Statistics
| Branch: | Revision:

root / op-i386.c @ a69d83b6

History | View | Annotate | Download (50 kB)

1
/*
2
 *  i386 micro operations
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec-i386.h"
21

    
22
/* NOTE: data are not static to force relocation generation by GCC */
23

    
24
uint8_t parity_table[256] = {
25
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57
};
58

    
59
/* modulo 17 table */
60
const uint8_t rclw_table[32] = {
61
    0, 1, 2, 3, 4, 5, 6, 7, 
62
    8, 9,10,11,12,13,14,15,
63
   16, 0, 1, 2, 3, 4, 5, 6,
64
    7, 8, 9,10,11,12,13,14,
65
};
66

    
67
/* modulo 9 table */
68
const uint8_t rclb_table[32] = {
69
    0, 1, 2, 3, 4, 5, 6, 7, 
70
    8, 0, 1, 2, 3, 4, 5, 6,
71
    7, 8, 0, 1, 2, 3, 4, 5, 
72
    6, 7, 8, 0, 1, 2, 3, 4,
73
};
74

    
75
#ifdef USE_X86LDOUBLE
76
/* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77
typedef unsigned short f15ld[5];
78
const f15ld f15rk[] =
79
{
80
/*0*/        {0x0000,0x0000,0x0000,0x0000,0x0000},
81
/*1*/        {0x0000,0x0000,0x0000,0x8000,0x3fff},
82
/*pi*/        {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83
/*lg2*/        {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84
/*ln2*/        {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85
/*l2e*/        {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86
/*l2t*/        {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87
};
88
#else
89
/* the same, 64-bit version */
90
typedef unsigned short f15ld[4];
91
const f15ld f15rk[] =
92
{
93
#ifndef WORDS_BIGENDIAN
94
/*0*/        {0x0000,0x0000,0x0000,0x0000},
95
/*1*/        {0x0000,0x0000,0x0000,0x3ff0},
96
/*pi*/        {0x2d18,0x5444,0x21fb,0x4009},
97
/*lg2*/        {0x79ff,0x509f,0x4413,0x3fd3},
98
/*ln2*/        {0x39ef,0xfefa,0x2e42,0x3fe6},
99
/*l2e*/        {0x82fe,0x652b,0x1547,0x3ff7},
100
/*l2t*/        {0xa371,0x0979,0x934f,0x400a}
101
#else
102
/*0*/   {0x0000,0x0000,0x0000,0x0000},
103
/*1*/   {0x3ff0,0x0000,0x0000,0x0000},
104
/*pi*/  {0x4009,0x21fb,0x5444,0x2d18},
105
/*lg2*/        {0x3fd3,0x4413,0x509f,0x79ff},
106
/*ln2*/        {0x3fe6,0x2e42,0xfefa,0x39ef},
107
/*l2e*/        {0x3ff7,0x1547,0x652b,0x82fe},
108
/*l2t*/        {0x400a,0x934f,0x0979,0xa371}
109
#endif
110
};
111
#endif
112
    
113
/* n must be a constant to be efficient */
114
static inline int lshift(int x, int n)
115
{
116
    if (n >= 0)
117
        return x << n;
118
    else
119
        return x >> (-n);
120
}
121

    
122
/* we define the various pieces of code used by the JIT */
123

    
124
#define REG EAX
125
#define REGNAME _EAX
126
#include "opreg_template.h"
127
#undef REG
128
#undef REGNAME
129

    
130
#define REG ECX
131
#define REGNAME _ECX
132
#include "opreg_template.h"
133
#undef REG
134
#undef REGNAME
135

    
136
#define REG EDX
137
#define REGNAME _EDX
138
#include "opreg_template.h"
139
#undef REG
140
#undef REGNAME
141

    
142
#define REG EBX
143
#define REGNAME _EBX
144
#include "opreg_template.h"
145
#undef REG
146
#undef REGNAME
147

    
148
#define REG ESP
149
#define REGNAME _ESP
150
#include "opreg_template.h"
151
#undef REG
152
#undef REGNAME
153

    
154
#define REG EBP
155
#define REGNAME _EBP
156
#include "opreg_template.h"
157
#undef REG
158
#undef REGNAME
159

    
160
#define REG ESI
161
#define REGNAME _ESI
162
#include "opreg_template.h"
163
#undef REG
164
#undef REGNAME
165

    
166
#define REG EDI
167
#define REGNAME _EDI
168
#include "opreg_template.h"
169
#undef REG
170
#undef REGNAME
171

    
172
/* operations with flags */
173

    
174
void OPPROTO op_addl_T0_T1_cc(void)
175
{
176
    CC_SRC = T0;
177
    T0 += T1;
178
    CC_DST = T0;
179
}
180

    
181
void OPPROTO op_orl_T0_T1_cc(void)
182
{
183
    T0 |= T1;
184
    CC_DST = T0;
185
}
186

    
187
void OPPROTO op_andl_T0_T1_cc(void)
188
{
189
    T0 &= T1;
190
    CC_DST = T0;
191
}
192

    
193
void OPPROTO op_subl_T0_T1_cc(void)
194
{
195
    CC_SRC = T0;
196
    T0 -= T1;
197
    CC_DST = T0;
198
}
199

    
200
void OPPROTO op_xorl_T0_T1_cc(void)
201
{
202
    T0 ^= T1;
203
    CC_DST = T0;
204
}
205

    
206
void OPPROTO op_cmpl_T0_T1_cc(void)
207
{
208
    CC_SRC = T0;
209
    CC_DST = T0 - T1;
210
}
211

    
212
void OPPROTO op_negl_T0_cc(void)
213
{
214
    CC_SRC = 0;
215
    T0 = -T0;
216
    CC_DST = T0;
217
}
218

    
219
void OPPROTO op_incl_T0_cc(void)
220
{
221
    CC_SRC = cc_table[CC_OP].compute_c();
222
    T0++;
223
    CC_DST = T0;
224
}
225

    
226
void OPPROTO op_decl_T0_cc(void)
227
{
228
    CC_SRC = cc_table[CC_OP].compute_c();
229
    T0--;
230
    CC_DST = T0;
231
}
232

    
233
void OPPROTO op_testl_T0_T1_cc(void)
234
{
235
    CC_DST = T0 & T1;
236
}
237

    
238
/* operations without flags */
239

    
240
void OPPROTO op_addl_T0_T1(void)
241
{
242
    T0 += T1;
243
}
244

    
245
void OPPROTO op_orl_T0_T1(void)
246
{
247
    T0 |= T1;
248
}
249

    
250
void OPPROTO op_andl_T0_T1(void)
251
{
252
    T0 &= T1;
253
}
254

    
255
void OPPROTO op_subl_T0_T1(void)
256
{
257
    T0 -= T1;
258
}
259

    
260
void OPPROTO op_xorl_T0_T1(void)
261
{
262
    T0 ^= T1;
263
}
264

    
265
void OPPROTO op_negl_T0(void)
266
{
267
    T0 = -T0;
268
}
269

    
270
void OPPROTO op_incl_T0(void)
271
{
272
    T0++;
273
}
274

    
275
void OPPROTO op_decl_T0(void)
276
{
277
    T0--;
278
}
279

    
280
void OPPROTO op_notl_T0(void)
281
{
282
    T0 = ~T0;
283
}
284

    
285
void OPPROTO op_bswapl_T0(void)
286
{
287
    T0 = bswap32(T0);
288
}
289

    
290
/* multiply/divide */
291
void OPPROTO op_mulb_AL_T0(void)
292
{
293
    unsigned int res;
294
    res = (uint8_t)EAX * (uint8_t)T0;
295
    EAX = (EAX & 0xffff0000) | res;
296
    CC_SRC = (res & 0xff00);
297
}
298

    
299
void OPPROTO op_imulb_AL_T0(void)
300
{
301
    int res;
302
    res = (int8_t)EAX * (int8_t)T0;
303
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
304
    CC_SRC = (res != (int8_t)res);
305
}
306

    
307
void OPPROTO op_mulw_AX_T0(void)
308
{
309
    unsigned int res;
310
    res = (uint16_t)EAX * (uint16_t)T0;
311
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
312
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313
    CC_SRC = res >> 16;
314
}
315

    
316
void OPPROTO op_imulw_AX_T0(void)
317
{
318
    int res;
319
    res = (int16_t)EAX * (int16_t)T0;
320
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
321
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322
    CC_SRC = (res != (int16_t)res);
323
}
324

    
325
void OPPROTO op_mull_EAX_T0(void)
326
{
327
    uint64_t res;
328
    res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329
    EAX = res;
330
    EDX = res >> 32;
331
    CC_SRC = res >> 32;
332
}
333

    
334
void OPPROTO op_imull_EAX_T0(void)
335
{
336
    int64_t res;
337
    res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338
    EAX = res;
339
    EDX = res >> 32;
340
    CC_SRC = (res != (int32_t)res);
341
}
342

    
343
void OPPROTO op_imulw_T0_T1(void)
344
{
345
    int res;
346
    res = (int16_t)T0 * (int16_t)T1;
347
    T0 = res;
348
    CC_SRC = (res != (int16_t)res);
349
}
350

    
351
void OPPROTO op_imull_T0_T1(void)
352
{
353
    int64_t res;
354
    res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355
    T0 = res;
356
    CC_SRC = (res != (int32_t)res);
357
}
358

    
359
/* division, flags are undefined */
360
/* XXX: add exceptions for overflow */
361
void OPPROTO op_divb_AL_T0(void)
362
{
363
    unsigned int num, den, q, r;
364

    
365
    num = (EAX & 0xffff);
366
    den = (T0 & 0xff);
367
    if (den == 0)
368
        raise_exception(EXCP00_DIVZ);
369
    q = (num / den) & 0xff;
370
    r = (num % den) & 0xff;
371
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
372
}
373

    
374
void OPPROTO op_idivb_AL_T0(void)
375
{
376
    int num, den, q, r;
377

    
378
    num = (int16_t)EAX;
379
    den = (int8_t)T0;
380
    if (den == 0)
381
        raise_exception(EXCP00_DIVZ);
382
    q = (num / den) & 0xff;
383
    r = (num % den) & 0xff;
384
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
385
}
386

    
387
void OPPROTO op_divw_AX_T0(void)
388
{
389
    unsigned int num, den, q, r;
390

    
391
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392
    den = (T0 & 0xffff);
393
    if (den == 0)
394
        raise_exception(EXCP00_DIVZ);
395
    q = (num / den) & 0xffff;
396
    r = (num % den) & 0xffff;
397
    EAX = (EAX & 0xffff0000) | q;
398
    EDX = (EDX & 0xffff0000) | r;
399
}
400

    
401
void OPPROTO op_idivw_AX_T0(void)
402
{
403
    int num, den, q, r;
404

    
405
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406
    den = (int16_t)T0;
407
    if (den == 0)
408
        raise_exception(EXCP00_DIVZ);
409
    q = (num / den) & 0xffff;
410
    r = (num % den) & 0xffff;
411
    EAX = (EAX & 0xffff0000) | q;
412
    EDX = (EDX & 0xffff0000) | r;
413
}
414

    
415
#ifdef BUGGY_GCC_DIV64
416
/* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417
   call it from another function */
418
uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419
{
420
    *q_ptr = num / den;
421
    return num % den;
422
}
423

    
424
int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425
{
426
    *q_ptr = num / den;
427
    return num % den;
428
}
429
#endif
430

    
431
void OPPROTO op_divl_EAX_T0(void)
432
{
433
    unsigned int den, q, r;
434
    uint64_t num;
435
    
436
    num = EAX | ((uint64_t)EDX << 32);
437
    den = T0;
438
    if (den == 0)
439
        raise_exception(EXCP00_DIVZ);
440
#ifdef BUGGY_GCC_DIV64
441
    r = div64(&q, num, den);
442
#else
443
    q = (num / den);
444
    r = (num % den);
445
#endif
446
    EAX = q;
447
    EDX = r;
448
}
449

    
450
void OPPROTO op_idivl_EAX_T0(void)
451
{
452
    int den, q, r;
453
    int64_t num;
454
    
455
    num = EAX | ((uint64_t)EDX << 32);
456
    den = T0;
457
    if (den == 0)
458
        raise_exception(EXCP00_DIVZ);
459
#ifdef BUGGY_GCC_DIV64
460
    r = idiv64(&q, num, den);
461
#else
462
    q = (num / den);
463
    r = (num % den);
464
#endif
465
    EAX = q;
466
    EDX = r;
467
}
468

    
469
/* constant load & misc op */
470

    
471
void OPPROTO op_movl_T0_im(void)
472
{
473
    T0 = PARAM1;
474
}
475

    
476
void OPPROTO op_addl_T0_im(void)
477
{
478
    T0 += PARAM1;
479
}
480

    
481
void OPPROTO op_andl_T0_ffff(void)
482
{
483
    T0 = T0 & 0xffff;
484
}
485

    
486
void OPPROTO op_movl_T0_T1(void)
487
{
488
    T0 = T1;
489
}
490

    
491
void OPPROTO op_movl_T1_im(void)
492
{
493
    T1 = PARAM1;
494
}
495

    
496
void OPPROTO op_addl_T1_im(void)
497
{
498
    T1 += PARAM1;
499
}
500

    
501
void OPPROTO op_movl_T1_A0(void)
502
{
503
    T1 = A0;
504
}
505

    
506
void OPPROTO op_movl_A0_im(void)
507
{
508
    A0 = PARAM1;
509
}
510

    
511
void OPPROTO op_addl_A0_im(void)
512
{
513
    A0 += PARAM1;
514
}
515

    
516
void OPPROTO op_addl_A0_AL(void)
517
{
518
    A0 += (EAX & 0xff);
519
}
520

    
521
void OPPROTO op_andl_A0_ffff(void)
522
{
523
    A0 = A0 & 0xffff;
524
}
525

    
526
/* memory access */
527

    
528
void OPPROTO op_ldub_T0_A0(void)
529
{
530
    T0 = ldub((uint8_t *)A0);
531
}
532

    
533
void OPPROTO op_ldsb_T0_A0(void)
534
{
535
    T0 = ldsb((int8_t *)A0);
536
}
537

    
538
void OPPROTO op_lduw_T0_A0(void)
539
{
540
    T0 = lduw((uint8_t *)A0);
541
}
542

    
543
void OPPROTO op_ldsw_T0_A0(void)
544
{
545
    T0 = ldsw((int8_t *)A0);
546
}
547

    
548
void OPPROTO op_ldl_T0_A0(void)
549
{
550
    T0 = ldl((uint8_t *)A0);
551
}
552

    
553
void OPPROTO op_ldub_T1_A0(void)
554
{
555
    T1 = ldub((uint8_t *)A0);
556
}
557

    
558
void OPPROTO op_ldsb_T1_A0(void)
559
{
560
    T1 = ldsb((int8_t *)A0);
561
}
562

    
563
void OPPROTO op_lduw_T1_A0(void)
564
{
565
    T1 = lduw((uint8_t *)A0);
566
}
567

    
568
void OPPROTO op_ldsw_T1_A0(void)
569
{
570
    T1 = ldsw((int8_t *)A0);
571
}
572

    
573
void OPPROTO op_ldl_T1_A0(void)
574
{
575
    T1 = ldl((uint8_t *)A0);
576
}
577

    
578
void OPPROTO op_stb_T0_A0(void)
579
{
580
    stb((uint8_t *)A0, T0);
581
}
582

    
583
void OPPROTO op_stw_T0_A0(void)
584
{
585
    stw((uint8_t *)A0, T0);
586
}
587

    
588
void OPPROTO op_stl_T0_A0(void)
589
{
590
    stl((uint8_t *)A0, T0);
591
}
592

    
593
/* used for bit operations */
594

    
595
void OPPROTO op_add_bitw_A0_T1(void)
596
{
597
    A0 += ((int32_t)T1 >> 4) << 1;
598
}
599

    
600
void OPPROTO op_add_bitl_A0_T1(void)
601
{
602
    A0 += ((int32_t)T1 >> 5) << 2;
603
}
604

    
605
/* indirect jump */
606

    
607
void OPPROTO op_jmp_T0(void)
608
{
609
    EIP = T0;
610
}
611

    
612
void OPPROTO op_jmp_im(void)
613
{
614
    EIP = PARAM1;
615
}
616

    
617
void OPPROTO op_int_im(void)
618
{
619
    EIP = PARAM1;
620
    raise_exception(EXCP0D_GPF);
621
}
622

    
623
void OPPROTO op_int3(void)
624
{
625
    EIP = PARAM1;
626
    raise_exception(EXCP03_INT3);
627
}
628

    
629
void OPPROTO op_into(void)
630
{
631
    int eflags;
632
    eflags = cc_table[CC_OP].compute_all();
633
    if (eflags & CC_O) {
634
        raise_exception(EXCP04_INTO);
635
    }
636
}
637

    
638
/* XXX: add IOPL/CPL tests */
639
void OPPROTO op_cli(void)
640
{
641
    raise_exception(EXCP0D_GPF);
642
}
643

    
644
/* XXX: add IOPL/CPL tests */
645
void OPPROTO op_sti(void)
646
{
647
    raise_exception(EXCP0D_GPF);
648
}
649

    
650
/* vm86plus instructions */
651

    
652
void OPPROTO op_cli_vm(void)
653
{
654
    env->eflags &= ~VIF_MASK;
655
}
656

    
657
void OPPROTO op_sti_vm(void)
658
{
659
    env->eflags |= VIF_MASK;
660
    if (env->eflags & VIP_MASK) {
661
        EIP = PARAM1;
662
        raise_exception(EXCP0D_GPF);
663
    }
664
    FORCE_RET();
665
}
666

    
667
void OPPROTO op_boundw(void)
668
{
669
    int low, high, v;
670
    low = ldsw((uint8_t *)A0);
671
    high = ldsw((uint8_t *)A0 + 2);
672
    v = (int16_t)T0;
673
    if (v < low || v > high)
674
        raise_exception(EXCP05_BOUND);
675
    FORCE_RET();
676
}
677

    
678
void OPPROTO op_boundl(void)
679
{
680
    int low, high, v;
681
    low = ldl((uint8_t *)A0);
682
    high = ldl((uint8_t *)A0 + 4);
683
    v = T0;
684
    if (v < low || v > high)
685
        raise_exception(EXCP05_BOUND);
686
    FORCE_RET();
687
}
688

    
689
void OPPROTO op_cmpxchg8b(void)
690
{
691
    uint64_t d;
692
    int eflags;
693

    
694
    eflags = cc_table[CC_OP].compute_all();
695
    d = ldq((uint8_t *)A0);
696
    if (d == (((uint64_t)EDX << 32) | EAX)) {
697
        stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
698
        eflags |= CC_Z;
699
    } else {
700
        EDX = d >> 32;
701
        EAX = d;
702
        eflags &= ~CC_Z;
703
    }
704
    CC_SRC = eflags;
705
    FORCE_RET();
706
}
707

    
708
/* string ops */
709

    
710
#define ldul ldl
711

    
712
#define SHIFT 0
713
#include "ops_template.h"
714
#undef SHIFT
715

    
716
#define SHIFT 1
717
#include "ops_template.h"
718
#undef SHIFT
719

    
720
#define SHIFT 2
721
#include "ops_template.h"
722
#undef SHIFT
723

    
724
/* sign extend */
725

    
726
void OPPROTO op_movsbl_T0_T0(void)
727
{
728
    T0 = (int8_t)T0;
729
}
730

    
731
void OPPROTO op_movzbl_T0_T0(void)
732
{
733
    T0 = (uint8_t)T0;
734
}
735

    
736
void OPPROTO op_movswl_T0_T0(void)
737
{
738
    T0 = (int16_t)T0;
739
}
740

    
741
void OPPROTO op_movzwl_T0_T0(void)
742
{
743
    T0 = (uint16_t)T0;
744
}
745

    
746
void OPPROTO op_movswl_EAX_AX(void)
747
{
748
    EAX = (int16_t)EAX;
749
}
750

    
751
void OPPROTO op_movsbw_AX_AL(void)
752
{
753
    EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
754
}
755

    
756
void OPPROTO op_movslq_EDX_EAX(void)
757
{
758
    EDX = (int32_t)EAX >> 31;
759
}
760

    
761
void OPPROTO op_movswl_DX_AX(void)
762
{
763
    EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
764
}
765

    
766
/* push/pop */
767

    
768
void op_pushl_T0(void)
769
{
770
    uint32_t offset;
771
    offset = ESP - 4;
772
    stl((void *)offset, T0);
773
    /* modify ESP after to handle exceptions correctly */
774
    ESP = offset;
775
}
776

    
777
void op_pushw_T0(void)
778
{
779
    uint32_t offset;
780
    offset = ESP - 2;
781
    stw((void *)offset, T0);
782
    /* modify ESP after to handle exceptions correctly */
783
    ESP = offset;
784
}
785

    
786
void op_pushl_ss32_T0(void)
787
{
788
    uint32_t offset;
789
    offset = ESP - 4;
790
    stl(env->seg_cache[R_SS].base + offset, T0);
791
    /* modify ESP after to handle exceptions correctly */
792
    ESP = offset;
793
}
794

    
795
void op_pushw_ss32_T0(void)
796
{
797
    uint32_t offset;
798
    offset = ESP - 2;
799
    stw(env->seg_cache[R_SS].base + offset, T0);
800
    /* modify ESP after to handle exceptions correctly */
801
    ESP = offset;
802
}
803

    
804
void op_pushl_ss16_T0(void)
805
{
806
    uint32_t offset;
807
    offset = (ESP - 4) & 0xffff;
808
    stl(env->seg_cache[R_SS].base + offset, T0);
809
    /* modify ESP after to handle exceptions correctly */
810
    ESP = (ESP & ~0xffff) | offset;
811
}
812

    
813
void op_pushw_ss16_T0(void)
814
{
815
    uint32_t offset;
816
    offset = (ESP - 2) & 0xffff;
817
    stw(env->seg_cache[R_SS].base + offset, T0);
818
    /* modify ESP after to handle exceptions correctly */
819
    ESP = (ESP & ~0xffff) | offset;
820
}
821

    
822
/* NOTE: ESP update is done after */
823
void op_popl_T0(void)
824
{
825
    T0 = ldl((void *)ESP);
826
}
827

    
828
void op_popw_T0(void)
829
{
830
    T0 = lduw((void *)ESP);
831
}
832

    
833
void op_popl_ss32_T0(void)
834
{
835
    T0 = ldl(env->seg_cache[R_SS].base + ESP);
836
}
837

    
838
void op_popw_ss32_T0(void)
839
{
840
    T0 = lduw(env->seg_cache[R_SS].base + ESP);
841
}
842

    
843
void op_popl_ss16_T0(void)
844
{
845
    T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
846
}
847

    
848
void op_popw_ss16_T0(void)
849
{
850
    T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
851
}
852

    
853
void op_addl_ESP_4(void)
854
{
855
    ESP += 4;
856
}
857

    
858
void op_addl_ESP_2(void)
859
{
860
    ESP += 2;
861
}
862

    
863
void op_addw_ESP_4(void)
864
{
865
    ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
866
}
867

    
868
void op_addw_ESP_2(void)
869
{
870
    ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
871
}
872

    
873
void op_addl_ESP_im(void)
874
{
875
    ESP += PARAM1;
876
}
877

    
878
void op_addw_ESP_im(void)
879
{
880
    ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
881
}
882

    
883
/* rdtsc */
884
#ifndef __i386__
885
uint64_t emu_time;
886
#endif
887

    
888
void OPPROTO op_rdtsc(void)
889
{
890
    uint64_t val;
891
#ifdef __i386__
892
    asm("rdtsc" : "=A" (val));
893
#else
894
    /* better than nothing: the time increases */
895
    val = emu_time++;
896
#endif
897
    EAX = val;
898
    EDX = val >> 32;
899
}
900

    
901
/* We simulate a pre-MMX pentium as in valgrind */
902
#define CPUID_FP87 (1 << 0)
903
#define CPUID_VME  (1 << 1)
904
#define CPUID_DE   (1 << 2)
905
#define CPUID_PSE  (1 << 3)
906
#define CPUID_TSC  (1 << 4)
907
#define CPUID_MSR  (1 << 5)
908
#define CPUID_PAE  (1 << 6)
909
#define CPUID_MCE  (1 << 7)
910
#define CPUID_CX8  (1 << 8)
911
#define CPUID_APIC (1 << 9)
912
#define CPUID_SEP  (1 << 11) /* sysenter/sysexit */
913
#define CPUID_MTRR (1 << 12)
914
#define CPUID_PGE  (1 << 13)
915
#define CPUID_MCA  (1 << 14)
916
#define CPUID_CMOV (1 << 15)
917
/* ... */
918
#define CPUID_MMX  (1 << 23)
919
#define CPUID_FXSR (1 << 24)
920
#define CPUID_SSE  (1 << 25)
921
#define CPUID_SSE2 (1 << 26)
922

    
923
void helper_cpuid(void)
924
{
925
    if (EAX == 0) {
926
        EAX = 1; /* max EAX index supported */
927
        EBX = 0x756e6547;
928
        ECX = 0x6c65746e;
929
        EDX = 0x49656e69;
930
    } else {
931
        /* EAX = 1 info */
932
        EAX = 0x52b;
933
        EBX = 0;
934
        ECX = 0;
935
        EDX = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
936
            CPUID_TSC | CPUID_MSR | CPUID_MCE |
937
            CPUID_CX8;
938
    }
939
}
940

    
941
void OPPROTO op_cpuid(void)
942
{
943
    helper_cpuid();
944
}
945

    
946
/* bcd */
947

    
948
/* XXX: exception */
949
void OPPROTO op_aam(void)
950
{
951
    int base = PARAM1;
952
    int al, ah;
953
    al = EAX & 0xff;
954
    ah = al / base;
955
    al = al % base;
956
    EAX = (EAX & ~0xffff) | al | (ah << 8);
957
    CC_DST = al;
958
}
959

    
960
void OPPROTO op_aad(void)
961
{
962
    int base = PARAM1;
963
    int al, ah;
964
    al = EAX & 0xff;
965
    ah = (EAX >> 8) & 0xff;
966
    al = ((ah * base) + al) & 0xff;
967
    EAX = (EAX & ~0xffff) | al;
968
    CC_DST = al;
969
}
970

    
971
void OPPROTO op_aaa(void)
972
{
973
    int icarry;
974
    int al, ah, af;
975
    int eflags;
976

    
977
    eflags = cc_table[CC_OP].compute_all();
978
    af = eflags & CC_A;
979
    al = EAX & 0xff;
980
    ah = (EAX >> 8) & 0xff;
981

    
982
    icarry = (al > 0xf9);
983
    if (((al & 0x0f) > 9 ) || af) {
984
        al = (al + 6) & 0x0f;
985
        ah = (ah + 1 + icarry) & 0xff;
986
        eflags |= CC_C | CC_A;
987
    } else {
988
        eflags &= ~(CC_C | CC_A);
989
        al &= 0x0f;
990
    }
991
    EAX = (EAX & ~0xffff) | al | (ah << 8);
992
    CC_SRC = eflags;
993
}
994

    
995
void OPPROTO op_aas(void)
996
{
997
    int icarry;
998
    int al, ah, af;
999
    int eflags;
1000

    
1001
    eflags = cc_table[CC_OP].compute_all();
1002
    af = eflags & CC_A;
1003
    al = EAX & 0xff;
1004
    ah = (EAX >> 8) & 0xff;
1005

    
1006
    icarry = (al < 6);
1007
    if (((al & 0x0f) > 9 ) || af) {
1008
        al = (al - 6) & 0x0f;
1009
        ah = (ah - 1 - icarry) & 0xff;
1010
        eflags |= CC_C | CC_A;
1011
    } else {
1012
        eflags &= ~(CC_C | CC_A);
1013
        al &= 0x0f;
1014
    }
1015
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1016
    CC_SRC = eflags;
1017
}
1018

    
1019
void OPPROTO op_daa(void)
1020
{
1021
    int al, af, cf;
1022
    int eflags;
1023

    
1024
    eflags = cc_table[CC_OP].compute_all();
1025
    cf = eflags & CC_C;
1026
    af = eflags & CC_A;
1027
    al = EAX & 0xff;
1028

    
1029
    eflags = 0;
1030
    if (((al & 0x0f) > 9 ) || af) {
1031
        al = (al + 6) & 0xff;
1032
        eflags |= CC_A;
1033
    }
1034
    if ((al > 0x9f) || cf) {
1035
        al = (al + 0x60) & 0xff;
1036
        eflags |= CC_C;
1037
    }
1038
    EAX = (EAX & ~0xff) | al;
1039
    /* well, speed is not an issue here, so we compute the flags by hand */
1040
    eflags |= (al == 0) << 6; /* zf */
1041
    eflags |= parity_table[al]; /* pf */
1042
    eflags |= (al & 0x80); /* sf */
1043
    CC_SRC = eflags;
1044
}
1045

    
1046
void OPPROTO op_das(void)
1047
{
1048
    int al, al1, af, cf;
1049
    int eflags;
1050

    
1051
    eflags = cc_table[CC_OP].compute_all();
1052
    cf = eflags & CC_C;
1053
    af = eflags & CC_A;
1054
    al = EAX & 0xff;
1055

    
1056
    eflags = 0;
1057
    al1 = al;
1058
    if (((al & 0x0f) > 9 ) || af) {
1059
        eflags |= CC_A;
1060
        if (al < 6 || cf)
1061
            eflags |= CC_C;
1062
        al = (al - 6) & 0xff;
1063
    }
1064
    if ((al1 > 0x99) || cf) {
1065
        al = (al - 0x60) & 0xff;
1066
        eflags |= CC_C;
1067
    }
1068
    EAX = (EAX & ~0xff) | al;
1069
    /* well, speed is not an issue here, so we compute the flags by hand */
1070
    eflags |= (al == 0) << 6; /* zf */
1071
    eflags |= parity_table[al]; /* pf */
1072
    eflags |= (al & 0x80); /* sf */
1073
    CC_SRC = eflags;
1074
}
1075

    
1076
/* segment handling */
1077

    
1078
/* XXX: use static VM86 information */
1079
void load_seg(int seg_reg, int selector)
1080
{
1081
    SegmentCache *sc;
1082
    SegmentDescriptorTable *dt;
1083
    int index;
1084
    uint32_t e1, e2;
1085
    uint8_t *ptr;
1086

    
1087
    env->segs[seg_reg] = selector;
1088
    sc = &env->seg_cache[seg_reg];
1089
    if (env->eflags & VM_MASK) {
1090
        sc->base = (void *)(selector << 4);
1091
        sc->limit = 0xffff;
1092
        sc->seg_32bit = 0;
1093
    } else {
1094
        if (selector & 0x4)
1095
            dt = &env->ldt;
1096
        else
1097
            dt = &env->gdt;
1098
        index = selector & ~7;
1099
        if ((index + 7) > dt->limit)
1100
            raise_exception(EXCP0D_GPF);
1101
        ptr = dt->base + index;
1102
        e1 = ldl(ptr);
1103
        e2 = ldl(ptr + 4);
1104
        sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1105
        sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1106
        if (e2 & (1 << 23))
1107
            sc->limit = (sc->limit << 12) | 0xfff;
1108
        sc->seg_32bit = (e2 >> 22) & 1;
1109
#if 0
1110
        fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n", 
1111
                selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1112
#endif
1113
    }
1114
}
1115

    
1116
void OPPROTO op_movl_seg_T0(void)
1117
{
1118
    load_seg(PARAM1, T0 & 0xffff);
1119
}
1120

    
1121
void OPPROTO op_movl_T0_seg(void)
1122
{
1123
    T0 = env->segs[PARAM1];
1124
}
1125

    
1126
void OPPROTO op_movl_A0_seg(void)
1127
{
1128
    A0 = *(unsigned long *)((char *)env + PARAM1);
1129
}
1130

    
1131
void OPPROTO op_addl_A0_seg(void)
1132
{
1133
    A0 += *(unsigned long *)((char *)env + PARAM1);
1134
}
1135

    
1136
/* flags handling */
1137

    
1138
/* slow jumps cases (compute x86 flags) */
1139
void OPPROTO op_jo_cc(void)
1140
{
1141
    int eflags;
1142
    eflags = cc_table[CC_OP].compute_all();
1143
    if (eflags & CC_O)
1144
        EIP = PARAM1;
1145
    else
1146
        EIP = PARAM2;
1147
    FORCE_RET();
1148
}
1149

    
1150
void OPPROTO op_jb_cc(void)
1151
{
1152
    if (cc_table[CC_OP].compute_c())
1153
        EIP = PARAM1;
1154
    else
1155
        EIP = PARAM2;
1156
    FORCE_RET();
1157
}
1158

    
1159
void OPPROTO op_jz_cc(void)
1160
{
1161
    int eflags;
1162
    eflags = cc_table[CC_OP].compute_all();
1163
    if (eflags & CC_Z)
1164
        EIP = PARAM1;
1165
    else
1166
        EIP = PARAM2;
1167
    FORCE_RET();
1168
}
1169

    
1170
void OPPROTO op_jbe_cc(void)
1171
{
1172
    int eflags;
1173
    eflags = cc_table[CC_OP].compute_all();
1174
    if (eflags & (CC_Z | CC_C))
1175
        EIP = PARAM1;
1176
    else
1177
        EIP = PARAM2;
1178
    FORCE_RET();
1179
}
1180

    
1181
void OPPROTO op_js_cc(void)
1182
{
1183
    int eflags;
1184
    eflags = cc_table[CC_OP].compute_all();
1185
    if (eflags & CC_S)
1186
        EIP = PARAM1;
1187
    else
1188
        EIP = PARAM2;
1189
    FORCE_RET();
1190
}
1191

    
1192
void OPPROTO op_jp_cc(void)
1193
{
1194
    int eflags;
1195
    eflags = cc_table[CC_OP].compute_all();
1196
    if (eflags & CC_P)
1197
        EIP = PARAM1;
1198
    else
1199
        EIP = PARAM2;
1200
    FORCE_RET();
1201
}
1202

    
1203
void OPPROTO op_jl_cc(void)
1204
{
1205
    int eflags;
1206
    eflags = cc_table[CC_OP].compute_all();
1207
    if ((eflags ^ (eflags >> 4)) & 0x80)
1208
        EIP = PARAM1;
1209
    else
1210
        EIP = PARAM2;
1211
    FORCE_RET();
1212
}
1213

    
1214
void OPPROTO op_jle_cc(void)
1215
{
1216
    int eflags;
1217
    eflags = cc_table[CC_OP].compute_all();
1218
    if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1219
        EIP = PARAM1;
1220
    else
1221
        EIP = PARAM2;
1222
    FORCE_RET();
1223
}
1224

    
1225
/* slow set cases (compute x86 flags) */
1226
void OPPROTO op_seto_T0_cc(void)
1227
{
1228
    int eflags;
1229
    eflags = cc_table[CC_OP].compute_all();
1230
    T0 = (eflags >> 11) & 1;
1231
}
1232

    
1233
void OPPROTO op_setb_T0_cc(void)
1234
{
1235
    T0 = cc_table[CC_OP].compute_c();
1236
}
1237

    
1238
void OPPROTO op_setz_T0_cc(void)
1239
{
1240
    int eflags;
1241
    eflags = cc_table[CC_OP].compute_all();
1242
    T0 = (eflags >> 6) & 1;
1243
}
1244

    
1245
void OPPROTO op_setbe_T0_cc(void)
1246
{
1247
    int eflags;
1248
    eflags = cc_table[CC_OP].compute_all();
1249
    T0 = (eflags & (CC_Z | CC_C)) != 0;
1250
}
1251

    
1252
void OPPROTO op_sets_T0_cc(void)
1253
{
1254
    int eflags;
1255
    eflags = cc_table[CC_OP].compute_all();
1256
    T0 = (eflags >> 7) & 1;
1257
}
1258

    
1259
void OPPROTO op_setp_T0_cc(void)
1260
{
1261
    int eflags;
1262
    eflags = cc_table[CC_OP].compute_all();
1263
    T0 = (eflags >> 2) & 1;
1264
}
1265

    
1266
void OPPROTO op_setl_T0_cc(void)
1267
{
1268
    int eflags;
1269
    eflags = cc_table[CC_OP].compute_all();
1270
    T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1271
}
1272

    
1273
void OPPROTO op_setle_T0_cc(void)
1274
{
1275
    int eflags;
1276
    eflags = cc_table[CC_OP].compute_all();
1277
    T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1278
}
1279

    
1280
void OPPROTO op_xor_T0_1(void)
1281
{
1282
    T0 ^= 1;
1283
}
1284

    
1285
void OPPROTO op_set_cc_op(void)
1286
{
1287
    CC_OP = PARAM1;
1288
}
1289

    
1290
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1291
#define FL_UPDATE_MASK16 (TF_MASK)
1292

    
1293
void OPPROTO op_movl_eflags_T0(void)
1294
{
1295
    int eflags;
1296
    eflags = T0;
1297
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1298
    DF = 1 - (2 * ((eflags >> 10) & 1));
1299
    /* we also update some system flags as in user mode */
1300
    env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1301
}
1302

    
1303
void OPPROTO op_movw_eflags_T0(void)
1304
{
1305
    int eflags;
1306
    eflags = T0;
1307
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1308
    DF = 1 - (2 * ((eflags >> 10) & 1));
1309
    /* we also update some system flags as in user mode */
1310
    env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1311
}
1312

    
1313
/* vm86 version */
1314
void OPPROTO op_movw_eflags_T0_vm(void)
1315
{
1316
    int eflags;
1317
    eflags = T0;
1318
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1319
    DF = 1 - (2 * ((eflags >> 10) & 1));
1320
    /* we also update some system flags as in user mode */
1321
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1322
        (eflags & FL_UPDATE_MASK16);
1323
    if (eflags & IF_MASK) {
1324
        env->eflags |= VIF_MASK;
1325
        if (env->eflags & VIP_MASK) {
1326
            EIP = PARAM1;
1327
            raise_exception(EXCP0D_GPF);
1328
        }
1329
    }
1330
    FORCE_RET();
1331
}
1332

    
1333
void OPPROTO op_movl_eflags_T0_vm(void)
1334
{
1335
    int eflags;
1336
    eflags = T0;
1337
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1338
    DF = 1 - (2 * ((eflags >> 10) & 1));
1339
    /* we also update some system flags as in user mode */
1340
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1341
        (eflags & FL_UPDATE_MASK32);
1342
    if (eflags & IF_MASK) {
1343
        env->eflags |= VIF_MASK;
1344
        if (env->eflags & VIP_MASK) {
1345
            EIP = PARAM1;
1346
            raise_exception(EXCP0D_GPF);
1347
        }
1348
    }
1349
    FORCE_RET();
1350
}
1351

    
1352
/* XXX: compute only O flag */
1353
void OPPROTO op_movb_eflags_T0(void)
1354
{
1355
    int of;
1356
    of = cc_table[CC_OP].compute_all() & CC_O;
1357
    CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1358
}
1359

    
1360
void OPPROTO op_movl_T0_eflags(void)
1361
{
1362
    int eflags;
1363
    eflags = cc_table[CC_OP].compute_all();
1364
    eflags |= (DF & DF_MASK);
1365
    eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1366
    T0 = eflags;
1367
}
1368

    
1369
/* vm86 version */
1370
void OPPROTO op_movl_T0_eflags_vm(void)
1371
{
1372
    int eflags;
1373
    eflags = cc_table[CC_OP].compute_all();
1374
    eflags |= (DF & DF_MASK);
1375
    eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1376
    if (env->eflags & VIF_MASK)
1377
        eflags |= IF_MASK;
1378
    T0 = eflags;
1379
}
1380

    
1381
void OPPROTO op_cld(void)
1382
{
1383
    DF = 1;
1384
}
1385

    
1386
void OPPROTO op_std(void)
1387
{
1388
    DF = -1;
1389
}
1390

    
1391
void OPPROTO op_clc(void)
1392
{
1393
    int eflags;
1394
    eflags = cc_table[CC_OP].compute_all();
1395
    eflags &= ~CC_C;
1396
    CC_SRC = eflags;
1397
}
1398

    
1399
void OPPROTO op_stc(void)
1400
{
1401
    int eflags;
1402
    eflags = cc_table[CC_OP].compute_all();
1403
    eflags |= CC_C;
1404
    CC_SRC = eflags;
1405
}
1406

    
1407
void OPPROTO op_cmc(void)
1408
{
1409
    int eflags;
1410
    eflags = cc_table[CC_OP].compute_all();
1411
    eflags ^= CC_C;
1412
    CC_SRC = eflags;
1413
}
1414

    
1415
void OPPROTO op_salc(void)
1416
{
1417
    int cf;
1418
    cf = cc_table[CC_OP].compute_c();
1419
    EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1420
}
1421

    
1422
static int compute_all_eflags(void)
1423
{
1424
    return CC_SRC;
1425
}
1426

    
1427
static int compute_c_eflags(void)
1428
{
1429
    return CC_SRC & CC_C;
1430
}
1431

    
1432
static int compute_c_mul(void)
1433
{
1434
    int cf;
1435
    cf = (CC_SRC != 0);
1436
    return cf;
1437
}
1438

    
1439
static int compute_all_mul(void)
1440
{
1441
    int cf, pf, af, zf, sf, of;
1442
    cf = (CC_SRC != 0);
1443
    pf = 0; /* undefined */
1444
    af = 0; /* undefined */
1445
    zf = 0; /* undefined */
1446
    sf = 0; /* undefined */
1447
    of = cf << 11;
1448
    return cf | pf | af | zf | sf | of;
1449
}
1450
    
1451
CCTable cc_table[CC_OP_NB] = {
1452
    [CC_OP_DYNAMIC] = { /* should never happen */ },
1453

    
1454
    [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1455

    
1456
    [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1457

    
1458
    [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1459
    [CC_OP_ADDW] = { compute_all_addw, compute_c_addw  },
1460
    [CC_OP_ADDL] = { compute_all_addl, compute_c_addl  },
1461

    
1462
    [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1463
    [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw  },
1464
    [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl  },
1465

    
1466
    [CC_OP_SUBB] = { compute_all_subb, compute_c_subb  },
1467
    [CC_OP_SUBW] = { compute_all_subw, compute_c_subw  },
1468
    [CC_OP_SUBL] = { compute_all_subl, compute_c_subl  },
1469
    
1470
    [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb  },
1471
    [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw  },
1472
    [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl  },
1473
    
1474
    [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1475
    [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1476
    [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1477
    
1478
    [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1479
    [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1480
    [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1481
    
1482
    [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1483
    [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1484
    [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1485
    
1486
    [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1487
    [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1488
    [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1489

    
1490
    [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1491
    [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1492
    [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1493
};
1494

    
1495
/* floating point support. Some of the code for complicated x87
1496
   functions comes from the LGPL'ed x86 emulator found in the Willows
1497
   TWIN windows emulator. */
1498

    
1499
#ifdef USE_X86LDOUBLE
1500
/* use long double functions */
1501
#define lrint lrintl
1502
#define llrint llrintl
1503
#define fabs fabsl
1504
#define sin sinl
1505
#define cos cosl
1506
#define sqrt sqrtl
1507
#define pow powl
1508
#define log logl
1509
#define tan tanl
1510
#define atan2 atan2l
1511
#define floor floorl
1512
#define ceil ceill
1513
#define rint rintl
1514
#endif
1515

    
1516
extern int lrint(CPU86_LDouble x);
1517
extern int64_t llrint(CPU86_LDouble x);
1518
extern CPU86_LDouble fabs(CPU86_LDouble x);
1519
extern CPU86_LDouble sin(CPU86_LDouble x);
1520
extern CPU86_LDouble cos(CPU86_LDouble x);
1521
extern CPU86_LDouble sqrt(CPU86_LDouble x);
1522
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1523
extern CPU86_LDouble log(CPU86_LDouble x);
1524
extern CPU86_LDouble tan(CPU86_LDouble x);
1525
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1526
extern CPU86_LDouble floor(CPU86_LDouble x);
1527
extern CPU86_LDouble ceil(CPU86_LDouble x);
1528
extern CPU86_LDouble rint(CPU86_LDouble x);
1529

    
1530
#if defined(__powerpc__)
1531
extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1532

    
1533
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1534
double qemu_rint(double x)
1535
{
1536
    double y = 4503599627370496.0;
1537
    if (fabs(x) >= y)
1538
        return x;
1539
    if (x < 0) 
1540
        y = -y;
1541
    y = (x + y) - y;
1542
    if (y == 0.0)
1543
        y = copysign(y, x);
1544
    return y;
1545
}
1546

    
1547
#define rint qemu_rint
1548
#endif
1549

    
1550
#define RC_MASK         0xc00
1551
#define RC_NEAR                0x000
1552
#define RC_DOWN                0x400
1553
#define RC_UP                0x800
1554
#define RC_CHOP                0xc00
1555

    
1556
#define MAXTAN 9223372036854775808.0
1557

    
1558
#ifdef USE_X86LDOUBLE
1559

    
1560
/* only for x86 */
1561
typedef union {
1562
    long double d;
1563
    struct {
1564
        unsigned long long lower;
1565
        unsigned short upper;
1566
    } l;
1567
} CPU86_LDoubleU;
1568

    
1569
/* the following deal with x86 long double-precision numbers */
1570
#define MAXEXPD 0x7fff
1571
#define EXPBIAS 16383
1572
#define EXPD(fp)        (fp.l.upper & 0x7fff)
1573
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
1574
#define MANTD(fp)       (fp.l.lower)
1575
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1576

    
1577
#else
1578

    
1579
typedef union {
1580
    double d;
1581
#ifndef WORDS_BIGENDIAN
1582
    struct {
1583
        unsigned long lower;
1584
        long upper;
1585
    } l;
1586
#else
1587
    struct {
1588
        long upper;
1589
        unsigned long lower;
1590
    } l;
1591
#endif
1592
    long long ll;
1593
} CPU86_LDoubleU;
1594

    
1595
/* the following deal with IEEE double-precision numbers */
1596
#define MAXEXPD 0x7ff
1597
#define EXPBIAS 1023
1598
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
1599
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
1600
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
1601
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1602
#endif
1603

    
1604
/* fp load FT0 */
1605

    
1606
void OPPROTO op_flds_FT0_A0(void)
1607
{
1608
#ifdef USE_FP_CONVERT
1609
    FP_CONVERT.i32 = ldl((void *)A0);
1610
    FT0 = FP_CONVERT.f;
1611
#else
1612
    FT0 = ldfl((void *)A0);
1613
#endif
1614
}
1615

    
1616
void OPPROTO op_fldl_FT0_A0(void)
1617
{
1618
#ifdef USE_FP_CONVERT
1619
    FP_CONVERT.i64 = ldq((void *)A0);
1620
    FT0 = FP_CONVERT.d;
1621
#else
1622
    FT0 = ldfq((void *)A0);
1623
#endif
1624
}
1625

    
1626
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1627
#ifdef USE_INT_TO_FLOAT_HELPERS
1628

    
1629
void helper_fild_FT0_A0(void)
1630
{
1631
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1632
}
1633

    
1634
void helper_fildl_FT0_A0(void)
1635
{
1636
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1637
}
1638

    
1639
void helper_fildll_FT0_A0(void)
1640
{
1641
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1642
}
1643

    
1644
void OPPROTO op_fild_FT0_A0(void)
1645
{
1646
    helper_fild_FT0_A0();
1647
}
1648

    
1649
void OPPROTO op_fildl_FT0_A0(void)
1650
{
1651
    helper_fildl_FT0_A0();
1652
}
1653

    
1654
void OPPROTO op_fildll_FT0_A0(void)
1655
{
1656
    helper_fildll_FT0_A0();
1657
}
1658

    
1659
#else
1660

    
1661
void OPPROTO op_fild_FT0_A0(void)
1662
{
1663
#ifdef USE_FP_CONVERT
1664
    FP_CONVERT.i32 = ldsw((void *)A0);
1665
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1666
#else
1667
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1668
#endif
1669
}
1670

    
1671
void OPPROTO op_fildl_FT0_A0(void)
1672
{
1673
#ifdef USE_FP_CONVERT
1674
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1675
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1676
#else
1677
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1678
#endif
1679
}
1680

    
1681
void OPPROTO op_fildll_FT0_A0(void)
1682
{
1683
#ifdef USE_FP_CONVERT
1684
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1685
    FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1686
#else
1687
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1688
#endif
1689
}
1690
#endif
1691

    
1692
/* fp load ST0 */
1693

    
1694
void OPPROTO op_flds_ST0_A0(void)
1695
{
1696
#ifdef USE_FP_CONVERT
1697
    FP_CONVERT.i32 = ldl((void *)A0);
1698
    ST0 = FP_CONVERT.f;
1699
#else
1700
    ST0 = ldfl((void *)A0);
1701
#endif
1702
}
1703

    
1704
void OPPROTO op_fldl_ST0_A0(void)
1705
{
1706
#ifdef USE_FP_CONVERT
1707
    FP_CONVERT.i64 = ldq((void *)A0);
1708
    ST0 = FP_CONVERT.d;
1709
#else
1710
    ST0 = ldfq((void *)A0);
1711
#endif
1712
}
1713

    
1714
#ifdef USE_X86LDOUBLE
1715
void OPPROTO op_fldt_ST0_A0(void)
1716
{
1717
    ST0 = *(long double *)A0;
1718
}
1719
#else
1720
void helper_fldt_ST0_A0(void)
1721
{
1722
    CPU86_LDoubleU temp;
1723
    int upper, e;
1724
    /* mantissa */
1725
    upper = lduw((uint8_t *)A0 + 8);
1726
    /* XXX: handle overflow ? */
1727
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1728
    e |= (upper >> 4) & 0x800; /* sign */
1729
    temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1730
    ST0 = temp.d;
1731
}
1732

    
1733
void OPPROTO op_fldt_ST0_A0(void)
1734
{
1735
    helper_fldt_ST0_A0();
1736
}
1737
#endif
1738

    
1739
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1740
#ifdef USE_INT_TO_FLOAT_HELPERS
1741

    
1742
void helper_fild_ST0_A0(void)
1743
{
1744
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1745
}
1746

    
1747
void helper_fildl_ST0_A0(void)
1748
{
1749
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1750
}
1751

    
1752
void helper_fildll_ST0_A0(void)
1753
{
1754
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1755
}
1756

    
1757
void OPPROTO op_fild_ST0_A0(void)
1758
{
1759
    helper_fild_ST0_A0();
1760
}
1761

    
1762
void OPPROTO op_fildl_ST0_A0(void)
1763
{
1764
    helper_fildl_ST0_A0();
1765
}
1766

    
1767
void OPPROTO op_fildll_ST0_A0(void)
1768
{
1769
    helper_fildll_ST0_A0();
1770
}
1771

    
1772
#else
1773

    
1774
void OPPROTO op_fild_ST0_A0(void)
1775
{
1776
#ifdef USE_FP_CONVERT
1777
    FP_CONVERT.i32 = ldsw((void *)A0);
1778
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1779
#else
1780
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1781
#endif
1782
}
1783

    
1784
void OPPROTO op_fildl_ST0_A0(void)
1785
{
1786
#ifdef USE_FP_CONVERT
1787
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1788
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1789
#else
1790
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1791
#endif
1792
}
1793

    
1794
void OPPROTO op_fildll_ST0_A0(void)
1795
{
1796
#ifdef USE_FP_CONVERT
1797
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1798
    ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1799
#else
1800
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1801
#endif
1802
}
1803

    
1804
#endif
1805

    
1806
/* fp store */
1807

    
1808
void OPPROTO op_fsts_ST0_A0(void)
1809
{
1810
#ifdef USE_FP_CONVERT
1811
    FP_CONVERT.d = ST0;
1812
    stfl((void *)A0, FP_CONVERT.f);
1813
#else
1814
    stfl((void *)A0, (float)ST0);
1815
#endif
1816
}
1817

    
1818
void OPPROTO op_fstl_ST0_A0(void)
1819
{
1820
    stfq((void *)A0, (double)ST0);
1821
}
1822

    
1823
#ifdef USE_X86LDOUBLE
1824
void OPPROTO op_fstt_ST0_A0(void)
1825
{
1826
    *(long double *)A0 = ST0;
1827
}
1828
#else
1829
void helper_fstt_ST0_A0(void)
1830
{
1831
    CPU86_LDoubleU temp;
1832
    int e;
1833
    temp.d = ST0;
1834
    /* mantissa */
1835
    stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1836
    /* exponent + sign */
1837
    e = EXPD(temp) - EXPBIAS + 16383;
1838
    e |= SIGND(temp) >> 16;
1839
    stw((uint8_t *)A0 + 8, e);
1840
}
1841

    
1842
void OPPROTO op_fstt_ST0_A0(void)
1843
{
1844
    helper_fstt_ST0_A0();
1845
}
1846
#endif
1847

    
1848
void OPPROTO op_fist_ST0_A0(void)
1849
{
1850
#if defined(__sparc__) && !defined(__sparc_v9__)
1851
    register CPU86_LDouble d asm("o0");
1852
#else
1853
    CPU86_LDouble d;
1854
#endif
1855
    int val;
1856

    
1857
    d = ST0;
1858
    val = lrint(d);
1859
    stw((void *)A0, val);
1860
}
1861

    
1862
void OPPROTO op_fistl_ST0_A0(void)
1863
{
1864
#if defined(__sparc__) && !defined(__sparc_v9__)
1865
    register CPU86_LDouble d asm("o0");
1866
#else
1867
    CPU86_LDouble d;
1868
#endif
1869
    int val;
1870

    
1871
    d = ST0;
1872
    val = lrint(d);
1873
    stl((void *)A0, val);
1874
}
1875

    
1876
void OPPROTO op_fistll_ST0_A0(void)
1877
{
1878
#if defined(__sparc__) && !defined(__sparc_v9__)
1879
    register CPU86_LDouble d asm("o0");
1880
#else
1881
    CPU86_LDouble d;
1882
#endif
1883
    int64_t val;
1884

    
1885
    d = ST0;
1886
    val = llrint(d);
1887
    stq((void *)A0, val);
1888
}
1889

    
1890
/* BCD ops */
1891

    
1892
#define MUL10(iv) ( iv + iv + (iv << 3) )
1893

    
1894
void helper_fbld_ST0_A0(void)
1895
{
1896
    uint8_t *seg;
1897
    CPU86_LDouble fpsrcop;
1898
    int m32i;
1899
    unsigned int v;
1900

    
1901
    /* in this code, seg/m32i will be used as temporary ptr/int */
1902
    seg = (uint8_t *)A0 + 8;
1903
    v = ldub(seg--);
1904
    /* XXX: raise exception */
1905
    if (v != 0)
1906
        return;
1907
    v = ldub(seg--);
1908
    /* XXX: raise exception */
1909
    if ((v & 0xf0) != 0)
1910
        return;
1911
    m32i = v;  /* <-- d14 */
1912
    v = ldub(seg--);
1913
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d13 */
1914
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1915
    v = ldub(seg--);
1916
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d11 */
1917
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1918
    v = ldub(seg--);
1919
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d9 */
1920
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1921
    fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1922

    
1923
    v = ldub(seg--);
1924
    m32i = (v >> 4);  /* <-- d7 */
1925
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1926
    v = ldub(seg--);
1927
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d5 */
1928
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1929
    v = ldub(seg--);
1930
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d3 */
1931
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1932
    v = ldub(seg);
1933
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d1 */
1934
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1935
    fpsrcop += ((CPU86_LDouble)m32i);
1936
    if ( ldub(seg+9) & 0x80 )
1937
        fpsrcop = -fpsrcop;
1938
    ST0 = fpsrcop;
1939
}
1940

    
1941
void OPPROTO op_fbld_ST0_A0(void)
1942
{
1943
    helper_fbld_ST0_A0();
1944
}
1945

    
1946
void helper_fbst_ST0_A0(void)
1947
{
1948
    CPU86_LDouble fptemp;
1949
    CPU86_LDouble fpsrcop;
1950
    int v;
1951
    uint8_t *mem_ref, *mem_end;
1952

    
1953
    fpsrcop = rint(ST0);
1954
    mem_ref = (uint8_t *)A0;
1955
    mem_end = mem_ref + 8;
1956
    if ( fpsrcop < 0.0 ) {
1957
        stw(mem_end, 0x8000);
1958
        fpsrcop = -fpsrcop;
1959
    } else {
1960
        stw(mem_end, 0x0000);
1961
    }
1962
    while (mem_ref < mem_end) {
1963
        if (fpsrcop == 0.0)
1964
            break;
1965
        fptemp = floor(fpsrcop/10.0);
1966
        v = ((int)(fpsrcop - fptemp*10.0));
1967
        if  (fptemp == 0.0)  { 
1968
            stb(mem_ref++, v); 
1969
            break; 
1970
        }
1971
        fpsrcop = fptemp;
1972
        fptemp = floor(fpsrcop/10.0);
1973
        v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1974
        stb(mem_ref++, v);
1975
        fpsrcop = fptemp;
1976
    }
1977
    while (mem_ref < mem_end) {
1978
        stb(mem_ref++, 0);
1979
    }
1980
}
1981

    
1982
void OPPROTO op_fbst_ST0_A0(void)
1983
{
1984
    helper_fbst_ST0_A0();
1985
}
1986

    
1987
/* FPU move */
1988

    
1989
static inline void fpush(void)
1990
{
1991
    env->fpstt = (env->fpstt - 1) & 7;
1992
    env->fptags[env->fpstt] = 0; /* validate stack entry */
1993
}
1994

    
1995
static inline void fpop(void)
1996
{
1997
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
1998
    env->fpstt = (env->fpstt + 1) & 7;
1999
}
2000

    
2001
void OPPROTO op_fpush(void)
2002
{
2003
    fpush();
2004
}
2005

    
2006
void OPPROTO op_fpop(void)
2007
{
2008
    fpop();
2009
}
2010

    
2011
void OPPROTO op_fdecstp(void)
2012
{
2013
    env->fpstt = (env->fpstt - 1) & 7;
2014
    env->fpus &= (~0x4700);
2015
}
2016

    
2017
void OPPROTO op_fincstp(void)
2018
{
2019
    env->fpstt = (env->fpstt + 1) & 7;
2020
    env->fpus &= (~0x4700);
2021
}
2022

    
2023
void OPPROTO op_fmov_ST0_FT0(void)
2024
{
2025
    ST0 = FT0;
2026
}
2027

    
2028
void OPPROTO op_fmov_FT0_STN(void)
2029
{
2030
    FT0 = ST(PARAM1);
2031
}
2032

    
2033
void OPPROTO op_fmov_ST0_STN(void)
2034
{
2035
    ST0 = ST(PARAM1);
2036
}
2037

    
2038
void OPPROTO op_fmov_STN_ST0(void)
2039
{
2040
    ST(PARAM1) = ST0;
2041
}
2042

    
2043
void OPPROTO op_fxchg_ST0_STN(void)
2044
{
2045
    CPU86_LDouble tmp;
2046
    tmp = ST(PARAM1);
2047
    ST(PARAM1) = ST0;
2048
    ST0 = tmp;
2049
}
2050

    
2051
/* FPU operations */
2052

    
2053
/* XXX: handle nans */
2054
void OPPROTO op_fcom_ST0_FT0(void)
2055
{
2056
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2057
    if (ST0 < FT0)
2058
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2059
    else if (ST0 == FT0)
2060
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2061
    FORCE_RET();
2062
}
2063

    
2064
/* XXX: handle nans */
2065
void OPPROTO op_fucom_ST0_FT0(void)
2066
{
2067
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2068
    if (ST0 < FT0)
2069
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2070
    else if (ST0 == FT0)
2071
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2072
    FORCE_RET();
2073
}
2074

    
2075
void OPPROTO op_fadd_ST0_FT0(void)
2076
{
2077
    ST0 += FT0;
2078
}
2079

    
2080
void OPPROTO op_fmul_ST0_FT0(void)
2081
{
2082
    ST0 *= FT0;
2083
}
2084

    
2085
void OPPROTO op_fsub_ST0_FT0(void)
2086
{
2087
    ST0 -= FT0;
2088
}
2089

    
2090
void OPPROTO op_fsubr_ST0_FT0(void)
2091
{
2092
    ST0 = FT0 - ST0;
2093
}
2094

    
2095
void OPPROTO op_fdiv_ST0_FT0(void)
2096
{
2097
    ST0 /= FT0;
2098
}
2099

    
2100
void OPPROTO op_fdivr_ST0_FT0(void)
2101
{
2102
    ST0 = FT0 / ST0;
2103
}
2104

    
2105
/* fp operations between STN and ST0 */
2106

    
2107
void OPPROTO op_fadd_STN_ST0(void)
2108
{
2109
    ST(PARAM1) += ST0;
2110
}
2111

    
2112
void OPPROTO op_fmul_STN_ST0(void)
2113
{
2114
    ST(PARAM1) *= ST0;
2115
}
2116

    
2117
void OPPROTO op_fsub_STN_ST0(void)
2118
{
2119
    ST(PARAM1) -= ST0;
2120
}
2121

    
2122
void OPPROTO op_fsubr_STN_ST0(void)
2123
{
2124
    CPU86_LDouble *p;
2125
    p = &ST(PARAM1);
2126
    *p = ST0 - *p;
2127
}
2128

    
2129
void OPPROTO op_fdiv_STN_ST0(void)
2130
{
2131
    ST(PARAM1) /= ST0;
2132
}
2133

    
2134
void OPPROTO op_fdivr_STN_ST0(void)
2135
{
2136
    CPU86_LDouble *p;
2137
    p = &ST(PARAM1);
2138
    *p = ST0 / *p;
2139
}
2140

    
2141
/* misc FPU operations */
2142
void OPPROTO op_fchs_ST0(void)
2143
{
2144
    ST0 = -ST0;
2145
}
2146

    
2147
void OPPROTO op_fabs_ST0(void)
2148
{
2149
    ST0 = fabs(ST0);
2150
}
2151

    
2152
void helper_fxam_ST0(void)
2153
{
2154
    CPU86_LDoubleU temp;
2155
    int expdif;
2156

    
2157
    temp.d = ST0;
2158

    
2159
    env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2160
    if (SIGND(temp))
2161
        env->fpus |= 0x200; /* C1 <-- 1 */
2162

    
2163
    expdif = EXPD(temp);
2164
    if (expdif == MAXEXPD) {
2165
        if (MANTD(temp) == 0)
2166
            env->fpus |=  0x500 /*Infinity*/;
2167
        else
2168
            env->fpus |=  0x100 /*NaN*/;
2169
    } else if (expdif == 0) {
2170
        if (MANTD(temp) == 0)
2171
            env->fpus |=  0x4000 /*Zero*/;
2172
        else
2173
            env->fpus |= 0x4400 /*Denormal*/;
2174
    } else {
2175
        env->fpus |= 0x400;
2176
    }
2177
}
2178

    
2179
void OPPROTO op_fxam_ST0(void)
2180
{
2181
    helper_fxam_ST0();
2182
}
2183

    
2184
void OPPROTO op_fld1_ST0(void)
2185
{
2186
    ST0 = *(CPU86_LDouble *)&f15rk[1];
2187
}
2188

    
2189
void OPPROTO op_fldl2t_ST0(void)
2190
{
2191
    ST0 = *(CPU86_LDouble *)&f15rk[6];
2192
}
2193

    
2194
void OPPROTO op_fldl2e_ST0(void)
2195
{
2196
    ST0 = *(CPU86_LDouble *)&f15rk[5];
2197
}
2198

    
2199
void OPPROTO op_fldpi_ST0(void)
2200
{
2201
    ST0 = *(CPU86_LDouble *)&f15rk[2];
2202
}
2203

    
2204
void OPPROTO op_fldlg2_ST0(void)
2205
{
2206
    ST0 = *(CPU86_LDouble *)&f15rk[3];
2207
}
2208

    
2209
void OPPROTO op_fldln2_ST0(void)
2210
{
2211
    ST0 = *(CPU86_LDouble *)&f15rk[4];
2212
}
2213

    
2214
void OPPROTO op_fldz_ST0(void)
2215
{
2216
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2217
}
2218

    
2219
void OPPROTO op_fldz_FT0(void)
2220
{
2221
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2222
}
2223

    
2224
void helper_f2xm1(void)
2225
{
2226
    ST0 = pow(2.0,ST0) - 1.0;
2227
}
2228

    
2229
void helper_fyl2x(void)
2230
{
2231
    CPU86_LDouble fptemp;
2232
    
2233
    fptemp = ST0;
2234
    if (fptemp>0.0){
2235
        fptemp = log(fptemp)/log(2.0);         /* log2(ST) */
2236
        ST1 *= fptemp;
2237
        fpop();
2238
    } else { 
2239
        env->fpus &= (~0x4700);
2240
        env->fpus |= 0x400;
2241
    }
2242
}
2243

    
2244
void helper_fptan(void)
2245
{
2246
    CPU86_LDouble fptemp;
2247

    
2248
    fptemp = ST0;
2249
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2250
        env->fpus |= 0x400;
2251
    } else {
2252
        ST0 = tan(fptemp);
2253
        fpush();
2254
        ST0 = 1.0;
2255
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2256
        /* the above code is for  |arg| < 2**52 only */
2257
    }
2258
}
2259

    
2260
void helper_fpatan(void)
2261
{
2262
    CPU86_LDouble fptemp, fpsrcop;
2263

    
2264
    fpsrcop = ST1;
2265
    fptemp = ST0;
2266
    ST1 = atan2(fpsrcop,fptemp);
2267
    fpop();
2268
}
2269

    
2270
void helper_fxtract(void)
2271
{
2272
    CPU86_LDoubleU temp;
2273
    unsigned int expdif;
2274

    
2275
    temp.d = ST0;
2276
    expdif = EXPD(temp) - EXPBIAS;
2277
    /*DP exponent bias*/
2278
    ST0 = expdif;
2279
    fpush();
2280
    BIASEXPONENT(temp);
2281
    ST0 = temp.d;
2282
}
2283

    
2284
void helper_fprem1(void)
2285
{
2286
    CPU86_LDouble dblq, fpsrcop, fptemp;
2287
    CPU86_LDoubleU fpsrcop1, fptemp1;
2288
    int expdif;
2289
    int q;
2290

    
2291
    fpsrcop = ST0;
2292
    fptemp = ST1;
2293
    fpsrcop1.d = fpsrcop;
2294
    fptemp1.d = fptemp;
2295
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2296
    if (expdif < 53) {
2297
        dblq = fpsrcop / fptemp;
2298
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2299
        ST0 = fpsrcop - fptemp*dblq;
2300
        q = (int)dblq; /* cutting off top bits is assumed here */
2301
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2302
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2303
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2304
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2305
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2306
    } else {
2307
        env->fpus |= 0x400;  /* C2 <-- 1 */
2308
        fptemp = pow(2.0, expdif-50);
2309
        fpsrcop = (ST0 / ST1) / fptemp;
2310
        /* fpsrcop = integer obtained by rounding to the nearest */
2311
        fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2312
            floor(fpsrcop): ceil(fpsrcop);
2313
        ST0 -= (ST1 * fpsrcop * fptemp);
2314
    }
2315
}
2316

    
2317
void helper_fprem(void)
2318
{
2319
    CPU86_LDouble dblq, fpsrcop, fptemp;
2320
    CPU86_LDoubleU fpsrcop1, fptemp1;
2321
    int expdif;
2322
    int q;
2323
    
2324
    fpsrcop = ST0;
2325
    fptemp = ST1;
2326
    fpsrcop1.d = fpsrcop;
2327
    fptemp1.d = fptemp;
2328
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2329
    if ( expdif < 53 ) {
2330
        dblq = fpsrcop / fptemp;
2331
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2332
        ST0 = fpsrcop - fptemp*dblq;
2333
        q = (int)dblq; /* cutting off top bits is assumed here */
2334
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2335
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2336
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2337
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2338
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2339
    } else {
2340
        env->fpus |= 0x400;  /* C2 <-- 1 */
2341
        fptemp = pow(2.0, expdif-50);
2342
        fpsrcop = (ST0 / ST1) / fptemp;
2343
        /* fpsrcop = integer obtained by chopping */
2344
        fpsrcop = (fpsrcop < 0.0)?
2345
            -(floor(fabs(fpsrcop))): floor(fpsrcop);
2346
        ST0 -= (ST1 * fpsrcop * fptemp);
2347
    }
2348
}
2349

    
2350
void helper_fyl2xp1(void)
2351
{
2352
    CPU86_LDouble fptemp;
2353

    
2354
    fptemp = ST0;
2355
    if ((fptemp+1.0)>0.0) {
2356
        fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2357
        ST1 *= fptemp;
2358
        fpop();
2359
    } else { 
2360
        env->fpus &= (~0x4700);
2361
        env->fpus |= 0x400;
2362
    }
2363
}
2364

    
2365
void helper_fsqrt(void)
2366
{
2367
    CPU86_LDouble fptemp;
2368

    
2369
    fptemp = ST0;
2370
    if (fptemp<0.0) { 
2371
        env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2372
        env->fpus |= 0x400;
2373
    }
2374
    ST0 = sqrt(fptemp);
2375
}
2376

    
2377
void helper_fsincos(void)
2378
{
2379
    CPU86_LDouble fptemp;
2380

    
2381
    fptemp = ST0;
2382
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2383
        env->fpus |= 0x400;
2384
    } else {
2385
        ST0 = sin(fptemp);
2386
        fpush();
2387
        ST0 = cos(fptemp);
2388
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2389
        /* the above code is for  |arg| < 2**63 only */
2390
    }
2391
}
2392

    
2393
void helper_frndint(void)
2394
{
2395
    ST0 = rint(ST0);
2396
}
2397

    
2398
void helper_fscale(void)
2399
{
2400
    CPU86_LDouble fpsrcop, fptemp;
2401

    
2402
    fpsrcop = 2.0;
2403
    fptemp = pow(fpsrcop,ST1);
2404
    ST0 *= fptemp;
2405
}
2406

    
2407
void helper_fsin(void)
2408
{
2409
    CPU86_LDouble fptemp;
2410

    
2411
    fptemp = ST0;
2412
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2413
        env->fpus |= 0x400;
2414
    } else {
2415
        ST0 = sin(fptemp);
2416
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2417
        /* the above code is for  |arg| < 2**53 only */
2418
    }
2419
}
2420

    
2421
void helper_fcos(void)
2422
{
2423
    CPU86_LDouble fptemp;
2424

    
2425
    fptemp = ST0;
2426
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2427
        env->fpus |= 0x400;
2428
    } else {
2429
        ST0 = cos(fptemp);
2430
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2431
        /* the above code is for  |arg5 < 2**63 only */
2432
    }
2433
}
2434

    
2435
/* associated heplers to reduce generated code length and to simplify
2436
   relocation (FP constants are usually stored in .rodata section) */
2437

    
2438
void OPPROTO op_f2xm1(void)
2439
{
2440
    helper_f2xm1();
2441
}
2442

    
2443
void OPPROTO op_fyl2x(void)
2444
{
2445
    helper_fyl2x();
2446
}
2447

    
2448
void OPPROTO op_fptan(void)
2449
{
2450
    helper_fptan();
2451
}
2452

    
2453
void OPPROTO op_fpatan(void)
2454
{
2455
    helper_fpatan();
2456
}
2457

    
2458
void OPPROTO op_fxtract(void)
2459
{
2460
    helper_fxtract();
2461
}
2462

    
2463
void OPPROTO op_fprem1(void)
2464
{
2465
    helper_fprem1();
2466
}
2467

    
2468

    
2469
void OPPROTO op_fprem(void)
2470
{
2471
    helper_fprem();
2472
}
2473

    
2474
void OPPROTO op_fyl2xp1(void)
2475
{
2476
    helper_fyl2xp1();
2477
}
2478

    
2479
void OPPROTO op_fsqrt(void)
2480
{
2481
    helper_fsqrt();
2482
}
2483

    
2484
void OPPROTO op_fsincos(void)
2485
{
2486
    helper_fsincos();
2487
}
2488

    
2489
void OPPROTO op_frndint(void)
2490
{
2491
    helper_frndint();
2492
}
2493

    
2494
void OPPROTO op_fscale(void)
2495
{
2496
    helper_fscale();
2497
}
2498

    
2499
void OPPROTO op_fsin(void)
2500
{
2501
    helper_fsin();
2502
}
2503

    
2504
void OPPROTO op_fcos(void)
2505
{
2506
    helper_fcos();
2507
}
2508

    
2509
void OPPROTO op_fnstsw_A0(void)
2510
{
2511
    int fpus;
2512
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2513
    stw((void *)A0, fpus);
2514
}
2515

    
2516
void OPPROTO op_fnstsw_EAX(void)
2517
{
2518
    int fpus;
2519
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2520
    EAX = (EAX & 0xffff0000) | fpus;
2521
}
2522

    
2523
void OPPROTO op_fnstcw_A0(void)
2524
{
2525
    stw((void *)A0, env->fpuc);
2526
}
2527

    
2528
void OPPROTO op_fldcw_A0(void)
2529
{
2530
    int rnd_type;
2531
    env->fpuc = lduw((void *)A0);
2532
    /* set rounding mode */
2533
    switch(env->fpuc & RC_MASK) {
2534
    default:
2535
    case RC_NEAR:
2536
        rnd_type = FE_TONEAREST;
2537
        break;
2538
    case RC_DOWN:
2539
        rnd_type = FE_DOWNWARD;
2540
        break;
2541
    case RC_UP:
2542
        rnd_type = FE_UPWARD;
2543
        break;
2544
    case RC_CHOP:
2545
        rnd_type = FE_TOWARDZERO;
2546
        break;
2547
    }
2548
    fesetround(rnd_type);
2549
}
2550

    
2551
void OPPROTO op_fclex(void)
2552
{
2553
    env->fpus &= 0x7f00;
2554
}
2555

    
2556
void OPPROTO op_fninit(void)
2557
{
2558
    env->fpus = 0;
2559
    env->fpstt = 0;
2560
    env->fpuc = 0x37f;
2561
    env->fptags[0] = 1;
2562
    env->fptags[1] = 1;
2563
    env->fptags[2] = 1;
2564
    env->fptags[3] = 1;
2565
    env->fptags[4] = 1;
2566
    env->fptags[5] = 1;
2567
    env->fptags[6] = 1;
2568
    env->fptags[7] = 1;
2569
}
2570

    
2571
/* threading support */
2572
void OPPROTO op_lock(void)
2573
{
2574
    cpu_lock();
2575
}
2576

    
2577
void OPPROTO op_unlock(void)
2578
{
2579
    cpu_unlock();
2580
}