Statistics
| Branch: | Revision:

root / fpu / softfloat-native.h @ a3f5054b

History | View | Annotate | Download (13.2 kB)

1 158142c2 bellard
/* Native implementation of soft float functions */
2 158142c2 bellard
#include <math.h>
3 38cfa06c bellard
4 a167ba50 Aurelien Jarno
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
5 a167ba50 Aurelien Jarno
    || defined(CONFIG_SOLARIS)
6 158142c2 bellard
#include <ieeefp.h>
7 38cfa06c bellard
#define fabsf(f) ((float)fabs(f))
8 158142c2 bellard
#else
9 158142c2 bellard
#include <fenv.h>
10 158142c2 bellard
#endif
11 38cfa06c bellard
12 d07cca02 blueswir1
#if defined(__OpenBSD__) || defined(__NetBSD__)
13 7c2a9d09 blueswir1
#include <sys/param.h>
14 7c2a9d09 blueswir1
#endif
15 7c2a9d09 blueswir1
16 38cfa06c bellard
/*
17 38cfa06c bellard
 * Define some C99-7.12.3 classification macros and
18 38cfa06c bellard
 *        some C99-.12.4 for Solaris systems OS less than 10,
19 38cfa06c bellard
 *        or Solaris 10 systems running GCC 3.x or less.
20 38cfa06c bellard
 *   Solaris 10 with GCC4 does not need these macros as they
21 38cfa06c bellard
 *   are defined in <iso/math_c99.h> with a compiler directive
22 38cfa06c bellard
 */
23 dfe5fff3 Juan Quintela
#if defined(CONFIG_SOLARIS) && \
24 dfe5fff3 Juan Quintela
           ((CONFIG_SOLARIS_VERSION <= 9 ) || \
25 be45f068 Andreas Färber
           ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
26 7c2a9d09 blueswir1
    || (defined(__OpenBSD__) && (OpenBSD < 200811))
27 38cfa06c bellard
/*
28 38cfa06c bellard
 * C99 7.12.3 classification macros
29 38cfa06c bellard
 * and
30 38cfa06c bellard
 * C99 7.12.14 comparison macros
31 38cfa06c bellard
 *
32 38cfa06c bellard
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
33 38cfa06c bellard
 * Try to workaround the missing / broken C99 math macros.
34 38cfa06c bellard
 */
35 128ab2ff blueswir1
#if defined(__OpenBSD__)
36 128ab2ff blueswir1
#define unordered(x, y) (isnan(x) || isnan(y))
37 128ab2ff blueswir1
#endif
38 38cfa06c bellard
39 d07cca02 blueswir1
#ifdef __NetBSD__
40 d07cca02 blueswir1
#ifndef isgreater
41 d07cca02 blueswir1
#define isgreater(x, y)                __builtin_isgreater(x, y)
42 d07cca02 blueswir1
#endif
43 d07cca02 blueswir1
#ifndef isgreaterequal
44 d07cca02 blueswir1
#define isgreaterequal(x, y)        __builtin_isgreaterequal(x, y)
45 d07cca02 blueswir1
#endif
46 d07cca02 blueswir1
#ifndef isless
47 d07cca02 blueswir1
#define isless(x, y)                __builtin_isless(x, y)
48 d07cca02 blueswir1
#endif
49 d07cca02 blueswir1
#ifndef islessequal
50 d07cca02 blueswir1
#define islessequal(x, y)        __builtin_islessequal(x, y)
51 d07cca02 blueswir1
#endif
52 d07cca02 blueswir1
#ifndef isunordered
53 d07cca02 blueswir1
#define isunordered(x, y)        __builtin_isunordered(x, y)
54 d07cca02 blueswir1
#endif
55 d07cca02 blueswir1
#endif
56 d07cca02 blueswir1
57 d07cca02 blueswir1
58 38cfa06c bellard
#define isnormal(x)             (fpclass(x) >= FP_NZERO)
59 38cfa06c bellard
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
60 38cfa06c bellard
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
61 38cfa06c bellard
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
62 38cfa06c bellard
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
63 38cfa06c bellard
#define isunordered(x,y)        unordered(x, y)
64 ec530c81 bellard
#endif
65 158142c2 bellard
66 75b5a697 Juan Quintela
#if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
67 c94655b0 ths
68 c94655b0 ths
#ifndef isnan
69 c94655b0 ths
# define isnan(x) \
70 c94655b0 ths
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
71 c94655b0 ths
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
72 c94655b0 ths
     : isnan_f (x))
73 c94655b0 ths
static inline int isnan_f  (float       x) { return x != x; }
74 c94655b0 ths
static inline int isnan_d  (double      x) { return x != x; }
75 c94655b0 ths
static inline int isnan_ld (long double x) { return x != x; }
76 c94655b0 ths
#endif
77 c94655b0 ths
78 c94655b0 ths
#ifndef isinf
79 c94655b0 ths
# define isinf(x) \
80 c94655b0 ths
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
81 c94655b0 ths
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
82 c94655b0 ths
     : isinf_f (x))
83 c94655b0 ths
static inline int isinf_f  (float       x) { return isnan (x - x); }
84 c94655b0 ths
static inline int isinf_d  (double      x) { return isnan (x - x); }
85 c94655b0 ths
static inline int isinf_ld (long double x) { return isnan (x - x); }
86 c94655b0 ths
#endif
87 c94655b0 ths
#endif
88 c94655b0 ths
89 158142c2 bellard
typedef float float32;
90 158142c2 bellard
typedef double float64;
91 158142c2 bellard
#ifdef FLOATX80
92 158142c2 bellard
typedef long double floatx80;
93 158142c2 bellard
#endif
94 158142c2 bellard
95 158142c2 bellard
typedef union {
96 158142c2 bellard
    float32 f;
97 158142c2 bellard
    uint32_t i;
98 158142c2 bellard
} float32u;
99 158142c2 bellard
typedef union {
100 158142c2 bellard
    float64 f;
101 158142c2 bellard
    uint64_t i;
102 158142c2 bellard
} float64u;
103 158142c2 bellard
#ifdef FLOATX80
104 158142c2 bellard
typedef union {
105 158142c2 bellard
    floatx80 f;
106 158142c2 bellard
    struct {
107 158142c2 bellard
        uint64_t low;
108 158142c2 bellard
        uint16_t high;
109 158142c2 bellard
    } i;
110 158142c2 bellard
} floatx80u;
111 158142c2 bellard
#endif
112 158142c2 bellard
113 158142c2 bellard
/*----------------------------------------------------------------------------
114 158142c2 bellard
| Software IEC/IEEE floating-point rounding mode.
115 158142c2 bellard
*----------------------------------------------------------------------------*/
116 a167ba50 Aurelien Jarno
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
117 a167ba50 Aurelien Jarno
    || defined(CONFIG_SOLARIS)
118 128ab2ff blueswir1
#if defined(__OpenBSD__)
119 128ab2ff blueswir1
#define FE_RM FP_RM
120 128ab2ff blueswir1
#define FE_RP FP_RP
121 128ab2ff blueswir1
#define FE_RZ FP_RZ
122 128ab2ff blueswir1
#endif
123 158142c2 bellard
enum {
124 158142c2 bellard
    float_round_nearest_even = FP_RN,
125 7918bf47 pbrook
    float_round_down         = FP_RM,
126 7918bf47 pbrook
    float_round_up           = FP_RP,
127 7918bf47 pbrook
    float_round_to_zero      = FP_RZ
128 158142c2 bellard
};
129 158142c2 bellard
#else
130 158142c2 bellard
enum {
131 158142c2 bellard
    float_round_nearest_even = FE_TONEAREST,
132 158142c2 bellard
    float_round_down         = FE_DOWNWARD,
133 158142c2 bellard
    float_round_up           = FE_UPWARD,
134 158142c2 bellard
    float_round_to_zero      = FE_TOWARDZERO
135 158142c2 bellard
};
136 158142c2 bellard
#endif
137 158142c2 bellard
138 158142c2 bellard
typedef struct float_status {
139 e872aa81 aurel32
    int float_rounding_mode;
140 158142c2 bellard
#ifdef FLOATX80
141 e872aa81 aurel32
    int floatx80_rounding_precision;
142 158142c2 bellard
#endif
143 158142c2 bellard
} float_status;
144 158142c2 bellard
145 158142c2 bellard
void set_float_rounding_mode(int val STATUS_PARAM);
146 158142c2 bellard
#ifdef FLOATX80
147 158142c2 bellard
void set_floatx80_rounding_precision(int val STATUS_PARAM);
148 158142c2 bellard
#endif
149 158142c2 bellard
150 158142c2 bellard
/*----------------------------------------------------------------------------
151 158142c2 bellard
| Software IEC/IEEE integer-to-floating-point conversion routines.
152 158142c2 bellard
*----------------------------------------------------------------------------*/
153 158142c2 bellard
float32 int32_to_float32( int STATUS_PARAM);
154 75d62a58 j_mayer
float32 uint32_to_float32( unsigned int STATUS_PARAM);
155 158142c2 bellard
float64 int32_to_float64( int STATUS_PARAM);
156 75d62a58 j_mayer
float64 uint32_to_float64( unsigned int STATUS_PARAM);
157 158142c2 bellard
#ifdef FLOATX80
158 158142c2 bellard
floatx80 int32_to_floatx80( int STATUS_PARAM);
159 158142c2 bellard
#endif
160 158142c2 bellard
#ifdef FLOAT128
161 158142c2 bellard
float128 int32_to_float128( int STATUS_PARAM);
162 158142c2 bellard
#endif
163 158142c2 bellard
float32 int64_to_float32( int64_t STATUS_PARAM);
164 75d62a58 j_mayer
float32 uint64_to_float32( uint64_t STATUS_PARAM);
165 158142c2 bellard
float64 int64_to_float64( int64_t STATUS_PARAM);
166 75d62a58 j_mayer
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
167 158142c2 bellard
#ifdef FLOATX80
168 158142c2 bellard
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
169 158142c2 bellard
#endif
170 158142c2 bellard
#ifdef FLOAT128
171 158142c2 bellard
float128 int64_to_float128( int64_t STATUS_PARAM);
172 158142c2 bellard
#endif
173 158142c2 bellard
174 158142c2 bellard
/*----------------------------------------------------------------------------
175 158142c2 bellard
| Software IEC/IEEE single-precision conversion routines.
176 158142c2 bellard
*----------------------------------------------------------------------------*/
177 158142c2 bellard
int float32_to_int32( float32  STATUS_PARAM);
178 158142c2 bellard
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
179 75d62a58 j_mayer
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
180 75d62a58 j_mayer
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
181 158142c2 bellard
int64_t float32_to_int64( float32  STATUS_PARAM);
182 158142c2 bellard
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
183 158142c2 bellard
float64 float32_to_float64( float32  STATUS_PARAM);
184 158142c2 bellard
#ifdef FLOATX80
185 158142c2 bellard
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
186 158142c2 bellard
#endif
187 158142c2 bellard
#ifdef FLOAT128
188 158142c2 bellard
float128 float32_to_float128( float32  STATUS_PARAM);
189 158142c2 bellard
#endif
190 158142c2 bellard
191 158142c2 bellard
/*----------------------------------------------------------------------------
192 158142c2 bellard
| Software IEC/IEEE single-precision operations.
193 158142c2 bellard
*----------------------------------------------------------------------------*/
194 158142c2 bellard
float32 float32_round_to_int( float32  STATUS_PARAM);
195 158142c2 bellard
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
196 158142c2 bellard
{
197 158142c2 bellard
    return a + b;
198 158142c2 bellard
}
199 158142c2 bellard
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
200 158142c2 bellard
{
201 158142c2 bellard
    return a - b;
202 158142c2 bellard
}
203 158142c2 bellard
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
204 158142c2 bellard
{
205 158142c2 bellard
    return a * b;
206 158142c2 bellard
}
207 158142c2 bellard
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
208 158142c2 bellard
{
209 158142c2 bellard
    return a / b;
210 158142c2 bellard
}
211 158142c2 bellard
float32 float32_rem( float32, float32  STATUS_PARAM);
212 158142c2 bellard
float32 float32_sqrt( float32  STATUS_PARAM);
213 750afe93 bellard
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
214 158142c2 bellard
{
215 158142c2 bellard
    return a == b;
216 158142c2 bellard
}
217 750afe93 bellard
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
218 158142c2 bellard
{
219 158142c2 bellard
    return a <= b;
220 158142c2 bellard
}
221 750afe93 bellard
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
222 158142c2 bellard
{
223 158142c2 bellard
    return a < b;
224 158142c2 bellard
}
225 750afe93 bellard
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
226 158142c2 bellard
{
227 b109f9f8 bellard
    return a <= b && a >= b;
228 158142c2 bellard
}
229 750afe93 bellard
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
230 158142c2 bellard
{
231 158142c2 bellard
    return islessequal(a, b);
232 158142c2 bellard
}
233 750afe93 bellard
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
234 158142c2 bellard
{
235 158142c2 bellard
    return isless(a, b);
236 158142c2 bellard
}
237 750afe93 bellard
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
238 b109f9f8 bellard
{
239 b109f9f8 bellard
    return isunordered(a, b);
240 b109f9f8 bellard
241 b109f9f8 bellard
}
242 750afe93 bellard
int float32_compare( float32, float32 STATUS_PARAM );
243 750afe93 bellard
int float32_compare_quiet( float32, float32 STATUS_PARAM );
244 750afe93 bellard
int float32_is_signaling_nan( float32 );
245 629bd74a aurel32
int float32_is_nan( float32 );
246 158142c2 bellard
247 158142c2 bellard
INLINE float32 float32_abs(float32 a)
248 158142c2 bellard
{
249 158142c2 bellard
    return fabsf(a);
250 158142c2 bellard
}
251 158142c2 bellard
252 158142c2 bellard
INLINE float32 float32_chs(float32 a)
253 158142c2 bellard
{
254 158142c2 bellard
    return -a;
255 158142c2 bellard
}
256 158142c2 bellard
257 c52ab6f5 aurel32
INLINE float32 float32_is_infinity(float32 a)
258 c52ab6f5 aurel32
{
259 c52ab6f5 aurel32
    return fpclassify(a) == FP_INFINITE;
260 c52ab6f5 aurel32
}
261 c52ab6f5 aurel32
262 c52ab6f5 aurel32
INLINE float32 float32_is_neg(float32 a)
263 c52ab6f5 aurel32
{
264 8d6c92b6 aurel32
    float32u u;
265 8d6c92b6 aurel32
    u.f = a;
266 8d6c92b6 aurel32
    return u.i >> 31;
267 c52ab6f5 aurel32
}
268 c52ab6f5 aurel32
269 c52ab6f5 aurel32
INLINE float32 float32_is_zero(float32 a)
270 c52ab6f5 aurel32
{
271 c52ab6f5 aurel32
    return fpclassify(a) == FP_ZERO;
272 c52ab6f5 aurel32
}
273 c52ab6f5 aurel32
274 9ee6e8bb pbrook
INLINE float32 float32_scalbn(float32 a, int n)
275 9ee6e8bb pbrook
{
276 9ee6e8bb pbrook
    return scalbnf(a, n);
277 9ee6e8bb pbrook
}
278 9ee6e8bb pbrook
279 158142c2 bellard
/*----------------------------------------------------------------------------
280 158142c2 bellard
| Software IEC/IEEE double-precision conversion routines.
281 158142c2 bellard
*----------------------------------------------------------------------------*/
282 158142c2 bellard
int float64_to_int32( float64 STATUS_PARAM );
283 158142c2 bellard
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
284 75d62a58 j_mayer
unsigned int float64_to_uint32( float64 STATUS_PARAM );
285 75d62a58 j_mayer
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
286 158142c2 bellard
int64_t float64_to_int64( float64 STATUS_PARAM );
287 158142c2 bellard
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
288 75d62a58 j_mayer
uint64_t float64_to_uint64( float64 STATUS_PARAM );
289 75d62a58 j_mayer
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
290 158142c2 bellard
float32 float64_to_float32( float64 STATUS_PARAM );
291 158142c2 bellard
#ifdef FLOATX80
292 158142c2 bellard
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
293 158142c2 bellard
#endif
294 158142c2 bellard
#ifdef FLOAT128
295 158142c2 bellard
float128 float64_to_float128( float64 STATUS_PARAM );
296 158142c2 bellard
#endif
297 158142c2 bellard
298 158142c2 bellard
/*----------------------------------------------------------------------------
299 158142c2 bellard
| Software IEC/IEEE double-precision operations.
300 158142c2 bellard
*----------------------------------------------------------------------------*/
301 158142c2 bellard
float64 float64_round_to_int( float64 STATUS_PARAM );
302 e6e5906b pbrook
float64 float64_trunc_to_int( float64 STATUS_PARAM );
303 158142c2 bellard
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
304 158142c2 bellard
{
305 158142c2 bellard
    return a + b;
306 158142c2 bellard
}
307 158142c2 bellard
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
308 158142c2 bellard
{
309 158142c2 bellard
    return a - b;
310 158142c2 bellard
}
311 158142c2 bellard
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
312 158142c2 bellard
{
313 158142c2 bellard
    return a * b;
314 158142c2 bellard
}
315 158142c2 bellard
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
316 158142c2 bellard
{
317 158142c2 bellard
    return a / b;
318 158142c2 bellard
}
319 158142c2 bellard
float64 float64_rem( float64, float64 STATUS_PARAM );
320 158142c2 bellard
float64 float64_sqrt( float64 STATUS_PARAM );
321 750afe93 bellard
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
322 158142c2 bellard
{
323 158142c2 bellard
    return a == b;
324 158142c2 bellard
}
325 750afe93 bellard
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
326 158142c2 bellard
{
327 158142c2 bellard
    return a <= b;
328 158142c2 bellard
}
329 750afe93 bellard
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
330 158142c2 bellard
{
331 158142c2 bellard
    return a < b;
332 158142c2 bellard
}
333 750afe93 bellard
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
334 158142c2 bellard
{
335 b109f9f8 bellard
    return a <= b && a >= b;
336 158142c2 bellard
}
337 750afe93 bellard
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
338 158142c2 bellard
{
339 158142c2 bellard
    return islessequal(a, b);
340 158142c2 bellard
}
341 750afe93 bellard
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
342 158142c2 bellard
{
343 158142c2 bellard
    return isless(a, b);
344 158142c2 bellard
345 158142c2 bellard
}
346 750afe93 bellard
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
347 b109f9f8 bellard
{
348 b109f9f8 bellard
    return isunordered(a, b);
349 b109f9f8 bellard
350 b109f9f8 bellard
}
351 750afe93 bellard
int float64_compare( float64, float64 STATUS_PARAM );
352 750afe93 bellard
int float64_compare_quiet( float64, float64 STATUS_PARAM );
353 750afe93 bellard
int float64_is_signaling_nan( float64 );
354 750afe93 bellard
int float64_is_nan( float64 );
355 158142c2 bellard
356 158142c2 bellard
INLINE float64 float64_abs(float64 a)
357 158142c2 bellard
{
358 158142c2 bellard
    return fabs(a);
359 158142c2 bellard
}
360 158142c2 bellard
361 158142c2 bellard
INLINE float64 float64_chs(float64 a)
362 158142c2 bellard
{
363 158142c2 bellard
    return -a;
364 158142c2 bellard
}
365 158142c2 bellard
366 c52ab6f5 aurel32
INLINE float64 float64_is_infinity(float64 a)
367 c52ab6f5 aurel32
{
368 c52ab6f5 aurel32
    return fpclassify(a) == FP_INFINITE;
369 c52ab6f5 aurel32
}
370 c52ab6f5 aurel32
371 c52ab6f5 aurel32
INLINE float64 float64_is_neg(float64 a)
372 c52ab6f5 aurel32
{
373 8d6c92b6 aurel32
    float64u u;
374 8d6c92b6 aurel32
    u.f = a;
375 8d6c92b6 aurel32
    return u.i >> 63;
376 c52ab6f5 aurel32
}
377 c52ab6f5 aurel32
378 c52ab6f5 aurel32
INLINE float64 float64_is_zero(float64 a)
379 c52ab6f5 aurel32
{
380 c52ab6f5 aurel32
    return fpclassify(a) == FP_ZERO;
381 c52ab6f5 aurel32
}
382 c52ab6f5 aurel32
383 9ee6e8bb pbrook
INLINE float64 float64_scalbn(float64 a, int n)
384 9ee6e8bb pbrook
{
385 9ee6e8bb pbrook
    return scalbn(a, n);
386 9ee6e8bb pbrook
}
387 9ee6e8bb pbrook
388 158142c2 bellard
#ifdef FLOATX80
389 158142c2 bellard
390 158142c2 bellard
/*----------------------------------------------------------------------------
391 158142c2 bellard
| Software IEC/IEEE extended double-precision conversion routines.
392 158142c2 bellard
*----------------------------------------------------------------------------*/
393 158142c2 bellard
int floatx80_to_int32( floatx80 STATUS_PARAM );
394 158142c2 bellard
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
395 158142c2 bellard
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
396 158142c2 bellard
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
397 158142c2 bellard
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
398 158142c2 bellard
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
399 158142c2 bellard
#ifdef FLOAT128
400 158142c2 bellard
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
401 158142c2 bellard
#endif
402 158142c2 bellard
403 158142c2 bellard
/*----------------------------------------------------------------------------
404 158142c2 bellard
| Software IEC/IEEE extended double-precision operations.
405 158142c2 bellard
*----------------------------------------------------------------------------*/
406 158142c2 bellard
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
407 158142c2 bellard
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
408 158142c2 bellard
{
409 158142c2 bellard
    return a + b;
410 158142c2 bellard
}
411 158142c2 bellard
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
412 158142c2 bellard
{
413 158142c2 bellard
    return a - b;
414 158142c2 bellard
}
415 158142c2 bellard
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
416 158142c2 bellard
{
417 158142c2 bellard
    return a * b;
418 158142c2 bellard
}
419 158142c2 bellard
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
420 158142c2 bellard
{
421 158142c2 bellard
    return a / b;
422 158142c2 bellard
}
423 158142c2 bellard
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
424 158142c2 bellard
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
425 750afe93 bellard
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
426 158142c2 bellard
{
427 158142c2 bellard
    return a == b;
428 158142c2 bellard
}
429 750afe93 bellard
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
430 158142c2 bellard
{
431 158142c2 bellard
    return a <= b;
432 158142c2 bellard
}
433 750afe93 bellard
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
434 158142c2 bellard
{
435 158142c2 bellard
    return a < b;
436 158142c2 bellard
}
437 750afe93 bellard
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
438 158142c2 bellard
{
439 b109f9f8 bellard
    return a <= b && a >= b;
440 158142c2 bellard
}
441 750afe93 bellard
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
442 158142c2 bellard
{
443 158142c2 bellard
    return islessequal(a, b);
444 158142c2 bellard
}
445 750afe93 bellard
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
446 158142c2 bellard
{
447 158142c2 bellard
    return isless(a, b);
448 158142c2 bellard
449 158142c2 bellard
}
450 750afe93 bellard
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
451 b109f9f8 bellard
{
452 b109f9f8 bellard
    return isunordered(a, b);
453 b109f9f8 bellard
454 b109f9f8 bellard
}
455 750afe93 bellard
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
456 750afe93 bellard
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
457 750afe93 bellard
int floatx80_is_signaling_nan( floatx80 );
458 1b2ad2ec aurel32
int floatx80_is_nan( floatx80 );
459 158142c2 bellard
460 158142c2 bellard
INLINE floatx80 floatx80_abs(floatx80 a)
461 158142c2 bellard
{
462 158142c2 bellard
    return fabsl(a);
463 158142c2 bellard
}
464 158142c2 bellard
465 158142c2 bellard
INLINE floatx80 floatx80_chs(floatx80 a)
466 158142c2 bellard
{
467 158142c2 bellard
    return -a;
468 158142c2 bellard
}
469 9ee6e8bb pbrook
470 c52ab6f5 aurel32
INLINE floatx80 floatx80_is_infinity(floatx80 a)
471 c52ab6f5 aurel32
{
472 c52ab6f5 aurel32
    return fpclassify(a) == FP_INFINITE;
473 c52ab6f5 aurel32
}
474 c52ab6f5 aurel32
475 c52ab6f5 aurel32
INLINE floatx80 floatx80_is_neg(floatx80 a)
476 c52ab6f5 aurel32
{
477 8d6c92b6 aurel32
    floatx80u u;
478 8d6c92b6 aurel32
    u.f = a;
479 8d6c92b6 aurel32
    return u.i.high >> 15;
480 c52ab6f5 aurel32
}
481 c52ab6f5 aurel32
482 c52ab6f5 aurel32
INLINE floatx80 floatx80_is_zero(floatx80 a)
483 c52ab6f5 aurel32
{
484 c52ab6f5 aurel32
    return fpclassify(a) == FP_ZERO;
485 c52ab6f5 aurel32
}
486 c52ab6f5 aurel32
487 9ee6e8bb pbrook
INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
488 9ee6e8bb pbrook
{
489 9ee6e8bb pbrook
    return scalbnl(a, n);
490 9ee6e8bb pbrook
}
491 9ee6e8bb pbrook
492 158142c2 bellard
#endif