Statistics
| Branch: | Revision:

root / hw / sun4u.c @ a6307b08

History | View | Annotate | Download (21.8 kB)

1
/*
2
 * QEMU Sun4u/Sun4v System Emulator
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "pc.h"
27
#include "nvram.h"
28
#include "fdc.h"
29
#include "net.h"
30
#include "qemu-timer.h"
31
#include "sysemu.h"
32
#include "boards.h"
33
#include "firmware_abi.h"
34
#include "fw_cfg.h"
35
#include "sysbus.h"
36

    
37
//#define DEBUG_IRQ
38

    
39
#ifdef DEBUG_IRQ
40
#define DPRINTF(fmt, ...)                                       \
41
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...)
44
#endif
45

    
46
#define KERNEL_LOAD_ADDR     0x00404000
47
#define CMDLINE_ADDR         0x003ff000
48
#define INITRD_LOAD_ADDR     0x00300000
49
#define PROM_SIZE_MAX        (4 * 1024 * 1024)
50
#define PROM_VADDR           0x000ffd00000ULL
51
#define APB_SPECIAL_BASE     0x1fe00000000ULL
52
#define APB_MEM_BASE         0x1ff00000000ULL
53
#define VGA_BASE             (APB_MEM_BASE + 0x400000ULL)
54
#define PROM_FILENAME        "openbios-sparc64"
55
#define NVRAM_SIZE           0x2000
56
#define MAX_IDE_BUS          2
57
#define BIOS_CFG_IOPORT      0x510
58

    
59
#define MAX_PILS 16
60

    
61
#define TICK_INT_DIS         0x8000000000000000ULL
62
#define TICK_MAX             0x7fffffffffffffffULL
63

    
64
struct hwdef {
65
    const char * const default_cpu_model;
66
    uint16_t machine_id;
67
    uint64_t prom_addr;
68
    uint64_t console_serial_base;
69
};
70

    
71
int DMA_get_channel_mode (int nchan)
72
{
73
    return 0;
74
}
75
int DMA_read_memory (int nchan, void *buf, int pos, int size)
76
{
77
    return 0;
78
}
79
int DMA_write_memory (int nchan, void *buf, int pos, int size)
80
{
81
    return 0;
82
}
83
void DMA_hold_DREQ (int nchan) {}
84
void DMA_release_DREQ (int nchan) {}
85
void DMA_schedule(int nchan) {}
86
void DMA_init (int high_page_enable) {}
87
void DMA_register_channel (int nchan,
88
                           DMA_transfer_handler transfer_handler,
89
                           void *opaque)
90
{
91
}
92

    
93
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
94
{
95
    fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
96
    return 0;
97
}
98

    
99
static int sun4u_NVRAM_set_params (m48t59_t *nvram, uint16_t NVRAM_size,
100
                                   const char *arch,
101
                                   ram_addr_t RAM_size,
102
                                   const char *boot_devices,
103
                                   uint32_t kernel_image, uint32_t kernel_size,
104
                                   const char *cmdline,
105
                                   uint32_t initrd_image, uint32_t initrd_size,
106
                                   uint32_t NVRAM_image,
107
                                   int width, int height, int depth,
108
                                   const uint8_t *macaddr)
109
{
110
    unsigned int i;
111
    uint32_t start, end;
112
    uint8_t image[0x1ff0];
113
    struct OpenBIOS_nvpart_v1 *part_header;
114

    
115
    memset(image, '\0', sizeof(image));
116

    
117
    start = 0;
118

    
119
    // OpenBIOS nvram variables
120
    // Variable partition
121
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
122
    part_header->signature = OPENBIOS_PART_SYSTEM;
123
    pstrcpy(part_header->name, sizeof(part_header->name), "system");
124

    
125
    end = start + sizeof(struct OpenBIOS_nvpart_v1);
126
    for (i = 0; i < nb_prom_envs; i++)
127
        end = OpenBIOS_set_var(image, end, prom_envs[i]);
128

    
129
    // End marker
130
    image[end++] = '\0';
131

    
132
    end = start + ((end - start + 15) & ~15);
133
    OpenBIOS_finish_partition(part_header, end - start);
134

    
135
    // free partition
136
    start = end;
137
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
138
    part_header->signature = OPENBIOS_PART_FREE;
139
    pstrcpy(part_header->name, sizeof(part_header->name), "free");
140

    
141
    end = 0x1fd0;
142
    OpenBIOS_finish_partition(part_header, end - start);
143

    
144
    Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
145

    
146
    for (i = 0; i < sizeof(image); i++)
147
        m48t59_write(nvram, i, image[i]);
148

    
149
    return 0;
150
}
151
static unsigned long sun4u_load_kernel(const char *kernel_filename,
152
                                       const char *initrd_filename,
153
                                       ram_addr_t RAM_size, long *initrd_size)
154
{
155
    int linux_boot;
156
    unsigned int i;
157
    long kernel_size;
158

    
159
    linux_boot = (kernel_filename != NULL);
160

    
161
    kernel_size = 0;
162
    if (linux_boot) {
163
        kernel_size = load_elf(kernel_filename, 0, NULL, NULL, NULL);
164
        if (kernel_size < 0)
165
            kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
166
                                    RAM_size - KERNEL_LOAD_ADDR);
167
        if (kernel_size < 0)
168
            kernel_size = load_image_targphys(kernel_filename,
169
                                              KERNEL_LOAD_ADDR,
170
                                              RAM_size - KERNEL_LOAD_ADDR);
171
        if (kernel_size < 0) {
172
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
173
                    kernel_filename);
174
            exit(1);
175
        }
176

    
177
        /* load initrd */
178
        *initrd_size = 0;
179
        if (initrd_filename) {
180
            *initrd_size = load_image_targphys(initrd_filename,
181
                                               INITRD_LOAD_ADDR,
182
                                               RAM_size - INITRD_LOAD_ADDR);
183
            if (*initrd_size < 0) {
184
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
185
                        initrd_filename);
186
                exit(1);
187
            }
188
        }
189
        if (*initrd_size > 0) {
190
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
191
                if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS
192
                    stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
193
                    stl_phys(KERNEL_LOAD_ADDR + i + 20, *initrd_size);
194
                    break;
195
                }
196
            }
197
        }
198
    }
199
    return kernel_size;
200
}
201

    
202
void pic_info(Monitor *mon)
203
{
204
}
205

    
206
void irq_info(Monitor *mon)
207
{
208
}
209

    
210
void cpu_check_irqs(CPUState *env)
211
{
212
    uint32_t pil = env->pil_in | (env->softint & ~SOFTINT_TIMER) |
213
        ((env->softint & SOFTINT_TIMER) << 14);
214

    
215
    if (pil && (env->interrupt_index == 0 ||
216
                (env->interrupt_index & ~15) == TT_EXTINT)) {
217
        unsigned int i;
218

    
219
        for (i = 15; i > 0; i--) {
220
            if (pil & (1 << i)) {
221
                int old_interrupt = env->interrupt_index;
222

    
223
                env->interrupt_index = TT_EXTINT | i;
224
                if (old_interrupt != env->interrupt_index) {
225
                    DPRINTF("Set CPU IRQ %d\n", i);
226
                    cpu_interrupt(env, CPU_INTERRUPT_HARD);
227
                }
228
                break;
229
            }
230
        }
231
    } else if (!pil && (env->interrupt_index & ~15) == TT_EXTINT) {
232
        DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
233
        env->interrupt_index = 0;
234
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
235
    }
236
}
237

    
238
static void cpu_set_irq(void *opaque, int irq, int level)
239
{
240
    CPUState *env = opaque;
241

    
242
    if (level) {
243
        DPRINTF("Raise CPU IRQ %d\n", irq);
244
        env->halted = 0;
245
        env->pil_in |= 1 << irq;
246
        cpu_check_irqs(env);
247
    } else {
248
        DPRINTF("Lower CPU IRQ %d\n", irq);
249
        env->pil_in &= ~(1 << irq);
250
        cpu_check_irqs(env);
251
    }
252
}
253

    
254
void qemu_system_powerdown(void)
255
{
256
}
257

    
258
typedef struct ResetData {
259
    CPUState *env;
260
    uint64_t reset_addr;
261
} ResetData;
262

    
263
static void main_cpu_reset(void *opaque)
264
{
265
    ResetData *s = (ResetData *)opaque;
266
    CPUState *env = s->env;
267

    
268
    cpu_reset(env);
269
    env->tick_cmpr = TICK_INT_DIS | 0;
270
    ptimer_set_limit(env->tick, TICK_MAX, 1);
271
    ptimer_run(env->tick, 1);
272
    env->stick_cmpr = TICK_INT_DIS | 0;
273
    ptimer_set_limit(env->stick, TICK_MAX, 1);
274
    ptimer_run(env->stick, 1);
275
    env->hstick_cmpr = TICK_INT_DIS | 0;
276
    ptimer_set_limit(env->hstick, TICK_MAX, 1);
277
    ptimer_run(env->hstick, 1);
278
    env->gregs[1] = 0; // Memory start
279
    env->gregs[2] = ram_size; // Memory size
280
    env->gregs[3] = 0; // Machine description XXX
281
    env->pc = s->reset_addr;
282
    env->npc = env->pc + 4;
283
}
284

    
285
static void tick_irq(void *opaque)
286
{
287
    CPUState *env = opaque;
288

    
289
    if (!(env->tick_cmpr & TICK_INT_DIS)) {
290
        env->softint |= SOFTINT_TIMER;
291
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
292
    }
293
}
294

    
295
static void stick_irq(void *opaque)
296
{
297
    CPUState *env = opaque;
298

    
299
    if (!(env->stick_cmpr & TICK_INT_DIS)) {
300
        env->softint |= SOFTINT_STIMER;
301
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
302
    }
303
}
304

    
305
static void hstick_irq(void *opaque)
306
{
307
    CPUState *env = opaque;
308

    
309
    if (!(env->hstick_cmpr & TICK_INT_DIS)) {
310
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
311
    }
312
}
313

    
314
void cpu_tick_set_count(void *opaque, uint64_t count)
315
{
316
    ptimer_set_count(opaque, -count);
317
}
318

    
319
uint64_t cpu_tick_get_count(void *opaque)
320
{
321
    return -ptimer_get_count(opaque);
322
}
323

    
324
void cpu_tick_set_limit(void *opaque, uint64_t limit)
325
{
326
    ptimer_set_limit(opaque, -limit, 0);
327
}
328

    
329
static const int ide_iobase[2] = { 0x1f0, 0x170 };
330
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
331
static const int ide_irq[2] = { 14, 15 };
332

    
333
static const int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
334
static const int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
335

    
336
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
337
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
338

    
339
static fdctrl_t *floppy_controller;
340

    
341
static void ebus_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
342
                              uint32_t addr, uint32_t size, int type)
343
{
344
    DPRINTF("Mapping region %d registers at %08x\n", region_num, addr);
345
    switch (region_num) {
346
    case 0:
347
        isa_mmio_init(addr, 0x1000000);
348
        break;
349
    case 1:
350
        isa_mmio_init(addr, 0x800000);
351
        break;
352
    }
353
}
354

    
355
/* EBUS (Eight bit bus) bridge */
356
static void
357
pci_ebus_init(PCIBus *bus, int devfn)
358
{
359
    pci_create_simple(bus, devfn, "ebus");
360
}
361

    
362
static void
363
pci_ebus_init1(PCIDevice *s)
364
{
365
    pci_config_set_vendor_id(s->config, PCI_VENDOR_ID_SUN);
366
    pci_config_set_device_id(s->config, PCI_DEVICE_ID_SUN_EBUS);
367
    s->config[0x04] = 0x06; // command = bus master, pci mem
368
    s->config[0x05] = 0x00;
369
    s->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
370
    s->config[0x07] = 0x03; // status = medium devsel
371
    s->config[0x08] = 0x01; // revision
372
    s->config[0x09] = 0x00; // programming i/f
373
    pci_config_set_class(s->config, PCI_CLASS_BRIDGE_OTHER);
374
    s->config[0x0D] = 0x0a; // latency_timer
375
    s->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
376

    
377
    pci_register_bar(s, 0, 0x1000000, PCI_ADDRESS_SPACE_MEM,
378
                           ebus_mmio_mapfunc);
379
    pci_register_bar(s, 1, 0x800000,  PCI_ADDRESS_SPACE_MEM,
380
                           ebus_mmio_mapfunc);
381
}
382

    
383
static PCIDeviceInfo ebus_info = {
384
    .qdev.name = "ebus",
385
    .qdev.size = sizeof(PCIDevice),
386
    .init = pci_ebus_init1,
387
};
388

    
389
static void pci_ebus_register(void)
390
{
391
    pci_qdev_register(&ebus_info);
392
}
393

    
394
device_init(pci_ebus_register);
395

    
396
/* Boot PROM (OpenBIOS) */
397
static void prom_init(target_phys_addr_t addr, const char *bios_name)
398
{
399
    DeviceState *dev;
400
    SysBusDevice *s;
401
    char *filename;
402
    int ret;
403

    
404
    dev = qdev_create(NULL, "openprom");
405
    qdev_init(dev);
406
    s = sysbus_from_qdev(dev);
407

    
408
    sysbus_mmio_map(s, 0, addr);
409

    
410
    /* load boot prom */
411
    if (bios_name == NULL) {
412
        bios_name = PROM_FILENAME;
413
    }
414
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
415
    if (filename) {
416
        ret = load_elf(filename, addr - PROM_VADDR, NULL, NULL, NULL);
417
        if (ret < 0 || ret > PROM_SIZE_MAX) {
418
            ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
419
        }
420
        qemu_free(filename);
421
    } else {
422
        ret = -1;
423
    }
424
    if (ret < 0 || ret > PROM_SIZE_MAX) {
425
        fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
426
        exit(1);
427
    }
428
}
429

    
430
static void prom_init1(SysBusDevice *dev)
431
{
432
    ram_addr_t prom_offset;
433

    
434
    prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
435
    sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
436
}
437

    
438
static SysBusDeviceInfo prom_info = {
439
    .init = prom_init1,
440
    .qdev.name  = "openprom",
441
    .qdev.size  = sizeof(SysBusDevice),
442
    .qdev.props = (Property[]) {
443
        {/* end of property list */}
444
    }
445
};
446

    
447
static void prom_register_devices(void)
448
{
449
    sysbus_register_withprop(&prom_info);
450
}
451

    
452
device_init(prom_register_devices);
453

    
454

    
455
typedef struct RamDevice
456
{
457
    SysBusDevice busdev;
458
    uint64_t size;
459
} RamDevice;
460

    
461
/* System RAM */
462
static void ram_init1(SysBusDevice *dev)
463
{
464
    ram_addr_t RAM_size, ram_offset;
465
    RamDevice *d = FROM_SYSBUS(RamDevice, dev);
466

    
467
    RAM_size = d->size;
468

    
469
    ram_offset = qemu_ram_alloc(RAM_size);
470
    sysbus_init_mmio(dev, RAM_size, ram_offset);
471
}
472

    
473
static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size)
474
{
475
    DeviceState *dev;
476
    SysBusDevice *s;
477
    RamDevice *d;
478

    
479
    /* allocate RAM */
480
    dev = qdev_create(NULL, "memory");
481
    s = sysbus_from_qdev(dev);
482

    
483
    d = FROM_SYSBUS(RamDevice, s);
484
    d->size = RAM_size;
485
    qdev_init(dev);
486

    
487
    sysbus_mmio_map(s, 0, addr);
488
}
489

    
490
static SysBusDeviceInfo ram_info = {
491
    .init = ram_init1,
492
    .qdev.name  = "memory",
493
    .qdev.size  = sizeof(RamDevice),
494
    .qdev.props = (Property[]) {
495
        {
496
            .name = "size",
497
            .info = &qdev_prop_uint64,
498
            .offset = offsetof(RamDevice, size),
499
        },
500
        {/* end of property list */}
501
    }
502
};
503

    
504
static void ram_register_devices(void)
505
{
506
    sysbus_register_withprop(&ram_info);
507
}
508

    
509
device_init(ram_register_devices);
510

    
511
static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
512
{
513
    CPUState *env;
514
    QEMUBH *bh;
515
    ResetData *reset_info;
516

    
517
    if (!cpu_model)
518
        cpu_model = hwdef->default_cpu_model;
519
    env = cpu_init(cpu_model);
520
    if (!env) {
521
        fprintf(stderr, "Unable to find Sparc CPU definition\n");
522
        exit(1);
523
    }
524
    bh = qemu_bh_new(tick_irq, env);
525
    env->tick = ptimer_init(bh);
526
    ptimer_set_period(env->tick, 1ULL);
527

    
528
    bh = qemu_bh_new(stick_irq, env);
529
    env->stick = ptimer_init(bh);
530
    ptimer_set_period(env->stick, 1ULL);
531

    
532
    bh = qemu_bh_new(hstick_irq, env);
533
    env->hstick = ptimer_init(bh);
534
    ptimer_set_period(env->hstick, 1ULL);
535

    
536
    reset_info = qemu_mallocz(sizeof(ResetData));
537
    reset_info->env = env;
538
    reset_info->reset_addr = hwdef->prom_addr + 0x40ULL;
539
    qemu_register_reset(main_cpu_reset, reset_info);
540
    main_cpu_reset(reset_info);
541
    // Override warm reset address with cold start address
542
    env->pc = hwdef->prom_addr + 0x20ULL;
543
    env->npc = env->pc + 4;
544

    
545
    return env;
546
}
547

    
548
static void sun4uv_init(ram_addr_t RAM_size,
549
                        const char *boot_devices,
550
                        const char *kernel_filename, const char *kernel_cmdline,
551
                        const char *initrd_filename, const char *cpu_model,
552
                        const struct hwdef *hwdef)
553
{
554
    CPUState *env;
555
    m48t59_t *nvram;
556
    unsigned int i;
557
    long initrd_size, kernel_size;
558
    PCIBus *pci_bus, *pci_bus2, *pci_bus3;
559
    qemu_irq *irq;
560
    int drive_index;
561
    BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
562
    BlockDriverState *fd[MAX_FD];
563
    void *fw_cfg;
564

    
565
    /* init CPUs */
566
    env = cpu_devinit(cpu_model, hwdef);
567

    
568
    /* set up devices */
569
    ram_init(0, RAM_size);
570

    
571
    prom_init(hwdef->prom_addr, bios_name);
572

    
573

    
574
    irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
575
    pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2,
576
                           &pci_bus3);
577
    isa_mem_base = VGA_BASE;
578
    pci_vga_init(pci_bus, 0, 0);
579

    
580
    // XXX Should be pci_bus3
581
    pci_ebus_init(pci_bus, -1);
582

    
583
    i = 0;
584
    if (hwdef->console_serial_base) {
585
        serial_mm_init(hwdef->console_serial_base, 0, NULL, 115200,
586
                       serial_hds[i], 1);
587
        i++;
588
    }
589
    for(; i < MAX_SERIAL_PORTS; i++) {
590
        if (serial_hds[i]) {
591
            serial_init(serial_io[i], NULL/*serial_irq[i]*/, 115200,
592
                        serial_hds[i]);
593
        }
594
    }
595

    
596
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
597
        if (parallel_hds[i]) {
598
            parallel_init(parallel_io[i], NULL/*parallel_irq[i]*/,
599
                          parallel_hds[i]);
600
        }
601
    }
602

    
603
    for(i = 0; i < nb_nics; i++)
604
        pci_nic_init(&nd_table[i], "ne2k_pci", NULL);
605

    
606
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
607
        fprintf(stderr, "qemu: too many IDE bus\n");
608
        exit(1);
609
    }
610
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
611
        drive_index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS,
612
                                      i % MAX_IDE_DEVS);
613
       if (drive_index != -1)
614
           hd[i] = drives_table[drive_index].bdrv;
615
       else
616
           hd[i] = NULL;
617
    }
618

    
619
    pci_cmd646_ide_init(pci_bus, hd, 1);
620

    
621
    /* FIXME: wire up interrupts.  */
622
    i8042_init(NULL/*1*/, NULL/*12*/, 0x60);
623
    for(i = 0; i < MAX_FD; i++) {
624
        drive_index = drive_get_index(IF_FLOPPY, 0, i);
625
       if (drive_index != -1)
626
           fd[i] = drives_table[drive_index].bdrv;
627
       else
628
           fd[i] = NULL;
629
    }
630
    floppy_controller = fdctrl_init(NULL/*6*/, 2, 0, 0x3f0, fd);
631
    nvram = m48t59_init(NULL/*8*/, 0, 0x0074, NVRAM_SIZE, 59);
632

    
633
    initrd_size = 0;
634
    kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
635
                                    ram_size, &initrd_size);
636

    
637
    sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
638
                           KERNEL_LOAD_ADDR, kernel_size,
639
                           kernel_cmdline,
640
                           INITRD_LOAD_ADDR, initrd_size,
641
                           /* XXX: need an option to load a NVRAM image */
642
                           0,
643
                           graphic_width, graphic_height, graphic_depth,
644
                           (uint8_t *)&nd_table[0].macaddr);
645

    
646
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
647
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
648
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
649
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
650
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
651
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
652
    if (kernel_cmdline) {
653
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
654
        pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
655
    } else {
656
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
657
    }
658
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
659
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
660
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
661
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
662
}
663

    
664
enum {
665
    sun4u_id = 0,
666
    sun4v_id = 64,
667
    niagara_id,
668
};
669

    
670
static const struct hwdef hwdefs[] = {
671
    /* Sun4u generic PC-like machine */
672
    {
673
        .default_cpu_model = "TI UltraSparc II",
674
        .machine_id = sun4u_id,
675
        .prom_addr = 0x1fff0000000ULL,
676
        .console_serial_base = 0,
677
    },
678
    /* Sun4v generic PC-like machine */
679
    {
680
        .default_cpu_model = "Sun UltraSparc T1",
681
        .machine_id = sun4v_id,
682
        .prom_addr = 0x1fff0000000ULL,
683
        .console_serial_base = 0,
684
    },
685
    /* Sun4v generic Niagara machine */
686
    {
687
        .default_cpu_model = "Sun UltraSparc T1",
688
        .machine_id = niagara_id,
689
        .prom_addr = 0xfff0000000ULL,
690
        .console_serial_base = 0xfff0c2c000ULL,
691
    },
692
};
693

    
694
/* Sun4u hardware initialisation */
695
static void sun4u_init(ram_addr_t RAM_size,
696
                       const char *boot_devices,
697
                       const char *kernel_filename, const char *kernel_cmdline,
698
                       const char *initrd_filename, const char *cpu_model)
699
{
700
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
701
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
702
}
703

    
704
/* Sun4v hardware initialisation */
705
static void sun4v_init(ram_addr_t RAM_size,
706
                       const char *boot_devices,
707
                       const char *kernel_filename, const char *kernel_cmdline,
708
                       const char *initrd_filename, const char *cpu_model)
709
{
710
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
711
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
712
}
713

    
714
/* Niagara hardware initialisation */
715
static void niagara_init(ram_addr_t RAM_size,
716
                         const char *boot_devices,
717
                         const char *kernel_filename, const char *kernel_cmdline,
718
                         const char *initrd_filename, const char *cpu_model)
719
{
720
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
721
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
722
}
723

    
724
static QEMUMachine sun4u_machine = {
725
    .name = "sun4u",
726
    .desc = "Sun4u platform",
727
    .init = sun4u_init,
728
    .max_cpus = 1, // XXX for now
729
    .is_default = 1,
730
};
731

    
732
static QEMUMachine sun4v_machine = {
733
    .name = "sun4v",
734
    .desc = "Sun4v platform",
735
    .init = sun4v_init,
736
    .max_cpus = 1, // XXX for now
737
};
738

    
739
static QEMUMachine niagara_machine = {
740
    .name = "Niagara",
741
    .desc = "Sun4v platform, Niagara",
742
    .init = niagara_init,
743
    .max_cpus = 1, // XXX for now
744
};
745

    
746
static void sun4u_machine_init(void)
747
{
748
    qemu_register_machine(&sun4u_machine);
749
    qemu_register_machine(&sun4v_machine);
750
    qemu_register_machine(&niagara_machine);
751
}
752

    
753
machine_init(sun4u_machine_init);