Statistics
| Branch: | Revision:

root / hw / eccmemctl.c @ a4a771c0

History | View | Annotate | Download (10.4 kB)

1
/*
2
 * QEMU Sparc Sun4m ECC memory controller emulation
3
 *
4
 * Copyright (c) 2007 Robert Reif
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "sysemu.h"
27

    
28
//#define DEBUG_ECC
29

    
30
#ifdef DEBUG_ECC
31
#define DPRINTF(fmt, args...)                           \
32
    do { printf("ECC: " fmt , ##args); } while (0)
33
#else
34
#define DPRINTF(fmt, args...)
35
#endif
36

    
37
/* There are 3 versions of this chip used in SMP sun4m systems:
38
 * MCC (version 0, implementation 0) SS-600MP
39
 * EMC (version 0, implementation 1) SS-10
40
 * SMC (version 0, implementation 2) SS-10SX and SS-20
41
 */
42

    
43
/* Register indexes */
44
#define ECC_MER        0               /* Memory Enable Register */
45
#define ECC_MDR        1               /* Memory Delay Register */
46
#define ECC_MFSR       2               /* Memory Fault Status Register */
47
#define ECC_VCR        3               /* Video Configuration Register */
48
#define ECC_MFAR0      4               /* Memory Fault Address Register 0 */
49
#define ECC_MFAR1      5               /* Memory Fault Address Register 1 */
50
#define ECC_DR         6               /* Diagnostic Register */
51
#define ECC_ECR0       7               /* Event Count Register 0 */
52
#define ECC_ECR1       8               /* Event Count Register 1 */
53

    
54
/* ECC fault control register */
55
#define ECC_MER_EE     0x00000001      /* Enable ECC checking */
56
#define ECC_MER_EI     0x00000002      /* Enable Interrupts on
57
                                          correctable errors */
58
#define ECC_MER_MRR0   0x00000004      /* SIMM 0 */
59
#define ECC_MER_MRR1   0x00000008      /* SIMM 1 */
60
#define ECC_MER_MRR2   0x00000010      /* SIMM 2 */
61
#define ECC_MER_MRR3   0x00000020      /* SIMM 3 */
62
#define ECC_MER_MRR4   0x00000040      /* SIMM 4 */
63
#define ECC_MER_MRR5   0x00000080      /* SIMM 5 */
64
#define ECC_MER_MRR6   0x00000100      /* SIMM 6 */
65
#define ECC_MER_MRR7   0x00000200      /* SIMM 7 */
66
#define ECC_MER_REU    0x00000200      /* Memory Refresh Enable (600MP) */
67
#define ECC_MER_MRR    0x000003fc      /* MRR mask */
68
#define ECC_MEM_A      0x00000400      /* Memory controller addr map select */
69
#define ECC_MER_DCI    0x00000800      /* Disables Coherent Invalidate ACK */
70
#define ECC_MER_VER    0x0f000000      /* Version */
71
#define ECC_MER_IMPL   0xf0000000      /* Implementation */
72

    
73
/* ECC memory delay register */
74
#define ECC_MDR_RRI    0x000003ff      /* Refresh Request Interval */
75
#define ECC_MDR_MI     0x00001c00      /* MIH Delay */
76
#define ECC_MDR_CI     0x0000e000      /* Coherent Invalidate Delay */
77
#define ECC_MDR_MDL    0x001f0000      /* MBus Master arbitration delay */
78
#define ECC_MDR_MDH    0x03e00000      /* MBus Master arbitration delay */
79
#define ECC_MDR_GAD    0x7c000000      /* Graphics Arbitration Delay */
80
#define ECC_MDR_RSC    0x80000000      /* Refresh load control */
81
#define ECC_MDR_MASK   0x7fffffff
82

    
83
/* ECC fault status register */
84
#define ECC_MFSR_CE    0x00000001      /* Correctable error */
85
#define ECC_MFSR_BS    0x00000002      /* C2 graphics bad slot access */
86
#define ECC_MFSR_TO    0x00000004      /* Timeout on write */
87
#define ECC_MFSR_UE    0x00000008      /* Uncorrectable error */
88
#define ECC_MFSR_DW    0x000000f0      /* Index of double word in block */
89
#define ECC_MFSR_SYND  0x0000ff00      /* Syndrome for correctable error */
90
#define ECC_MFSR_ME    0x00010000      /* Multiple errors */
91
#define ECC_MFSR_C2ERR 0x00020000      /* C2 graphics error */
92

    
93
/* ECC fault address register 0 */
94
#define ECC_MFAR0_PADDR 0x0000000f     /* PA[32-35] */
95
#define ECC_MFAR0_TYPE  0x000000f0     /* Transaction type */
96
#define ECC_MFAR0_SIZE  0x00000700     /* Transaction size */
97
#define ECC_MFAR0_CACHE 0x00000800     /* Mapped cacheable */
98
#define ECC_MFAR0_LOCK  0x00001000     /* Error occurred in atomic cycle */
99
#define ECC_MFAR0_BMODE 0x00002000     /* Boot mode */
100
#define ECC_MFAR0_VADDR 0x003fc000     /* VA[12-19] (superset bits) */
101
#define ECC_MFAR0_S     0x08000000     /* Supervisor mode */
102
#define ECC_MFARO_MID   0xf0000000     /* Module ID */
103

    
104
/* ECC diagnostic register */
105
#define ECC_DR_CBX     0x00000001
106
#define ECC_DR_CB0     0x00000002
107
#define ECC_DR_CB1     0x00000004
108
#define ECC_DR_CB2     0x00000008
109
#define ECC_DR_CB4     0x00000010
110
#define ECC_DR_CB8     0x00000020
111
#define ECC_DR_CB16    0x00000040
112
#define ECC_DR_CB32    0x00000080
113
#define ECC_DR_DMODE   0x00000c00
114

    
115
#define ECC_NREGS      9
116
#define ECC_SIZE       (ECC_NREGS * sizeof(uint32_t))
117

    
118
#define ECC_DIAG_SIZE  4
119
#define ECC_DIAG_MASK  (ECC_DIAG_SIZE - 1)
120

    
121
typedef struct ECCState {
122
    qemu_irq irq;
123
    uint32_t regs[ECC_NREGS];
124
    uint8_t diag[ECC_DIAG_SIZE];
125
} ECCState;
126

    
127
static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
128
{
129
    ECCState *s = opaque;
130

    
131
    switch (addr >> 2) {
132
    case ECC_MER:
133
        s->regs[ECC_MER] = (s->regs[ECC_MER] & (ECC_MER_VER | ECC_MER_IMPL)) |
134
            (val & ~(ECC_MER_VER | ECC_MER_IMPL));
135
        DPRINTF("Write memory enable %08x\n", val);
136
        break;
137
    case ECC_MDR:
138
        s->regs[ECC_MDR] =  val & ECC_MDR_MASK;
139
        DPRINTF("Write memory delay %08x\n", val);
140
        break;
141
    case ECC_MFSR:
142
        s->regs[ECC_MFSR] =  val;
143
        DPRINTF("Write memory fault status %08x\n", val);
144
        break;
145
    case ECC_VCR:
146
        s->regs[ECC_VCR] =  val;
147
        DPRINTF("Write slot configuration %08x\n", val);
148
        break;
149
    case ECC_DR:
150
        s->regs[ECC_DR] =  val;
151
        DPRINTF("Write diagnosiic %08x\n", val);
152
        break;
153
    case ECC_ECR0:
154
        s->regs[ECC_ECR0] =  val;
155
        DPRINTF("Write event count 1 %08x\n", val);
156
        break;
157
    case ECC_ECR1:
158
        s->regs[ECC_ECR0] =  val;
159
        DPRINTF("Write event count 2 %08x\n", val);
160
        break;
161
    }
162
}
163

    
164
static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
165
{
166
    ECCState *s = opaque;
167
    uint32_t ret = 0;
168

    
169
    switch (addr >> 2) {
170
    case ECC_MER:
171
        ret = s->regs[ECC_MER];
172
        DPRINTF("Read memory enable %08x\n", ret);
173
        break;
174
    case ECC_MDR:
175
        ret = s->regs[ECC_MDR];
176
        DPRINTF("Read memory delay %08x\n", ret);
177
        break;
178
    case ECC_MFSR:
179
        ret = s->regs[ECC_MFSR];
180
        DPRINTF("Read memory fault status %08x\n", ret);
181
        break;
182
    case ECC_VCR:
183
        ret = s->regs[ECC_VCR];
184
        DPRINTF("Read slot configuration %08x\n", ret);
185
        break;
186
    case ECC_MFAR0:
187
        ret = s->regs[ECC_MFAR0];
188
        DPRINTF("Read memory fault address 0 %08x\n", ret);
189
        break;
190
    case ECC_MFAR1:
191
        ret = s->regs[ECC_MFAR1];
192
        DPRINTF("Read memory fault address 1 %08x\n", ret);
193
        break;
194
    case ECC_DR:
195
        ret = s->regs[ECC_DR];
196
        DPRINTF("Read diagnostic %08x\n", ret);
197
        break;
198
    case ECC_ECR0:
199
        ret = s->regs[ECC_ECR0];
200
        DPRINTF("Read event count 1 %08x\n", ret);
201
        break;
202
    case ECC_ECR1:
203
        ret = s->regs[ECC_ECR0];
204
        DPRINTF("Read event count 2 %08x\n", ret);
205
        break;
206
    }
207
    return ret;
208
}
209

    
210
static CPUReadMemoryFunc *ecc_mem_read[3] = {
211
    NULL,
212
    NULL,
213
    ecc_mem_readl,
214
};
215

    
216
static CPUWriteMemoryFunc *ecc_mem_write[3] = {
217
    NULL,
218
    NULL,
219
    ecc_mem_writel,
220
};
221

    
222
static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
223
                                uint32_t val)
224
{
225
    ECCState *s = opaque;
226

    
227
    DPRINTF("Write diagnostic[%d] = %02x\n", (int)addr, val);
228
    s->diag[addr & ECC_DIAG_MASK] = val;
229
}
230

    
231
static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
232
{
233
    ECCState *s = opaque;
234
    uint32_t ret = s->diag[(int)addr];
235

    
236
    DPRINTF("Read diagnostic[%d] = %02x\n", (int)addr, ret);
237
    return ret;
238
}
239

    
240
static CPUReadMemoryFunc *ecc_diag_mem_read[3] = {
241
    ecc_diag_mem_readb,
242
    NULL,
243
    NULL,
244
};
245

    
246
static CPUWriteMemoryFunc *ecc_diag_mem_write[3] = {
247
    ecc_diag_mem_writeb,
248
    NULL,
249
    NULL,
250
};
251

    
252
static int ecc_load(QEMUFile *f, void *opaque, int version_id)
253
{
254
    ECCState *s = opaque;
255
    int i;
256

    
257
    if (version_id != 2)
258
        return -EINVAL;
259

    
260
    for (i = 0; i < ECC_NREGS; i++)
261
        qemu_get_be32s(f, &s->regs[i]);
262

    
263
    for (i = 0; i < ECC_DIAG_SIZE; i++)
264
        qemu_get_8s(f, &s->diag[i]);
265

    
266
    return 0;
267
}
268

    
269
static void ecc_save(QEMUFile *f, void *opaque)
270
{
271
    ECCState *s = opaque;
272
    int i;
273

    
274
    for (i = 0; i < ECC_NREGS; i++)
275
        qemu_put_be32s(f, &s->regs[i]);
276

    
277
    for (i = 0; i < ECC_DIAG_SIZE; i++)
278
        qemu_put_8s(f, &s->diag[i]);
279
}
280

    
281
static void ecc_reset(void *opaque)
282
{
283
    ECCState *s = opaque;
284

    
285
    s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL);
286
    s->regs[ECC_MER] |= ECC_MER_MRR;
287
    s->regs[ECC_MDR] = 0x20;
288
    s->regs[ECC_MFSR] = 0;
289
    s->regs[ECC_VCR] = 0;
290
    s->regs[ECC_MFAR0] = 0x07c00000;
291
    s->regs[ECC_MFAR1] = 0;
292
    s->regs[ECC_DR] = 0;
293
    s->regs[ECC_ECR0] = 0;
294
    s->regs[ECC_ECR1] = 0;
295
}
296

    
297
void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
298
{
299
    int ecc_io_memory;
300
    ECCState *s;
301

    
302
    s = qemu_mallocz(sizeof(ECCState));
303
    if (!s)
304
        return NULL;
305

    
306
    s->regs[0] = version;
307
    s->irq = irq;
308

    
309
    ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
310
    cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
311
    if (version == 0) { // SS-600MP only
312
        ecc_io_memory = cpu_register_io_memory(0, ecc_diag_mem_read,
313
                                               ecc_diag_mem_write, s);
314
        cpu_register_physical_memory(base + 0x1000, ECC_DIAG_SIZE,
315
                                     ecc_io_memory);
316
    }
317
    register_savevm("ECC", base, 2, ecc_save, ecc_load, s);
318
    qemu_register_reset(ecc_reset, s);
319
    ecc_reset(s);
320
    return s;
321
}