Statistics
| Branch: | Revision:

root / hw / spapr.c @ a369da5f

History | View | Annotate | Download (25.1 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44

    
45
#include "kvm.h"
46
#include "kvm_ppc.h"
47
#include "pci.h"
48

    
49
#include "exec-memory.h"
50

    
51
#include <libfdt.h>
52

    
53
/* SLOF memory layout:
54
 *
55
 * SLOF raw image loaded at 0, copies its romfs right below the flat
56
 * device-tree, then position SLOF itself 31M below that
57
 *
58
 * So we set FW_OVERHEAD to 40MB which should account for all of that
59
 * and more
60
 *
61
 * We load our kernel at 4M, leaving space for SLOF initial image
62
 */
63
#define FDT_MAX_SIZE            0x10000
64
#define RTAS_MAX_SIZE           0x10000
65
#define FW_MAX_SIZE             0x400000
66
#define FW_FILE_NAME            "slof.bin"
67
#define FW_OVERHEAD             0x2800000
68
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
69

    
70
#define MIN_RMA_SLOF            128UL
71

    
72
#define TIMEBASE_FREQ           512000000ULL
73

    
74
#define MAX_CPUS                256
75
#define XICS_IRQS               1024
76

    
77
#define SPAPR_PCI_BUID          0x800000020000001ULL
78
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
79
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
80
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
81

    
82
#define PHANDLE_XICP            0x00001111
83

    
84
sPAPREnvironment *spapr;
85

    
86
qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num)
87
{
88
    uint32_t irq;
89
    qemu_irq qirq;
90

    
91
    if (hint) {
92
        irq = hint;
93
        /* FIXME: we should probably check for collisions somehow */
94
    } else {
95
        irq = spapr->next_irq++;
96
    }
97

    
98
    qirq = xics_find_qirq(spapr->icp, irq);
99
    if (!qirq) {
100
        return NULL;
101
    }
102

    
103
    if (irq_num) {
104
        *irq_num = irq;
105
    }
106

    
107
    return qirq;
108
}
109

    
110
static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
111
{
112
    int ret = 0, offset;
113
    CPUState *env;
114
    char cpu_model[32];
115
    int smt = kvmppc_smt_threads();
116

    
117
    assert(spapr->cpu_model);
118

    
119
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
120
        uint32_t associativity[] = {cpu_to_be32(0x5),
121
                                    cpu_to_be32(0x0),
122
                                    cpu_to_be32(0x0),
123
                                    cpu_to_be32(0x0),
124
                                    cpu_to_be32(env->numa_node),
125
                                    cpu_to_be32(env->cpu_index)};
126

    
127
        if ((env->cpu_index % smt) != 0) {
128
            continue;
129
        }
130

    
131
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
132
                 env->cpu_index);
133

    
134
        offset = fdt_path_offset(fdt, cpu_model);
135
        if (offset < 0) {
136
            return offset;
137
        }
138

    
139
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
140
                          sizeof(associativity));
141
        if (ret < 0) {
142
            return ret;
143
        }
144
    }
145
    return ret;
146
}
147

    
148
static void *spapr_create_fdt_skel(const char *cpu_model,
149
                                   target_phys_addr_t rma_size,
150
                                   target_phys_addr_t initrd_base,
151
                                   target_phys_addr_t initrd_size,
152
                                   target_phys_addr_t kernel_size,
153
                                   const char *boot_device,
154
                                   const char *kernel_cmdline,
155
                                   long hash_shift)
156
{
157
    void *fdt;
158
    CPUState *env;
159
    uint64_t mem_reg_property[2];
160
    uint32_t start_prop = cpu_to_be32(initrd_base);
161
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
162
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
163
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
164
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
165
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
166
    int i;
167
    char *modelname;
168
    int smt = kvmppc_smt_threads();
169
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
170
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
171
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
172
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
173
                                cpu_to_be32(0x0)};
174
    char mem_name[32];
175
    target_phys_addr_t node0_size, mem_start;
176

    
177
#define _FDT(exp) \
178
    do { \
179
        int ret = (exp);                                           \
180
        if (ret < 0) {                                             \
181
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
182
                    #exp, fdt_strerror(ret));                      \
183
            exit(1);                                               \
184
        }                                                          \
185
    } while (0)
186

    
187
    fdt = g_malloc0(FDT_MAX_SIZE);
188
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
189

    
190
    if (kernel_size) {
191
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
192
    }
193
    if (initrd_size) {
194
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
195
    }
196
    _FDT((fdt_finish_reservemap(fdt)));
197

    
198
    /* Root node */
199
    _FDT((fdt_begin_node(fdt, "")));
200
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
201
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
202

    
203
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
204
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
205

    
206
    /* /chosen */
207
    _FDT((fdt_begin_node(fdt, "chosen")));
208

    
209
    /* Set Form1_affinity */
210
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
211

    
212
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
213
    _FDT((fdt_property(fdt, "linux,initrd-start",
214
                       &start_prop, sizeof(start_prop))));
215
    _FDT((fdt_property(fdt, "linux,initrd-end",
216
                       &end_prop, sizeof(end_prop))));
217
    if (kernel_size) {
218
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
219
                              cpu_to_be64(kernel_size) };
220

    
221
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
222
    }
223
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
224

    
225
    _FDT((fdt_end_node(fdt)));
226

    
227
    /* memory node(s) */
228
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
229
    if (rma_size > node0_size) {
230
        rma_size = node0_size;
231
    }
232

    
233
    /* RMA */
234
    mem_reg_property[0] = 0;
235
    mem_reg_property[1] = cpu_to_be64(rma_size);
236
    _FDT((fdt_begin_node(fdt, "memory@0")));
237
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
238
    _FDT((fdt_property(fdt, "reg", mem_reg_property,
239
        sizeof(mem_reg_property))));
240
    _FDT((fdt_property(fdt, "ibm,associativity", associativity,
241
        sizeof(associativity))));
242
    _FDT((fdt_end_node(fdt)));
243

    
244
    /* RAM: Node 0 */
245
    if (node0_size > rma_size) {
246
        mem_reg_property[0] = cpu_to_be64(rma_size);
247
        mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
248

    
249
        sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
250
        _FDT((fdt_begin_node(fdt, mem_name)));
251
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
252
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
253
                           sizeof(mem_reg_property))));
254
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
255
                           sizeof(associativity))));
256
        _FDT((fdt_end_node(fdt)));
257
    }
258

    
259
    /* RAM: Node 1 and beyond */
260
    mem_start = node0_size;
261
    for (i = 1; i < nb_numa_nodes; i++) {
262
        mem_reg_property[0] = cpu_to_be64(mem_start);
263
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
264
        associativity[3] = associativity[4] = cpu_to_be32(i);
265
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
266
        _FDT((fdt_begin_node(fdt, mem_name)));
267
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
268
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
269
            sizeof(mem_reg_property))));
270
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
271
            sizeof(associativity))));
272
        _FDT((fdt_end_node(fdt)));
273
        mem_start += node_mem[i];
274
    }
275

    
276
    /* cpus */
277
    _FDT((fdt_begin_node(fdt, "cpus")));
278

    
279
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
280
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
281

    
282
    modelname = g_strdup(cpu_model);
283

    
284
    for (i = 0; i < strlen(modelname); i++) {
285
        modelname[i] = toupper(modelname[i]);
286
    }
287

    
288
    /* This is needed during FDT finalization */
289
    spapr->cpu_model = g_strdup(modelname);
290

    
291
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
292
        int index = env->cpu_index;
293
        uint32_t servers_prop[smp_threads];
294
        uint32_t gservers_prop[smp_threads * 2];
295
        char *nodename;
296
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
297
                           0xffffffff, 0xffffffff};
298
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
299
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
300

    
301
        if ((index % smt) != 0) {
302
            continue;
303
        }
304

    
305
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
306
            fprintf(stderr, "Allocation failure\n");
307
            exit(1);
308
        }
309

    
310
        _FDT((fdt_begin_node(fdt, nodename)));
311

    
312
        free(nodename);
313

    
314
        _FDT((fdt_property_cell(fdt, "reg", index)));
315
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
316

    
317
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
318
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
319
                                env->dcache_line_size)));
320
        _FDT((fdt_property_cell(fdt, "icache-block-size",
321
                                env->icache_line_size)));
322
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
323
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
324
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
325
        _FDT((fdt_property(fdt, "ibm,pft-size",
326
                           pft_size_prop, sizeof(pft_size_prop))));
327
        _FDT((fdt_property_string(fdt, "status", "okay")));
328
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
329

    
330
        /* Build interrupt servers and gservers properties */
331
        for (i = 0; i < smp_threads; i++) {
332
            servers_prop[i] = cpu_to_be32(index + i);
333
            /* Hack, direct the group queues back to cpu 0 */
334
            gservers_prop[i*2] = cpu_to_be32(index + i);
335
            gservers_prop[i*2 + 1] = 0;
336
        }
337
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
338
                           servers_prop, sizeof(servers_prop))));
339
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
340
                           gservers_prop, sizeof(gservers_prop))));
341

    
342
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
343
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
344
                               segs, sizeof(segs))));
345
        }
346

    
347
        /* Advertise VMX/VSX (vector extensions) if available
348
         *   0 / no property == no vector extensions
349
         *   1               == VMX / Altivec available
350
         *   2               == VSX available */
351
        if (env->insns_flags & PPC_ALTIVEC) {
352
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
353

    
354
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
355
        }
356

    
357
        /* Advertise DFP (Decimal Floating Point) if available
358
         *   0 / no property == no DFP
359
         *   1               == DFP available */
360
        if (env->insns_flags2 & PPC2_DFP) {
361
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
362
        }
363

    
364
        _FDT((fdt_end_node(fdt)));
365
    }
366

    
367
    g_free(modelname);
368

    
369
    _FDT((fdt_end_node(fdt)));
370

    
371
    /* RTAS */
372
    _FDT((fdt_begin_node(fdt, "rtas")));
373

    
374
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
375
                       sizeof(hypertas_prop))));
376

    
377
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
378
        refpoints, sizeof(refpoints))));
379

    
380
    _FDT((fdt_end_node(fdt)));
381

    
382
    /* interrupt controller */
383
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
384

    
385
    _FDT((fdt_property_string(fdt, "device_type",
386
                              "PowerPC-External-Interrupt-Presentation")));
387
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
388
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
389
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
390
                       interrupt_server_ranges_prop,
391
                       sizeof(interrupt_server_ranges_prop))));
392
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
393
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
394
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
395

    
396
    _FDT((fdt_end_node(fdt)));
397

    
398
    /* vdevice */
399
    _FDT((fdt_begin_node(fdt, "vdevice")));
400

    
401
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
402
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
403
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
404
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
405
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
406
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
407

    
408
    _FDT((fdt_end_node(fdt)));
409

    
410
    _FDT((fdt_end_node(fdt))); /* close root node */
411
    _FDT((fdt_finish(fdt)));
412

    
413
    return fdt;
414
}
415

    
416
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
417
                               target_phys_addr_t fdt_addr,
418
                               target_phys_addr_t rtas_addr,
419
                               target_phys_addr_t rtas_size)
420
{
421
    int ret;
422
    void *fdt;
423
    sPAPRPHBState *phb;
424

    
425
    fdt = g_malloc(FDT_MAX_SIZE);
426

    
427
    /* open out the base tree into a temp buffer for the final tweaks */
428
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
429

    
430
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
431
    if (ret < 0) {
432
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
433
        exit(1);
434
    }
435

    
436
    QLIST_FOREACH(phb, &spapr->phbs, list) {
437
        ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
438
    }
439

    
440
    if (ret < 0) {
441
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
442
        exit(1);
443
    }
444

    
445
    /* RTAS */
446
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
447
    if (ret < 0) {
448
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
449
    }
450

    
451
    /* Advertise NUMA via ibm,associativity */
452
    if (nb_numa_nodes > 1) {
453
        ret = spapr_set_associativity(fdt, spapr);
454
        if (ret < 0) {
455
            fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
456
        }
457
    }
458

    
459
    spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
460

    
461
    _FDT((fdt_pack(fdt)));
462

    
463
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
464
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
465
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
466
        exit(1);
467
    }
468

    
469
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
470

    
471
    g_free(fdt);
472
}
473

    
474
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
475
{
476
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
477
}
478

    
479
static void emulate_spapr_hypercall(CPUState *env)
480
{
481
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
482
}
483

    
484
static void spapr_reset(void *opaque)
485
{
486
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
487

    
488
    fprintf(stderr, "sPAPR reset\n");
489

    
490
    /* flush out the hash table */
491
    memset(spapr->htab, 0, spapr->htab_size);
492

    
493
    /* Load the fdt */
494
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
495
                       spapr->rtas_size);
496

    
497
    /* Set up the entry state */
498
    first_cpu->gpr[3] = spapr->fdt_addr;
499
    first_cpu->gpr[5] = 0;
500
    first_cpu->halted = 0;
501
    first_cpu->nip = spapr->entry_point;
502

    
503
}
504

    
505
/* pSeries LPAR / sPAPR hardware init */
506
static void ppc_spapr_init(ram_addr_t ram_size,
507
                           const char *boot_device,
508
                           const char *kernel_filename,
509
                           const char *kernel_cmdline,
510
                           const char *initrd_filename,
511
                           const char *cpu_model)
512
{
513
    CPUState *env;
514
    int i;
515
    MemoryRegion *sysmem = get_system_memory();
516
    MemoryRegion *ram = g_new(MemoryRegion, 1);
517
    target_phys_addr_t rma_alloc_size, rma_size;
518
    uint32_t initrd_base = 0;
519
    long kernel_size = 0, initrd_size = 0;
520
    long load_limit, rtas_limit, fw_size;
521
    long pteg_shift = 17;
522
    char *filename;
523

    
524
    spapr = g_malloc0(sizeof(*spapr));
525
    QLIST_INIT(&spapr->phbs);
526

    
527
    cpu_ppc_hypercall = emulate_spapr_hypercall;
528

    
529
    /* Allocate RMA if necessary */
530
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
531

    
532
    if (rma_alloc_size == -1) {
533
        hw_error("qemu: Unable to create RMA\n");
534
        exit(1);
535
    }
536
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
537
        rma_size = rma_alloc_size;
538
    } else {
539
        rma_size = ram_size;
540
    }
541

    
542
    /* We place the device tree and RTAS just below either the top of the RMA,
543
     * or just below 2GB, whichever is lowere, so that it can be
544
     * processed with 32-bit real mode code if necessary */
545
    rtas_limit = MIN(rma_size, 0x80000000);
546
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
547
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
548
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
549

    
550
    /* init CPUs */
551
    if (cpu_model == NULL) {
552
        cpu_model = kvm_enabled() ? "host" : "POWER7";
553
    }
554
    for (i = 0; i < smp_cpus; i++) {
555
        env = cpu_init(cpu_model);
556

    
557
        if (!env) {
558
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
559
            exit(1);
560
        }
561
        /* Set time-base frequency to 512 MHz */
562
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
563
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
564

    
565
        env->hreset_vector = 0x60;
566
        env->hreset_excp_prefix = 0;
567
        env->gpr[3] = env->cpu_index;
568
    }
569

    
570
    /* allocate RAM */
571
    spapr->ram_limit = ram_size;
572
    if (spapr->ram_limit > rma_alloc_size) {
573
        ram_addr_t nonrma_base = rma_alloc_size;
574
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
575

    
576
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
577
        vmstate_register_ram_global(ram);
578
        memory_region_add_subregion(sysmem, nonrma_base, ram);
579
    }
580

    
581
    /* allocate hash page table.  For now we always make this 16mb,
582
     * later we should probably make it scale to the size of guest
583
     * RAM */
584
    spapr->htab_size = 1ULL << (pteg_shift + 7);
585
    spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
586

    
587
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
588
        env->external_htab = spapr->htab;
589
        env->htab_base = -1;
590
        env->htab_mask = spapr->htab_size - 1;
591

    
592
        /* Tell KVM that we're in PAPR mode */
593
        env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
594
                             ((pteg_shift + 7) - 18);
595
        env->spr[SPR_HIOR] = 0;
596

    
597
        if (kvm_enabled()) {
598
            kvmppc_set_papr(env);
599
        }
600
    }
601

    
602
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
603
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
604
                                           rtas_limit - spapr->rtas_addr);
605
    if (spapr->rtas_size < 0) {
606
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
607
        exit(1);
608
    }
609
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
610
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
611
                 spapr->rtas_size, RTAS_MAX_SIZE);
612
        exit(1);
613
    }
614
    g_free(filename);
615

    
616

    
617
    /* Set up Interrupt Controller */
618
    spapr->icp = xics_system_init(XICS_IRQS);
619
    spapr->next_irq = 16;
620

    
621
    /* Set up VIO bus */
622
    spapr->vio_bus = spapr_vio_bus_init();
623

    
624
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
625
        if (serial_hds[i]) {
626
            spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i,
627
                             serial_hds[i]);
628
        }
629
    }
630

    
631
    /* Set up PCI */
632
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
633
                     SPAPR_PCI_MEM_WIN_ADDR,
634
                     SPAPR_PCI_MEM_WIN_SIZE,
635
                     SPAPR_PCI_IO_WIN_ADDR);
636

    
637
    for (i = 0; i < nb_nics; i++) {
638
        NICInfo *nd = &nd_table[i];
639

    
640
        if (!nd->model) {
641
            nd->model = g_strdup("ibmveth");
642
        }
643

    
644
        if (strcmp(nd->model, "ibmveth") == 0) {
645
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd);
646
        } else {
647
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
648
        }
649
    }
650

    
651
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
652
        spapr_vscsi_create(spapr->vio_bus, 0x2000 + i);
653
    }
654

    
655
    if (rma_size < (MIN_RMA_SLOF << 20)) {
656
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
657
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
658
        exit(1);
659
    }
660

    
661
    fprintf(stderr, "sPAPR memory map:\n");
662
    fprintf(stderr, "RTAS                 : 0x%08lx..%08lx\n",
663
            (unsigned long)spapr->rtas_addr,
664
            (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
665
    fprintf(stderr, "FDT                  : 0x%08lx..%08lx\n",
666
            (unsigned long)spapr->fdt_addr,
667
            (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
668

    
669
    if (kernel_filename) {
670
        uint64_t lowaddr = 0;
671

    
672
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
673
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
674
        if (kernel_size < 0) {
675
            kernel_size = load_image_targphys(kernel_filename,
676
                                              KERNEL_LOAD_ADDR,
677
                                              load_limit - KERNEL_LOAD_ADDR);
678
        }
679
        if (kernel_size < 0) {
680
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
681
                    kernel_filename);
682
            exit(1);
683
        }
684
        fprintf(stderr, "Kernel               : 0x%08x..%08lx\n",
685
                KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
686

    
687
        /* load initrd */
688
        if (initrd_filename) {
689
            /* Try to locate the initrd in the gap between the kernel
690
             * and the firmware. Add a bit of space just in case
691
             */
692
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
693
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
694
                                              load_limit - initrd_base);
695
            if (initrd_size < 0) {
696
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
697
                        initrd_filename);
698
                exit(1);
699
            }
700
            fprintf(stderr, "Ramdisk              : 0x%08lx..%08lx\n",
701
                    (long)initrd_base, (long)(initrd_base + initrd_size - 1));
702
        } else {
703
            initrd_base = 0;
704
            initrd_size = 0;
705
        }
706
    }
707

    
708
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
709
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
710
    if (fw_size < 0) {
711
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
712
        exit(1);
713
    }
714
    g_free(filename);
715
    fprintf(stderr, "Firmware load        : 0x%08x..%08lx\n",
716
            0, fw_size);
717
    fprintf(stderr, "Firmware runtime     : 0x%08lx..%08lx\n",
718
            load_limit, (unsigned long)spapr->fdt_addr);
719

    
720
    spapr->entry_point = 0x100;
721

    
722
    /* SLOF will startup the secondary CPUs using RTAS */
723
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
724
        env->halted = 1;
725
    }
726

    
727
    /* Prepare the device tree */
728
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
729
                                            initrd_base, initrd_size,
730
                                            kernel_size,
731
                                            boot_device, kernel_cmdline,
732
                                            pteg_shift + 7);
733
    assert(spapr->fdt_skel != NULL);
734

    
735
    qemu_register_reset(spapr_reset, spapr);
736
}
737

    
738
static QEMUMachine spapr_machine = {
739
    .name = "pseries",
740
    .desc = "pSeries Logical Partition (PAPR compliant)",
741
    .init = ppc_spapr_init,
742
    .max_cpus = MAX_CPUS,
743
    .no_parallel = 1,
744
    .use_scsi = 1,
745
};
746

    
747
static void spapr_machine_init(void)
748
{
749
    qemu_register_machine(&spapr_machine);
750
}
751

    
752
machine_init(spapr_machine_init);