Statistics
| Branch: | Revision:

root / cpu-common.h @ a4773324

History | View | Annotate | Download (7.1 kB)

1
#ifndef CPU_COMMON_H
2
#define CPU_COMMON_H 1
3

    
4
/* CPU interfaces that are target indpendent.  */
5

    
6
#ifdef TARGET_PHYS_ADDR_BITS
7
#include "targphys.h"
8
#endif
9

    
10
#ifndef NEED_CPU_H
11
#include "poison.h"
12
#endif
13

    
14
#include "bswap.h"
15
#include "qemu-queue.h"
16

    
17
#if !defined(CONFIG_USER_ONLY)
18

    
19
enum device_endian {
20
    DEVICE_NATIVE_ENDIAN,
21
    DEVICE_BIG_ENDIAN,
22
    DEVICE_LITTLE_ENDIAN,
23
};
24

    
25
/* address in the RAM (different from a physical address) */
26
#if defined(CONFIG_XEN_BACKEND) && TARGET_PHYS_ADDR_BITS == 64
27
typedef uint64_t ram_addr_t;
28
#  define RAM_ADDR_MAX UINT64_MAX
29
#  define RAM_ADDR_FMT "%" PRIx64
30
#else
31
typedef unsigned long ram_addr_t;
32
#  define RAM_ADDR_MAX ULONG_MAX
33
#  define RAM_ADDR_FMT "%lx"
34
#endif
35

    
36
/* memory API */
37

    
38
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
39
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
40

    
41
void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
42
                                      ram_addr_t size,
43
                                      ram_addr_t phys_offset,
44
                                      ram_addr_t region_offset,
45
                                      bool log_dirty);
46

    
47
static inline void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
48
                                                       ram_addr_t size,
49
                                                       ram_addr_t phys_offset,
50
                                                       ram_addr_t region_offset)
51
{
52
    cpu_register_physical_memory_log(start_addr, size, phys_offset,
53
                                     region_offset, false);
54
}
55

    
56
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
57
                                                ram_addr_t size,
58
                                                ram_addr_t phys_offset)
59
{
60
    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
61
}
62

    
63
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
64
ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
65
                        ram_addr_t size, void *host);
66
ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size);
67
void qemu_ram_free(ram_addr_t addr);
68
void qemu_ram_free_from_ptr(ram_addr_t addr);
69
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
70
/* This should only be used for ram local to a device.  */
71
void *qemu_get_ram_ptr(ram_addr_t addr);
72
void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size);
73
/* Same but slower, to use for migration, where the order of
74
 * RAMBlocks must not change. */
75
void *qemu_safe_ram_ptr(ram_addr_t addr);
76
void qemu_put_ram_ptr(void *addr);
77
/* This should not be used by devices.  */
78
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
79
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
80

    
81
int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
82
                           CPUWriteMemoryFunc * const *mem_write,
83
                           void *opaque, enum device_endian endian);
84
void cpu_unregister_io_memory(int table_address);
85

    
86
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
87
                            int len, int is_write);
88
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
89
                                            void *buf, int len)
90
{
91
    cpu_physical_memory_rw(addr, buf, len, 0);
92
}
93
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
94
                                             const void *buf, int len)
95
{
96
    cpu_physical_memory_rw(addr, (void *)buf, len, 1);
97
}
98
void *cpu_physical_memory_map(target_phys_addr_t addr,
99
                              target_phys_addr_t *plen,
100
                              int is_write);
101
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
102
                               int is_write, target_phys_addr_t access_len);
103
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
104
void cpu_unregister_map_client(void *cookie);
105

    
106
struct CPUPhysMemoryClient;
107
typedef struct CPUPhysMemoryClient CPUPhysMemoryClient;
108
struct CPUPhysMemoryClient {
109
    void (*set_memory)(struct CPUPhysMemoryClient *client,
110
                       target_phys_addr_t start_addr,
111
                       ram_addr_t size,
112
                       ram_addr_t phys_offset,
113
                       bool log_dirty);
114
    int (*sync_dirty_bitmap)(struct CPUPhysMemoryClient *client,
115
                             target_phys_addr_t start_addr,
116
                             target_phys_addr_t end_addr);
117
    int (*migration_log)(struct CPUPhysMemoryClient *client,
118
                         int enable);
119
    int (*log_start)(struct CPUPhysMemoryClient *client,
120
                     target_phys_addr_t phys_addr, ram_addr_t size);
121
    int (*log_stop)(struct CPUPhysMemoryClient *client,
122
                    target_phys_addr_t phys_addr, ram_addr_t size);
123
    QLIST_ENTRY(CPUPhysMemoryClient) list;
124
};
125

    
126
void cpu_register_phys_memory_client(CPUPhysMemoryClient *);
127
void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *);
128

    
129
/* Coalesced MMIO regions are areas where write operations can be reordered.
130
 * This usually implies that write operations are side-effect free.  This allows
131
 * batching which can make a major impact on performance when using
132
 * virtualization.
133
 */
134
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
135

    
136
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
137

    
138
void qemu_flush_coalesced_mmio_buffer(void);
139

    
140
uint32_t ldub_phys(target_phys_addr_t addr);
141
uint32_t lduw_le_phys(target_phys_addr_t addr);
142
uint32_t lduw_be_phys(target_phys_addr_t addr);
143
uint32_t ldl_le_phys(target_phys_addr_t addr);
144
uint32_t ldl_be_phys(target_phys_addr_t addr);
145
uint64_t ldq_le_phys(target_phys_addr_t addr);
146
uint64_t ldq_be_phys(target_phys_addr_t addr);
147
void stb_phys(target_phys_addr_t addr, uint32_t val);
148
void stw_le_phys(target_phys_addr_t addr, uint32_t val);
149
void stw_be_phys(target_phys_addr_t addr, uint32_t val);
150
void stl_le_phys(target_phys_addr_t addr, uint32_t val);
151
void stl_be_phys(target_phys_addr_t addr, uint32_t val);
152
void stq_le_phys(target_phys_addr_t addr, uint64_t val);
153
void stq_be_phys(target_phys_addr_t addr, uint64_t val);
154

    
155
#ifdef NEED_CPU_H
156
uint32_t lduw_phys(target_phys_addr_t addr);
157
uint32_t ldl_phys(target_phys_addr_t addr);
158
uint64_t ldq_phys(target_phys_addr_t addr);
159
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
160
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
161
void stw_phys(target_phys_addr_t addr, uint32_t val);
162
void stl_phys(target_phys_addr_t addr, uint32_t val);
163
void stq_phys(target_phys_addr_t addr, uint64_t val);
164
#endif
165

    
166
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
167
                                   const uint8_t *buf, int len);
168

    
169
#define IO_MEM_SHIFT       3
170

    
171
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
172
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
173
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
174
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
175

    
176
/* Acts like a ROM when read and like a device when written.  */
177
#define IO_MEM_ROMD        (1)
178
#define IO_MEM_SUBPAGE     (2)
179

    
180
#endif
181

    
182
#endif /* !CPU_COMMON_H */