Statistics
| Branch: | Revision:

root / hw / esp.c @ a5f1b965

History | View | Annotate | Download (17.8 kB)

1
/*
2
 * QEMU ESP/NCR53C9x emulation
3
 *
4
 * Copyright (c) 2005-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "hw.h"
26
#include "scsi-disk.h"
27
#include "scsi.h"
28

    
29
/* debug ESP card */
30
//#define DEBUG_ESP
31

    
32
/*
33
 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
34
 * also produced as NCR89C100. See
35
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36
 * and
37
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
38
 */
39

    
40
#ifdef DEBUG_ESP
41
#define DPRINTF(fmt, args...) \
42
do { printf("ESP: " fmt , ##args); } while (0)
43
#else
44
#define DPRINTF(fmt, args...) do {} while (0)
45
#endif
46

    
47
#define ESP_REGS 16
48
#define TI_BUFSZ 32
49

    
50
typedef struct ESPState ESPState;
51

    
52
struct ESPState {
53
    uint32_t it_shift;
54
    qemu_irq irq;
55
    uint8_t rregs[ESP_REGS];
56
    uint8_t wregs[ESP_REGS];
57
    int32_t ti_size;
58
    uint32_t ti_rptr, ti_wptr;
59
    uint8_t ti_buf[TI_BUFSZ];
60
    uint32_t sense;
61
    uint32_t dma;
62
    SCSIDevice *scsi_dev[ESP_MAX_DEVS];
63
    SCSIDevice *current_dev;
64
    uint8_t cmdbuf[TI_BUFSZ];
65
    uint32_t cmdlen;
66
    uint32_t do_cmd;
67

    
68
    /* The amount of data left in the current DMA transfer.  */
69
    uint32_t dma_left;
70
    /* The size of the current DMA transfer.  Zero if no transfer is in
71
       progress.  */
72
    uint32_t dma_counter;
73
    uint8_t *async_buf;
74
    uint32_t async_len;
75

    
76
    espdma_memory_read_write dma_memory_read;
77
    espdma_memory_read_write dma_memory_write;
78
    void *dma_opaque;
79
};
80

    
81
#define ESP_TCLO   0x0
82
#define ESP_TCMID  0x1
83
#define ESP_FIFO   0x2
84
#define ESP_CMD    0x3
85
#define ESP_RSTAT  0x4
86
#define ESP_WBUSID 0x4
87
#define ESP_RINTR  0x5
88
#define ESP_WSEL   0x5
89
#define ESP_RSEQ   0x6
90
#define ESP_WSYNTP 0x6
91
#define ESP_RFLAGS 0x7
92
#define ESP_WSYNO  0x7
93
#define ESP_CFG1   0x8
94
#define ESP_RRES1  0x9
95
#define ESP_WCCF   0x9
96
#define ESP_RRES2  0xa
97
#define ESP_WTEST  0xa
98
#define ESP_CFG2   0xb
99
#define ESP_CFG3   0xc
100
#define ESP_RES3   0xd
101
#define ESP_TCHI   0xe
102
#define ESP_RES4   0xf
103

    
104
#define CMD_DMA 0x80
105
#define CMD_CMD 0x7f
106

    
107
#define CMD_NOP      0x00
108
#define CMD_FLUSH    0x01
109
#define CMD_RESET    0x02
110
#define CMD_BUSRESET 0x03
111
#define CMD_TI       0x10
112
#define CMD_ICCS     0x11
113
#define CMD_MSGACC   0x12
114
#define CMD_SATN     0x1a
115
#define CMD_SELATN   0x42
116
#define CMD_SELATNS  0x43
117
#define CMD_ENSEL    0x44
118

    
119
#define STAT_DO 0x00
120
#define STAT_DI 0x01
121
#define STAT_CD 0x02
122
#define STAT_ST 0x03
123
#define STAT_MI 0x06
124
#define STAT_MO 0x07
125
#define STAT_PIO_MASK 0x06
126

    
127
#define STAT_TC 0x10
128
#define STAT_PE 0x20
129
#define STAT_GE 0x40
130
#define STAT_INT 0x80
131

    
132
#define INTR_FC 0x08
133
#define INTR_BS 0x10
134
#define INTR_DC 0x20
135
#define INTR_RST 0x80
136

    
137
#define SEQ_0 0x0
138
#define SEQ_CD 0x4
139

    
140
#define CFG1_RESREPT 0x40
141

    
142
#define CFG2_MASK 0x15
143

    
144
#define TCHI_FAS100A 0x4
145

    
146
static void esp_raise_irq(ESPState *s)
147
{
148
    if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
149
        s->rregs[ESP_RSTAT] |= STAT_INT;
150
        qemu_irq_raise(s->irq);
151
    }
152
}
153

    
154
static void esp_lower_irq(ESPState *s)
155
{
156
    if (s->rregs[ESP_RSTAT] & STAT_INT) {
157
        s->rregs[ESP_RSTAT] &= ~STAT_INT;
158
        qemu_irq_lower(s->irq);
159
    }
160
}
161

    
162
static uint32_t get_cmd(ESPState *s, uint8_t *buf)
163
{
164
    uint32_t dmalen;
165
    int target;
166

    
167
    dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
168
    target = s->wregs[ESP_WBUSID] & 7;
169
    DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
170
    if (s->dma) {
171
        s->dma_memory_read(s->dma_opaque, buf, dmalen);
172
    } else {
173
        buf[0] = 0;
174
        memcpy(&buf[1], s->ti_buf, dmalen);
175
        dmalen++;
176
    }
177

    
178
    s->ti_size = 0;
179
    s->ti_rptr = 0;
180
    s->ti_wptr = 0;
181

    
182
    if (s->current_dev) {
183
        /* Started a new command before the old one finished.  Cancel it.  */
184
        s->current_dev->cancel_io(s->current_dev, 0);
185
        s->async_len = 0;
186
    }
187

    
188
    if (target >= ESP_MAX_DEVS || !s->scsi_dev[target]) {
189
        // No such drive
190
        s->rregs[ESP_RSTAT] = 0;
191
        s->rregs[ESP_RINTR] = INTR_DC;
192
        s->rregs[ESP_RSEQ] = SEQ_0;
193
        esp_raise_irq(s);
194
        return 0;
195
    }
196
    s->current_dev = s->scsi_dev[target];
197
    return dmalen;
198
}
199

    
200
static void do_cmd(ESPState *s, uint8_t *buf)
201
{
202
    int32_t datalen;
203
    int lun;
204

    
205
    DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
206
    lun = buf[0] & 7;
207
    datalen = s->current_dev->send_command(s->current_dev, 0, &buf[1], lun);
208
    s->ti_size = datalen;
209
    if (datalen != 0) {
210
        s->rregs[ESP_RSTAT] = STAT_TC;
211
        s->dma_left = 0;
212
        s->dma_counter = 0;
213
        if (datalen > 0) {
214
            s->rregs[ESP_RSTAT] |= STAT_DI;
215
            s->current_dev->read_data(s->current_dev, 0);
216
        } else {
217
            s->rregs[ESP_RSTAT] |= STAT_DO;
218
            s->current_dev->write_data(s->current_dev, 0);
219
        }
220
    }
221
    s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
222
    s->rregs[ESP_RSEQ] = SEQ_CD;
223
    esp_raise_irq(s);
224
}
225

    
226
static void handle_satn(ESPState *s)
227
{
228
    uint8_t buf[32];
229
    int len;
230

    
231
    len = get_cmd(s, buf);
232
    if (len)
233
        do_cmd(s, buf);
234
}
235

    
236
static void handle_satn_stop(ESPState *s)
237
{
238
    s->cmdlen = get_cmd(s, s->cmdbuf);
239
    if (s->cmdlen) {
240
        DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
241
        s->do_cmd = 1;
242
        s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
243
        s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
244
        s->rregs[ESP_RSEQ] = SEQ_CD;
245
        esp_raise_irq(s);
246
    }
247
}
248

    
249
static void write_response(ESPState *s)
250
{
251
    DPRINTF("Transfer status (sense=%d)\n", s->sense);
252
    s->ti_buf[0] = s->sense;
253
    s->ti_buf[1] = 0;
254
    if (s->dma) {
255
        s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
256
        s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
257
        s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
258
        s->rregs[ESP_RSEQ] = SEQ_CD;
259
    } else {
260
        s->ti_size = 2;
261
        s->ti_rptr = 0;
262
        s->ti_wptr = 0;
263
        s->rregs[ESP_RFLAGS] = 2;
264
    }
265
    esp_raise_irq(s);
266
}
267

    
268
static void esp_dma_done(ESPState *s)
269
{
270
    s->rregs[ESP_RSTAT] |= STAT_TC;
271
    s->rregs[ESP_RINTR] = INTR_BS;
272
    s->rregs[ESP_RSEQ] = 0;
273
    s->rregs[ESP_RFLAGS] = 0;
274
    s->rregs[ESP_TCLO] = 0;
275
    s->rregs[ESP_TCMID] = 0;
276
    esp_raise_irq(s);
277
}
278

    
279
static void esp_do_dma(ESPState *s)
280
{
281
    uint32_t len;
282
    int to_device;
283

    
284
    to_device = (s->ti_size < 0);
285
    len = s->dma_left;
286
    if (s->do_cmd) {
287
        DPRINTF("command len %d + %d\n", s->cmdlen, len);
288
        s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
289
        s->ti_size = 0;
290
        s->cmdlen = 0;
291
        s->do_cmd = 0;
292
        do_cmd(s, s->cmdbuf);
293
        return;
294
    }
295
    if (s->async_len == 0) {
296
        /* Defer until data is available.  */
297
        return;
298
    }
299
    if (len > s->async_len) {
300
        len = s->async_len;
301
    }
302
    if (to_device) {
303
        s->dma_memory_read(s->dma_opaque, s->async_buf, len);
304
    } else {
305
        s->dma_memory_write(s->dma_opaque, s->async_buf, len);
306
    }
307
    s->dma_left -= len;
308
    s->async_buf += len;
309
    s->async_len -= len;
310
    if (to_device)
311
        s->ti_size += len;
312
    else
313
        s->ti_size -= len;
314
    if (s->async_len == 0) {
315
        if (to_device) {
316
            // ti_size is negative
317
            s->current_dev->write_data(s->current_dev, 0);
318
        } else {
319
            s->current_dev->read_data(s->current_dev, 0);
320
            /* If there is still data to be read from the device then
321
               complete the DMA operation immeriately.  Otherwise defer
322
               until the scsi layer has completed.  */
323
            if (s->dma_left == 0 && s->ti_size > 0) {
324
                esp_dma_done(s);
325
            }
326
        }
327
    } else {
328
        /* Partially filled a scsi buffer. Complete immediately.  */
329
        esp_dma_done(s);
330
    }
331
}
332

    
333
static void esp_command_complete(void *opaque, int reason, uint32_t tag,
334
                                 uint32_t arg)
335
{
336
    ESPState *s = (ESPState *)opaque;
337

    
338
    if (reason == SCSI_REASON_DONE) {
339
        DPRINTF("SCSI Command complete\n");
340
        if (s->ti_size != 0)
341
            DPRINTF("SCSI command completed unexpectedly\n");
342
        s->ti_size = 0;
343
        s->dma_left = 0;
344
        s->async_len = 0;
345
        if (arg)
346
            DPRINTF("Command failed\n");
347
        s->sense = arg;
348
        s->rregs[ESP_RSTAT] = STAT_ST;
349
        esp_dma_done(s);
350
        s->current_dev = NULL;
351
    } else {
352
        DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
353
        s->async_len = arg;
354
        s->async_buf = s->current_dev->get_buf(s->current_dev, 0);
355
        if (s->dma_left) {
356
            esp_do_dma(s);
357
        } else if (s->dma_counter != 0 && s->ti_size <= 0) {
358
            /* If this was the last part of a DMA transfer then the
359
               completion interrupt is deferred to here.  */
360
            esp_dma_done(s);
361
        }
362
    }
363
}
364

    
365
static void handle_ti(ESPState *s)
366
{
367
    uint32_t dmalen, minlen;
368

    
369
    dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
370
    if (dmalen==0) {
371
      dmalen=0x10000;
372
    }
373
    s->dma_counter = dmalen;
374

    
375
    if (s->do_cmd)
376
        minlen = (dmalen < 32) ? dmalen : 32;
377
    else if (s->ti_size < 0)
378
        minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
379
    else
380
        minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
381
    DPRINTF("Transfer Information len %d\n", minlen);
382
    if (s->dma) {
383
        s->dma_left = minlen;
384
        s->rregs[ESP_RSTAT] &= ~STAT_TC;
385
        esp_do_dma(s);
386
    } else if (s->do_cmd) {
387
        DPRINTF("command len %d\n", s->cmdlen);
388
        s->ti_size = 0;
389
        s->cmdlen = 0;
390
        s->do_cmd = 0;
391
        do_cmd(s, s->cmdbuf);
392
        return;
393
    }
394
}
395

    
396
static void esp_reset(void *opaque)
397
{
398
    ESPState *s = opaque;
399

    
400
    esp_lower_irq(s);
401

    
402
    memset(s->rregs, 0, ESP_REGS);
403
    memset(s->wregs, 0, ESP_REGS);
404
    s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a
405
    s->ti_size = 0;
406
    s->ti_rptr = 0;
407
    s->ti_wptr = 0;
408
    s->dma = 0;
409
    s->do_cmd = 0;
410
}
411

    
412
static void parent_esp_reset(void *opaque, int irq, int level)
413
{
414
    if (level)
415
        esp_reset(opaque);
416
}
417

    
418
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
419
{
420
    ESPState *s = opaque;
421
    uint32_t saddr;
422

    
423
    saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
424
    DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
425
    switch (saddr) {
426
    case ESP_FIFO:
427
        if (s->ti_size > 0) {
428
            s->ti_size--;
429
            if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
430
                /* Data in/out.  */
431
                fprintf(stderr, "esp: PIO data read not implemented\n");
432
                s->rregs[ESP_FIFO] = 0;
433
            } else {
434
                s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
435
            }
436
            esp_raise_irq(s);
437
        }
438
        if (s->ti_size == 0) {
439
            s->ti_rptr = 0;
440
            s->ti_wptr = 0;
441
        }
442
        break;
443
    case ESP_RINTR:
444
        // Clear interrupt/error status bits
445
        s->rregs[ESP_RSTAT] &= ~(STAT_GE | STAT_PE);
446
        esp_lower_irq(s);
447
        break;
448
    default:
449
        break;
450
    }
451
    return s->rregs[saddr];
452
}
453

    
454
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
455
{
456
    ESPState *s = opaque;
457
    uint32_t saddr;
458

    
459
    saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
460
    DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr],
461
            val);
462
    switch (saddr) {
463
    case ESP_TCLO:
464
    case ESP_TCMID:
465
        s->rregs[ESP_RSTAT] &= ~STAT_TC;
466
        break;
467
    case ESP_FIFO:
468
        if (s->do_cmd) {
469
            s->cmdbuf[s->cmdlen++] = val & 0xff;
470
        } else if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
471
            uint8_t buf;
472
            buf = val & 0xff;
473
            s->ti_size--;
474
            fprintf(stderr, "esp: PIO data write not implemented\n");
475
        } else {
476
            s->ti_size++;
477
            s->ti_buf[s->ti_wptr++] = val & 0xff;
478
        }
479
        break;
480
    case ESP_CMD:
481
        s->rregs[saddr] = val;
482
        if (val & CMD_DMA) {
483
            s->dma = 1;
484
            /* Reload DMA counter.  */
485
            s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
486
            s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
487
        } else {
488
            s->dma = 0;
489
        }
490
        switch(val & CMD_CMD) {
491
        case CMD_NOP:
492
            DPRINTF("NOP (%2.2x)\n", val);
493
            break;
494
        case CMD_FLUSH:
495
            DPRINTF("Flush FIFO (%2.2x)\n", val);
496
            //s->ti_size = 0;
497
            s->rregs[ESP_RINTR] = INTR_FC;
498
            s->rregs[ESP_RSEQ] = 0;
499
            s->rregs[ESP_RFLAGS] = 0;
500
            break;
501
        case CMD_RESET:
502
            DPRINTF("Chip reset (%2.2x)\n", val);
503
            esp_reset(s);
504
            break;
505
        case CMD_BUSRESET:
506
            DPRINTF("Bus reset (%2.2x)\n", val);
507
            s->rregs[ESP_RINTR] = INTR_RST;
508
            if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
509
                esp_raise_irq(s);
510
            }
511
            break;
512
        case CMD_TI:
513
            handle_ti(s);
514
            break;
515
        case CMD_ICCS:
516
            DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
517
            write_response(s);
518
            break;
519
        case CMD_MSGACC:
520
            DPRINTF("Message Accepted (%2.2x)\n", val);
521
            write_response(s);
522
            s->rregs[ESP_RINTR] = INTR_DC;
523
            s->rregs[ESP_RSEQ] = 0;
524
            break;
525
        case CMD_SATN:
526
            DPRINTF("Set ATN (%2.2x)\n", val);
527
            break;
528
        case CMD_SELATN:
529
            DPRINTF("Set ATN (%2.2x)\n", val);
530
            handle_satn(s);
531
            break;
532
        case CMD_SELATNS:
533
            DPRINTF("Set ATN & stop (%2.2x)\n", val);
534
            handle_satn_stop(s);
535
            break;
536
        case CMD_ENSEL:
537
            DPRINTF("Enable selection (%2.2x)\n", val);
538
            break;
539
        default:
540
            DPRINTF("Unhandled ESP command (%2.2x)\n", val);
541
            break;
542
        }
543
        break;
544
    case ESP_WBUSID ... ESP_WSYNO:
545
        break;
546
    case ESP_CFG1:
547
        s->rregs[saddr] = val;
548
        break;
549
    case ESP_WCCF ... ESP_WTEST:
550
        break;
551
    case ESP_CFG2:
552
        s->rregs[saddr] = val & CFG2_MASK;
553
        break;
554
    case ESP_CFG3 ... ESP_RES4:
555
        s->rregs[saddr] = val;
556
        break;
557
    default:
558
        break;
559
    }
560
    s->wregs[saddr] = val;
561
}
562

    
563
static CPUReadMemoryFunc *esp_mem_read[3] = {
564
    esp_mem_readb,
565
    NULL,
566
    NULL,
567
};
568

    
569
static CPUWriteMemoryFunc *esp_mem_write[3] = {
570
    esp_mem_writeb,
571
    NULL,
572
    NULL,
573
};
574

    
575
static void esp_save(QEMUFile *f, void *opaque)
576
{
577
    ESPState *s = opaque;
578

    
579
    qemu_put_buffer(f, s->rregs, ESP_REGS);
580
    qemu_put_buffer(f, s->wregs, ESP_REGS);
581
    qemu_put_be32s(f, (uint32_t *)&s->ti_size);
582
    qemu_put_be32s(f, &s->ti_rptr);
583
    qemu_put_be32s(f, &s->ti_wptr);
584
    qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
585
    qemu_put_be32s(f, &s->sense);
586
    qemu_put_be32s(f, &s->dma);
587
    qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
588
    qemu_put_be32s(f, &s->cmdlen);
589
    qemu_put_be32s(f, &s->do_cmd);
590
    qemu_put_be32s(f, &s->dma_left);
591
    // There should be no transfers in progress, so dma_counter is not saved
592
}
593

    
594
static int esp_load(QEMUFile *f, void *opaque, int version_id)
595
{
596
    ESPState *s = opaque;
597

    
598
    if (version_id != 3)
599
        return -EINVAL; // Cannot emulate 2
600

    
601
    qemu_get_buffer(f, s->rregs, ESP_REGS);
602
    qemu_get_buffer(f, s->wregs, ESP_REGS);
603
    qemu_get_be32s(f, (uint32_t *)&s->ti_size);
604
    qemu_get_be32s(f, &s->ti_rptr);
605
    qemu_get_be32s(f, &s->ti_wptr);
606
    qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
607
    qemu_get_be32s(f, &s->sense);
608
    qemu_get_be32s(f, &s->dma);
609
    qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
610
    qemu_get_be32s(f, &s->cmdlen);
611
    qemu_get_be32s(f, &s->do_cmd);
612
    qemu_get_be32s(f, &s->dma_left);
613

    
614
    return 0;
615
}
616

    
617
void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
618
{
619
    ESPState *s = (ESPState *)opaque;
620

    
621
    if (id < 0) {
622
        for (id = 0; id < ESP_MAX_DEVS; id++) {
623
            if (s->scsi_dev[id] == NULL)
624
                break;
625
        }
626
    }
627
    if (id >= ESP_MAX_DEVS) {
628
        DPRINTF("Bad Device ID %d\n", id);
629
        return;
630
    }
631
    if (s->scsi_dev[id]) {
632
        DPRINTF("Destroying device %d\n", id);
633
        s->scsi_dev[id]->destroy(s->scsi_dev[id]);
634
    }
635
    DPRINTF("Attaching block device %d\n", id);
636
    /* Command queueing is not implemented.  */
637
    s->scsi_dev[id] = scsi_generic_init(bd, 0, esp_command_complete, s);
638
    if (s->scsi_dev[id] == NULL)
639
        s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
640
}
641

    
642
void *esp_init(target_phys_addr_t espaddr, int it_shift,
643
               espdma_memory_read_write dma_memory_read,
644
               espdma_memory_read_write dma_memory_write,
645
               void *dma_opaque, qemu_irq irq, qemu_irq *reset)
646
{
647
    ESPState *s;
648
    int esp_io_memory;
649

    
650
    s = qemu_mallocz(sizeof(ESPState));
651
    if (!s)
652
        return NULL;
653

    
654
    s->irq = irq;
655
    s->it_shift = it_shift;
656
    s->dma_memory_read = dma_memory_read;
657
    s->dma_memory_write = dma_memory_write;
658
    s->dma_opaque = dma_opaque;
659

    
660
    esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
661
    cpu_register_physical_memory(espaddr, ESP_REGS << it_shift, esp_io_memory);
662

    
663
    esp_reset(s);
664

    
665
    register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
666
    qemu_register_reset(esp_reset, s);
667

    
668
    *reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
669

    
670
    return s;
671
}