    
233
@item -cdrom @var{file}
234
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
235
@option{-cdrom} at the same time). You can use the host CD-ROM by
236
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
237

    
238
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
239

    
240
Define a new drive. Valid options are:
241

    
242
@table @code
243
@item file=@var{file}
244
This option defines which disk image (@pxref{disk_images}) to use with
245
this drive. If the filename contains comma, you must double it
246
(for instance, "file=my,,file" to use file "my,file").
247
@item if=@var{interface}
248
This option defines on which type on interface the drive is connected.
249
Available types are: ide, scsi, sd, mtd, floppy, pflash.
250
@item bus=@var{bus},unit=@var{unit}
251
These options define where is connected the drive by defining the bus number and
252
the unit id.
253
@item index=@var{index}
254
This option defines where is connected the drive by using an index in the list
255
of available connectors of a given interface type.
256
@item media=@var{media}
257
This option defines the type of the media: disk or cdrom.
258
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
259
These options have the same definition as they have in @option{-hdachs}.
260
@item snapshot=@var{snapshot}
261
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
262
@item cache=@var{cache}
263
@var{cache} is "on" or "off" and allows to disable host cache to access data.
264
@end table
265

    
266
Instead of @option{-cdrom} you can use:
267
@example
268
qemu -drive file=file,index=2,media=cdrom
269
@end example
270

    
271
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
272
use:
273
@example
274
qemu -drive file=file,index=0,media=disk
275
qemu -drive file=file,index=1,media=disk
276
qemu -drive file=file,index=2,media=disk
277
qemu -drive file=file,index=3,media=disk
278
@end example
279

    
280
You can connect a CDROM to the slave of ide0:
281
@example
282
qemu -drive file=file,if=ide,index=1,media=cdrom
283
@end example
284

    
285
If you don't specify the "file=" argument, you define an empty drive:
286
@example
287
qemu -drive if=ide,index=1,media=cdrom
288
@end example
289

    
290
You can connect a SCSI disk with unit ID 6 on the bus #0:
291
@example
292
qemu -drive file=file,if=scsi,bus=0,unit=6
293
@end example
294

    
295
Instead of @option{-fda}, @option{-fdb}, you can use:
296
@example
297
qemu -drive file=file,index=0,if=floppy
298
qemu -drive file=file,index=1,if=floppy
299
@end example
300

    
301
By default, @var{interface} is "ide" and @var{index} is automatically
302
incremented:
303
@example
304
qemu -drive file=a -drive file=b"
305
@end example
306
is interpreted like:
307
@example
308
qemu -hda a -hdb b
309
@end example
310

    
311
@item -boot [a|c|d|n]
312
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
313
is the default.
314

    
315
@item -snapshot
316
Write to temporary files instead of disk image files. In this case,
317
the raw disk image you use is not written back. You can however force
318
the write back by pressing @key{C-a s} (@pxref{disk_images}).
319

    
320
@item -no-fd-bootchk
321
Disable boot signature checking for floppy disks in Bochs BIOS. It may
322
be needed to boot from old floppy disks.
323

    
324
@item -m @var{megs}
325
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
326

    
327
@item -smp @var{n}
328
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
329
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
330
to 4.
331

    
332
@item -audio-help
333

    
334
Will show the audio subsystem help: list of drivers, tunable
335
parameters.
336

    
337
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338

    
339
Enable audio and selected sound hardware. Use ? to print all
340
available sound hardware.
341

    
342
@example
343
qemu -soundhw sb16,adlib hda
344
qemu -soundhw es1370 hda
345
qemu -soundhw ac97 hda
346
qemu -soundhw all hda
347
qemu -soundhw ?
348
@end example
349

    
350
Note that Linux's i810_audio OSS kernel (for AC97) module might
351
require manually specifying clocking.
352

    
353
@example
354
modprobe i810_audio clocking=48000
355
@end example
356

    
357
@item -localtime
358
Set the real time clock to local time (the default is to UTC
359
time). This option is needed to have correct date in MS-DOS or
360
Windows.
361

    
362
@item -startdate @var{date}
363
Set the initial date of the real time clock. Valid format for
364
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
365
@code{2006-06-17}. The default value is @code{now}.
366

    
367
@item -pidfile @var{file}
368
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
369
from a script.
370

    
371
@item -daemonize
372
Daemonize the QEMU process after initialization.  QEMU will not detach from
373
standard IO until it is ready to receive connections on any of its devices.
374
This option is a useful way for external programs to launch QEMU without having
375
to cope with initialization race conditions.
376

    
377
@item -win2k-hack
378
Use it when installing Windows 2000 to avoid a disk full bug. After
379
Windows 2000 is installed, you no longer need this option (this option
380
slows down the IDE transfers).
381

    
382
@item -option-rom @var{file}
383
Load the contents of @var{file} as an option ROM.
384
This option is useful to load things like EtherBoot.
385

    
386
@item -name @var{name}
387
Sets the @var{name} of the guest.
388
This name will be display in the SDL window caption.
389
The @var{name} will also be used for the VNC server.
390

    
391
@end table
392

    
393
Display options:
394
@table @option
395

    
396
@item -nographic
397

    
398
Normally, QEMU uses SDL to display the VGA output. With this option,
399
you can totally disable graphical output so that QEMU is a simple
400
command line application. The emulated serial port is redirected on
401
the console. Therefore, you can still use QEMU to debug a Linux kernel
402
with a serial console.
403

    
404
@item -curses
405

    
406
Normally, QEMU uses SDL to display the VGA output.  With this option,
407
QEMU can display the VGA output when in text mode using a 
408
curses/ncurses interface.  Nothing is displayed in graphical mode.
409

    
410
@item -no-frame
411

    
412
Do not use decorations for SDL windows and start them using the whole
413
available screen space. This makes the using QEMU in a dedicated desktop
414
workspace more convenient.
415

    
416
@item -full-screen
417
Start in full screen.
418

    
419
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
420

    
421
Normally, QEMU uses SDL to display the VGA output.  With this option,
422
you can have QEMU listen on VNC display @var{display} and redirect the VGA
423
display over the VNC session.  It is very useful to enable the usb
424
tablet device when using this option (option @option{-usbdevice
425
tablet}). When using the VNC display, you must use the @option{-k}
426
parameter to set the keyboard layout if you are not using en-us. Valid
427
syntax for the @var{display} is
428

    
429
@table @code
430

    
431
@item @var{host}:@var{d}
432

    
433
TCP connections will only be allowed from @var{host} on display @var{d}.
434
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
435
be omitted in which case the server will accept connections from any host.
436

    
437
@item @code{unix}:@var{path}
438

    
439
Connections will be allowed over UNIX domain sockets where @var{path} is the
440
location of a unix socket to listen for connections on.
441

    
442
@item none
443

    
444
VNC is initialized but not started. The monitor @code{change} command
445
can be used to later start the VNC server.
446

    
447
@end table
448

    
449
Following the @var{display} value there may be one or more @var{option} flags
450
separated by commas. Valid options are
451

    
452
@table @code
453

    
454
@item reverse
455

    
456
Connect to a listening VNC client via a ``reverse'' connection. The
457
client is specified by the @var{display}. For reverse network
458
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
459
is a TCP port number, not a display number.
460

    
461
@item password
462

    
463
Require that password based authentication is used for client connections.
464
The password must be set separately using the @code{change} command in the
465
@ref{pcsys_monitor}
466

    
467
@item tls
468

    
469
Require that client use TLS when communicating with the VNC server. This
470
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
471
attack. It is recommended that this option be combined with either the
472
@var{x509} or @var{x509verify} options.
473

    
474
@item x509=@var{/path/to/certificate/dir}
475

    
476
Valid if @option{tls} is specified. Require that x509 credentials are used
477
for negotiating the TLS session. The server will send its x509 certificate
478
to the client. It is recommended that a password be set on the VNC server
479
to provide authentication of the client when this is used. The path following
480
this option specifies where the x509 certificates are to be loaded from.
481
See the @ref{vnc_security} section for details on generating certificates.
482

    
483
@item x509verify=@var{/path/to/certificate/dir}
484

    
485
Valid if @option{tls} is specified. Require that x509 credentials are used
486
for negotiating the TLS session. The server will send its x509 certificate
487
to the client, and request that the client send its own x509 certificate.
488
The server will validate the client's certificate against the CA certificate,
489
and reject clients when validation fails. If the certificate authority is
490
trusted, this is a sufficient authentication mechanism. You may still wish
491
to set a password on the VNC server as a second authentication layer. The
492
path following this option specifies where the x509 certificates are to
493
be loaded from. See the @ref{vnc_security} section for details on generating
494
certificates.
495

    
496
@end table
497

    
498
@item -k @var{language}
499

    
500
Use keyboard layout @var{language} (for example @code{fr} for
501
French). This option is only needed where it is not easy to get raw PC
502
keycodes (e.g. on Macs, with some X11 servers or with a VNC
503
display). You don't normally need to use it on PC/Linux or PC/Windows
504
hosts.
505

    
506
The available layouts are:
507
@example
508
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
509
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
510
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
511
@end example
512

    
513
The default is @code{en-us}.
514

    
515
@end table
516

    
517
USB options:
518
@table @option
519

    
520
@item -usb
521
Enable the USB driver (will be the default soon)
522

    
523
@item -usbdevice @var{devname}
524
Add the USB device @var{devname}. @xref{usb_devices}.
525

    
526
@table @code
527

    
528
@item mouse
529
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
530

    
531
@item tablet
532
Pointer device that uses absolute coordinates (like a touchscreen). This
533
means qemu is able to report the mouse position without having to grab the
534
mouse. Also overrides the PS/2 mouse emulation when activated.
535

    
536
@item disk:file
537
Mass storage device based on file
538

    
539
@item host:bus.addr
540
Pass through the host device identified by bus.addr (Linux only).
541

    
542
@item host:vendor_id:product_id
543
Pass through the host device identified by vendor_id:product_id (Linux only).
544

    
545
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
546
Serial converter to host character device @var{dev}, see @code{-serial} for the
547
available devices.
548

    
549
@item braille
550
Braille device.  This will use BrlAPI to display the braille output on a real
551
or fake device.
552

    
553
@end table
554

    
555
@end table
556

    
557
Network options:
558

    
559
@table @option
560

    
561
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
562
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
563
= 0 is the default). The NIC is an ne2k_pci by default on the PC
564
target. Optionally, the MAC address can be changed. If no
565
@option{-net} option is specified, a single NIC is created.
566
Qemu can emulate several different models of network card.
567
Valid values for @var{type} are
568
@code{i82551}, @code{i82557b}, @code{i82559er},
569
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
570
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
571
Not all devices are supported on all targets.  Use -net nic,model=?
572
for a list of available devices for your target.
573

    
574
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
575
Use the user mode network stack which requires no administrator
576
privilege to run.  @option{hostname=name} can be used to specify the client
577
hostname reported by the builtin DHCP server.
578

    
579
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
580
Connect the host TAP network interface @var{name} to VLAN @var{n} and
581
use the network script @var{file} to configure it. The default
582
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
583
disable script execution. If @var{name} is not
584
provided, the OS automatically provides one. @option{fd}=@var{h} can be
585
used to specify the handle of an already opened host TAP interface. Example:
586

    
587
@example
588
qemu linux.img -net nic -net tap
589
@end example
590

    
591
More complicated example (two NICs, each one connected to a TAP device)
592
@example
593
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
594
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
595
@end example
596

    
597

    
598
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
599

    
600
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
601
machine using a TCP socket connection. If @option{listen} is
602
specified, QEMU waits for incoming connections on @var{port}
603
(@var{host} is optional). @option{connect} is used to connect to
604
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
605
specifies an already opened TCP socket.
606

    
607
Example:
608
@example
609
# launch a first QEMU instance
610
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
611
               -net socket,listen=:1234
612
# connect the VLAN 0 of this instance to the VLAN 0
613
# of the first instance
614
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
615
               -net socket,connect=127.0.0.1:1234
616
@end example
617

    
618
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
619

    
620
Create a VLAN @var{n} shared with another QEMU virtual
621
machines using a UDP multicast socket, effectively making a bus for
622
every QEMU with same multicast address @var{maddr} and @var{port}.
623
NOTES:
624
@enumerate
625
@item
626
Several QEMU can be running on different hosts and share same bus (assuming
627
correct multicast setup for these hosts).
628
@item
629
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
630
@url{http://user-mode-linux.sf.net}.
631
@item
632
Use @option{fd=h} to specify an already opened UDP multicast socket.
633
@end enumerate
634

    
635
Example:
636
@example
637
# launch one QEMU instance
638
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
639
               -net socket,mcast=230.0.0.1:1234
640
# launch another QEMU instance on same "bus"
641
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
642
               -net socket,mcast=230.0.0.1:1234
643
# launch yet another QEMU instance on same "bus"
644
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
645
               -net socket,mcast=230.0.0.1:1234
646
@end example
647

    
648
Example (User Mode Linux compat.):
649
@example
650
# launch QEMU instance (note mcast address selected
651
# is UML's default)
652
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
653
               -net socket,mcast=239.192.168.1:1102
654
# launch UML
655
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
656
@end example
657

    
658
@item -net none
659
Indicate that no network devices should be configured. It is used to
660
override the default configuration (@option{-net nic -net user}) which
661
is activated if no @option{-net} options are provided.
662

    
663
@item -tftp @var{dir}
664
When using the user mode network stack, activate a built-in TFTP
665
server. The files in @var{dir} will be exposed as the root of a TFTP server.
666
The TFTP client on the guest must be configured in binary mode (use the command
667
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
668
usual 10.0.2.2.
669

    
670
@item -bootp @var{file}
671
When using the user mode network stack, broadcast @var{file} as the BOOTP
672
filename.  In conjunction with @option{-tftp}, this can be used to network boot
673
a guest from a local directory.
674

    
675
Example (using pxelinux):
676
@example
677
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
678
@end example
679

    
680
@item -smb @var{dir}
681
When using the user mode network stack, activate a built-in SMB
682
server so that Windows OSes can access to the host files in @file{@var{dir}}
683
transparently.
684

    
685
In the guest Windows OS, the line:
686
@example
687
10.0.2.4 smbserver
688
@end example
689
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
690
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
691

    
692
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
693

    
694
Note that a SAMBA server must be installed on the host OS in
695
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
696
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
697

    
698
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
699

    
700
When using the user mode network stack, redirect incoming TCP or UDP
701
connections to the host port @var{host-port} to the guest
702
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
703
is not specified, its value is 10.0.2.15 (default address given by the
704
built-in DHCP server).
705

    
706
For example, to redirect host X11 connection from screen 1 to guest
707
screen 0, use the following:
708

    
709
@example
710
# on the host
711
qemu -redir tcp:6001::6000 [...]
712
# this host xterm should open in the guest X11 server
713
xterm -display :1
714
@end example
715

    
716
To redirect telnet connections from host port 5555 to telnet port on
717
the guest, use the following:
718

    
719
@example
720
# on the host
721
qemu -redir tcp:5555::23 [...]
722
telnet localhost 5555
723
@end example
724

    
725
Then when you use on the host @code{telnet localhost 5555}, you
726
connect to the guest telnet server.
727

    
728
@end table
729

    
730
Linux boot specific: When using these options, you can use a given
731
Linux kernel without installing it in the disk image. It can be useful
732
for easier testing of various kernels.
733

    
734
@table @option
735

    
736
@item -kernel @var{bzImage}
737
Use @var{bzImage} as kernel image.
738

    
739
@item -append @var{cmdline}
740
Use @var{cmdline} as kernel command line
741

    
742
@item -initrd @var{file}
743
Use @var{file} as initial ram disk.
744

    
745
@end table
746

    
747
Debug/Expert options:
748
@table @option
749

    
750
@item -serial @var{dev}
751
Redirect the virtual serial port to host character device
752
@var{dev}. The default device is @code{vc} in graphical mode and
753
@code{stdio} in non graphical mode.
754

    
755
This option can be used several times to simulate up to 4 serials
756
ports.
757

    
758
Use @code{-serial none} to disable all serial ports.
759

    
760
Available character devices are:
761
@table @code
762
@item vc[:WxH]
763
Virtual console. Optionally, a width and height can be given in pixel with
764
@example
765
vc:800x600
766
@end example
767
It is also possible to specify width or height in characters:
768
@example
769
vc:80Cx24C
770
@end example
771
@item pty
772
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
773
@item none
774
No device is allocated.
775
@item null
776
void device
777
@item /dev/XXX
778
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
779
parameters are set according to the emulated ones.
780
@item /dev/parport@var{N}
781
[Linux only, parallel port only] Use host parallel port
782
@var{N}. Currently SPP and EPP parallel port features can be used.
783
@item file:@var{filename}
784
Write output to @var{filename}. No character can be read.
785
@item stdio
786
[Unix only] standard input/output
787
@item pipe:@var{filename}
788
name pipe @var{filename}
789
@item COM@var{n}
790
[Windows only] Use host serial port @var{n}
791
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
792
This implements UDP Net Console.
793
When @var{remote_host} or @var{src_ip} are not specified
794
they default to @code{0.0.0.0}.
795
When not using a specified @var{src_port} a random port is automatically chosen.
796

    
797
If you just want a simple readonly console you can use @code{netcat} or
798
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
799
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
800
will appear in the netconsole session.
801

    
802
If you plan to send characters back via netconsole or you want to stop
803
and start qemu a lot of times, you should have qemu use the same
804
source port each time by using something like @code{-serial
805
udp::4555@@:4556} to qemu. Another approach is to use a patched
806
version of netcat which can listen to a TCP port and send and receive
807
characters via udp.  If you have a patched version of netcat which
808
activates telnet remote echo and single char transfer, then you can
809
use the following options to step up a netcat redirector to allow
810
telnet on port 5555 to access the qemu port.
811
@table @code
812
@item Qemu Options:
813
-serial udp::4555@@:4556
814
@item netcat options:
815
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
816
@item telnet options:
817
localhost 5555
818
@end table
819

    
820

    
821
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
822
The TCP Net Console has two modes of operation.  It can send the serial
823
I/O to a location or wait for a connection from a location.  By default
824
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
825
the @var{server} option QEMU will wait for a client socket application
826
to connect to the port before continuing, unless the @code{nowait}
827
option was specified.  The @code{nodelay} option disables the Nagle buffering
828
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
829
one TCP connection at a time is accepted. You can use @code{telnet} to
830
connect to the corresponding character device.
831
@table @code
832
@item Example to send tcp console to 192.168.0.2 port 4444
833
-serial tcp:192.168.0.2:4444
834
@item Example to listen and wait on port 4444 for connection
835
-serial tcp::4444,server
836
@item Example to not wait and listen on ip 192.168.0.100 port 4444
837
-serial tcp:192.168.0.100:4444,server,nowait
838
@end table
839

    
840
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
841
The telnet protocol is used instead of raw tcp sockets.  The options
842
work the same as if you had specified @code{-serial tcp}.  The
843
difference is that the port acts like a telnet server or client using
844
telnet option negotiation.  This will also allow you to send the
845
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
846
sequence.  Typically in unix telnet you do it with Control-] and then
847
type "send break" followed by pressing the enter key.
848

    
849
@item unix:@var{path}[,server][,nowait]
850
A unix domain socket is used instead of a tcp socket.  The option works the
851
same as if you had specified @code{-serial tcp} except the unix domain socket
852
@var{path} is used for connections.
853

    
854
@item mon:@var{dev_string}
855
This is a special option to allow the monitor to be multiplexed onto
856
another serial port.  The monitor is accessed with key sequence of
857
@key{Control-a} and then pressing @key{c}. See monitor access
858
@ref{pcsys_keys} in the -nographic section for more keys.
859
@var{dev_string} should be any one of the serial devices specified
860
above.  An example to multiplex the monitor onto a telnet server
861
listening on port 4444 would be:
862
@table @code
863
@item -serial mon:telnet::4444,server,nowait
864
@end table
865

    
866
@item braille
867
Braille device.  This will use BrlAPI to display the braille output on a real
868
or fake device.
869

    
870
@end table
871

    
872
@item -parallel @var{dev}
873
Redirect the virtual parallel port to host device @var{dev} (same
874
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
875
be used to use hardware devices connected on the corresponding host
876
parallel port.
877

    
878
This option can be used several times to simulate up to 3 parallel
879
ports.
880

    
881
Use @code{-parallel none} to disable all parallel ports.
882

    
883
@item -monitor @var{dev}
884
Redirect the monitor to host device @var{dev} (same devices as the
885
serial port).
886
The default device is @code{vc} in graphical mode and @code{stdio} in
887
non graphical mode.
888

    
889
@item -echr numeric_ascii_value
890
Change the escape character used for switching to the monitor when using
891
monitor and serial sharing.  The default is @code{0x01} when using the
892
@code{-nographic} option.  @code{0x01} is equal to pressing
893
@code{Control-a}.  You can select a different character from the ascii
894
control keys where 1 through 26 map to Control-a through Control-z.  For
895
instance you could use the either of the following to change the escape
896
character to Control-t.
897
@table @code
898
@item -echr 0x14
899
@item -echr 20
900
@end table
901

    
902
@item -s
903
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
904
@item -p @var{port}
905
Change gdb connection port.  @var{port} can be either a decimal number
906
to specify a TCP port, or a host device (same devices as the serial port).
907
@item -S
908
Do not start CPU at startup (you must type 'c' in the monitor).
909
@item -d
910
Output log in /tmp/qemu.log
911
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
912
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
913
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
914
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
915
all those parameters. This option is useful for old MS-DOS disk
916
images.
917

    
918
@item -L path
919
Set the directory for the BIOS, VGA BIOS and keymaps.
920

    
921
@item -std-vga
922
Simulate a standard VGA card with Bochs VBE extensions (default is
923
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
924
VBE extensions (e.g. Windows XP) and if you want to use high
925
resolution modes (>= 1280x1024x16) then you should use this option.
926

    
927
@item -no-acpi
928
Disable ACPI (Advanced Configuration and Power Interface) support. Use
929
it if your guest OS complains about ACPI problems (PC target machine
930
only).
931

    
932
@item -no-reboot
933
Exit instead of rebooting.
934

    
935
@item -loadvm file
936
Start right away with a saved state (@code{loadvm} in monitor)
937

    
938
@item -semihosting
939
Enable semihosting syscall emulation (ARM and M68K target machines only).
940

    
941
On ARM this implements the "Angel" interface.
942
On M68K this implements the "ColdFire GDB" interface used by libgloss.
943

    
944
Note that this allows guest direct access to the host filesystem,
945
so should only be used with trusted guest OS.
946
@end table
947

    
948
@c man end
949

    
950
@node pcsys_keys
951
@section Keys
952

    
953
@c man begin OPTIONS
954

    
955
During the graphical emulation, you can use the following keys:
956
@table @key
957
@item Ctrl-Alt-f
958
Toggle full screen
959

    
960
@item Ctrl-Alt-n
961
Switch to virtual console 'n'. Standard console mappings are:
962
@table @emph
963
@item 1
964
Target system display
965
@item 2
966
Monitor
967
@item 3
968
Serial port
969
@end table
970

    
971
@item Ctrl-Alt
972
Toggle mouse and keyboard grab.
973
@end table
974

    
975
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
976
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
977

    
978
During emulation, if you are using the @option{-nographic} option, use
979
@key{Ctrl-a h} to get terminal commands:
980

    
981
@table @key
982
@item Ctrl-a h
983
Print this help
984
@item Ctrl-a x
985
Exit emulator
986
@item Ctrl-a s
987
Save disk data back to file (if -snapshot)
988
@item Ctrl-a t
989
toggle console timestamps
990
@item Ctrl-a b
991
Send break (magic sysrq in Linux)
992
@item Ctrl-a c
993
Switch between console and monitor
994
@item Ctrl-a Ctrl-a
995
Send Ctrl-a
996
@end table
997
@c man end
998

    
999
@ignore
1000

    
1001
@c man begin SEEALSO
1002
The HTML documentation of QEMU for more precise information and Linux
1003
user mode emulator invocation.
1004
@c man end
1005

    
1006
@c man begin AUTHOR
1007
Fabrice Bellard
1008
@c man end
1009

    
1010
@end ignore
1011

    
1012
@node pcsys_monitor
1013
@section QEMU Monitor
1014

    
1015
The QEMU monitor is used to give complex commands to the QEMU
1016
emulator. You can use it to:
1017

    
1018
@itemize @minus
1019

    
1020
@item
1021
Remove or insert removable media images
1022
(such as CD-ROM or floppies).
1023

    
1024
@item
1025
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1026
from a disk file.
1027

    
1028
@item Inspect the VM state without an external debugger.
1029

    
1030
@end itemize
1031

    
1032
@subsection Commands
1033

    
1034
The following commands are available:
1035

    
1036
@table @option
1037

    
1038
@item help or ? [@var{cmd}]
1039
Show the help for all commands or just for command @var{cmd}.
1040

    
1041
@item commit
1042
Commit changes to the disk images (if -snapshot is used).
1043

    
1044
@item info @var{subcommand}
1045
Show various information about the system state.
1046

    
1047
@table @option
1048
@item info network
1049
show the various VLANs and the associated devices
1050
@item info block
1051
show the block devices
1052
@item info registers
1053
show the cpu registers
1054
@item info history
1055
show the command line history
1056
@item info pci
1057
show emulated PCI device
1058
@item info usb
1059
show USB devices plugged on the virtual USB hub
1060
@item info usbhost
1061
show all USB host devices
1062
@item info capture
1063
show information about active capturing
1064
@item info snapshots
1065
show list of VM snapshots
1066
@item info mice
1067
show which guest mouse is receiving events
1068
@end table
1069

    
1070
@item q or quit
1071
Quit the emulator.
1072

    
1073
@item eject [-f] @var{device}
1074
Eject a removable medium (use -f to force it).
1075

    
1076
@item change @var{device} @var{setting}
1077

    
1078
Change the configuration of a device.
1079

    
1080
@table @option
1081
@item change @var{diskdevice} @var{filename}
1082
Change the medium for a removable disk device to point to @var{filename}. eg
1083

    
1084
@example
1085
(qemu) change ide1-cd0 /path/to/some.iso
1086
@end example
1087

    
1088
@item change vnc @var{display},@var{options}
1089
Change the configuration of the VNC server. The valid syntax for @var{display}
1090
and @var{options} are described at @ref{sec_invocation}. eg
1091

    
1092
@example
1093
(qemu) change vnc localhost:1
1094
@end example
1095

    
1096
@item change vnc password
1097

    
1098
Change the password associated with the VNC server. The monitor will prompt for
1099
the new password to be entered. VNC passwords are only significant upto 8 letters.
1100
eg.
1101

    
1102
@example
1103
(qemu) change vnc password
1104
Password: ********
1105
@end example
1106

    
1107
@end table
1108

    
1109
@item screendump @var{filename}
1110
Save screen into PPM image @var{filename}.
1111

    
1112
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1113
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1114
with optional scroll axis @var{dz}.
1115

    
1116
@item mouse_button @var{val}
1117
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1118

    
1119
@item mouse_set @var{index}
1120
Set which mouse device receives events at given @var{index}, index
1121
can be obtained with
1122
@example
1123
info mice
1124
@end example
1125

    
1126
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1127
Capture audio into @var{filename}. Using sample rate @var{frequency}
1128
bits per sample @var{bits} and number of channels @var{channels}.
1129

    
1130
Defaults:
1131
@itemize @minus
1132
@item Sample rate = 44100 Hz - CD quality
1133
@item Bits = 16
1134
@item Number of channels = 2 - Stereo
1135
@end itemize
1136

    
1137
@item stopcapture @var{index}
1138
Stop capture with a given @var{index}, index can be obtained with
1139
@example
1140
info capture
1141
@end example
1142

    
1143
@item log @var{item1}[,...]
1144
Activate logging of the specified items to @file{/tmp/qemu.log}.
1145

    
1146
@item savevm [@var{tag}|@var{id}]
1147
Create a snapshot of the whole virtual machine. If @var{tag} is
1148
provided, it is used as human readable identifier. If there is already
1149
a snapshot with the same tag or ID, it is replaced. More info at
1150
@ref{vm_snapshots}.
1151

    
1152
@item loadvm @var{tag}|@var{id}
1153
Set the whole virtual machine to the snapshot identified by the tag
1154
@var{tag} or the unique snapshot ID @var{id}.
1155

    
1156
@item delvm @var{tag}|@var{id}
1157
Delete the snapshot identified by @var{tag} or @var{id}.
1158

    
1159
@item stop
1160
Stop emulation.
1161

    
1162
@item c or cont
1163
Resume emulation.
1164

    
1165
@item gdbserver [@var{port}]
1166
Start gdbserver session (default @var{port}=1234)
1167

    
1168
@item x/fmt @var{addr}
1169
Virtual memory dump starting at @var{addr}.
1170

    
1171
@item xp /@var{fmt} @var{addr}
1172
Physical memory dump starting at @var{addr}.
1173

    
1174
@var{fmt} is a format which tells the command how to format the
1175
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1176

    
1177
@table @var
1178
@item count
1179
is the number of items to be dumped.
1180

    
1181
@item format
1182
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1183
c (char) or i (asm instruction).
1184

    
1185
@item size
1186
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1187
@code{h} or @code{w} can be specified with the @code{i} format to
1188
respectively select 16 or 32 bit code instruction size.
1189

    
1190
@end table
1191

    
1192
Examples:
1193
@itemize
1194
@item
1195
Dump 10 instructions at the current instruction pointer:
1196
@example
1197
(qemu) x/10i $eip
1198
0x90107063:  ret
1199
0x90107064:  sti
1200
0x90107065:  lea    0x0(%esi,1),%esi
1201
0x90107069:  lea    0x0(%edi,1),%edi
1202
0x90107070:  ret
1203
0x90107071:  jmp    0x90107080
1204
0x90107073:  nop
1205
0x90107074:  nop
1206
0x90107075:  nop
1207
0x90107076:  nop
1208
@end example
1209

    
1210
@item
1211
Dump 80 16 bit values at the start of the video memory.
1212
@smallexample
1213
(qemu) xp/80hx 0xb8000
1214
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1215
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1216
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1217
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1218
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1219
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1220
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1221
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1222
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1223
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1224
@end smallexample
1225
@end itemize
1226

    
1227
@item p or print/@var{fmt} @var{expr}
1228

    
1229
Print expression value. Only the @var{format} part of @var{fmt} is
1230
used.
1231

    
1232
@item sendkey @var{keys}
1233

    
1234
Send @var{keys} to the emulator. Use @code{-} to press several keys
1235
simultaneously. Example:
1236
@example
1237
sendkey ctrl-alt-f1
1238
@end example
1239

    
1240
This command is useful to send keys that your graphical user interface
1241
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1242

    
1243
@item system_reset
1244

    
1245
Reset the system.
1246

    
1247
@item usb_add @var{devname}
1248

    
1249
Add the USB device @var{devname}.  For details of available devices see
1250
@ref{usb_devices}
1251

    
1252
@item usb_del @var{devname}
1253

    
1254
Remove the USB device @var{devname} from the QEMU virtual USB
1255
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1256
command @code{info usb} to see the devices you can remove.
1257

    
1258
@end table
1259

    
1260
@subsection Integer expressions
1261

    
1262
The monitor understands integers expressions for every integer
1263
argument. You can use register names to get the value of specifics
1264
CPU registers by prefixing them with @emph{$}.
1265

    
1266
@node disk_images
1267
@section Disk Images
1268

    
1269
Since version 0.6.1, QEMU supports many disk image formats, including
1270
growable disk images (their size increase as non empty sectors are
1271
written), compressed and encrypted disk images. Version 0.8.3 added
1272
the new qcow2 disk image format which is essential to support VM
1273
snapshots.
1274

    
1275
@menu
1276
* disk_images_quickstart::    Quick start for disk image creation
1277
* disk_images_snapshot_mode:: Snapshot mode
1278
* vm_snapshots::              VM snapshots
1279
* qemu_img_invocation::       qemu-img Invocation
1280
* host_drives::               Using host drives
1281
* disk_images_fat_images::    Virtual FAT disk images
1282
@end menu
1283

    
1284
@node disk_images_quickstart
1285
@subsection Quick start for disk image creation
1286

    
1287
You can create a disk image with the command:
1288
@example
1289
qemu-img create myimage.img mysize
1290
@end example
1291
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1292
size in kilobytes. You can add an @code{M} suffix to give the size in
1293
megabytes and a @code{G} suffix for gigabytes.
1294

    
1295
See @ref{qemu_img_invocation} for more information.
1296

    
1297
@node disk_images_snapshot_mode
1298
@subsection Snapshot mode
1299

    
1300
If you use the option @option{-snapshot}, all disk images are
1301
considered as read only. When sectors in written, they are written in
1302
a temporary file created in @file{/tmp}. You can however force the
1303
write back to the raw disk images by using the @code{commit} monitor
1304
command (or @key{C-a s} in the serial console).
1305

    
1306
@node vm_snapshots
1307
@subsection VM snapshots
1308

    
1309
VM snapshots are snapshots of the complete virtual machine including
1310
CPU state, RAM, device state and the content of all the writable
1311
disks. In order to use VM snapshots, you must have at least one non
1312
removable and writable block device using the @code{qcow2} disk image
1313
format. Normally this device is the first virtual hard drive.
1314

    
1315
Use the monitor command @code{savevm} to create a new VM snapshot or
1316
replace an existing one. A human readable name can be assigned to each
1317
snapshot in addition to its numerical ID.
1318

    
1319
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1320
a VM snapshot. @code{info snapshots} lists the available snapshots
1321
with their associated information:
1322

    
1323
@example
1324
(qemu) info snapshots
1325
Snapshot devices: hda
1326
Snapshot list (from hda):
1327
ID        TAG                 VM SIZE                DATE       VM CLOCK
1328
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1329
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1330
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1331
@end example
1332

    
1333
A VM snapshot is made of a VM state info (its size is shown in
1334
@code{info snapshots}) and a snapshot of every writable disk image.
1335
The VM state info is stored in the first @code{qcow2} non removable
1336
and writable block device. The disk image snapshots are stored in
1337
every disk image. The size of a snapshot in a disk image is difficult
1338
to evaluate and is not shown by @code{info snapshots} because the
1339
associated disk sectors are shared among all the snapshots to save
1340
disk space (otherwise each snapshot would need a full copy of all the
1341
disk images).
1342

    
1343
When using the (unrelated) @code{-snapshot} option
1344
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1345
but they are deleted as soon as you exit QEMU.
1346

    
1347
VM snapshots currently have the following known limitations:
1348
@itemize
1349
@item
1350
They cannot cope with removable devices if they are removed or
1351
inserted after a snapshot is done.
1352
@item
1353
A few device drivers still have incomplete snapshot support so their
1354
state is not saved or restored properly (in particular USB).
1355
@end itemize
1356

    
1357
@node qemu_img_invocation
1358
@subsection @code{qemu-img} Invocation
1359

    
1360
@include qemu-img.texi
1361

    
1362
@node host_drives
1363
@subsection Using host drives
1364

    
1365
In addition to disk image files, QEMU can directly access host
1366
devices. We describe here the usage for QEMU version >= 0.8.3.
1367

    
1368
@subsubsection Linux
1369

    
1370
On Linux, you can directly use the host device filename instead of a
1371
disk image filename provided you have enough privileges to access
1372
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1373
@file{/dev/fd0} for the floppy.
1374

    
1375
@table @code
1376
@item CD
1377
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1378
specific code to detect CDROM insertion or removal. CDROM ejection by
1379
the guest OS is supported. Currently only data CDs are supported.
1380
@item Floppy
1381
You can specify a floppy device even if no floppy is loaded. Floppy
1382
removal is currently not detected accurately (if you change floppy
1383
without doing floppy access while the floppy is not loaded, the guest
1384
OS will think that the same floppy is loaded).
1385
@item Hard disks
1386
Hard disks can be used. Normally you must specify the whole disk
1387
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1388
see it as a partitioned disk. WARNING: unless you know what you do, it
1389
is better to only make READ-ONLY accesses to the hard disk otherwise
1390
you may corrupt your host data (use the @option{-snapshot} command
1391
line option or modify the device permissions accordingly).
1392
@end table
1393

    
1394
@subsubsection Windows
1395

    
1396
@table @code
1397
@item CD
1398
The preferred syntax is the drive letter (e.g. @file{d:}). The
1399
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1400
supported as an alias to the first CDROM drive.
1401

    
1402
Currently there is no specific code to handle removable media, so it
1403
is better to use the @code{change} or @code{eject} monitor commands to
1404
change or eject media.
1405
@item Hard disks
1406
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1407
where @var{N} is the drive number (0 is the first hard disk).
1408

    
1409
WARNING: unless you know what you do, it is better to only make
1410
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1411
host data (use the @option{-snapshot} command line so that the
1412
modifications are written in a temporary file).
1413
@end table
1414

    
1415

    
1416
@subsubsection Mac OS X
1417

    
1418
@file{/dev/cdrom} is an alias to the first CDROM.
1419

    
1420
Currently there is no specific code to handle removable media, so it
1421
is better to use the @code{change} or @code{eject} monitor commands to
1422
change or eject media.
1423

    
1424
@node disk_images_fat_images
1425
@subsection Virtual FAT disk images
1426

    
1427
QEMU can automatically create a virtual FAT disk image from a
1428
directory tree. In order to use it, just type:
1429

    
1430
@example
1431
qemu linux.img -hdb fat:/my_directory
1432
@end example
1433

    
1434
Then you access access to all the files in the @file{/my_directory}
1435
directory without having to copy them in a disk image or to export
1436
them via SAMBA or NFS. The default access is @emph{read-only}.
1437

    
1438
Floppies can be emulated with the @code{:floppy:} option:
1439

    
1440
@example
1441
qemu linux.img -fda fat:floppy:/my_directory
1442
@end example
1443

    
1444
A read/write support is available for testing (beta stage) with the
1445
@code{:rw:} option:
1446

    
1447
@example
1448
qemu linux.img -fda fat:floppy:rw:/my_directory
1449
@end example
1450

    
1451
What you should @emph{never} do:
1452
@itemize
1453
@item use non-ASCII filenames ;
1454
@item use "-snapshot" together with ":rw:" ;
1455
@item expect it to work when loadvm'ing ;
1456
@item write to the FAT directory on the host system while accessing it with the guest system.
1457
@end itemize
1458

    
1459
@node pcsys_network
1460
@section Network emulation
1461

    
1462
QEMU can simulate several network cards (PCI or ISA cards on the PC
1463
target) and can connect them to an arbitrary number of Virtual Local
1464
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1465
VLAN. VLAN can be connected between separate instances of QEMU to
1466
simulate large networks. For simpler usage, a non privileged user mode
1467
network stack can replace the TAP device to have a basic network
1468
connection.
1469

    
1470
@subsection VLANs
1471

    
1472
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1473
connection between several network devices. These devices can be for
1474
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1475
(TAP devices).
1476

    
1477
@subsection Using TAP network interfaces
1478

    
1479
This is the standard way to connect QEMU to a real network. QEMU adds
1480
a virtual network device on your host (called @code{tapN}), and you
1481
can then configure it as if it was a real ethernet card.
1482

    
1483
@subsubsection Linux host
1484

    
1485
As an example, you can download the @file{linux-test-xxx.tar.gz}
1486
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1487
configure properly @code{sudo} so that the command @code{ifconfig}
1488
contained in @file{qemu-ifup} can be executed as root. You must verify
1489
that your host kernel supports the TAP network interfaces: the
1490
device @file{/dev/net/tun} must be present.
1491

    
1492
See @ref{sec_invocation} to have examples of command lines using the
1493
TAP network interfaces.
1494

    
1495
@subsubsection Windows host
1496

    
1497
There is a virtual ethernet driver for Windows 2000/XP systems, called
1498
TAP-Win32. But it is not included in standard QEMU for Windows,
1499
so you will need to get it separately. It is part of OpenVPN package,
1500
so download OpenVPN from : @url{http://openvpn.net/}.
1501

    
1502
@subsection Using the user mode network stack
1503

    
1504
By using the option @option{-net user} (default configuration if no
1505
@option{-net} option is specified), QEMU uses a completely user mode
1506
network stack (you don't need root privilege to use the virtual
1507
network). The virtual network configuration is the following:
1508

    
1509
@example
1510

    
1511
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1512
                           |          (10.0.2.2)
1513
                           |
1514
                           ---->  DNS server (10.0.2.3)
1515
                           |
1516
                           ---->  SMB server (10.0.2.4)
1517
@end example
1518

    
1519
The QEMU VM behaves as if it was behind a firewall which blocks all
1520
incoming connections. You can use a DHCP client to automatically
1521
configure the network in the QEMU VM. The DHCP server assign addresses
1522
to the hosts starting from 10.0.2.15.
1523

    
1524
In order to check that the user mode network is working, you can ping
1525
the address 10.0.2.2 and verify that you got an address in the range
1526
10.0.2.x from the QEMU virtual DHCP server.
1527

    
1528
Note that @code{ping} is not supported reliably to the internet as it
1529
would require root privileges. It means you can only ping the local
1530
router (10.0.2.2).
1531

    
1532
When using the built-in TFTP server, the router is also the TFTP
1533
server.
1534

    
1535
When using the @option{-redir} option, TCP or UDP connections can be
1536
redirected from the host to the guest. It allows for example to
1537
redirect X11, telnet or SSH connections.
1538

    
1539
@subsection Connecting VLANs between QEMU instances
1540

    
1541
Using the @option{-net socket} option, it is possible to make VLANs
1542
that span several QEMU instances. See @ref{sec_invocation} to have a
1543
basic example.
1544

    
1545
@node direct_linux_boot
1546
@section Direct Linux Boot
1547

    
1548
This section explains how to launch a Linux kernel inside QEMU without
1549
having to make a full bootable image. It is very useful for fast Linux
1550
kernel testing.
1551

    
1552
The syntax is:
1553
@example
1554
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1555
@end example
1556

    
1557
Use @option{-kernel} to provide the Linux kernel image and
1558
@option{-append} to give the kernel command line arguments. The
1559
@option{-initrd} option can be used to provide an INITRD image.
1560

    
1561
When using the direct Linux boot, a disk image for the first hard disk
1562
@file{hda} is required because its boot sector is used to launch the
1563
Linux kernel.
1564

    
1565
If you do not need graphical output, you can disable it and redirect
1566
the virtual serial port and the QEMU monitor to the console with the
1567
@option{-nographic} option. The typical command line is:
1568
@example
1569
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1570
     -append "root=/dev/hda console=ttyS0" -nographic
1571
@end example
1572

    
1573
Use @key{Ctrl-a c} to switch between the serial console and the
1574
monitor (@pxref{pcsys_keys}).
1575

    
1576
@node pcsys_usb
1577
@section USB emulation
1578

    
1579
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1580
virtual USB devices or real host USB devices (experimental, works only
1581
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1582
as necessary to connect multiple USB devices.
1583

    
1584
@menu
1585
* usb_devices::
1586
* host_usb_devices::
1587
@end menu
1588
@node usb_devices
1589
@subsection Connecting USB devices
1590

    
1591
USB devices can be connected with the @option{-usbdevice} commandline option
1592
or the @code{usb_add} monitor command.  Available devices are:
1593

    
1594
@table @code
1595
@item mouse
1596
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1597
@item tablet
1598
Pointer device that uses absolute coordinates (like a touchscreen).
1599
This means qemu is able to report the mouse position without having
1600
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1601
@item disk:@var{file}
1602
Mass storage device based on @var{file} (@pxref{disk_images})
1603
@item host:@var{bus.addr}
1604
Pass through the host device identified by @var{bus.addr}
1605
(Linux only)
1606
@item host:@var{vendor_id:product_id}
1607
Pass through the host device identified by @var{vendor_id:product_id}
1608
(Linux only)
1609
@item wacom-tablet
1610
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1611
above but it can be used with the tslib library because in addition to touch
1612
coordinates it reports touch pressure.
1613
@item keyboard
1614
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1615
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1616
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1617
device @var{dev}. The available character devices are the same as for the
1618
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1619
used to override the default 0403:6001. For instance, 
1620
@example
1621
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1622
@end example
1623
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1624
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1625
@item braille
1626
Braille device.  This will use BrlAPI to display the braille output on a real
1627
or fake device.
1628
@end table
1629

    
1630
@node host_usb_devices
1631
@subsection Using host USB devices on a Linux host
1632

    
1633
WARNING: this is an experimental feature. QEMU will slow down when
1634
using it. USB devices requiring real time streaming (i.e. USB Video
1635
Cameras) are not supported yet.
1636

    
1637
@enumerate
1638
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1639
is actually using the USB device. A simple way to do that is simply to
1640
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1641
to @file{mydriver.o.disabled}.
1642

    
1643
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1644
@example
1645
ls /proc/bus/usb
1646
001  devices  drivers
1647
@end example
1648

    
1649
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1650
@example
1651
chown -R myuid /proc/bus/usb
1652
@end example
1653

    
1654
@item Launch QEMU and do in the monitor:
1655
@example
1656
info usbhost
1657
  Device 1.2, speed 480 Mb/s
1658
    Class 00: USB device 1234:5678, USB DISK
1659
@end example
1660
You should see the list of the devices you can use (Never try to use
1661
hubs, it won't work).
1662

    
1663
@item Add the device in QEMU by using:
1664
@example
1665
usb_add host:1234:5678
1666
@end example
1667

    
1668
Normally the guest OS should report that a new USB device is
1669
plugged. You can use the option @option{-usbdevice} to do the same.
1670

    
1671
@item Now you can try to use the host USB device in QEMU.
1672

    
1673
@end enumerate
1674

    
1675
When relaunching QEMU, you may have to unplug and plug again the USB
1676
device to make it work again (this is a bug).
1677

    
1678
@node vnc_security
1679
@section VNC security
1680

    
1681
The VNC server capability provides access to the graphical console
1682
of the guest VM across the network. This has a number of security
1683
considerations depending on the deployment scenarios.
1684

    
1685
@menu
1686
* vnc_sec_none::
1687
* vnc_sec_password::
1688
* vnc_sec_certificate::
1689
* vnc_sec_certificate_verify::
1690
* vnc_sec_certificate_pw::
1691
* vnc_generate_cert::
1692
@end menu
1693
@node vnc_sec_none
1694
@subsection Without passwords
1695

    
1696
The simplest VNC server setup does not include any form of authentication.
1697
For this setup it is recommended to restrict it to listen on a UNIX domain
1698
socket only. For example
1699

    
1700
@example
1701
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1702
@end example
1703

    
1704
This ensures that only users on local box with read/write access to that
1705
path can access the VNC server. To securely access the VNC server from a
1706
remote machine, a combination of netcat+ssh can be used to provide a secure
1707
tunnel.
1708

    
1709
@node vnc_sec_password
1710
@subsection With passwords
1711

    
1712
The VNC protocol has limited support for password based authentication. Since
1713
the protocol limits passwords to 8 characters it should not be considered
1714
to provide high security. The password can be fairly easily brute-forced by
1715
a client making repeat connections. For this reason, a VNC server using password
1716
authentication should be restricted to only listen on the loopback interface
1717
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1718
option, and then once QEMU is running the password is set with the monitor. Until
1719
the monitor is used to set the password all clients will be rejected.
1720

    
1721
@example
1722
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1723
(qemu) change vnc password
1724
Password: ********
1725
(qemu)
1726
@end example
1727

    
1728
@node vnc_sec_certificate
1729
@subsection With x509 certificates
1730

    
1731
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1732
TLS for encryption of the session, and x509 certificates for authentication.
1733
The use of x509 certificates is strongly recommended, because TLS on its
1734
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1735
support provides a secure session, but no authentication. This allows any
1736
client to connect, and provides an encrypted session.
1737

    
1738
@example
1739
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1740
@end example
1741

    
1742
In the above example @code{/etc/pki/qemu} should contain at least three files,
1743
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1744
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1745
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1746
only be readable by the user owning it.
1747

    
1748
@node vnc_sec_certificate_verify
1749
@subsection With x509 certificates and client verification
1750

    
1751
Certificates can also provide a means to authenticate the client connecting.
1752
The server will request that the client provide a certificate, which it will
1753
then validate against the CA certificate. This is a good choice if deploying
1754
in an environment with a private internal certificate authority.
1755

    
1756
@example
1757
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1758
@end example
1759

    
1760

    
1761
@node vnc_sec_certificate_pw
1762
@subsection With x509 certificates, client verification and passwords
1763

    
1764
Finally, the previous method can be combined with VNC password authentication
1765
to provide two layers of authentication for clients.
1766

    
1767
@example
1768
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1769
(qemu) change vnc password
1770
Password: ********
1771
(qemu)
1772
@end example
1773

    
1774
@node vnc_generate_cert
1775
@subsection Generating certificates for VNC
1776

    
1777
The GNU TLS packages provides a command called @code{certtool} which can
1778
be used to generate certificates and keys in PEM format. At a minimum it
1779
is neccessary to setup a certificate authority, and issue certificates to
1780
each server. If using certificates for authentication, then each client
1781
will also need to be issued a certificate. The recommendation is for the
1782
server to keep its certificates in either @code{/etc/pki/qemu} or for
1783
unprivileged users in @code{$HOME/.pki/qemu}.
1784

    
1785
@menu
1786
* vnc_generate_ca::
1787
* vnc_generate_server::
1788
* vnc_generate_client::
1789
@end menu
1790
@node vnc_generate_ca
1791
@subsubsection Setup the Certificate Authority
1792

    
1793
This step only needs to be performed once per organization / organizational
1794
unit. First the CA needs a private key. This key must be kept VERY secret
1795
and secure. If this key is compromised the entire trust chain of the certificates
1796
issued with it is lost.
1797

    
1798
@example
1799
# certtool --generate-privkey > ca-key.pem
1800
@end example
1801

    
1802
A CA needs to have a public certificate. For simplicity it can be a self-signed
1803
certificate, or one issue by a commercial certificate issuing authority. To
1804
generate a self-signed certificate requires one core piece of information, the
1805
name of the organization.
1806

    
1807
@example
1808
# cat > ca.info <<EOF
1809
cn = Name of your organization
1810
ca
1811
cert_signing_key
1812
EOF
1813
# certtool --generate-self-signed \
1814
           --load-privkey ca-key.pem
1815
           --template ca.info \
1816
           --outfile ca-cert.pem
1817
@end example
1818

    
1819
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1820
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1821

    
1822
@node vnc_generate_server
1823
@subsubsection Issuing server certificates
1824

    
1825
Each server (or host) needs to be issued with a key and certificate. When connecting
1826
the certificate is sent to the client which validates it against the CA certificate.
1827
The core piece of information for a server certificate is the hostname. This should
1828
be the fully qualified hostname that the client will connect with, since the client
1829
will typically also verify the hostname in the certificate. On the host holding the
1830
secure CA private key:
1831

    
1832
@example
1833
# cat > server.info <<EOF
1834
organization = Name  of your organization
1835
cn = server.foo.example.com
1836
tls_www_server
1837
encryption_key
1838
signing_key
1839
EOF
1840
# certtool --generate-privkey > server-key.pem
1841
# certtool --generate-certificate \
1842
           --load-ca-certificate ca-cert.pem \
1843
           --load-ca-privkey ca-key.pem \
1844
           --load-privkey server server-key.pem \
1845
           --template server.info \
1846
           --outfile server-cert.pem
1847
@end example
1848

    
1849
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1850
to the server for which they were generated. The @code{server-key.pem} is security
1851
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1852

    
1853
@node vnc_generate_client
1854
@subsubsection Issuing client certificates
1855

    
1856
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1857
certificates as its authentication mechanism, each client also needs to be issued
1858
a certificate. The client certificate contains enough metadata to uniquely identify
1859
the client, typically organization, state, city, building, etc. On the host holding
1860
the secure CA private key:
1861

    
1862
@example
1863
# cat > client.info <<EOF
1864
country = GB
1865
state = London
1866
locality = London
1867
organiazation = Name of your organization
1868
cn = client.foo.example.com
1869
tls_www_client
1870
encryption_key
1871
signing_key
1872
EOF
1873
# certtool --generate-privkey > client-key.pem
1874
# certtool --generate-certificate \
1875
           --load-ca-certificate ca-cert.pem \
1876
           --load-ca-privkey ca-key.pem \
1877
           --load-privkey client-key.pem \
1878
           --template client.info \
1879
           --outfile client-cert.pem
1880
@end example
1881

    
1882
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1883
copied to the client for which they were generated.
1884

    
1885
@node gdb_usage
1886
@section GDB usage
1887

    
1888
QEMU has a primitive support to work with gdb, so that you can do
1889
'Ctrl-C' while the virtual machine is running and inspect its state.
1890

    
1891
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1892
gdb connection:
1893
@example
1894
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1895
       -append "root=/dev/hda"
1896
Connected to host network interface: tun0
1897
Waiting gdb connection on port 1234
1898
@end example
1899

    
1900
Then launch gdb on the 'vmlinux' executable:
1901
@example
1902
> gdb vmlinux
1903
@end example
1904

    
1905
In gdb, connect to QEMU:
1906
@example
1907
(gdb) target remote localhost:1234
1908
@end example
1909

    
1910
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1911
@example
1912
(gdb) c
1913
@end example
1914

    
1915
Here are some useful tips in order to use gdb on system code:
1916

    
1917
@enumerate
1918
@item
1919
Use @code{info reg} to display all the CPU registers.
1920
@item
1921
Use @code{x/10i $eip} to display the code at the PC position.
1922
@item
1923
Use @code{set architecture i8086} to dump 16 bit code. Then use
1924
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1925
@end enumerate
1926

    
1927
@node pcsys_os_specific
1928
@section Target OS specific information
1929

    
1930
@subsection Linux
1931

    
1932
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1933
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1934
color depth in the guest and the host OS.
1935

    
1936
When using a 2.6 guest Linux kernel, you should add the option
1937
@code{clock=pit} on the kernel command line because the 2.6 Linux
1938
kernels make very strict real time clock checks by default that QEMU
1939
cannot simulate exactly.
1940

    
1941
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1942
not activated because QEMU is slower with this patch. The QEMU
1943
Accelerator Module is also much slower in this case. Earlier Fedora
1944
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1945
patch by default. Newer kernels don't have it.
1946

    
1947
@subsection Windows
1948

    
1949
If you have a slow host, using Windows 95 is better as it gives the
1950
best speed. Windows 2000 is also a good choice.
1951

    
1952
@subsubsection SVGA graphic modes support
1953

    
1954
QEMU emulates a Cirrus Logic GD5446 Video
1955
card. All Windows versions starting from Windows 95 should recognize
1956
and use this graphic card. For optimal performances, use 16 bit color
1957
depth in the guest and the host OS.
1958

    
1959
If you are using Windows XP as guest OS and if you want to use high
1960
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1961
1280x1024x16), then you should use the VESA VBE virtual graphic card
1962
(option @option{-std-vga}).
1963

    
1964
@subsubsection CPU usage reduction
1965

    
1966
Windows 9x does not correctly use the CPU HLT
1967
instruction. The result is that it takes host CPU cycles even when
1968
idle. You can install the utility from
1969
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1970
problem. Note that no such tool is needed for NT, 2000 or XP.
1971

    
1972
@subsubsection Windows 2000 disk full problem
1973

    
1974
Windows 2000 has a bug which gives a disk full problem during its
1975
installation. When installing it, use the @option{-win2k-hack} QEMU
1976
option to enable a specific workaround. After Windows 2000 is
1977
installed, you no longer need this option (this option slows down the
1978
IDE transfers).
1979

    
1980
@subsubsection Windows 2000 shutdown
1981

    
1982
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1983
can. It comes from the fact that Windows 2000 does not automatically
1984
use the APM driver provided by the BIOS.
1985

    
1986
In order to correct that, do the following (thanks to Struan
1987
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1988
Add/Troubleshoot a device => Add a new device & Next => No, select the
1989
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1990
(again) a few times. Now the driver is installed and Windows 2000 now
1991
correctly instructs QEMU to shutdown at the appropriate moment.
1992

    
1993
@subsubsection Share a directory between Unix and Windows
1994

    
1995
See @ref{sec_invocation} about the help of the option @option{-smb}.
1996

    
1997
@subsubsection Windows XP security problem
1998

    
1999
Some releases of Windows XP install correctly but give a security
2000
error when booting:
2001
@example
2002
A problem is preventing Windows from accurately checking the
2003
license for this computer. Error code: 0x800703e6.
2004
@end example
2005

    
2006
The workaround is to install a service pack for XP after a boot in safe
2007
mode. Then reboot, and the problem should go away. Since there is no
2008
network while in safe mode, its recommended to download the full
2009
installation of SP1 or SP2 and transfer that via an ISO or using the
2010
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2011

    
2012
@subsection MS-DOS and FreeDOS
2013

    
2014
@subsubsection CPU usage reduction
2015

    
2016
DOS does not correctly use the CPU HLT instruction. The result is that
2017
it takes host CPU cycles even when idle. You can install the utility
2018
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2019
problem.
2020

    
2021
@node QEMU System emulator for non PC targets
2022
@chapter QEMU System emulator for non PC targets
2023

    
2024
QEMU is a generic emulator and it emulates many non PC
2025
machines. Most of the options are similar to the PC emulator. The
2026
differences are mentioned in the following sections.
2027

    
2028
@menu
2029
* QEMU PowerPC System emulator::
2030
* Sparc32 System emulator::
2031
* Sparc64 System emulator::
2032
* MIPS System emulator::
2033
* ARM System emulator::
2034
* ColdFire System emulator::
2035
@end menu
2036

    
2037
@node QEMU PowerPC System emulator
2038
@section QEMU PowerPC System emulator
2039

    
2040
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2041
or PowerMac PowerPC system.
2042

    
2043
QEMU emulates the following PowerMac peripherals:
2044

    
2045
@itemize @minus
2046
@item
2047
UniNorth PCI Bridge
2048
@item
2049
PCI VGA compatible card with VESA Bochs Extensions
2050
@item
2051
2 PMAC IDE interfaces with hard disk and CD-ROM support
2052
@item
2053
NE2000 PCI adapters
2054
@item
2055
Non Volatile RAM
2056
@item
2057
VIA-CUDA with ADB keyboard and mouse.
2058
@end itemize
2059

    
2060
QEMU emulates the following PREP peripherals:
2061

    
2062
@itemize @minus
2063
@item
2064
PCI Bridge
2065
@item
2066
PCI VGA compatible card with VESA Bochs Extensions
2067
@item
2068
2 IDE interfaces with hard disk and CD-ROM support
2069
@item
2070
Floppy disk
2071
@item
2072
NE2000 network adapters
2073
@item
2074
Serial port
2075
@item
2076
PREP Non Volatile RAM
2077
@item
2078
PC compatible keyboard and mouse.
2079
@end itemize
2080

    
2081
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2082
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2083

    
2084
@c man begin OPTIONS
2085

    
2086
The following options are specific to the PowerPC emulation:
2087

    
2088
@table @option
2089

    
2090
@item -g WxH[xDEPTH]
2091

    
2092
Set the initial VGA graphic mode. The default is 800x600x15.
2093

    
2094
@end table
2095

    
2096
@c man end
2097

    
2098

    
2099
More information is available at
2100
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2101

    
2102
@node Sparc32 System emulator
2103
@section Sparc32 System emulator
2104

    
2105
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2106
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2107
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2108
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2109
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2110
of usable CPUs to 4.
2111

    
2112
QEMU emulates the following sun4m/sun4d peripherals:
2113

    
2114
@itemize @minus
2115
@item
2116
IOMMU or IO-UNITs
2117
@item
2118
TCX Frame buffer
2119
@item
2120
Lance (Am7990) Ethernet
2121
@item
2122
Non Volatile RAM M48T08
2123
@item
2124
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2125
and power/reset logic
2126
@item
2127
ESP SCSI controller with hard disk and CD-ROM support
2128
@item
2129
Floppy drive (not on SS-600MP)
2130
@item
2131
CS4231 sound device (only on SS-5, not working yet)
2132
@end itemize
2133

    
2134
The number of peripherals is fixed in the architecture.  Maximum
2135
memory size depends on the machine type, for SS-5 it is 256MB and for
2136
others 2047MB.
2137

    
2138
Since version 0.8.2, QEMU uses OpenBIOS
2139
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2140
firmware implementation. The goal is to implement a 100% IEEE
2141
1275-1994 (referred to as Open Firmware) compliant firmware.
2142

    
2143
A sample Linux 2.6 series kernel and ram disk image are available on
2144
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2145
Solaris kernels don't work.
2146

    
2147
@c man begin OPTIONS
2148

    
2149
The following options are specific to the Sparc32 emulation:
2150

    
2151
@table @option
2152

    
2153
@item -g WxHx[xDEPTH]
2154

    
2155
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2156
the only other possible mode is 1024x768x24.
2157

    
2158
@item -prom-env string
2159

    
2160
Set OpenBIOS variables in NVRAM, for example:
2161

    
2162
@example
2163
qemu-system-sparc -prom-env 'auto-boot?=false' \
2164
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2165
@end example
2166

    
2167
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2168

    
2169
Set the emulated machine type. Default is SS-5.
2170

    
2171
@end table
2172

    
2173
@c man end
2174

    
2175
@node Sparc64 System emulator
2176
@section Sparc64 System emulator
2177

    
2178
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2179
The emulator is not usable for anything yet.
2180

    
2181
QEMU emulates the following sun4u peripherals:
2182

    
2183
@itemize @minus
2184
@item
2185
UltraSparc IIi APB PCI Bridge
2186
@item
2187
PCI VGA compatible card with VESA Bochs Extensions
2188
@item
2189
Non Volatile RAM M48T59
2190
@item
2191
PC-compatible serial ports
2192
@end itemize
2193

    
2194
@node MIPS System emulator
2195
@section MIPS System emulator
2196

    
2197
Four executables cover simulation of 32 and 64-bit MIPS systems in
2198
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2199
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2200
Five different machine types are emulated:
2201

    
2202
@itemize @minus
2203
@item
2204
A generic ISA PC-like machine "mips"
2205
@item
2206
The MIPS Malta prototype board "malta"
2207
@item
2208
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2209
@item
2210
MIPS emulator pseudo board "mipssim"
2211
@item
2212
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2213
@end itemize
2214

    
2215
The generic emulation is supported by Debian 'Etch' and is able to
2216
install Debian into a virtual disk image. The following devices are
2217
emulated:
2218

    
2219
@itemize @minus
2220
@item
2221
A range of MIPS CPUs, default is the 24Kf
2222
@item
2223
PC style serial port
2224
@item
2225
PC style IDE disk
2226
@item
2227
NE2000 network card
2228
@end itemize
2229

    
2230
The Malta emulation supports the following devices:
2231

    
2232
@itemize @minus
2233
@item
2234
Core board with MIPS 24Kf CPU and Galileo system controller
2235
@item
2236
PIIX4 PCI/USB/SMbus controller
2237
@item
2238
The Multi-I/O chip's serial device
2239
@item
2240
PCnet32 PCI network card
2241
@item
2242
Malta FPGA serial device
2243
@item
2244
Cirrus VGA graphics card
2245
@end itemize
2246

    
2247
The ACER Pica emulation supports:
2248

    
2249
@itemize @minus
2250
@item
2251
MIPS R4000 CPU
2252
@item
2253
PC-style IRQ and DMA controllers
2254
@item
2255
PC Keyboard
2256
@item
2257
IDE controller
2258
@end itemize
2259

    
2260
The mipssim pseudo board emulation provides an environment similiar
2261
to what the proprietary MIPS emulator uses for running Linux.
2262
It supports:
2263

    
2264
@itemize @minus
2265
@item
2266
A range of MIPS CPUs, default is the 24Kf
2267
@item
2268
PC style serial port
2269
@item
2270
MIPSnet network emulation
2271
@end itemize
2272

    
2273
The MIPS Magnum R4000 emulation supports:
2274

    
2275
@itemize @minus
2276
@item
2277
MIPS R4000 CPU
2278
@item
2279
PC-style IRQ controller
2280
@item
2281
PC Keyboard
2282
@item
2283
SCSI controller
2284
@item
2285
G364 framebuffer
2286
@end itemize
2287

    
2288

    
2289
@node ARM System emulator
2290
@section ARM System emulator
2291

    
2292
Use the executable @file{qemu-system-arm} to simulate a ARM
2293
machine. The ARM Integrator/CP board is emulated with the following
2294
devices:
2295

    
2296
@itemize @minus
2297
@item
2298
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2299
@item
2300
Two PL011 UARTs
2301
@item
2302
SMC 91c111 Ethernet adapter
2303
@item
2304
PL110 LCD controller
2305
@item
2306
PL050 KMI with PS/2 keyboard and mouse.
2307
@item
2308
PL181 MultiMedia Card Interface with SD card.
2309
@end itemize
2310

    
2311
The ARM Versatile baseboard is emulated with the following devices:
2312

    
2313
@itemize @minus
2314
@item
2315
ARM926E, ARM1136 or Cortex-A8 CPU
2316
@item
2317
PL190 Vectored Interrupt Controller
2318
@item
2319
Four PL011 UARTs
2320
@item
2321
SMC 91c111 Ethernet adapter
2322
@item
2323
PL110 LCD controller
2324
@item
2325
PL050 KMI with PS/2 keyboard and mouse.
2326
@item
2327
PCI host bridge.  Note the emulated PCI bridge only provides access to
2328
PCI memory space.  It does not provide access to PCI IO space.
2329
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2330
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2331
mapped control registers.
2332
@item
2333
PCI OHCI USB controller.
2334
@item
2335
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2336
@item
2337
PL181 MultiMedia Card Interface with SD card.
2338
@end itemize
2339

    
2340
The ARM RealView Emulation baseboard is emulated with the following devices:
2341

    
2342
@itemize @minus
2343
@item
2344
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2345
@item
2346
ARM AMBA Generic/Distributed Interrupt Controller
2347
@item
2348
Four PL011 UARTs
2349
@item
2350
SMC 91c111 Ethernet adapter
2351
@item
2352
PL110 LCD controller
2353
@item
2354
PL050 KMI with PS/2 keyboard and mouse
2355
@item
2356
PCI host bridge
2357
@item
2358
PCI OHCI USB controller
2359
@item
2360
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2361
@item
2362
PL181 MultiMedia Card Interface with SD card.
2363
@end itemize
2364

    
2365
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2366
and "Terrier") emulation includes the following peripherals:
2367

    
2368
@itemize @minus
2369
@item
2370
Intel PXA270 System-on-chip (ARM V5TE core)
2371
@item
2372
NAND Flash memory
2373
@item
2374
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2375
@item
2376
On-chip OHCI USB controller
2377
@item
2378
On-chip LCD controller
2379
@item
2380
On-chip Real Time Clock
2381
@item
2382
TI ADS7846 touchscreen controller on SSP bus
2383
@item
2384
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2385
@item
2386
GPIO-connected keyboard controller and LEDs
2387
@item
2388
Secure Digital card connected to PXA MMC/SD host
2389
@item
2390
Three on-chip UARTs
2391
@item
2392
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2393
@end itemize
2394

    
2395
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2396
following elements:
2397

    
2398
@itemize @minus
2399
@item
2400
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2401
@item
2402
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2403
@item
2404
On-chip LCD controller
2405
@item
2406
On-chip Real Time Clock
2407
@item
2408
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2409
CODEC, connected through MicroWire and I@math{^2}S busses
2410
@item
2411
GPIO-connected matrix keypad
2412
@item
2413
Secure Digital card connected to OMAP MMC/SD host
2414
@item
2415
Three on-chip UARTs
2416
@end itemize
2417

    
2418
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2419
devices:
2420

    
2421
@itemize @minus
2422
@item
2423
Cortex-M3 CPU core.
2424
@item
2425
64k Flash and 8k SRAM.
2426
@item
2427
Timers, UARTs, ADC and I@math{^2}C interface.
2428
@item
2429
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2430
@end itemize
2431

    
2432
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2433
devices:
2434

    
2435
@itemize @minus
2436
@item
2437
Cortex-M3 CPU core.
2438
@item
2439
256k Flash and 64k SRAM.
2440
@item
2441
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2442
@item
2443
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2444
@end itemize
2445

    
2446
A Linux 2.6 test image is available on the QEMU web site. More
2447
information is available in the QEMU mailing-list archive.
2448

    
2449
@node ColdFire System emulator
2450
@section ColdFire System emulator
2451

    
2452
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2453
The emulator is able to boot a uClinux kernel.
2454

    
2455
The M5208EVB emulation includes the following devices:
2456

    
2457
@itemize @minus
2458
@item
2459
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2460
@item
2461
Three Two on-chip UARTs.
2462
@item
2463
Fast Ethernet Controller (FEC)
2464
@end itemize
2465

    
2466
The AN5206 emulation includes the following devices:
2467

    
2468
@itemize @minus
2469
@item
2470
MCF5206 ColdFire V2 Microprocessor.
2471
@item
2472
Two on-chip UARTs.
2473
@end itemize
2474

    
2475
@node QEMU User space emulator
2476
@chapter QEMU User space emulator
2477

    
2478
@menu
2479
* Supported Operating Systems ::
2480
* Linux User space emulator::
2481
* Mac OS X/Darwin User space emulator ::
2482
@end menu
2483

    
2484
@node Supported Operating Systems
2485
@section Supported Operating Systems
2486

    
2487
The following OS are supported in user space emulation:
2488

    
2489
@itemize @minus
2490
@item
2491
Linux (referred as qemu-linux-user)
2492
@item
2493
Mac OS X/Darwin (referred as qemu-darwin-user)
2494
@end itemize
2495

    
2496
@node Linux User space emulator
2497
@section Linux User space emulator
2498

    
2499
@menu
2500
* Quick Start::
2501
* Wine launch::
2502
* Command line options::
2503
* Other binaries::
2504
@end menu
2505

    
2506
@node Quick Start
2507
@subsection Quick Start
2508

    
2509
In order to launch a Linux process, QEMU needs the process executable
2510
itself and all the target (x86) dynamic libraries used by it.
2511

    
2512
@itemize
2513

    
2514
@item On x86, you can just try to launch any process by using the native
2515
libraries:
2516

    
2517
@example
2518
qemu-i386 -L / /bin/ls
2519
@end example
2520

    
2521
@code{-L /} tells that the x86 dynamic linker must be searched with a
2522
@file{/} prefix.
2523

    
2524
@item Since QEMU is also a linux process, you can launch qemu with
2525
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2526

    
2527
@example
2528
qemu-i386 -L / qemu-i386 -L / /bin/ls
2529
@end example
2530

    
2531
@item On non x86 CPUs, you need first to download at least an x86 glibc
2532
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2533
@code{LD_LIBRARY_PATH} is not set:
2534

    
2535
@example
2536
unset LD_LIBRARY_PATH
2537
@end example
2538

    
2539
Then you can launch the precompiled @file{ls} x86 executable:
2540

    
2541
@example
2542
qemu-i386 tests/i386/ls
2543
@end example
2544
You can look at @file{qemu-binfmt-conf.sh} so that
2545
QEMU is automatically launched by the Linux kernel when you try to
2546
launch x86 executables. It requires the @code{binfmt_misc} module in the
2547
Linux kernel.
2548

    
2549
@item The x86 version of QEMU is also included. You can try weird things such as:
2550
@example
2551
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2552
          /usr/local/qemu-i386/bin/ls-i386
2553
@end example
2554

    
2555
@end itemize
2556

    
2557
@node Wine launch
2558
@subsection Wine launch
2559

    
2560
@itemize
2561

    
2562
@item Ensure that you have a working QEMU with the x86 glibc
2563
distribution (see previous section). In order to verify it, you must be
2564
able to do:
2565

    
2566
@example
2567
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2568
@end example
2569

    
2570
@item Download the binary x86 Wine install
2571
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2572

    
2573
@item Configure Wine on your account. Look at the provided script
2574
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2575
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2576

    
2577
@item Then you can try the example @file{putty.exe}:
2578

    
2579
@example
2580
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2581
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2582
@end example
2583

    
2584
@end itemize
2585

    
2586
@node Command line options
2587
@subsection Command line options
2588

    
2589
@example
2590
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2591
@end example
2592

    
2593
@table @option
2594
@item -h
2595
Print the help
2596
@item -L path
2597
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2598
@item -s size
2599
Set the x86 stack size in bytes (default=524288)
2600
@end table
2601

    
2602
Debug options:
2603

    
2604
@table @option
2605
@item -d
2606
Activate log (logfile=/tmp/qemu.log)
2607
@item -p pagesize
2608
Act as if the host page size was 'pagesize' bytes
2609
@end table
2610

    
2611
Environment variables:
2612

    
2613
@table @env
2614
@item QEMU_STRACE
2615
Print system calls and arguments similar to the 'strace' program
2616
(NOTE: the actual 'strace' program will not work because the user
2617
space emulator hasn't implemented ptrace).  At the moment this is
2618
incomplete.  All system calls that don't have a specific argument
2619
format are printed with information for six arguments.  Many
2620
flag-style arguments don't have decoders and will show up as numbers.
2621
@end table
2622

    
2623
@node Other binaries
2624
@subsection Other binaries
2625

    
2626
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2627
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2628
configurations), and arm-uclinux bFLT format binaries.
2629

    
2630
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2631
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2632
coldfire uClinux bFLT format binaries.
2633

    
2634
The binary format is detected automatically.
2635

    
2636
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2637
(Sparc64 CPU, 32 bit ABI).
2638

    
2639
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2640
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2641

    
2642
@node Mac OS X/Darwin User space emulator
2643
@section Mac OS X/Darwin User space emulator
2644

    
2645
@menu
2646
* Mac OS X/Darwin Status::
2647
* Mac OS X/Darwin Quick Start::
2648
* Mac OS X/Darwin Command line options::
2649
@end menu
2650

    
2651
@node Mac OS X/Darwin Status
2652
@subsection Mac OS X/Darwin Status
2653

    
2654
@itemize @minus
2655
@item
2656
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2657
@item
2658
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2659
@item
2660
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2661
@item
2662
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2663
@end itemize
2664

    
2665
[1] If you're host commpage can be executed by qemu.
2666

    
2667
@node Mac OS X/Darwin Quick Start
2668
@subsection Quick Start
2669

    
2670
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2671
itself and all the target dynamic libraries used by it. If you don't have the FAT
2672
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2673
CD or compile them by hand.
2674

    
2675
@itemize
2676

    
2677
@item On x86, you can just try to launch any process by using the native
2678
libraries:
2679

    
2680
@example
2681
qemu-i386 /bin/ls
2682
@end example
2683

    
2684
or to run the ppc version of the executable:
2685

    
2686
@example
2687
qemu-ppc /bin/ls
2688
@end example
2689

    
2690
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2691
are installed:
2692

    
2693
@example
2694
qemu-i386 -L /opt/x86_root/ /bin/ls
2695
@end example
2696

    
2697
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2698
@file{/opt/x86_root/usr/bin/dyld}.
2699

    
2700
@end itemize
2701

    
2702
@node Mac OS X/Darwin Command line options
2703
@subsection Command line options
2704

    
2705
@example
2706
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2707
@end example
2708

    
2709
@table @option
2710
@item -h
2711
Print the help
2712
@item -L path
2713
Set the library root path (default=/)
2714
@item -s size
2715
Set the stack size in bytes (default=524288)
2716
@end table
2717

    
2718
Debug options:
2719

    
2720
@table @option
2721
@item -d
2722
Activate log (logfile=/tmp/qemu.log)
2723
@item -p pagesize
2724
Act as if the host page size was 'pagesize' bytes
2725
@end table
2726

    
2727
@node compilation
2728
@chapter Compilation from the sources
2729

    
2730
@menu
2731
* Linux/Unix::
2732
* Windows::
2733
* Cross compilation for Windows with Linux::
2734
* Mac OS X::
2735
@end menu
2736

    
2737
@node Linux/Unix
2738
@section Linux/Unix
2739

    
2740
@subsection Compilation
2741

    
2742
First you must decompress the sources:
2743
@example
2744
cd /tmp
2745
tar zxvf qemu-x.y.z.tar.gz
2746
cd qemu-x.y.z
2747
@end example
2748

    
2749
Then you configure QEMU and build it (usually no options are needed):
2750
@example
2751
./configure
2752
make
2753
@end example
2754

    
2755
Then type as root user:
2756
@example
2757
make install
2758
@end example
2759
to install QEMU in @file{/usr/local}.
2760

    
2761
@subsection GCC version
2762

    
2763
In order to compile QEMU successfully, it is very important that you
2764
have the right tools. The most important one is gcc. On most hosts and
2765
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2766
Linux distribution includes a gcc 4.x compiler, you can usually
2767
install an older version (it is invoked by @code{gcc32} or
2768
@code{gcc34}). The QEMU configure script automatically probes for
2769
these older versions so that usually you don't have to do anything.
2770

    
2771
@node Windows
2772
@section Windows
2773

    
2774
@itemize
2775
@item Install the current versions of MSYS and MinGW from
2776
@url{http://www.mingw.org/}. You can find detailed installation
2777
instructions in the download section and the FAQ.
2778

    
2779
@item Download
2780
the MinGW development library of SDL 1.2.x
2781
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2782
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2783
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2784
directory. Edit the @file{sdl-config} script so that it gives the
2785
correct SDL directory when invoked.
2786

    
2787
@item Extract the current version of QEMU.
2788

    
2789
@item Start the MSYS shell (file @file{msys.bat}).
2790

    
2791
@item Change to the QEMU directory. Launch @file{./configure} and
2792
@file{make}.  If you have problems using SDL, verify that
2793
@file{sdl-config} can be launched from the MSYS command line.
2794

    
2795
@item You can install QEMU in @file{Program Files/Qemu} by typing
2796
@file{make install}. Don't forget to copy @file{SDL.dll} in
2797
@file{Program Files/Qemu}.
2798

    
2799
@end itemize
2800

    
2801
@node Cross compilation for Windows with Linux
2802
@section Cross compilation for Windows with Linux
2803

    
2804
@itemize
2805
@item
2806
Install the MinGW cross compilation tools available at
2807
@url{http://www.mingw.org/}.
2808

    
2809
@item
2810
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2811
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2812
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2813
the QEMU configuration script.
2814

    
2815
@item
2816
Configure QEMU for Windows cross compilation:
2817
@example
2818
./configure --enable-mingw32
2819
@end example
2820
If necessary, you can change the cross-prefix according to the prefix
2821
chosen for the MinGW tools with --cross-prefix. You can also use
2822
--prefix to set the Win32 install path.
2823

    
2824
@item You can install QEMU in the installation directory by typing
2825
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2826
installation directory.
2827

    
2828
@end itemize
2829

    
2830
Note: Currently, Wine does not seem able to launch
2831
QEMU for Win32.
2832

    
2833
@node Mac OS X
2834
@section Mac OS X
2835

    
2836
The Mac OS X patches are not fully merged in QEMU, so you should look
2837
at the QEMU mailing list archive to have all the necessary
2838
information.
2839

    
2840
@node Index
2841
@chapter Index
2842
@printindex cp
2843

    
2844
@bye