Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ a3d12d07

History | View | Annotate | Download (13.8 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27
#include "sysbus.h"
28
#include "trace.h"
29

    
30
/*
31
 * Registers of hardware timer in sun4m.
32
 *
33
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
34
 * produced as NCR89C105. See
35
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
36
 *
37
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
38
 * are zero. Bit 31 is 1 when count has been reached.
39
 *
40
 * Per-CPU timers interrupt local CPU, system timer uses normal
41
 * interrupt routing.
42
 *
43
 */
44

    
45
#define MAX_CPUS 16
46

    
47
typedef struct CPUTimerState {
48
    qemu_irq irq;
49
    ptimer_state *timer;
50
    uint32_t count, counthigh, reached;
51
    /* processor only */
52
    uint32_t running;
53
    uint64_t limit;
54
} CPUTimerState;
55

    
56
typedef struct SLAVIO_TIMERState {
57
    SysBusDevice busdev;
58
    uint32_t num_cpus;
59
    uint32_t cputimer_mode;
60
    CPUTimerState cputimer[MAX_CPUS + 1];
61
} SLAVIO_TIMERState;
62

    
63
typedef struct TimerContext {
64
    MemoryRegion iomem;
65
    SLAVIO_TIMERState *s;
66
    unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
67
} TimerContext;
68

    
69
#define SYS_TIMER_SIZE 0x14
70
#define CPU_TIMER_SIZE 0x10
71

    
72
#define TIMER_LIMIT         0
73
#define TIMER_COUNTER       1
74
#define TIMER_COUNTER_NORST 2
75
#define TIMER_STATUS        3
76
#define TIMER_MODE          4
77

    
78
#define TIMER_COUNT_MASK32 0xfffffe00
79
#define TIMER_LIMIT_MASK32 0x7fffffff
80
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
81
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
82
#define TIMER_REACHED      0x80000000
83
#define TIMER_PERIOD       500ULL // 500ns
84
#define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
85
#define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
86

    
87
static int slavio_timer_is_user(TimerContext *tc)
88
{
89
    SLAVIO_TIMERState *s = tc->s;
90
    unsigned int timer_index = tc->timer_index;
91

    
92
    return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
93
}
94

    
95
// Update count, set irq, update expire_time
96
// Convert from ptimer countdown units
97
static void slavio_timer_get_out(CPUTimerState *t)
98
{
99
    uint64_t count, limit;
100

    
101
    if (t->limit == 0) { /* free-run system or processor counter */
102
        limit = TIMER_MAX_COUNT32;
103
    } else {
104
        limit = t->limit;
105
    }
106
    count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
107

    
108
    trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
109
    t->count = count & TIMER_COUNT_MASK32;
110
    t->counthigh = count >> 32;
111
}
112

    
113
// timer callback
114
static void slavio_timer_irq(void *opaque)
115
{
116
    TimerContext *tc = opaque;
117
    SLAVIO_TIMERState *s = tc->s;
118
    CPUTimerState *t = &s->cputimer[tc->timer_index];
119

    
120
    slavio_timer_get_out(t);
121
    trace_slavio_timer_irq(t->counthigh, t->count);
122
    /* if limit is 0 (free-run), there will be no match */
123
    if (t->limit != 0) {
124
        t->reached = TIMER_REACHED;
125
    }
126
    /* there is no interrupt if user timer or free-run */
127
    if (!slavio_timer_is_user(tc) && t->limit != 0) {
128
        qemu_irq_raise(t->irq);
129
    }
130
}
131

    
132
static uint64_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr,
133
                                       unsigned size)
134
{
135
    TimerContext *tc = opaque;
136
    SLAVIO_TIMERState *s = tc->s;
137
    uint32_t saddr, ret;
138
    unsigned int timer_index = tc->timer_index;
139
    CPUTimerState *t = &s->cputimer[timer_index];
140

    
141
    saddr = addr >> 2;
142
    switch (saddr) {
143
    case TIMER_LIMIT:
144
        // read limit (system counter mode) or read most signifying
145
        // part of counter (user mode)
146
        if (slavio_timer_is_user(tc)) {
147
            // read user timer MSW
148
            slavio_timer_get_out(t);
149
            ret = t->counthigh | t->reached;
150
        } else {
151
            // read limit
152
            // clear irq
153
            qemu_irq_lower(t->irq);
154
            t->reached = 0;
155
            ret = t->limit & TIMER_LIMIT_MASK32;
156
        }
157
        break;
158
    case TIMER_COUNTER:
159
        // read counter and reached bit (system mode) or read lsbits
160
        // of counter (user mode)
161
        slavio_timer_get_out(t);
162
        if (slavio_timer_is_user(tc)) { // read user timer LSW
163
            ret = t->count & TIMER_MAX_COUNT64;
164
        } else { // read limit
165
            ret = (t->count & TIMER_MAX_COUNT32) |
166
                t->reached;
167
        }
168
        break;
169
    case TIMER_STATUS:
170
        // only available in processor counter/timer
171
        // read start/stop status
172
        if (timer_index > 0) {
173
            ret = t->running;
174
        } else {
175
            ret = 0;
176
        }
177
        break;
178
    case TIMER_MODE:
179
        // only available in system counter
180
        // read user/system mode
181
        ret = s->cputimer_mode;
182
        break;
183
    default:
184
        trace_slavio_timer_mem_readl_invalid(addr);
185
        ret = 0;
186
        break;
187
    }
188
    trace_slavio_timer_mem_readl(addr, ret);
189
    return ret;
190
}
191

    
192
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
193
                                    uint64_t val, unsigned size)
194
{
195
    TimerContext *tc = opaque;
196
    SLAVIO_TIMERState *s = tc->s;
197
    uint32_t saddr;
198
    unsigned int timer_index = tc->timer_index;
199
    CPUTimerState *t = &s->cputimer[timer_index];
200

    
201
    trace_slavio_timer_mem_writel(addr, val);
202
    saddr = addr >> 2;
203
    switch (saddr) {
204
    case TIMER_LIMIT:
205
        if (slavio_timer_is_user(tc)) {
206
            uint64_t count;
207

    
208
            // set user counter MSW, reset counter
209
            t->limit = TIMER_MAX_COUNT64;
210
            t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
211
            t->reached = 0;
212
            count = ((uint64_t)t->counthigh << 32) | t->count;
213
            trace_slavio_timer_mem_writel_limit(timer_index, count);
214
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
215
        } else {
216
            // set limit, reset counter
217
            qemu_irq_lower(t->irq);
218
            t->limit = val & TIMER_MAX_COUNT32;
219
            if (t->timer) {
220
                if (t->limit == 0) { /* free-run */
221
                    ptimer_set_limit(t->timer,
222
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
223
                } else {
224
                    ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
225
                }
226
            }
227
        }
228
        break;
229
    case TIMER_COUNTER:
230
        if (slavio_timer_is_user(tc)) {
231
            uint64_t count;
232

    
233
            // set user counter LSW, reset counter
234
            t->limit = TIMER_MAX_COUNT64;
235
            t->count = val & TIMER_MAX_COUNT64;
236
            t->reached = 0;
237
            count = ((uint64_t)t->counthigh) << 32 | t->count;
238
            trace_slavio_timer_mem_writel_limit(timer_index, count);
239
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
240
        } else {
241
            trace_slavio_timer_mem_writel_counter_invalid();
242
        }
243
        break;
244
    case TIMER_COUNTER_NORST:
245
        // set limit without resetting counter
246
        t->limit = val & TIMER_MAX_COUNT32;
247
        if (t->limit == 0) { /* free-run */
248
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
249
        } else {
250
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
251
        }
252
        break;
253
    case TIMER_STATUS:
254
        if (slavio_timer_is_user(tc)) {
255
            // start/stop user counter
256
            if ((val & 1) && !t->running) {
257
                trace_slavio_timer_mem_writel_status_start(timer_index);
258
                ptimer_run(t->timer, 0);
259
                t->running = 1;
260
            } else if (!(val & 1) && t->running) {
261
                trace_slavio_timer_mem_writel_status_stop(timer_index);
262
                ptimer_stop(t->timer);
263
                t->running = 0;
264
            }
265
        }
266
        break;
267
    case TIMER_MODE:
268
        if (timer_index == 0) {
269
            unsigned int i;
270

    
271
            for (i = 0; i < s->num_cpus; i++) {
272
                unsigned int processor = 1 << i;
273
                CPUTimerState *curr_timer = &s->cputimer[i + 1];
274

    
275
                // check for a change in timer mode for this processor
276
                if ((val & processor) != (s->cputimer_mode & processor)) {
277
                    if (val & processor) { // counter -> user timer
278
                        qemu_irq_lower(curr_timer->irq);
279
                        // counters are always running
280
                        ptimer_stop(curr_timer->timer);
281
                        curr_timer->running = 0;
282
                        // user timer limit is always the same
283
                        curr_timer->limit = TIMER_MAX_COUNT64;
284
                        ptimer_set_limit(curr_timer->timer,
285
                                         LIMIT_TO_PERIODS(curr_timer->limit),
286
                                         1);
287
                        // set this processors user timer bit in config
288
                        // register
289
                        s->cputimer_mode |= processor;
290
                        trace_slavio_timer_mem_writel_mode_user(timer_index);
291
                    } else { // user timer -> counter
292
                        // stop the user timer if it is running
293
                        if (curr_timer->running) {
294
                            ptimer_stop(curr_timer->timer);
295
                        }
296
                        // start the counter
297
                        ptimer_run(curr_timer->timer, 0);
298
                        curr_timer->running = 1;
299
                        // clear this processors user timer bit in config
300
                        // register
301
                        s->cputimer_mode &= ~processor;
302
                        trace_slavio_timer_mem_writel_mode_counter(timer_index);
303
                    }
304
                }
305
            }
306
        } else {
307
            trace_slavio_timer_mem_writel_mode_invalid();
308
        }
309
        break;
310
    default:
311
        trace_slavio_timer_mem_writel_invalid(addr);
312
        break;
313
    }
314
}
315

    
316
static const MemoryRegionOps slavio_timer_mem_ops = {
317
    .read = slavio_timer_mem_readl,
318
    .write = slavio_timer_mem_writel,
319
    .endianness = DEVICE_NATIVE_ENDIAN,
320
    .valid = {
321
        .min_access_size = 4,
322
        .max_access_size = 4,
323
    },
324
};
325

    
326
static const VMStateDescription vmstate_timer = {
327
    .name ="timer",
328
    .version_id = 3,
329
    .minimum_version_id = 3,
330
    .minimum_version_id_old = 3,
331
    .fields      = (VMStateField []) {
332
        VMSTATE_UINT64(limit, CPUTimerState),
333
        VMSTATE_UINT32(count, CPUTimerState),
334
        VMSTATE_UINT32(counthigh, CPUTimerState),
335
        VMSTATE_UINT32(reached, CPUTimerState),
336
        VMSTATE_UINT32(running, CPUTimerState),
337
        VMSTATE_PTIMER(timer, CPUTimerState),
338
        VMSTATE_END_OF_LIST()
339
    }
340
};
341

    
342
static const VMStateDescription vmstate_slavio_timer = {
343
    .name ="slavio_timer",
344
    .version_id = 3,
345
    .minimum_version_id = 3,
346
    .minimum_version_id_old = 3,
347
    .fields      = (VMStateField []) {
348
        VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
349
                             vmstate_timer, CPUTimerState),
350
        VMSTATE_END_OF_LIST()
351
    }
352
};
353

    
354
static void slavio_timer_reset(DeviceState *d)
355
{
356
    SLAVIO_TIMERState *s = container_of(d, SLAVIO_TIMERState, busdev.qdev);
357
    unsigned int i;
358
    CPUTimerState *curr_timer;
359

    
360
    for (i = 0; i <= MAX_CPUS; i++) {
361
        curr_timer = &s->cputimer[i];
362
        curr_timer->limit = 0;
363
        curr_timer->count = 0;
364
        curr_timer->reached = 0;
365
        if (i <= s->num_cpus) {
366
            ptimer_set_limit(curr_timer->timer,
367
                             LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
368
            ptimer_run(curr_timer->timer, 0);
369
            curr_timer->running = 1;
370
        }
371
    }
372
    s->cputimer_mode = 0;
373
}
374

    
375
static int slavio_timer_init1(SysBusDevice *dev)
376
{
377
    SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
378
    QEMUBH *bh;
379
    unsigned int i;
380
    TimerContext *tc;
381

    
382
    for (i = 0; i <= MAX_CPUS; i++) {
383
        uint64_t size;
384
        char timer_name[20];
385

    
386
        tc = g_malloc0(sizeof(TimerContext));
387
        tc->s = s;
388
        tc->timer_index = i;
389

    
390
        bh = qemu_bh_new(slavio_timer_irq, tc);
391
        s->cputimer[i].timer = ptimer_init(bh);
392
        ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
393

    
394
        size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE;
395
        snprintf(timer_name, sizeof(timer_name), "timer-%i", i);
396
        memory_region_init_io(&tc->iomem, &slavio_timer_mem_ops, tc,
397
                              timer_name, size);
398
        sysbus_init_mmio_region(dev, &tc->iomem);
399

    
400
        sysbus_init_irq(dev, &s->cputimer[i].irq);
401
    }
402

    
403
    return 0;
404
}
405

    
406
static SysBusDeviceInfo slavio_timer_info = {
407
    .init = slavio_timer_init1,
408
    .qdev.name  = "slavio_timer",
409
    .qdev.size  = sizeof(SLAVIO_TIMERState),
410
    .qdev.vmsd  = &vmstate_slavio_timer,
411
    .qdev.reset = slavio_timer_reset,
412
    .qdev.props = (Property[]) {
413
        DEFINE_PROP_UINT32("num_cpus",  SLAVIO_TIMERState, num_cpus,  0),
414
        DEFINE_PROP_END_OF_LIST(),
415
    }
416
};
417

    
418
static void slavio_timer_register_devices(void)
419
{
420
    sysbus_register_withprop(&slavio_timer_info);
421
}
422

    
423
device_init(slavio_timer_register_devices)