Statistics
| Branch: | Revision:

root / hw / ne2000.c @ a541f297

History | View | Annotate | Download (13.6 kB)

1 80cabfad bellard
/*
2 80cabfad bellard
 * QEMU NE2000 emulation
3 80cabfad bellard
 * 
4 80cabfad bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 80cabfad bellard
 * 
6 80cabfad bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 80cabfad bellard
 * of this software and associated documentation files (the "Software"), to deal
8 80cabfad bellard
 * in the Software without restriction, including without limitation the rights
9 80cabfad bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 80cabfad bellard
 * copies of the Software, and to permit persons to whom the Software is
11 80cabfad bellard
 * furnished to do so, subject to the following conditions:
12 80cabfad bellard
 *
13 80cabfad bellard
 * The above copyright notice and this permission notice shall be included in
14 80cabfad bellard
 * all copies or substantial portions of the Software.
15 80cabfad bellard
 *
16 80cabfad bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 80cabfad bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 80cabfad bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 80cabfad bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 80cabfad bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 80cabfad bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 80cabfad bellard
 * THE SOFTWARE.
23 80cabfad bellard
 */
24 80cabfad bellard
#include "vl.h"
25 80cabfad bellard
26 80cabfad bellard
/* debug NE2000 card */
27 80cabfad bellard
//#define DEBUG_NE2000
28 80cabfad bellard
29 b41a2cd1 bellard
#define MAX_ETH_FRAME_SIZE 1514
30 80cabfad bellard
31 80cabfad bellard
#define E8390_CMD        0x00  /* The command register (for all pages) */
32 80cabfad bellard
/* Page 0 register offsets. */
33 80cabfad bellard
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34 80cabfad bellard
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35 80cabfad bellard
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36 80cabfad bellard
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37 80cabfad bellard
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38 80cabfad bellard
#define EN0_TSR                0x04        /* Transmit status reg RD */
39 80cabfad bellard
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40 80cabfad bellard
#define EN0_NCR                0x05        /* Number of collision reg RD */
41 80cabfad bellard
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42 80cabfad bellard
#define EN0_FIFO        0x06        /* FIFO RD */
43 80cabfad bellard
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44 80cabfad bellard
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45 80cabfad bellard
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46 80cabfad bellard
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47 80cabfad bellard
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48 80cabfad bellard
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49 80cabfad bellard
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50 80cabfad bellard
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
51 80cabfad bellard
#define EN0_RSR                0x0c        /* rx status reg RD */
52 80cabfad bellard
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
53 80cabfad bellard
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
54 80cabfad bellard
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
55 80cabfad bellard
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
56 80cabfad bellard
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
57 80cabfad bellard
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
58 80cabfad bellard
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
59 80cabfad bellard
60 80cabfad bellard
#define EN1_PHYS        0x11
61 80cabfad bellard
#define EN1_CURPAG      0x17
62 80cabfad bellard
#define EN1_MULT        0x18
63 80cabfad bellard
64 80cabfad bellard
/*  Register accessed at EN_CMD, the 8390 base addr.  */
65 80cabfad bellard
#define E8390_STOP        0x01        /* Stop and reset the chip */
66 80cabfad bellard
#define E8390_START        0x02        /* Start the chip, clear reset */
67 80cabfad bellard
#define E8390_TRANS        0x04        /* Transmit a frame */
68 80cabfad bellard
#define E8390_RREAD        0x08        /* Remote read */
69 80cabfad bellard
#define E8390_RWRITE        0x10        /* Remote write  */
70 80cabfad bellard
#define E8390_NODMA        0x20        /* Remote DMA */
71 80cabfad bellard
#define E8390_PAGE0        0x00        /* Select page chip registers */
72 80cabfad bellard
#define E8390_PAGE1        0x40        /* using the two high-order bits */
73 80cabfad bellard
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
74 80cabfad bellard
75 80cabfad bellard
/* Bits in EN0_ISR - Interrupt status register */
76 80cabfad bellard
#define ENISR_RX        0x01        /* Receiver, no error */
77 80cabfad bellard
#define ENISR_TX        0x02        /* Transmitter, no error */
78 80cabfad bellard
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
79 80cabfad bellard
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
80 80cabfad bellard
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
81 80cabfad bellard
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
82 80cabfad bellard
#define ENISR_RDC        0x40        /* remote dma complete */
83 80cabfad bellard
#define ENISR_RESET        0x80        /* Reset completed */
84 80cabfad bellard
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
85 80cabfad bellard
86 80cabfad bellard
/* Bits in received packet status byte and EN0_RSR*/
87 80cabfad bellard
#define ENRSR_RXOK        0x01        /* Received a good packet */
88 80cabfad bellard
#define ENRSR_CRC        0x02        /* CRC error */
89 80cabfad bellard
#define ENRSR_FAE        0x04        /* frame alignment error */
90 80cabfad bellard
#define ENRSR_FO        0x08        /* FIFO overrun */
91 80cabfad bellard
#define ENRSR_MPA        0x10        /* missed pkt */
92 80cabfad bellard
#define ENRSR_PHY        0x20        /* physical/multicast address */
93 80cabfad bellard
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
94 80cabfad bellard
#define ENRSR_DEF        0x80        /* deferring */
95 80cabfad bellard
96 80cabfad bellard
/* Transmitted packet status, EN0_TSR. */
97 80cabfad bellard
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
98 80cabfad bellard
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
99 80cabfad bellard
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
100 80cabfad bellard
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
101 80cabfad bellard
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
102 80cabfad bellard
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
103 80cabfad bellard
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
104 80cabfad bellard
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
105 80cabfad bellard
106 80cabfad bellard
#define NE2000_MEM_SIZE 32768
107 80cabfad bellard
108 80cabfad bellard
typedef struct NE2000State {
109 80cabfad bellard
    uint8_t cmd;
110 80cabfad bellard
    uint32_t start;
111 80cabfad bellard
    uint32_t stop;
112 80cabfad bellard
    uint8_t boundary;
113 80cabfad bellard
    uint8_t tsr;
114 80cabfad bellard
    uint8_t tpsr;
115 80cabfad bellard
    uint16_t tcnt;
116 80cabfad bellard
    uint16_t rcnt;
117 80cabfad bellard
    uint32_t rsar;
118 80cabfad bellard
    uint8_t isr;
119 80cabfad bellard
    uint8_t dcfg;
120 80cabfad bellard
    uint8_t imr;
121 80cabfad bellard
    uint8_t phys[6]; /* mac address */
122 80cabfad bellard
    uint8_t curpag;
123 80cabfad bellard
    uint8_t mult[8]; /* multicast mask array */
124 80cabfad bellard
    int irq;
125 b41a2cd1 bellard
    NetDriverState *nd;
126 80cabfad bellard
    uint8_t mem[NE2000_MEM_SIZE];
127 80cabfad bellard
} NE2000State;
128 80cabfad bellard
129 80cabfad bellard
static void ne2000_reset(NE2000State *s)
130 80cabfad bellard
{
131 80cabfad bellard
    int i;
132 80cabfad bellard
133 80cabfad bellard
    s->isr = ENISR_RESET;
134 b41a2cd1 bellard
    memcpy(s->mem, s->nd->macaddr, 6);
135 80cabfad bellard
    s->mem[14] = 0x57;
136 80cabfad bellard
    s->mem[15] = 0x57;
137 80cabfad bellard
138 80cabfad bellard
    /* duplicate prom data */
139 80cabfad bellard
    for(i = 15;i >= 0; i--) {
140 80cabfad bellard
        s->mem[2 * i] = s->mem[i];
141 80cabfad bellard
        s->mem[2 * i + 1] = s->mem[i];
142 80cabfad bellard
    }
143 80cabfad bellard
}
144 80cabfad bellard
145 80cabfad bellard
static void ne2000_update_irq(NE2000State *s)
146 80cabfad bellard
{
147 80cabfad bellard
    int isr;
148 80cabfad bellard
    isr = s->isr & s->imr;
149 a541f297 bellard
#if defined(DEBUG_NE2000)
150 a541f297 bellard
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
151 a541f297 bellard
           s->irq, isr ? 1 : 0, s->isr, s->imr);
152 a541f297 bellard
#endif
153 80cabfad bellard
    if (isr)
154 80cabfad bellard
        pic_set_irq(s->irq, 1);
155 80cabfad bellard
    else
156 80cabfad bellard
        pic_set_irq(s->irq, 0);
157 80cabfad bellard
}
158 80cabfad bellard
159 b41a2cd1 bellard
/* return the max buffer size if the NE2000 can receive more data */
160 b41a2cd1 bellard
static int ne2000_can_receive(void *opaque)
161 80cabfad bellard
{
162 b41a2cd1 bellard
    NE2000State *s = opaque;
163 80cabfad bellard
    int avail, index, boundary;
164 80cabfad bellard
    
165 80cabfad bellard
    if (s->cmd & E8390_STOP)
166 80cabfad bellard
        return 0;
167 80cabfad bellard
    index = s->curpag << 8;
168 80cabfad bellard
    boundary = s->boundary << 8;
169 80cabfad bellard
    if (index < boundary)
170 80cabfad bellard
        avail = boundary - index;
171 80cabfad bellard
    else
172 80cabfad bellard
        avail = (s->stop - s->start) - (index - boundary);
173 80cabfad bellard
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
174 80cabfad bellard
        return 0;
175 b41a2cd1 bellard
    return MAX_ETH_FRAME_SIZE;
176 80cabfad bellard
}
177 80cabfad bellard
178 b41a2cd1 bellard
#define MIN_BUF_SIZE 60
179 b41a2cd1 bellard
180 b41a2cd1 bellard
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
181 80cabfad bellard
{
182 b41a2cd1 bellard
    NE2000State *s = opaque;
183 80cabfad bellard
    uint8_t *p;
184 80cabfad bellard
    int total_len, next, avail, len, index;
185 b41a2cd1 bellard
    uint8_t buf1[60];
186 b41a2cd1 bellard
    
187 80cabfad bellard
#if defined(DEBUG_NE2000)
188 80cabfad bellard
    printf("NE2000: received len=%d\n", size);
189 80cabfad bellard
#endif
190 80cabfad bellard
191 b41a2cd1 bellard
    /* if too small buffer, then expand it */
192 b41a2cd1 bellard
    if (size < MIN_BUF_SIZE) {
193 b41a2cd1 bellard
        memcpy(buf1, buf, size);
194 b41a2cd1 bellard
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
195 b41a2cd1 bellard
        buf = buf1;
196 b41a2cd1 bellard
        size = MIN_BUF_SIZE;
197 b41a2cd1 bellard
    }
198 b41a2cd1 bellard
199 80cabfad bellard
    index = s->curpag << 8;
200 80cabfad bellard
    /* 4 bytes for header */
201 80cabfad bellard
    total_len = size + 4;
202 80cabfad bellard
    /* address for next packet (4 bytes for CRC) */
203 80cabfad bellard
    next = index + ((total_len + 4 + 255) & ~0xff);
204 80cabfad bellard
    if (next >= s->stop)
205 80cabfad bellard
        next -= (s->stop - s->start);
206 80cabfad bellard
    /* prepare packet header */
207 80cabfad bellard
    p = s->mem + index;
208 80cabfad bellard
    p[0] = ENRSR_RXOK; /* receive status */
209 80cabfad bellard
    p[1] = next >> 8;
210 80cabfad bellard
    p[2] = total_len;
211 80cabfad bellard
    p[3] = total_len >> 8;
212 80cabfad bellard
    index += 4;
213 80cabfad bellard
214 80cabfad bellard
    /* write packet data */
215 80cabfad bellard
    while (size > 0) {
216 80cabfad bellard
        avail = s->stop - index;
217 80cabfad bellard
        len = size;
218 80cabfad bellard
        if (len > avail)
219 80cabfad bellard
            len = avail;
220 80cabfad bellard
        memcpy(s->mem + index, buf, len);
221 80cabfad bellard
        buf += len;
222 80cabfad bellard
        index += len;
223 80cabfad bellard
        if (index == s->stop)
224 80cabfad bellard
            index = s->start;
225 80cabfad bellard
        size -= len;
226 80cabfad bellard
    }
227 80cabfad bellard
    s->curpag = next >> 8;
228 80cabfad bellard
    
229 80cabfad bellard
    /* now we can signal we have receive something */
230 80cabfad bellard
    s->isr |= ENISR_RX;
231 80cabfad bellard
    ne2000_update_irq(s);
232 80cabfad bellard
}
233 80cabfad bellard
234 b41a2cd1 bellard
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
235 80cabfad bellard
{
236 b41a2cd1 bellard
    NE2000State *s = opaque;
237 80cabfad bellard
    int offset, page;
238 80cabfad bellard
239 80cabfad bellard
    addr &= 0xf;
240 80cabfad bellard
#ifdef DEBUG_NE2000
241 80cabfad bellard
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
242 80cabfad bellard
#endif
243 80cabfad bellard
    if (addr == E8390_CMD) {
244 80cabfad bellard
        /* control register */
245 80cabfad bellard
        s->cmd = val;
246 80cabfad bellard
        if (val & E8390_START) {
247 80cabfad bellard
            /* test specific case: zero length transfert */
248 80cabfad bellard
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
249 80cabfad bellard
                s->rcnt == 0) {
250 80cabfad bellard
                s->isr |= ENISR_RDC;
251 80cabfad bellard
                ne2000_update_irq(s);
252 80cabfad bellard
            }
253 80cabfad bellard
            if (val & E8390_TRANS) {
254 b41a2cd1 bellard
                net_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt);
255 80cabfad bellard
                /* signal end of transfert */
256 80cabfad bellard
                s->tsr = ENTSR_PTX;
257 80cabfad bellard
                s->isr |= ENISR_TX;
258 80cabfad bellard
                ne2000_update_irq(s);
259 80cabfad bellard
            }
260 80cabfad bellard
        }
261 80cabfad bellard
    } else {
262 80cabfad bellard
        page = s->cmd >> 6;
263 80cabfad bellard
        offset = addr | (page << 4);
264 80cabfad bellard
        switch(offset) {
265 80cabfad bellard
        case EN0_STARTPG:
266 80cabfad bellard
            s->start = val << 8;
267 80cabfad bellard
            break;
268 80cabfad bellard
        case EN0_STOPPG:
269 80cabfad bellard
            s->stop = val << 8;
270 80cabfad bellard
            break;
271 80cabfad bellard
        case EN0_BOUNDARY:
272 80cabfad bellard
            s->boundary = val;
273 80cabfad bellard
            break;
274 80cabfad bellard
        case EN0_IMR:
275 80cabfad bellard
            s->imr = val;
276 80cabfad bellard
            ne2000_update_irq(s);
277 80cabfad bellard
            break;
278 80cabfad bellard
        case EN0_TPSR:
279 80cabfad bellard
            s->tpsr = val;
280 80cabfad bellard
            break;
281 80cabfad bellard
        case EN0_TCNTLO:
282 80cabfad bellard
            s->tcnt = (s->tcnt & 0xff00) | val;
283 80cabfad bellard
            break;
284 80cabfad bellard
        case EN0_TCNTHI:
285 80cabfad bellard
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
286 80cabfad bellard
            break;
287 80cabfad bellard
        case EN0_RSARLO:
288 80cabfad bellard
            s->rsar = (s->rsar & 0xff00) | val;
289 80cabfad bellard
            break;
290 80cabfad bellard
        case EN0_RSARHI:
291 80cabfad bellard
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
292 80cabfad bellard
            break;
293 80cabfad bellard
        case EN0_RCNTLO:
294 80cabfad bellard
            s->rcnt = (s->rcnt & 0xff00) | val;
295 80cabfad bellard
            break;
296 80cabfad bellard
        case EN0_RCNTHI:
297 80cabfad bellard
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
298 80cabfad bellard
            break;
299 80cabfad bellard
        case EN0_DCFG:
300 80cabfad bellard
            s->dcfg = val;
301 80cabfad bellard
            break;
302 80cabfad bellard
        case EN0_ISR:
303 80cabfad bellard
            s->isr &= ~val;
304 80cabfad bellard
            ne2000_update_irq(s);
305 80cabfad bellard
            break;
306 80cabfad bellard
        case EN1_PHYS ... EN1_PHYS + 5:
307 80cabfad bellard
            s->phys[offset - EN1_PHYS] = val;
308 80cabfad bellard
            break;
309 80cabfad bellard
        case EN1_CURPAG:
310 80cabfad bellard
            s->curpag = val;
311 80cabfad bellard
            break;
312 80cabfad bellard
        case EN1_MULT ... EN1_MULT + 7:
313 80cabfad bellard
            s->mult[offset - EN1_MULT] = val;
314 80cabfad bellard
            break;
315 80cabfad bellard
        }
316 80cabfad bellard
    }
317 80cabfad bellard
}
318 80cabfad bellard
319 b41a2cd1 bellard
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
320 80cabfad bellard
{
321 b41a2cd1 bellard
    NE2000State *s = opaque;
322 80cabfad bellard
    int offset, page, ret;
323 80cabfad bellard
324 80cabfad bellard
    addr &= 0xf;
325 80cabfad bellard
    if (addr == E8390_CMD) {
326 80cabfad bellard
        ret = s->cmd;
327 80cabfad bellard
    } else {
328 80cabfad bellard
        page = s->cmd >> 6;
329 80cabfad bellard
        offset = addr | (page << 4);
330 80cabfad bellard
        switch(offset) {
331 80cabfad bellard
        case EN0_TSR:
332 80cabfad bellard
            ret = s->tsr;
333 80cabfad bellard
            break;
334 80cabfad bellard
        case EN0_BOUNDARY:
335 80cabfad bellard
            ret = s->boundary;
336 80cabfad bellard
            break;
337 80cabfad bellard
        case EN0_ISR:
338 80cabfad bellard
            ret = s->isr;
339 80cabfad bellard
            break;
340 80cabfad bellard
        case EN1_PHYS ... EN1_PHYS + 5:
341 80cabfad bellard
            ret = s->phys[offset - EN1_PHYS];
342 80cabfad bellard
            break;
343 80cabfad bellard
        case EN1_CURPAG:
344 80cabfad bellard
            ret = s->curpag;
345 80cabfad bellard
            break;
346 80cabfad bellard
        case EN1_MULT ... EN1_MULT + 7:
347 80cabfad bellard
            ret = s->mult[offset - EN1_MULT];
348 80cabfad bellard
            break;
349 80cabfad bellard
        default:
350 80cabfad bellard
            ret = 0x00;
351 80cabfad bellard
            break;
352 80cabfad bellard
        }
353 80cabfad bellard
    }
354 80cabfad bellard
#ifdef DEBUG_NE2000
355 80cabfad bellard
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
356 80cabfad bellard
#endif
357 80cabfad bellard
    return ret;
358 80cabfad bellard
}
359 80cabfad bellard
360 b41a2cd1 bellard
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
361 80cabfad bellard
{
362 b41a2cd1 bellard
    NE2000State *s = opaque;
363 80cabfad bellard
    uint8_t *p;
364 80cabfad bellard
365 80cabfad bellard
#ifdef DEBUG_NE2000
366 80cabfad bellard
    printf("NE2000: asic write val=0x%04x\n", val);
367 80cabfad bellard
#endif
368 80cabfad bellard
    p = s->mem + s->rsar;
369 80cabfad bellard
    if (s->dcfg & 0x01) {
370 80cabfad bellard
        /* 16 bit access */
371 80cabfad bellard
        p[0] = val;
372 80cabfad bellard
        p[1] = val >> 8;
373 80cabfad bellard
        s->rsar += 2;
374 80cabfad bellard
        s->rcnt -= 2;
375 80cabfad bellard
    } else {
376 80cabfad bellard
        /* 8 bit access */
377 80cabfad bellard
        p[0] = val;
378 80cabfad bellard
        s->rsar++;
379 80cabfad bellard
        s->rcnt--;
380 80cabfad bellard
    }
381 80cabfad bellard
    /* wrap */
382 80cabfad bellard
    if (s->rsar == s->stop)
383 80cabfad bellard
        s->rsar = s->start;
384 80cabfad bellard
    if (s->rcnt == 0) {
385 80cabfad bellard
        /* signal end of transfert */
386 80cabfad bellard
        s->isr |= ENISR_RDC;
387 80cabfad bellard
        ne2000_update_irq(s);
388 80cabfad bellard
    }
389 80cabfad bellard
}
390 80cabfad bellard
391 b41a2cd1 bellard
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
392 80cabfad bellard
{
393 b41a2cd1 bellard
    NE2000State *s = opaque;
394 80cabfad bellard
    uint8_t *p;
395 80cabfad bellard
    int ret;
396 80cabfad bellard
397 80cabfad bellard
    p = s->mem + s->rsar;
398 80cabfad bellard
    if (s->dcfg & 0x01) {
399 80cabfad bellard
        /* 16 bit access */
400 80cabfad bellard
        ret = p[0] | (p[1] << 8);
401 80cabfad bellard
        s->rsar += 2;
402 80cabfad bellard
        s->rcnt -= 2;
403 80cabfad bellard
    } else {
404 80cabfad bellard
        /* 8 bit access */
405 80cabfad bellard
        ret = p[0];
406 80cabfad bellard
        s->rsar++;
407 80cabfad bellard
        s->rcnt--;
408 80cabfad bellard
    }
409 80cabfad bellard
    /* wrap */
410 80cabfad bellard
    if (s->rsar == s->stop)
411 80cabfad bellard
        s->rsar = s->start;
412 80cabfad bellard
    if (s->rcnt == 0) {
413 80cabfad bellard
        /* signal end of transfert */
414 80cabfad bellard
        s->isr |= ENISR_RDC;
415 80cabfad bellard
        ne2000_update_irq(s);
416 80cabfad bellard
    }
417 80cabfad bellard
#ifdef DEBUG_NE2000
418 80cabfad bellard
    printf("NE2000: asic read val=0x%04x\n", ret);
419 80cabfad bellard
#endif
420 80cabfad bellard
    return ret;
421 80cabfad bellard
}
422 80cabfad bellard
423 b41a2cd1 bellard
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
424 80cabfad bellard
{
425 80cabfad bellard
    /* nothing to do (end of reset pulse) */
426 80cabfad bellard
}
427 80cabfad bellard
428 b41a2cd1 bellard
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
429 80cabfad bellard
{
430 b41a2cd1 bellard
    NE2000State *s = opaque;
431 80cabfad bellard
    ne2000_reset(s);
432 80cabfad bellard
    return 0;
433 80cabfad bellard
}
434 80cabfad bellard
435 b41a2cd1 bellard
void ne2000_init(int base, int irq, NetDriverState *nd)
436 80cabfad bellard
{
437 b41a2cd1 bellard
    NE2000State *s;
438 80cabfad bellard
439 b41a2cd1 bellard
    s = qemu_mallocz(sizeof(NE2000State));
440 b41a2cd1 bellard
    if (!s)
441 b41a2cd1 bellard
        return;
442 b41a2cd1 bellard
    
443 b41a2cd1 bellard
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
444 b41a2cd1 bellard
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
445 80cabfad bellard
446 b41a2cd1 bellard
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
447 b41a2cd1 bellard
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
448 b41a2cd1 bellard
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
449 b41a2cd1 bellard
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
450 80cabfad bellard
451 b41a2cd1 bellard
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
452 b41a2cd1 bellard
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
453 80cabfad bellard
    s->irq = irq;
454 b41a2cd1 bellard
    s->nd = nd;
455 80cabfad bellard
456 80cabfad bellard
    ne2000_reset(s);
457 b41a2cd1 bellard
458 b0a21b53 bellard
    qemu_add_fd_read_handler(nd->fd, ne2000_can_receive, ne2000_receive, s);
459 80cabfad bellard
}