Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ a75b3e0f

History | View | Annotate | Download (57.6 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "kvm.h"
26
#include "cpu.h"
27
#include "gdbstub.h"
28
#include "host-utils.h"
29
#include "hw/pc.h"
30
#include "hw/apic.h"
31
#include "ioport.h"
32
#include "hyperv.h"
33

    
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifndef BUS_MCEERR_AR
48
#define BUS_MCEERR_AR 4
49
#endif
50
#ifndef BUS_MCEERR_AO
51
#define BUS_MCEERR_AO 5
52
#endif
53

    
54
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55
    KVM_CAP_INFO(SET_TSS_ADDR),
56
    KVM_CAP_INFO(EXT_CPUID),
57
    KVM_CAP_INFO(MP_STATE),
58
    KVM_CAP_LAST_INFO
59
};
60

    
61
static bool has_msr_star;
62
static bool has_msr_hsave_pa;
63
static bool has_msr_tsc_deadline;
64
static bool has_msr_async_pf_en;
65
static bool has_msr_misc_enable;
66
static int lm_capable_kernel;
67

    
68
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69
{
70
    struct kvm_cpuid2 *cpuid;
71
    int r, size;
72

    
73
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
75
    cpuid->nent = max;
76
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77
    if (r == 0 && cpuid->nent >= max) {
78
        r = -E2BIG;
79
    }
80
    if (r < 0) {
81
        if (r == -E2BIG) {
82
            g_free(cpuid);
83
            return NULL;
84
        } else {
85
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86
                    strerror(-r));
87
            exit(1);
88
        }
89
    }
90
    return cpuid;
91
}
92

    
93
struct kvm_para_features {
94
    int cap;
95
    int feature;
96
} para_features[] = {
97
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
100
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
101
    { -1, -1 }
102
};
103

    
104
static int get_para_features(KVMState *s)
105
{
106
    int i, features = 0;
107

    
108
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
109
        if (kvm_check_extension(s, para_features[i].cap)) {
110
            features |= (1 << para_features[i].feature);
111
        }
112
    }
113

    
114
    return features;
115
}
116

    
117

    
118
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
119
                                      uint32_t index, int reg)
120
{
121
    struct kvm_cpuid2 *cpuid;
122
    int i, max;
123
    uint32_t ret = 0;
124
    uint32_t cpuid_1_edx;
125
    int has_kvm_features = 0;
126

    
127
    max = 1;
128
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
129
        max *= 2;
130
    }
131

    
132
    for (i = 0; i < cpuid->nent; ++i) {
133
        if (cpuid->entries[i].function == function &&
134
            cpuid->entries[i].index == index) {
135
            if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136
                has_kvm_features = 1;
137
            }
138
            switch (reg) {
139
            case R_EAX:
140
                ret = cpuid->entries[i].eax;
141
                break;
142
            case R_EBX:
143
                ret = cpuid->entries[i].ebx;
144
                break;
145
            case R_ECX:
146
                ret = cpuid->entries[i].ecx;
147
                break;
148
            case R_EDX:
149
                ret = cpuid->entries[i].edx;
150
                switch (function) {
151
                case 1:
152
                    /* KVM before 2.6.30 misreports the following features */
153
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
154
                    break;
155
                case 0x80000001:
156
                    /* On Intel, kvm returns cpuid according to the Intel spec,
157
                     * so add missing bits according to the AMD spec:
158
                     */
159
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
160
                    ret |= cpuid_1_edx & 0x183f7ff;
161
                    break;
162
                }
163
                break;
164
            }
165
        }
166
    }
167

    
168
    g_free(cpuid);
169

    
170
    /* fallback for older kernels */
171
    if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
172
        ret = get_para_features(s);
173
    }
174

    
175
    return ret;
176
}
177

    
178
typedef struct HWPoisonPage {
179
    ram_addr_t ram_addr;
180
    QLIST_ENTRY(HWPoisonPage) list;
181
} HWPoisonPage;
182

    
183
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
185

    
186
static void kvm_unpoison_all(void *param)
187
{
188
    HWPoisonPage *page, *next_page;
189

    
190
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191
        QLIST_REMOVE(page, list);
192
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
193
        g_free(page);
194
    }
195
}
196

    
197
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198
{
199
    HWPoisonPage *page;
200

    
201
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
202
        if (page->ram_addr == ram_addr) {
203
            return;
204
        }
205
    }
206
    page = g_malloc(sizeof(HWPoisonPage));
207
    page->ram_addr = ram_addr;
208
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
209
}
210

    
211
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212
                                     int *max_banks)
213
{
214
    int r;
215

    
216
    r = kvm_check_extension(s, KVM_CAP_MCE);
217
    if (r > 0) {
218
        *max_banks = r;
219
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220
    }
221
    return -ENOSYS;
222
}
223

    
224
static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
225
{
226
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228
    uint64_t mcg_status = MCG_STATUS_MCIP;
229

    
230
    if (code == BUS_MCEERR_AR) {
231
        status |= MCI_STATUS_AR | 0x134;
232
        mcg_status |= MCG_STATUS_EIPV;
233
    } else {
234
        status |= 0xc0;
235
        mcg_status |= MCG_STATUS_RIPV;
236
    }
237
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238
                       (MCM_ADDR_PHYS << 6) | 0xc,
239
                       cpu_x86_support_mca_broadcast(env) ?
240
                       MCE_INJECT_BROADCAST : 0);
241
}
242

    
243
static void hardware_memory_error(void)
244
{
245
    fprintf(stderr, "Hardware memory error!\n");
246
    exit(1);
247
}
248

    
249
int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
250
{
251
    ram_addr_t ram_addr;
252
    target_phys_addr_t paddr;
253

    
254
    if ((env->mcg_cap & MCG_SER_P) && addr
255
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
257
            !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
258
            fprintf(stderr, "Hardware memory error for memory used by "
259
                    "QEMU itself instead of guest system!\n");
260
            /* Hope we are lucky for AO MCE */
261
            if (code == BUS_MCEERR_AO) {
262
                return 0;
263
            } else {
264
                hardware_memory_error();
265
            }
266
        }
267
        kvm_hwpoison_page_add(ram_addr);
268
        kvm_mce_inject(env, paddr, code);
269
    } else {
270
        if (code == BUS_MCEERR_AO) {
271
            return 0;
272
        } else if (code == BUS_MCEERR_AR) {
273
            hardware_memory_error();
274
        } else {
275
            return 1;
276
        }
277
    }
278
    return 0;
279
}
280

    
281
int kvm_arch_on_sigbus(int code, void *addr)
282
{
283
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284
        ram_addr_t ram_addr;
285
        target_phys_addr_t paddr;
286

    
287
        /* Hope we are lucky for AO MCE */
288
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289
            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
290
                                                &paddr)) {
291
            fprintf(stderr, "Hardware memory error for memory used by "
292
                    "QEMU itself instead of guest system!: %p\n", addr);
293
            return 0;
294
        }
295
        kvm_hwpoison_page_add(ram_addr);
296
        kvm_mce_inject(first_cpu, paddr, code);
297
    } else {
298
        if (code == BUS_MCEERR_AO) {
299
            return 0;
300
        } else if (code == BUS_MCEERR_AR) {
301
            hardware_memory_error();
302
        } else {
303
            return 1;
304
        }
305
    }
306
    return 0;
307
}
308

    
309
static int kvm_inject_mce_oldstyle(CPUX86State *env)
310
{
311
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
313
        struct kvm_x86_mce mce;
314

    
315
        env->exception_injected = -1;
316

    
317
        /*
318
         * There must be at least one bank in use if an MCE is pending.
319
         * Find it and use its values for the event injection.
320
         */
321
        for (bank = 0; bank < bank_num; bank++) {
322
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323
                break;
324
            }
325
        }
326
        assert(bank < bank_num);
327

    
328
        mce.bank = bank;
329
        mce.status = env->mce_banks[bank * 4 + 1];
330
        mce.mcg_status = env->mcg_status;
331
        mce.addr = env->mce_banks[bank * 4 + 2];
332
        mce.misc = env->mce_banks[bank * 4 + 3];
333

    
334
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335
    }
336
    return 0;
337
}
338

    
339
static void cpu_update_state(void *opaque, int running, RunState state)
340
{
341
    CPUX86State *env = opaque;
342

    
343
    if (running) {
344
        env->tsc_valid = false;
345
    }
346
}
347

    
348
int kvm_arch_init_vcpu(CPUX86State *env)
349
{
350
    struct {
351
        struct kvm_cpuid2 cpuid;
352
        struct kvm_cpuid_entry2 entries[100];
353
    } QEMU_PACKED cpuid_data;
354
    KVMState *s = env->kvm_state;
355
    uint32_t limit, i, j, cpuid_i;
356
    uint32_t unused;
357
    struct kvm_cpuid_entry2 *c;
358
    uint32_t signature[3];
359
    int r;
360

    
361
    env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
362

    
363
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364
    j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
365
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
366
    env->cpuid_ext_features |= i;
367
    if (j && kvm_irqchip_in_kernel() &&
368
        kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
369
        env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
370
    }
371

    
372
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
373
                                                             0, R_EDX);
374
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
375
                                                             0, R_ECX);
376
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
377
                                                             0, R_EDX);
378

    
379
    cpuid_i = 0;
380

    
381
    /* Paravirtualization CPUIDs */
382
    c = &cpuid_data.entries[cpuid_i++];
383
    memset(c, 0, sizeof(*c));
384
    c->function = KVM_CPUID_SIGNATURE;
385
    if (!hyperv_enabled()) {
386
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
387
        c->eax = 0;
388
    } else {
389
        memcpy(signature, "Microsoft Hv", 12);
390
        c->eax = HYPERV_CPUID_MIN;
391
    }
392
    c->ebx = signature[0];
393
    c->ecx = signature[1];
394
    c->edx = signature[2];
395

    
396
    c = &cpuid_data.entries[cpuid_i++];
397
    memset(c, 0, sizeof(*c));
398
    c->function = KVM_CPUID_FEATURES;
399
    c->eax = env->cpuid_kvm_features &
400
        kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
401

    
402
    if (hyperv_enabled()) {
403
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
404
        c->eax = signature[0];
405

    
406
        c = &cpuid_data.entries[cpuid_i++];
407
        memset(c, 0, sizeof(*c));
408
        c->function = HYPERV_CPUID_VERSION;
409
        c->eax = 0x00001bbc;
410
        c->ebx = 0x00060001;
411

    
412
        c = &cpuid_data.entries[cpuid_i++];
413
        memset(c, 0, sizeof(*c));
414
        c->function = HYPERV_CPUID_FEATURES;
415
        if (hyperv_relaxed_timing_enabled()) {
416
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
417
        }
418
        if (hyperv_vapic_recommended()) {
419
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
420
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
421
        }
422

    
423
        c = &cpuid_data.entries[cpuid_i++];
424
        memset(c, 0, sizeof(*c));
425
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
426
        if (hyperv_relaxed_timing_enabled()) {
427
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
428
        }
429
        if (hyperv_vapic_recommended()) {
430
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
431
        }
432
        c->ebx = hyperv_get_spinlock_retries();
433

    
434
        c = &cpuid_data.entries[cpuid_i++];
435
        memset(c, 0, sizeof(*c));
436
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
437
        c->eax = 0x40;
438
        c->ebx = 0x40;
439

    
440
        c = &cpuid_data.entries[cpuid_i++];
441
        memset(c, 0, sizeof(*c));
442
        c->function = KVM_CPUID_SIGNATURE_NEXT;
443
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
444
        c->eax = 0;
445
        c->ebx = signature[0];
446
        c->ecx = signature[1];
447
        c->edx = signature[2];
448
    }
449

    
450
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
451

    
452
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
453

    
454
    for (i = 0; i <= limit; i++) {
455
        c = &cpuid_data.entries[cpuid_i++];
456

    
457
        switch (i) {
458
        case 2: {
459
            /* Keep reading function 2 till all the input is received */
460
            int times;
461

    
462
            c->function = i;
463
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
464
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
465
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
466
            times = c->eax & 0xff;
467

    
468
            for (j = 1; j < times; ++j) {
469
                c = &cpuid_data.entries[cpuid_i++];
470
                c->function = i;
471
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
472
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
473
            }
474
            break;
475
        }
476
        case 4:
477
        case 0xb:
478
        case 0xd:
479
            for (j = 0; ; j++) {
480
                if (i == 0xd && j == 64) {
481
                    break;
482
                }
483
                c->function = i;
484
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
485
                c->index = j;
486
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
487

    
488
                if (i == 4 && c->eax == 0) {
489
                    break;
490
                }
491
                if (i == 0xb && !(c->ecx & 0xff00)) {
492
                    break;
493
                }
494
                if (i == 0xd && c->eax == 0) {
495
                    continue;
496
                }
497
                c = &cpuid_data.entries[cpuid_i++];
498
            }
499
            break;
500
        default:
501
            c->function = i;
502
            c->flags = 0;
503
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
504
            break;
505
        }
506
    }
507
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
508

    
509
    for (i = 0x80000000; i <= limit; i++) {
510
        c = &cpuid_data.entries[cpuid_i++];
511

    
512
        c->function = i;
513
        c->flags = 0;
514
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
515
    }
516

    
517
    /* Call Centaur's CPUID instructions they are supported. */
518
    if (env->cpuid_xlevel2 > 0) {
519
        env->cpuid_ext4_features &=
520
            kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
521
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
522

    
523
        for (i = 0xC0000000; i <= limit; i++) {
524
            c = &cpuid_data.entries[cpuid_i++];
525

    
526
            c->function = i;
527
            c->flags = 0;
528
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
529
        }
530
    }
531

    
532
    cpuid_data.cpuid.nent = cpuid_i;
533

    
534
    if (((env->cpuid_version >> 8)&0xF) >= 6
535
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
536
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
537
        uint64_t mcg_cap;
538
        int banks;
539
        int ret;
540

    
541
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
542
        if (ret < 0) {
543
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
544
            return ret;
545
        }
546

    
547
        if (banks > MCE_BANKS_DEF) {
548
            banks = MCE_BANKS_DEF;
549
        }
550
        mcg_cap &= MCE_CAP_DEF;
551
        mcg_cap |= banks;
552
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
553
        if (ret < 0) {
554
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
555
            return ret;
556
        }
557

    
558
        env->mcg_cap = mcg_cap;
559
    }
560

    
561
    qemu_add_vm_change_state_handler(cpu_update_state, env);
562

    
563
    cpuid_data.cpuid.padding = 0;
564
    r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
565
    if (r) {
566
        return r;
567
    }
568

    
569
    r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
570
    if (r && env->tsc_khz) {
571
        r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
572
        if (r < 0) {
573
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
574
            return r;
575
        }
576
    }
577

    
578
    if (kvm_has_xsave()) {
579
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
580
    }
581

    
582
    return 0;
583
}
584

    
585
void kvm_arch_reset_vcpu(CPUX86State *env)
586
{
587
    env->exception_injected = -1;
588
    env->interrupt_injected = -1;
589
    env->xcr0 = 1;
590
    if (kvm_irqchip_in_kernel()) {
591
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
592
                                          KVM_MP_STATE_UNINITIALIZED;
593
    } else {
594
        env->mp_state = KVM_MP_STATE_RUNNABLE;
595
    }
596
}
597

    
598
static int kvm_get_supported_msrs(KVMState *s)
599
{
600
    static int kvm_supported_msrs;
601
    int ret = 0;
602

    
603
    /* first time */
604
    if (kvm_supported_msrs == 0) {
605
        struct kvm_msr_list msr_list, *kvm_msr_list;
606

    
607
        kvm_supported_msrs = -1;
608

    
609
        /* Obtain MSR list from KVM.  These are the MSRs that we must
610
         * save/restore */
611
        msr_list.nmsrs = 0;
612
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
613
        if (ret < 0 && ret != -E2BIG) {
614
            return ret;
615
        }
616
        /* Old kernel modules had a bug and could write beyond the provided
617
           memory. Allocate at least a safe amount of 1K. */
618
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
619
                                              msr_list.nmsrs *
620
                                              sizeof(msr_list.indices[0])));
621

    
622
        kvm_msr_list->nmsrs = msr_list.nmsrs;
623
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
624
        if (ret >= 0) {
625
            int i;
626

    
627
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
628
                if (kvm_msr_list->indices[i] == MSR_STAR) {
629
                    has_msr_star = true;
630
                    continue;
631
                }
632
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
633
                    has_msr_hsave_pa = true;
634
                    continue;
635
                }
636
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
637
                    has_msr_tsc_deadline = true;
638
                    continue;
639
                }
640
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
641
                    has_msr_misc_enable = true;
642
                    continue;
643
                }
644
            }
645
        }
646

    
647
        g_free(kvm_msr_list);
648
    }
649

    
650
    return ret;
651
}
652

    
653
int kvm_arch_init(KVMState *s)
654
{
655
    QemuOptsList *list = qemu_find_opts("machine");
656
    uint64_t identity_base = 0xfffbc000;
657
    uint64_t shadow_mem;
658
    int ret;
659
    struct utsname utsname;
660

    
661
    ret = kvm_get_supported_msrs(s);
662
    if (ret < 0) {
663
        return ret;
664
    }
665

    
666
    uname(&utsname);
667
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
668

    
669
    /*
670
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
671
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
672
     * Since these must be part of guest physical memory, we need to allocate
673
     * them, both by setting their start addresses in the kernel and by
674
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
675
     *
676
     * Older KVM versions may not support setting the identity map base. In
677
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
678
     * size.
679
     */
680
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
681
        /* Allows up to 16M BIOSes. */
682
        identity_base = 0xfeffc000;
683

    
684
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
685
        if (ret < 0) {
686
            return ret;
687
        }
688
    }
689

    
690
    /* Set TSS base one page after EPT identity map. */
691
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
692
    if (ret < 0) {
693
        return ret;
694
    }
695

    
696
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
697
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
698
    if (ret < 0) {
699
        fprintf(stderr, "e820_add_entry() table is full\n");
700
        return ret;
701
    }
702
    qemu_register_reset(kvm_unpoison_all, NULL);
703

    
704
    if (!QTAILQ_EMPTY(&list->head)) {
705
        shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
706
                                       "kvm_shadow_mem", -1);
707
        if (shadow_mem != -1) {
708
            shadow_mem /= 4096;
709
            ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
710
            if (ret < 0) {
711
                return ret;
712
            }
713
        }
714
    }
715
    return 0;
716
}
717

    
718
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
719
{
720
    lhs->selector = rhs->selector;
721
    lhs->base = rhs->base;
722
    lhs->limit = rhs->limit;
723
    lhs->type = 3;
724
    lhs->present = 1;
725
    lhs->dpl = 3;
726
    lhs->db = 0;
727
    lhs->s = 1;
728
    lhs->l = 0;
729
    lhs->g = 0;
730
    lhs->avl = 0;
731
    lhs->unusable = 0;
732
}
733

    
734
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
735
{
736
    unsigned flags = rhs->flags;
737
    lhs->selector = rhs->selector;
738
    lhs->base = rhs->base;
739
    lhs->limit = rhs->limit;
740
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
741
    lhs->present = (flags & DESC_P_MASK) != 0;
742
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
743
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
744
    lhs->s = (flags & DESC_S_MASK) != 0;
745
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
746
    lhs->g = (flags & DESC_G_MASK) != 0;
747
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
748
    lhs->unusable = 0;
749
    lhs->padding = 0;
750
}
751

    
752
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
753
{
754
    lhs->selector = rhs->selector;
755
    lhs->base = rhs->base;
756
    lhs->limit = rhs->limit;
757
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
758
                 (rhs->present * DESC_P_MASK) |
759
                 (rhs->dpl << DESC_DPL_SHIFT) |
760
                 (rhs->db << DESC_B_SHIFT) |
761
                 (rhs->s * DESC_S_MASK) |
762
                 (rhs->l << DESC_L_SHIFT) |
763
                 (rhs->g * DESC_G_MASK) |
764
                 (rhs->avl * DESC_AVL_MASK);
765
}
766

    
767
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
768
{
769
    if (set) {
770
        *kvm_reg = *qemu_reg;
771
    } else {
772
        *qemu_reg = *kvm_reg;
773
    }
774
}
775

    
776
static int kvm_getput_regs(CPUX86State *env, int set)
777
{
778
    struct kvm_regs regs;
779
    int ret = 0;
780

    
781
    if (!set) {
782
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
783
        if (ret < 0) {
784
            return ret;
785
        }
786
    }
787

    
788
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
789
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
790
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
791
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
792
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
793
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
794
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
795
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
796
#ifdef TARGET_X86_64
797
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
798
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
799
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
800
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
801
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
802
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
803
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
804
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
805
#endif
806

    
807
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
808
    kvm_getput_reg(&regs.rip, &env->eip, set);
809

    
810
    if (set) {
811
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
812
    }
813

    
814
    return ret;
815
}
816

    
817
static int kvm_put_fpu(CPUX86State *env)
818
{
819
    struct kvm_fpu fpu;
820
    int i;
821

    
822
    memset(&fpu, 0, sizeof fpu);
823
    fpu.fsw = env->fpus & ~(7 << 11);
824
    fpu.fsw |= (env->fpstt & 7) << 11;
825
    fpu.fcw = env->fpuc;
826
    fpu.last_opcode = env->fpop;
827
    fpu.last_ip = env->fpip;
828
    fpu.last_dp = env->fpdp;
829
    for (i = 0; i < 8; ++i) {
830
        fpu.ftwx |= (!env->fptags[i]) << i;
831
    }
832
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
833
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
834
    fpu.mxcsr = env->mxcsr;
835

    
836
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
837
}
838

    
839
#define XSAVE_FCW_FSW     0
840
#define XSAVE_FTW_FOP     1
841
#define XSAVE_CWD_RIP     2
842
#define XSAVE_CWD_RDP     4
843
#define XSAVE_MXCSR       6
844
#define XSAVE_ST_SPACE    8
845
#define XSAVE_XMM_SPACE   40
846
#define XSAVE_XSTATE_BV   128
847
#define XSAVE_YMMH_SPACE  144
848

    
849
static int kvm_put_xsave(CPUX86State *env)
850
{
851
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
852
    uint16_t cwd, swd, twd;
853
    int i, r;
854

    
855
    if (!kvm_has_xsave()) {
856
        return kvm_put_fpu(env);
857
    }
858

    
859
    memset(xsave, 0, sizeof(struct kvm_xsave));
860
    twd = 0;
861
    swd = env->fpus & ~(7 << 11);
862
    swd |= (env->fpstt & 7) << 11;
863
    cwd = env->fpuc;
864
    for (i = 0; i < 8; ++i) {
865
        twd |= (!env->fptags[i]) << i;
866
    }
867
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
868
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
869
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
870
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
871
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
872
            sizeof env->fpregs);
873
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
874
            sizeof env->xmm_regs);
875
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
876
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
877
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
878
            sizeof env->ymmh_regs);
879
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
880
    return r;
881
}
882

    
883
static int kvm_put_xcrs(CPUX86State *env)
884
{
885
    struct kvm_xcrs xcrs;
886

    
887
    if (!kvm_has_xcrs()) {
888
        return 0;
889
    }
890

    
891
    xcrs.nr_xcrs = 1;
892
    xcrs.flags = 0;
893
    xcrs.xcrs[0].xcr = 0;
894
    xcrs.xcrs[0].value = env->xcr0;
895
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
896
}
897

    
898
static int kvm_put_sregs(CPUX86State *env)
899
{
900
    struct kvm_sregs sregs;
901

    
902
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
903
    if (env->interrupt_injected >= 0) {
904
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
905
                (uint64_t)1 << (env->interrupt_injected % 64);
906
    }
907

    
908
    if ((env->eflags & VM_MASK)) {
909
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
910
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
911
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
912
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
913
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
914
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
915
    } else {
916
        set_seg(&sregs.cs, &env->segs[R_CS]);
917
        set_seg(&sregs.ds, &env->segs[R_DS]);
918
        set_seg(&sregs.es, &env->segs[R_ES]);
919
        set_seg(&sregs.fs, &env->segs[R_FS]);
920
        set_seg(&sregs.gs, &env->segs[R_GS]);
921
        set_seg(&sregs.ss, &env->segs[R_SS]);
922
    }
923

    
924
    set_seg(&sregs.tr, &env->tr);
925
    set_seg(&sregs.ldt, &env->ldt);
926

    
927
    sregs.idt.limit = env->idt.limit;
928
    sregs.idt.base = env->idt.base;
929
    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
930
    sregs.gdt.limit = env->gdt.limit;
931
    sregs.gdt.base = env->gdt.base;
932
    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
933

    
934
    sregs.cr0 = env->cr[0];
935
    sregs.cr2 = env->cr[2];
936
    sregs.cr3 = env->cr[3];
937
    sregs.cr4 = env->cr[4];
938

    
939
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
940
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
941

    
942
    sregs.efer = env->efer;
943

    
944
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
945
}
946

    
947
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
948
                              uint32_t index, uint64_t value)
949
{
950
    entry->index = index;
951
    entry->data = value;
952
}
953

    
954
static int kvm_put_msrs(CPUX86State *env, int level)
955
{
956
    struct {
957
        struct kvm_msrs info;
958
        struct kvm_msr_entry entries[100];
959
    } msr_data;
960
    struct kvm_msr_entry *msrs = msr_data.entries;
961
    int n = 0;
962

    
963
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
964
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
965
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
966
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
967
    if (has_msr_star) {
968
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
969
    }
970
    if (has_msr_hsave_pa) {
971
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
972
    }
973
    if (has_msr_tsc_deadline) {
974
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
975
    }
976
    if (has_msr_misc_enable) {
977
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
978
                          env->msr_ia32_misc_enable);
979
    }
980
#ifdef TARGET_X86_64
981
    if (lm_capable_kernel) {
982
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
983
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
984
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
985
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
986
    }
987
#endif
988
    if (level == KVM_PUT_FULL_STATE) {
989
        /*
990
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
991
         * writeback. Until this is fixed, we only write the offset to SMP
992
         * guests after migration, desynchronizing the VCPUs, but avoiding
993
         * huge jump-backs that would occur without any writeback at all.
994
         */
995
        if (smp_cpus == 1 || env->tsc != 0) {
996
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
997
        }
998
    }
999
    /*
1000
     * The following paravirtual MSRs have side effects on the guest or are
1001
     * too heavy for normal writeback. Limit them to reset or full state
1002
     * updates.
1003
     */
1004
    if (level >= KVM_PUT_RESET_STATE) {
1005
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1006
                          env->system_time_msr);
1007
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1008
        if (has_msr_async_pf_en) {
1009
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1010
                              env->async_pf_en_msr);
1011
        }
1012
        if (hyperv_hypercall_available()) {
1013
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1014
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1015
        }
1016
        if (hyperv_vapic_recommended()) {
1017
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1018
        }
1019
    }
1020
    if (env->mcg_cap) {
1021
        int i;
1022

    
1023
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1024
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1025
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1026
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1027
        }
1028
    }
1029

    
1030
    msr_data.info.nmsrs = n;
1031

    
1032
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1033

    
1034
}
1035

    
1036

    
1037
static int kvm_get_fpu(CPUX86State *env)
1038
{
1039
    struct kvm_fpu fpu;
1040
    int i, ret;
1041

    
1042
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1043
    if (ret < 0) {
1044
        return ret;
1045
    }
1046

    
1047
    env->fpstt = (fpu.fsw >> 11) & 7;
1048
    env->fpus = fpu.fsw;
1049
    env->fpuc = fpu.fcw;
1050
    env->fpop = fpu.last_opcode;
1051
    env->fpip = fpu.last_ip;
1052
    env->fpdp = fpu.last_dp;
1053
    for (i = 0; i < 8; ++i) {
1054
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1055
    }
1056
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1057
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1058
    env->mxcsr = fpu.mxcsr;
1059

    
1060
    return 0;
1061
}
1062

    
1063
static int kvm_get_xsave(CPUX86State *env)
1064
{
1065
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1066
    int ret, i;
1067
    uint16_t cwd, swd, twd;
1068

    
1069
    if (!kvm_has_xsave()) {
1070
        return kvm_get_fpu(env);
1071
    }
1072

    
1073
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1074
    if (ret < 0) {
1075
        return ret;
1076
    }
1077

    
1078
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1079
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1080
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1081
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1082
    env->fpstt = (swd >> 11) & 7;
1083
    env->fpus = swd;
1084
    env->fpuc = cwd;
1085
    for (i = 0; i < 8; ++i) {
1086
        env->fptags[i] = !((twd >> i) & 1);
1087
    }
1088
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1089
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1090
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1091
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1092
            sizeof env->fpregs);
1093
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1094
            sizeof env->xmm_regs);
1095
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1096
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1097
            sizeof env->ymmh_regs);
1098
    return 0;
1099
}
1100

    
1101
static int kvm_get_xcrs(CPUX86State *env)
1102
{
1103
    int i, ret;
1104
    struct kvm_xcrs xcrs;
1105

    
1106
    if (!kvm_has_xcrs()) {
1107
        return 0;
1108
    }
1109

    
1110
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1111
    if (ret < 0) {
1112
        return ret;
1113
    }
1114

    
1115
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1116
        /* Only support xcr0 now */
1117
        if (xcrs.xcrs[0].xcr == 0) {
1118
            env->xcr0 = xcrs.xcrs[0].value;
1119
            break;
1120
        }
1121
    }
1122
    return 0;
1123
}
1124

    
1125
static int kvm_get_sregs(CPUX86State *env)
1126
{
1127
    struct kvm_sregs sregs;
1128
    uint32_t hflags;
1129
    int bit, i, ret;
1130

    
1131
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1132
    if (ret < 0) {
1133
        return ret;
1134
    }
1135

    
1136
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1137
       to find it and save its number instead (-1 for none). */
1138
    env->interrupt_injected = -1;
1139
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1140
        if (sregs.interrupt_bitmap[i]) {
1141
            bit = ctz64(sregs.interrupt_bitmap[i]);
1142
            env->interrupt_injected = i * 64 + bit;
1143
            break;
1144
        }
1145
    }
1146

    
1147
    get_seg(&env->segs[R_CS], &sregs.cs);
1148
    get_seg(&env->segs[R_DS], &sregs.ds);
1149
    get_seg(&env->segs[R_ES], &sregs.es);
1150
    get_seg(&env->segs[R_FS], &sregs.fs);
1151
    get_seg(&env->segs[R_GS], &sregs.gs);
1152
    get_seg(&env->segs[R_SS], &sregs.ss);
1153

    
1154
    get_seg(&env->tr, &sregs.tr);
1155
    get_seg(&env->ldt, &sregs.ldt);
1156

    
1157
    env->idt.limit = sregs.idt.limit;
1158
    env->idt.base = sregs.idt.base;
1159
    env->gdt.limit = sregs.gdt.limit;
1160
    env->gdt.base = sregs.gdt.base;
1161

    
1162
    env->cr[0] = sregs.cr0;
1163
    env->cr[2] = sregs.cr2;
1164
    env->cr[3] = sregs.cr3;
1165
    env->cr[4] = sregs.cr4;
1166

    
1167
    env->efer = sregs.efer;
1168

    
1169
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1170

    
1171
#define HFLAG_COPY_MASK \
1172
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1173
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1174
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1175
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1176

    
1177
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1178
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1179
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1180
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1181
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1182
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1183
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1184

    
1185
    if (env->efer & MSR_EFER_LMA) {
1186
        hflags |= HF_LMA_MASK;
1187
    }
1188

    
1189
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1190
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1191
    } else {
1192
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1193
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1194
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1195
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1196
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1197
            !(hflags & HF_CS32_MASK)) {
1198
            hflags |= HF_ADDSEG_MASK;
1199
        } else {
1200
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1201
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1202
        }
1203
    }
1204
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1205

    
1206
    return 0;
1207
}
1208

    
1209
static int kvm_get_msrs(CPUX86State *env)
1210
{
1211
    struct {
1212
        struct kvm_msrs info;
1213
        struct kvm_msr_entry entries[100];
1214
    } msr_data;
1215
    struct kvm_msr_entry *msrs = msr_data.entries;
1216
    int ret, i, n;
1217

    
1218
    n = 0;
1219
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1220
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1221
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1222
    msrs[n++].index = MSR_PAT;
1223
    if (has_msr_star) {
1224
        msrs[n++].index = MSR_STAR;
1225
    }
1226
    if (has_msr_hsave_pa) {
1227
        msrs[n++].index = MSR_VM_HSAVE_PA;
1228
    }
1229
    if (has_msr_tsc_deadline) {
1230
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1231
    }
1232
    if (has_msr_misc_enable) {
1233
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1234
    }
1235

    
1236
    if (!env->tsc_valid) {
1237
        msrs[n++].index = MSR_IA32_TSC;
1238
        env->tsc_valid = !runstate_is_running();
1239
    }
1240

    
1241
#ifdef TARGET_X86_64
1242
    if (lm_capable_kernel) {
1243
        msrs[n++].index = MSR_CSTAR;
1244
        msrs[n++].index = MSR_KERNELGSBASE;
1245
        msrs[n++].index = MSR_FMASK;
1246
        msrs[n++].index = MSR_LSTAR;
1247
    }
1248
#endif
1249
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1250
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1251
    if (has_msr_async_pf_en) {
1252
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1253
    }
1254

    
1255
    if (env->mcg_cap) {
1256
        msrs[n++].index = MSR_MCG_STATUS;
1257
        msrs[n++].index = MSR_MCG_CTL;
1258
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1259
            msrs[n++].index = MSR_MC0_CTL + i;
1260
        }
1261
    }
1262

    
1263
    msr_data.info.nmsrs = n;
1264
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1265
    if (ret < 0) {
1266
        return ret;
1267
    }
1268

    
1269
    for (i = 0; i < ret; i++) {
1270
        switch (msrs[i].index) {
1271
        case MSR_IA32_SYSENTER_CS:
1272
            env->sysenter_cs = msrs[i].data;
1273
            break;
1274
        case MSR_IA32_SYSENTER_ESP:
1275
            env->sysenter_esp = msrs[i].data;
1276
            break;
1277
        case MSR_IA32_SYSENTER_EIP:
1278
            env->sysenter_eip = msrs[i].data;
1279
            break;
1280
        case MSR_PAT:
1281
            env->pat = msrs[i].data;
1282
            break;
1283
        case MSR_STAR:
1284
            env->star = msrs[i].data;
1285
            break;
1286
#ifdef TARGET_X86_64
1287
        case MSR_CSTAR:
1288
            env->cstar = msrs[i].data;
1289
            break;
1290
        case MSR_KERNELGSBASE:
1291
            env->kernelgsbase = msrs[i].data;
1292
            break;
1293
        case MSR_FMASK:
1294
            env->fmask = msrs[i].data;
1295
            break;
1296
        case MSR_LSTAR:
1297
            env->lstar = msrs[i].data;
1298
            break;
1299
#endif
1300
        case MSR_IA32_TSC:
1301
            env->tsc = msrs[i].data;
1302
            break;
1303
        case MSR_IA32_TSCDEADLINE:
1304
            env->tsc_deadline = msrs[i].data;
1305
            break;
1306
        case MSR_VM_HSAVE_PA:
1307
            env->vm_hsave = msrs[i].data;
1308
            break;
1309
        case MSR_KVM_SYSTEM_TIME:
1310
            env->system_time_msr = msrs[i].data;
1311
            break;
1312
        case MSR_KVM_WALL_CLOCK:
1313
            env->wall_clock_msr = msrs[i].data;
1314
            break;
1315
        case MSR_MCG_STATUS:
1316
            env->mcg_status = msrs[i].data;
1317
            break;
1318
        case MSR_MCG_CTL:
1319
            env->mcg_ctl = msrs[i].data;
1320
            break;
1321
        case MSR_IA32_MISC_ENABLE:
1322
            env->msr_ia32_misc_enable = msrs[i].data;
1323
            break;
1324
        default:
1325
            if (msrs[i].index >= MSR_MC0_CTL &&
1326
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1327
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1328
            }
1329
            break;
1330
        case MSR_KVM_ASYNC_PF_EN:
1331
            env->async_pf_en_msr = msrs[i].data;
1332
            break;
1333
        }
1334
    }
1335

    
1336
    return 0;
1337
}
1338

    
1339
static int kvm_put_mp_state(CPUX86State *env)
1340
{
1341
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1342

    
1343
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1344
}
1345

    
1346
static int kvm_get_mp_state(CPUX86State *env)
1347
{
1348
    struct kvm_mp_state mp_state;
1349
    int ret;
1350

    
1351
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1352
    if (ret < 0) {
1353
        return ret;
1354
    }
1355
    env->mp_state = mp_state.mp_state;
1356
    if (kvm_irqchip_in_kernel()) {
1357
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1358
    }
1359
    return 0;
1360
}
1361

    
1362
static int kvm_get_apic(CPUX86State *env)
1363
{
1364
    DeviceState *apic = env->apic_state;
1365
    struct kvm_lapic_state kapic;
1366
    int ret;
1367

    
1368
    if (apic && kvm_irqchip_in_kernel()) {
1369
        ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1370
        if (ret < 0) {
1371
            return ret;
1372
        }
1373

    
1374
        kvm_get_apic_state(apic, &kapic);
1375
    }
1376
    return 0;
1377
}
1378

    
1379
static int kvm_put_apic(CPUX86State *env)
1380
{
1381
    DeviceState *apic = env->apic_state;
1382
    struct kvm_lapic_state kapic;
1383

    
1384
    if (apic && kvm_irqchip_in_kernel()) {
1385
        kvm_put_apic_state(apic, &kapic);
1386

    
1387
        return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1388
    }
1389
    return 0;
1390
}
1391

    
1392
static int kvm_put_vcpu_events(CPUX86State *env, int level)
1393
{
1394
    struct kvm_vcpu_events events;
1395

    
1396
    if (!kvm_has_vcpu_events()) {
1397
        return 0;
1398
    }
1399

    
1400
    events.exception.injected = (env->exception_injected >= 0);
1401
    events.exception.nr = env->exception_injected;
1402
    events.exception.has_error_code = env->has_error_code;
1403
    events.exception.error_code = env->error_code;
1404
    events.exception.pad = 0;
1405

    
1406
    events.interrupt.injected = (env->interrupt_injected >= 0);
1407
    events.interrupt.nr = env->interrupt_injected;
1408
    events.interrupt.soft = env->soft_interrupt;
1409

    
1410
    events.nmi.injected = env->nmi_injected;
1411
    events.nmi.pending = env->nmi_pending;
1412
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1413
    events.nmi.pad = 0;
1414

    
1415
    events.sipi_vector = env->sipi_vector;
1416

    
1417
    events.flags = 0;
1418
    if (level >= KVM_PUT_RESET_STATE) {
1419
        events.flags |=
1420
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1421
    }
1422

    
1423
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1424
}
1425

    
1426
static int kvm_get_vcpu_events(CPUX86State *env)
1427
{
1428
    struct kvm_vcpu_events events;
1429
    int ret;
1430

    
1431
    if (!kvm_has_vcpu_events()) {
1432
        return 0;
1433
    }
1434

    
1435
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1436
    if (ret < 0) {
1437
       return ret;
1438
    }
1439
    env->exception_injected =
1440
       events.exception.injected ? events.exception.nr : -1;
1441
    env->has_error_code = events.exception.has_error_code;
1442
    env->error_code = events.exception.error_code;
1443

    
1444
    env->interrupt_injected =
1445
        events.interrupt.injected ? events.interrupt.nr : -1;
1446
    env->soft_interrupt = events.interrupt.soft;
1447

    
1448
    env->nmi_injected = events.nmi.injected;
1449
    env->nmi_pending = events.nmi.pending;
1450
    if (events.nmi.masked) {
1451
        env->hflags2 |= HF2_NMI_MASK;
1452
    } else {
1453
        env->hflags2 &= ~HF2_NMI_MASK;
1454
    }
1455

    
1456
    env->sipi_vector = events.sipi_vector;
1457

    
1458
    return 0;
1459
}
1460

    
1461
static int kvm_guest_debug_workarounds(CPUX86State *env)
1462
{
1463
    int ret = 0;
1464
    unsigned long reinject_trap = 0;
1465

    
1466
    if (!kvm_has_vcpu_events()) {
1467
        if (env->exception_injected == 1) {
1468
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1469
        } else if (env->exception_injected == 3) {
1470
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1471
        }
1472
        env->exception_injected = -1;
1473
    }
1474

    
1475
    /*
1476
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1477
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1478
     * by updating the debug state once again if single-stepping is on.
1479
     * Another reason to call kvm_update_guest_debug here is a pending debug
1480
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1481
     * reinject them via SET_GUEST_DEBUG.
1482
     */
1483
    if (reinject_trap ||
1484
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1485
        ret = kvm_update_guest_debug(env, reinject_trap);
1486
    }
1487
    return ret;
1488
}
1489

    
1490
static int kvm_put_debugregs(CPUX86State *env)
1491
{
1492
    struct kvm_debugregs dbgregs;
1493
    int i;
1494

    
1495
    if (!kvm_has_debugregs()) {
1496
        return 0;
1497
    }
1498

    
1499
    for (i = 0; i < 4; i++) {
1500
        dbgregs.db[i] = env->dr[i];
1501
    }
1502
    dbgregs.dr6 = env->dr[6];
1503
    dbgregs.dr7 = env->dr[7];
1504
    dbgregs.flags = 0;
1505

    
1506
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1507
}
1508

    
1509
static int kvm_get_debugregs(CPUX86State *env)
1510
{
1511
    struct kvm_debugregs dbgregs;
1512
    int i, ret;
1513

    
1514
    if (!kvm_has_debugregs()) {
1515
        return 0;
1516
    }
1517

    
1518
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1519
    if (ret < 0) {
1520
        return ret;
1521
    }
1522
    for (i = 0; i < 4; i++) {
1523
        env->dr[i] = dbgregs.db[i];
1524
    }
1525
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1526
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1527

    
1528
    return 0;
1529
}
1530

    
1531
int kvm_arch_put_registers(CPUX86State *env, int level)
1532
{
1533
    int ret;
1534

    
1535
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1536

    
1537
    ret = kvm_getput_regs(env, 1);
1538
    if (ret < 0) {
1539
        return ret;
1540
    }
1541
    ret = kvm_put_xsave(env);
1542
    if (ret < 0) {
1543
        return ret;
1544
    }
1545
    ret = kvm_put_xcrs(env);
1546
    if (ret < 0) {
1547
        return ret;
1548
    }
1549
    ret = kvm_put_sregs(env);
1550
    if (ret < 0) {
1551
        return ret;
1552
    }
1553
    /* must be before kvm_put_msrs */
1554
    ret = kvm_inject_mce_oldstyle(env);
1555
    if (ret < 0) {
1556
        return ret;
1557
    }
1558
    ret = kvm_put_msrs(env, level);
1559
    if (ret < 0) {
1560
        return ret;
1561
    }
1562
    if (level >= KVM_PUT_RESET_STATE) {
1563
        ret = kvm_put_mp_state(env);
1564
        if (ret < 0) {
1565
            return ret;
1566
        }
1567
        ret = kvm_put_apic(env);
1568
        if (ret < 0) {
1569
            return ret;
1570
        }
1571
    }
1572
    ret = kvm_put_vcpu_events(env, level);
1573
    if (ret < 0) {
1574
        return ret;
1575
    }
1576
    ret = kvm_put_debugregs(env);
1577
    if (ret < 0) {
1578
        return ret;
1579
    }
1580
    /* must be last */
1581
    ret = kvm_guest_debug_workarounds(env);
1582
    if (ret < 0) {
1583
        return ret;
1584
    }
1585
    return 0;
1586
}
1587

    
1588
int kvm_arch_get_registers(CPUX86State *env)
1589
{
1590
    int ret;
1591

    
1592
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1593

    
1594
    ret = kvm_getput_regs(env, 0);
1595
    if (ret < 0) {
1596
        return ret;
1597
    }
1598
    ret = kvm_get_xsave(env);
1599
    if (ret < 0) {
1600
        return ret;
1601
    }
1602
    ret = kvm_get_xcrs(env);
1603
    if (ret < 0) {
1604
        return ret;
1605
    }
1606
    ret = kvm_get_sregs(env);
1607
    if (ret < 0) {
1608
        return ret;
1609
    }
1610
    ret = kvm_get_msrs(env);
1611
    if (ret < 0) {
1612
        return ret;
1613
    }
1614
    ret = kvm_get_mp_state(env);
1615
    if (ret < 0) {
1616
        return ret;
1617
    }
1618
    ret = kvm_get_apic(env);
1619
    if (ret < 0) {
1620
        return ret;
1621
    }
1622
    ret = kvm_get_vcpu_events(env);
1623
    if (ret < 0) {
1624
        return ret;
1625
    }
1626
    ret = kvm_get_debugregs(env);
1627
    if (ret < 0) {
1628
        return ret;
1629
    }
1630
    return 0;
1631
}
1632

    
1633
void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1634
{
1635
    int ret;
1636

    
1637
    /* Inject NMI */
1638
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1639
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1640
        DPRINTF("injected NMI\n");
1641
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1642
        if (ret < 0) {
1643
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1644
                    strerror(-ret));
1645
        }
1646
    }
1647

    
1648
    if (!kvm_irqchip_in_kernel()) {
1649
        /* Force the VCPU out of its inner loop to process any INIT requests
1650
         * or pending TPR access reports. */
1651
        if (env->interrupt_request &
1652
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1653
            env->exit_request = 1;
1654
        }
1655

    
1656
        /* Try to inject an interrupt if the guest can accept it */
1657
        if (run->ready_for_interrupt_injection &&
1658
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1659
            (env->eflags & IF_MASK)) {
1660
            int irq;
1661

    
1662
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1663
            irq = cpu_get_pic_interrupt(env);
1664
            if (irq >= 0) {
1665
                struct kvm_interrupt intr;
1666

    
1667
                intr.irq = irq;
1668
                DPRINTF("injected interrupt %d\n", irq);
1669
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1670
                if (ret < 0) {
1671
                    fprintf(stderr,
1672
                            "KVM: injection failed, interrupt lost (%s)\n",
1673
                            strerror(-ret));
1674
                }
1675
            }
1676
        }
1677

    
1678
        /* If we have an interrupt but the guest is not ready to receive an
1679
         * interrupt, request an interrupt window exit.  This will
1680
         * cause a return to userspace as soon as the guest is ready to
1681
         * receive interrupts. */
1682
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1683
            run->request_interrupt_window = 1;
1684
        } else {
1685
            run->request_interrupt_window = 0;
1686
        }
1687

    
1688
        DPRINTF("setting tpr\n");
1689
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1690
    }
1691
}
1692

    
1693
void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1694
{
1695
    if (run->if_flag) {
1696
        env->eflags |= IF_MASK;
1697
    } else {
1698
        env->eflags &= ~IF_MASK;
1699
    }
1700
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1701
    cpu_set_apic_base(env->apic_state, run->apic_base);
1702
}
1703

    
1704
int kvm_arch_process_async_events(CPUX86State *env)
1705
{
1706
    X86CPU *cpu = x86_env_get_cpu(env);
1707

    
1708
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1709
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1710
        assert(env->mcg_cap);
1711

    
1712
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1713

    
1714
        kvm_cpu_synchronize_state(env);
1715

    
1716
        if (env->exception_injected == EXCP08_DBLE) {
1717
            /* this means triple fault */
1718
            qemu_system_reset_request();
1719
            env->exit_request = 1;
1720
            return 0;
1721
        }
1722
        env->exception_injected = EXCP12_MCHK;
1723
        env->has_error_code = 0;
1724

    
1725
        env->halted = 0;
1726
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1727
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1728
        }
1729
    }
1730

    
1731
    if (kvm_irqchip_in_kernel()) {
1732
        return 0;
1733
    }
1734

    
1735
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1736
         (env->eflags & IF_MASK)) ||
1737
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1738
        env->halted = 0;
1739
    }
1740
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1741
        kvm_cpu_synchronize_state(env);
1742
        do_cpu_init(cpu);
1743
    }
1744
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1745
        kvm_cpu_synchronize_state(env);
1746
        do_cpu_sipi(cpu);
1747
    }
1748
    if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1749
        env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1750
        kvm_cpu_synchronize_state(env);
1751
        apic_handle_tpr_access_report(env->apic_state, env->eip,
1752
                                      env->tpr_access_type);
1753
    }
1754

    
1755
    return env->halted;
1756
}
1757

    
1758
static int kvm_handle_halt(CPUX86State *env)
1759
{
1760
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1761
          (env->eflags & IF_MASK)) &&
1762
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1763
        env->halted = 1;
1764
        return EXCP_HLT;
1765
    }
1766

    
1767
    return 0;
1768
}
1769

    
1770
static int kvm_handle_tpr_access(CPUX86State *env)
1771
{
1772
    struct kvm_run *run = env->kvm_run;
1773

    
1774
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1775
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
1776
                                                           : TPR_ACCESS_READ);
1777
    return 1;
1778
}
1779

    
1780
int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1781
{
1782
    static const uint8_t int3 = 0xcc;
1783

    
1784
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1785
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1786
        return -EINVAL;
1787
    }
1788
    return 0;
1789
}
1790

    
1791
int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1792
{
1793
    uint8_t int3;
1794

    
1795
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1796
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1797
        return -EINVAL;
1798
    }
1799
    return 0;
1800
}
1801

    
1802
static struct {
1803
    target_ulong addr;
1804
    int len;
1805
    int type;
1806
} hw_breakpoint[4];
1807

    
1808
static int nb_hw_breakpoint;
1809

    
1810
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1811
{
1812
    int n;
1813

    
1814
    for (n = 0; n < nb_hw_breakpoint; n++) {
1815
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1816
            (hw_breakpoint[n].len == len || len == -1)) {
1817
            return n;
1818
        }
1819
    }
1820
    return -1;
1821
}
1822

    
1823
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1824
                                  target_ulong len, int type)
1825
{
1826
    switch (type) {
1827
    case GDB_BREAKPOINT_HW:
1828
        len = 1;
1829
        break;
1830
    case GDB_WATCHPOINT_WRITE:
1831
    case GDB_WATCHPOINT_ACCESS:
1832
        switch (len) {
1833
        case 1:
1834
            break;
1835
        case 2:
1836
        case 4:
1837
        case 8:
1838
            if (addr & (len - 1)) {
1839
                return -EINVAL;
1840
            }
1841
            break;
1842
        default:
1843
            return -EINVAL;
1844
        }
1845
        break;
1846
    default:
1847
        return -ENOSYS;
1848
    }
1849

    
1850
    if (nb_hw_breakpoint == 4) {
1851
        return -ENOBUFS;
1852
    }
1853
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1854
        return -EEXIST;
1855
    }
1856
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1857
    hw_breakpoint[nb_hw_breakpoint].len = len;
1858
    hw_breakpoint[nb_hw_breakpoint].type = type;
1859
    nb_hw_breakpoint++;
1860

    
1861
    return 0;
1862
}
1863

    
1864
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1865
                                  target_ulong len, int type)
1866
{
1867
    int n;
1868

    
1869
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1870
    if (n < 0) {
1871
        return -ENOENT;
1872
    }
1873
    nb_hw_breakpoint--;
1874
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1875

    
1876
    return 0;
1877
}
1878

    
1879
void kvm_arch_remove_all_hw_breakpoints(void)
1880
{
1881
    nb_hw_breakpoint = 0;
1882
}
1883

    
1884
static CPUWatchpoint hw_watchpoint;
1885

    
1886
static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1887
{
1888
    int ret = 0;
1889
    int n;
1890

    
1891
    if (arch_info->exception == 1) {
1892
        if (arch_info->dr6 & (1 << 14)) {
1893
            if (cpu_single_env->singlestep_enabled) {
1894
                ret = EXCP_DEBUG;
1895
            }
1896
        } else {
1897
            for (n = 0; n < 4; n++) {
1898
                if (arch_info->dr6 & (1 << n)) {
1899
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1900
                    case 0x0:
1901
                        ret = EXCP_DEBUG;
1902
                        break;
1903
                    case 0x1:
1904
                        ret = EXCP_DEBUG;
1905
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1906
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1907
                        hw_watchpoint.flags = BP_MEM_WRITE;
1908
                        break;
1909
                    case 0x3:
1910
                        ret = EXCP_DEBUG;
1911
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1912
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1913
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1914
                        break;
1915
                    }
1916
                }
1917
            }
1918
        }
1919
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1920
        ret = EXCP_DEBUG;
1921
    }
1922
    if (ret == 0) {
1923
        cpu_synchronize_state(cpu_single_env);
1924
        assert(cpu_single_env->exception_injected == -1);
1925

    
1926
        /* pass to guest */
1927
        cpu_single_env->exception_injected = arch_info->exception;
1928
        cpu_single_env->has_error_code = 0;
1929
    }
1930

    
1931
    return ret;
1932
}
1933

    
1934
void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1935
{
1936
    const uint8_t type_code[] = {
1937
        [GDB_BREAKPOINT_HW] = 0x0,
1938
        [GDB_WATCHPOINT_WRITE] = 0x1,
1939
        [GDB_WATCHPOINT_ACCESS] = 0x3
1940
    };
1941
    const uint8_t len_code[] = {
1942
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1943
    };
1944
    int n;
1945

    
1946
    if (kvm_sw_breakpoints_active(env)) {
1947
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1948
    }
1949
    if (nb_hw_breakpoint > 0) {
1950
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1951
        dbg->arch.debugreg[7] = 0x0600;
1952
        for (n = 0; n < nb_hw_breakpoint; n++) {
1953
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1954
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1955
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1956
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1957
        }
1958
    }
1959
}
1960

    
1961
static bool host_supports_vmx(void)
1962
{
1963
    uint32_t ecx, unused;
1964

    
1965
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1966
    return ecx & CPUID_EXT_VMX;
1967
}
1968

    
1969
#define VMX_INVALID_GUEST_STATE 0x80000021
1970

    
1971
int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
1972
{
1973
    uint64_t code;
1974
    int ret;
1975

    
1976
    switch (run->exit_reason) {
1977
    case KVM_EXIT_HLT:
1978
        DPRINTF("handle_hlt\n");
1979
        ret = kvm_handle_halt(env);
1980
        break;
1981
    case KVM_EXIT_SET_TPR:
1982
        ret = 0;
1983
        break;
1984
    case KVM_EXIT_TPR_ACCESS:
1985
        ret = kvm_handle_tpr_access(env);
1986
        break;
1987
    case KVM_EXIT_FAIL_ENTRY:
1988
        code = run->fail_entry.hardware_entry_failure_reason;
1989
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1990
                code);
1991
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1992
            fprintf(stderr,
1993
                    "\nIf you're running a guest on an Intel machine without "
1994
                        "unrestricted mode\n"
1995
                    "support, the failure can be most likely due to the guest "
1996
                        "entering an invalid\n"
1997
                    "state for Intel VT. For example, the guest maybe running "
1998
                        "in big real mode\n"
1999
                    "which is not supported on less recent Intel processors."
2000
                        "\n\n");
2001
        }
2002
        ret = -1;
2003
        break;
2004
    case KVM_EXIT_EXCEPTION:
2005
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2006
                run->ex.exception, run->ex.error_code);
2007
        ret = -1;
2008
        break;
2009
    case KVM_EXIT_DEBUG:
2010
        DPRINTF("kvm_exit_debug\n");
2011
        ret = kvm_handle_debug(&run->debug.arch);
2012
        break;
2013
    default:
2014
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2015
        ret = -1;
2016
        break;
2017
    }
2018

    
2019
    return ret;
2020
}
2021

    
2022
bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2023
{
2024
    kvm_cpu_synchronize_state(env);
2025
    return !(env->cr[0] & CR0_PE_MASK) ||
2026
           ((env->segs[R_CS].selector  & 3) != 3);
2027
}
2028

    
2029
void kvm_arch_init_irq_routing(KVMState *s)
2030
{
2031
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2032
        /* If kernel can't do irq routing, interrupt source
2033
         * override 0->2 cannot be set up as required by HPET.
2034
         * So we have to disable it.
2035
         */
2036
        no_hpet = 1;
2037
    }
2038
}