Statistics
| Branch: | Revision:

root / vl.c @ a7e21219

History | View | Annotate | Download (153.3 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <unistd.h>
25
#include <fcntl.h>
26
#include <signal.h>
27
#include <time.h>
28
#include <errno.h>
29
#include <sys/time.h>
30
#include <zlib.h>
31

    
32
/* Needed early for HOST_BSD etc. */
33
#include "config-host.h"
34

    
35
#ifndef _WIN32
36
#include <pwd.h>
37
#include <sys/times.h>
38
#include <sys/wait.h>
39
#include <termios.h>
40
#include <sys/mman.h>
41
#include <sys/ioctl.h>
42
#include <sys/resource.h>
43
#include <sys/socket.h>
44
#include <netinet/in.h>
45
#include <net/if.h>
46
#if defined(__NetBSD__)
47
#include <net/if_tap.h>
48
#endif
49
#ifdef __linux__
50
#include <linux/if_tun.h>
51
#endif
52
#include <arpa/inet.h>
53
#include <dirent.h>
54
#include <netdb.h>
55
#include <sys/select.h>
56
#ifdef HOST_BSD
57
#include <sys/stat.h>
58
#if defined(__FreeBSD__) || defined(__DragonFly__)
59
#include <libutil.h>
60
#else
61
#include <util.h>
62
#endif
63
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64
#include <freebsd/stdlib.h>
65
#else
66
#ifdef __linux__
67
#include <pty.h>
68
#include <malloc.h>
69
#include <linux/rtc.h>
70

    
71
/* For the benefit of older linux systems which don't supply it,
72
   we use a local copy of hpet.h. */
73
/* #include <linux/hpet.h> */
74
#include "hpet.h"
75

    
76
#include <linux/ppdev.h>
77
#include <linux/parport.h>
78
#endif
79
#ifdef __sun__
80
#include <sys/stat.h>
81
#include <sys/ethernet.h>
82
#include <sys/sockio.h>
83
#include <netinet/arp.h>
84
#include <netinet/in.h>
85
#include <netinet/in_systm.h>
86
#include <netinet/ip.h>
87
#include <netinet/ip_icmp.h> // must come after ip.h
88
#include <netinet/udp.h>
89
#include <netinet/tcp.h>
90
#include <net/if.h>
91
#include <syslog.h>
92
#include <stropts.h>
93
#endif
94
#endif
95
#endif
96

    
97
#if defined(__OpenBSD__)
98
#include <util.h>
99
#endif
100

    
101
#if defined(CONFIG_VDE)
102
#include <libvdeplug.h>
103
#endif
104

    
105
#ifdef _WIN32
106
#include <windows.h>
107
#include <malloc.h>
108
#include <sys/timeb.h>
109
#include <mmsystem.h>
110
#define getopt_long_only getopt_long
111
#define memalign(align, size) malloc(size)
112
#endif
113

    
114
#ifdef CONFIG_SDL
115
#ifdef __APPLE__
116
#include <SDL/SDL.h>
117
int qemu_main(int argc, char **argv, char **envp);
118
int main(int argc, char **argv)
119
{
120
    qemu_main(argc, argv, NULL);
121
}
122
#undef main
123
#define main qemu_main
124
#endif
125
#endif /* CONFIG_SDL */
126

    
127
#ifdef CONFIG_COCOA
128
#undef main
129
#define main qemu_main
130
#endif /* CONFIG_COCOA */
131

    
132
#include "hw/hw.h"
133
#include "hw/boards.h"
134
#include "hw/usb.h"
135
#include "hw/pcmcia.h"
136
#include "hw/pc.h"
137
#include "hw/audiodev.h"
138
#include "hw/isa.h"
139
#include "hw/baum.h"
140
#include "hw/bt.h"
141
#include "hw/smbios.h"
142
#include "hw/xen.h"
143
#include "bt-host.h"
144
#include "net.h"
145
#include "monitor.h"
146
#include "console.h"
147
#include "sysemu.h"
148
#include "gdbstub.h"
149
#include "qemu-timer.h"
150
#include "qemu-char.h"
151
#include "cache-utils.h"
152
#include "block.h"
153
#include "dma.h"
154
#include "audio/audio.h"
155
#include "migration.h"
156
#include "kvm.h"
157
#include "balloon.h"
158

    
159
#include "disas.h"
160

    
161
#include "exec-all.h"
162

    
163
#include "qemu_socket.h"
164

    
165
#if defined(CONFIG_SLIRP)
166
#include "libslirp.h"
167
#endif
168

    
169
//#define DEBUG_UNUSED_IOPORT
170
//#define DEBUG_IOPORT
171
//#define DEBUG_NET
172
//#define DEBUG_SLIRP
173

    
174

    
175
#ifdef DEBUG_IOPORT
176
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177
#else
178
#  define LOG_IOPORT(...) do { } while (0)
179
#endif
180

    
181
#define DEFAULT_RAM_SIZE 128
182

    
183
/* Max number of USB devices that can be specified on the commandline.  */
184
#define MAX_USB_CMDLINE 8
185

    
186
/* Max number of bluetooth switches on the commandline.  */
187
#define MAX_BT_CMDLINE 10
188

    
189
/* XXX: use a two level table to limit memory usage */
190
#define MAX_IOPORTS 65536
191

    
192
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193
const char *bios_name = NULL;
194
static void *ioport_opaque[MAX_IOPORTS];
195
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198
   to store the VM snapshots */
199
DriveInfo drives_table[MAX_DRIVES+1];
200
int nb_drives;
201
static int vga_ram_size;
202
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203
static DisplayState *display_state;
204
int nographic;
205
static int curses;
206
static int sdl;
207
const char* keyboard_layout = NULL;
208
int64_t ticks_per_sec;
209
ram_addr_t ram_size;
210
int nb_nics;
211
NICInfo nd_table[MAX_NICS];
212
int vm_running;
213
static int autostart;
214
static int rtc_utc = 1;
215
static int rtc_date_offset = -1; /* -1 means no change */
216
int cirrus_vga_enabled = 1;
217
int std_vga_enabled = 0;
218
int vmsvga_enabled = 0;
219
int xenfb_enabled = 0;
220
#ifdef TARGET_SPARC
221
int graphic_width = 1024;
222
int graphic_height = 768;
223
int graphic_depth = 8;
224
#else
225
int graphic_width = 800;
226
int graphic_height = 600;
227
int graphic_depth = 15;
228
#endif
229
static int full_screen = 0;
230
#ifdef CONFIG_SDL
231
static int no_frame = 0;
232
#endif
233
int no_quit = 0;
234
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237
#ifdef TARGET_I386
238
int win2k_install_hack = 0;
239
int rtc_td_hack = 0;
240
#endif
241
int usb_enabled = 0;
242
int singlestep = 0;
243
int smp_cpus = 1;
244
const char *vnc_display;
245
int acpi_enabled = 1;
246
int no_hpet = 0;
247
int fd_bootchk = 1;
248
int no_reboot = 0;
249
int no_shutdown = 0;
250
int cursor_hide = 1;
251
int graphic_rotate = 0;
252
#ifndef _WIN32
253
int daemonize = 0;
254
#endif
255
const char *option_rom[MAX_OPTION_ROMS];
256
int nb_option_roms;
257
int semihosting_enabled = 0;
258
#ifdef TARGET_ARM
259
int old_param = 0;
260
#endif
261
const char *qemu_name;
262
int alt_grab = 0;
263
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
264
unsigned int nb_prom_envs = 0;
265
const char *prom_envs[MAX_PROM_ENVS];
266
#endif
267
int nb_drives_opt;
268
struct drive_opt drives_opt[MAX_DRIVES];
269

    
270
int nb_numa_nodes;
271
uint64_t node_mem[MAX_NODES];
272
uint64_t node_cpumask[MAX_NODES];
273

    
274
static CPUState *cur_cpu;
275
static CPUState *next_cpu;
276
static int timer_alarm_pending = 1;
277
/* Conversion factor from emulated instructions to virtual clock ticks.  */
278
static int icount_time_shift;
279
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
280
#define MAX_ICOUNT_SHIFT 10
281
/* Compensate for varying guest execution speed.  */
282
static int64_t qemu_icount_bias;
283
static QEMUTimer *icount_rt_timer;
284
static QEMUTimer *icount_vm_timer;
285
static QEMUTimer *nographic_timer;
286

    
287
uint8_t qemu_uuid[16];
288

    
289
/***********************************************************/
290
/* x86 ISA bus support */
291

    
292
target_phys_addr_t isa_mem_base = 0;
293
PicState2 *isa_pic;
294

    
295
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
297

    
298
static uint32_t ioport_read(int index, uint32_t address)
299
{
300
    static IOPortReadFunc *default_func[3] = {
301
        default_ioport_readb,
302
        default_ioport_readw,
303
        default_ioport_readl
304
    };
305
    IOPortReadFunc *func = ioport_read_table[index][address];
306
    if (!func)
307
        func = default_func[index];
308
    return func(ioport_opaque[address], address);
309
}
310

    
311
static void ioport_write(int index, uint32_t address, uint32_t data)
312
{
313
    static IOPortWriteFunc *default_func[3] = {
314
        default_ioport_writeb,
315
        default_ioport_writew,
316
        default_ioport_writel
317
    };
318
    IOPortWriteFunc *func = ioport_write_table[index][address];
319
    if (!func)
320
        func = default_func[index];
321
    func(ioport_opaque[address], address, data);
322
}
323

    
324
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325
{
326
#ifdef DEBUG_UNUSED_IOPORT
327
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
328
#endif
329
    return 0xff;
330
}
331

    
332
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333
{
334
#ifdef DEBUG_UNUSED_IOPORT
335
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336
#endif
337
}
338

    
339
/* default is to make two byte accesses */
340
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341
{
342
    uint32_t data;
343
    data = ioport_read(0, address);
344
    address = (address + 1) & (MAX_IOPORTS - 1);
345
    data |= ioport_read(0, address) << 8;
346
    return data;
347
}
348

    
349
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350
{
351
    ioport_write(0, address, data & 0xff);
352
    address = (address + 1) & (MAX_IOPORTS - 1);
353
    ioport_write(0, address, (data >> 8) & 0xff);
354
}
355

    
356
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357
{
358
#ifdef DEBUG_UNUSED_IOPORT
359
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
360
#endif
361
    return 0xffffffff;
362
}
363

    
364
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365
{
366
#ifdef DEBUG_UNUSED_IOPORT
367
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368
#endif
369
}
370

    
371
/* size is the word size in byte */
372
int register_ioport_read(int start, int length, int size,
373
                         IOPortReadFunc *func, void *opaque)
374
{
375
    int i, bsize;
376

    
377
    if (size == 1) {
378
        bsize = 0;
379
    } else if (size == 2) {
380
        bsize = 1;
381
    } else if (size == 4) {
382
        bsize = 2;
383
    } else {
384
        hw_error("register_ioport_read: invalid size");
385
        return -1;
386
    }
387
    for(i = start; i < start + length; i += size) {
388
        ioport_read_table[bsize][i] = func;
389
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390
            hw_error("register_ioport_read: invalid opaque");
391
        ioport_opaque[i] = opaque;
392
    }
393
    return 0;
394
}
395

    
396
/* size is the word size in byte */
397
int register_ioport_write(int start, int length, int size,
398
                          IOPortWriteFunc *func, void *opaque)
399
{
400
    int i, bsize;
401

    
402
    if (size == 1) {
403
        bsize = 0;
404
    } else if (size == 2) {
405
        bsize = 1;
406
    } else if (size == 4) {
407
        bsize = 2;
408
    } else {
409
        hw_error("register_ioport_write: invalid size");
410
        return -1;
411
    }
412
    for(i = start; i < start + length; i += size) {
413
        ioport_write_table[bsize][i] = func;
414
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415
            hw_error("register_ioport_write: invalid opaque");
416
        ioport_opaque[i] = opaque;
417
    }
418
    return 0;
419
}
420

    
421
void isa_unassign_ioport(int start, int length)
422
{
423
    int i;
424

    
425
    for(i = start; i < start + length; i++) {
426
        ioport_read_table[0][i] = default_ioport_readb;
427
        ioport_read_table[1][i] = default_ioport_readw;
428
        ioport_read_table[2][i] = default_ioport_readl;
429

    
430
        ioport_write_table[0][i] = default_ioport_writeb;
431
        ioport_write_table[1][i] = default_ioport_writew;
432
        ioport_write_table[2][i] = default_ioport_writel;
433

    
434
        ioport_opaque[i] = NULL;
435
    }
436
}
437

    
438
/***********************************************************/
439

    
440
void cpu_outb(CPUState *env, int addr, int val)
441
{
442
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
443
    ioport_write(0, addr, val);
444
#ifdef CONFIG_KQEMU
445
    if (env)
446
        env->last_io_time = cpu_get_time_fast();
447
#endif
448
}
449

    
450
void cpu_outw(CPUState *env, int addr, int val)
451
{
452
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
453
    ioport_write(1, addr, val);
454
#ifdef CONFIG_KQEMU
455
    if (env)
456
        env->last_io_time = cpu_get_time_fast();
457
#endif
458
}
459

    
460
void cpu_outl(CPUState *env, int addr, int val)
461
{
462
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
463
    ioport_write(2, addr, val);
464
#ifdef CONFIG_KQEMU
465
    if (env)
466
        env->last_io_time = cpu_get_time_fast();
467
#endif
468
}
469

    
470
int cpu_inb(CPUState *env, int addr)
471
{
472
    int val;
473
    val = ioport_read(0, addr);
474
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
475
#ifdef CONFIG_KQEMU
476
    if (env)
477
        env->last_io_time = cpu_get_time_fast();
478
#endif
479
    return val;
480
}
481

    
482
int cpu_inw(CPUState *env, int addr)
483
{
484
    int val;
485
    val = ioport_read(1, addr);
486
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
487
#ifdef CONFIG_KQEMU
488
    if (env)
489
        env->last_io_time = cpu_get_time_fast();
490
#endif
491
    return val;
492
}
493

    
494
int cpu_inl(CPUState *env, int addr)
495
{
496
    int val;
497
    val = ioport_read(2, addr);
498
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
499
#ifdef CONFIG_KQEMU
500
    if (env)
501
        env->last_io_time = cpu_get_time_fast();
502
#endif
503
    return val;
504
}
505

    
506
/***********************************************************/
507
void hw_error(const char *fmt, ...)
508
{
509
    va_list ap;
510
    CPUState *env;
511

    
512
    va_start(ap, fmt);
513
    fprintf(stderr, "qemu: hardware error: ");
514
    vfprintf(stderr, fmt, ap);
515
    fprintf(stderr, "\n");
516
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
517
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518
#ifdef TARGET_I386
519
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520
#else
521
        cpu_dump_state(env, stderr, fprintf, 0);
522
#endif
523
    }
524
    va_end(ap);
525
    abort();
526
}
527
 
528
/***************/
529
/* ballooning */
530

    
531
static QEMUBalloonEvent *qemu_balloon_event;
532
void *qemu_balloon_event_opaque;
533

    
534
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
535
{
536
    qemu_balloon_event = func;
537
    qemu_balloon_event_opaque = opaque;
538
}
539

    
540
void qemu_balloon(ram_addr_t target)
541
{
542
    if (qemu_balloon_event)
543
        qemu_balloon_event(qemu_balloon_event_opaque, target);
544
}
545

    
546
ram_addr_t qemu_balloon_status(void)
547
{
548
    if (qemu_balloon_event)
549
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550
    return 0;
551
}
552

    
553
/***********************************************************/
554
/* keyboard/mouse */
555

    
556
static QEMUPutKBDEvent *qemu_put_kbd_event;
557
static void *qemu_put_kbd_event_opaque;
558
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
560

    
561
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
562
{
563
    qemu_put_kbd_event_opaque = opaque;
564
    qemu_put_kbd_event = func;
565
}
566

    
567
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568
                                                void *opaque, int absolute,
569
                                                const char *name)
570
{
571
    QEMUPutMouseEntry *s, *cursor;
572

    
573
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
574

    
575
    s->qemu_put_mouse_event = func;
576
    s->qemu_put_mouse_event_opaque = opaque;
577
    s->qemu_put_mouse_event_absolute = absolute;
578
    s->qemu_put_mouse_event_name = qemu_strdup(name);
579
    s->next = NULL;
580

    
581
    if (!qemu_put_mouse_event_head) {
582
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583
        return s;
584
    }
585

    
586
    cursor = qemu_put_mouse_event_head;
587
    while (cursor->next != NULL)
588
        cursor = cursor->next;
589

    
590
    cursor->next = s;
591
    qemu_put_mouse_event_current = s;
592

    
593
    return s;
594
}
595

    
596
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
597
{
598
    QEMUPutMouseEntry *prev = NULL, *cursor;
599

    
600
    if (!qemu_put_mouse_event_head || entry == NULL)
601
        return;
602

    
603
    cursor = qemu_put_mouse_event_head;
604
    while (cursor != NULL && cursor != entry) {
605
        prev = cursor;
606
        cursor = cursor->next;
607
    }
608

    
609
    if (cursor == NULL) // does not exist or list empty
610
        return;
611
    else if (prev == NULL) { // entry is head
612
        qemu_put_mouse_event_head = cursor->next;
613
        if (qemu_put_mouse_event_current == entry)
614
            qemu_put_mouse_event_current = cursor->next;
615
        qemu_free(entry->qemu_put_mouse_event_name);
616
        qemu_free(entry);
617
        return;
618
    }
619

    
620
    prev->next = entry->next;
621

    
622
    if (qemu_put_mouse_event_current == entry)
623
        qemu_put_mouse_event_current = prev;
624

    
625
    qemu_free(entry->qemu_put_mouse_event_name);
626
    qemu_free(entry);
627
}
628

    
629
void kbd_put_keycode(int keycode)
630
{
631
    if (qemu_put_kbd_event) {
632
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
633
    }
634
}
635

    
636
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
637
{
638
    QEMUPutMouseEvent *mouse_event;
639
    void *mouse_event_opaque;
640
    int width;
641

    
642
    if (!qemu_put_mouse_event_current) {
643
        return;
644
    }
645

    
646
    mouse_event =
647
        qemu_put_mouse_event_current->qemu_put_mouse_event;
648
    mouse_event_opaque =
649
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
650

    
651
    if (mouse_event) {
652
        if (graphic_rotate) {
653
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654
                width = 0x7fff;
655
            else
656
                width = graphic_width - 1;
657
            mouse_event(mouse_event_opaque,
658
                                 width - dy, dx, dz, buttons_state);
659
        } else
660
            mouse_event(mouse_event_opaque,
661
                                 dx, dy, dz, buttons_state);
662
    }
663
}
664

    
665
int kbd_mouse_is_absolute(void)
666
{
667
    if (!qemu_put_mouse_event_current)
668
        return 0;
669

    
670
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
671
}
672

    
673
void do_info_mice(Monitor *mon)
674
{
675
    QEMUPutMouseEntry *cursor;
676
    int index = 0;
677

    
678
    if (!qemu_put_mouse_event_head) {
679
        monitor_printf(mon, "No mouse devices connected\n");
680
        return;
681
    }
682

    
683
    monitor_printf(mon, "Mouse devices available:\n");
684
    cursor = qemu_put_mouse_event_head;
685
    while (cursor != NULL) {
686
        monitor_printf(mon, "%c Mouse #%d: %s\n",
687
                       (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688
                       index, cursor->qemu_put_mouse_event_name);
689
        index++;
690
        cursor = cursor->next;
691
    }
692
}
693

    
694
void do_mouse_set(Monitor *mon, int index)
695
{
696
    QEMUPutMouseEntry *cursor;
697
    int i = 0;
698

    
699
    if (!qemu_put_mouse_event_head) {
700
        monitor_printf(mon, "No mouse devices connected\n");
701
        return;
702
    }
703

    
704
    cursor = qemu_put_mouse_event_head;
705
    while (cursor != NULL && index != i) {
706
        i++;
707
        cursor = cursor->next;
708
    }
709

    
710
    if (cursor != NULL)
711
        qemu_put_mouse_event_current = cursor;
712
    else
713
        monitor_printf(mon, "Mouse at given index not found\n");
714
}
715

    
716
/* compute with 96 bit intermediate result: (a*b)/c */
717
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718
{
719
    union {
720
        uint64_t ll;
721
        struct {
722
#ifdef WORDS_BIGENDIAN
723
            uint32_t high, low;
724
#else
725
            uint32_t low, high;
726
#endif
727
        } l;
728
    } u, res;
729
    uint64_t rl, rh;
730

    
731
    u.ll = a;
732
    rl = (uint64_t)u.l.low * (uint64_t)b;
733
    rh = (uint64_t)u.l.high * (uint64_t)b;
734
    rh += (rl >> 32);
735
    res.l.high = rh / c;
736
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737
    return res.ll;
738
}
739

    
740
/***********************************************************/
741
/* real time host monotonic timer */
742

    
743
#define QEMU_TIMER_BASE 1000000000LL
744

    
745
#ifdef WIN32
746

    
747
static int64_t clock_freq;
748

    
749
static void init_get_clock(void)
750
{
751
    LARGE_INTEGER freq;
752
    int ret;
753
    ret = QueryPerformanceFrequency(&freq);
754
    if (ret == 0) {
755
        fprintf(stderr, "Could not calibrate ticks\n");
756
        exit(1);
757
    }
758
    clock_freq = freq.QuadPart;
759
}
760

    
761
static int64_t get_clock(void)
762
{
763
    LARGE_INTEGER ti;
764
    QueryPerformanceCounter(&ti);
765
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766
}
767

    
768
#else
769

    
770
static int use_rt_clock;
771

    
772
static void init_get_clock(void)
773
{
774
    use_rt_clock = 0;
775
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776
    || defined(__DragonFly__)
777
    {
778
        struct timespec ts;
779
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780
            use_rt_clock = 1;
781
        }
782
    }
783
#endif
784
}
785

    
786
static int64_t get_clock(void)
787
{
788
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789
        || defined(__DragonFly__)
790
    if (use_rt_clock) {
791
        struct timespec ts;
792
        clock_gettime(CLOCK_MONOTONIC, &ts);
793
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794
    } else
795
#endif
796
    {
797
        /* XXX: using gettimeofday leads to problems if the date
798
           changes, so it should be avoided. */
799
        struct timeval tv;
800
        gettimeofday(&tv, NULL);
801
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
802
    }
803
}
804
#endif
805

    
806
/* Return the virtual CPU time, based on the instruction counter.  */
807
static int64_t cpu_get_icount(void)
808
{
809
    int64_t icount;
810
    CPUState *env = cpu_single_env;;
811
    icount = qemu_icount;
812
    if (env) {
813
        if (!can_do_io(env))
814
            fprintf(stderr, "Bad clock read\n");
815
        icount -= (env->icount_decr.u16.low + env->icount_extra);
816
    }
817
    return qemu_icount_bias + (icount << icount_time_shift);
818
}
819

    
820
/***********************************************************/
821
/* guest cycle counter */
822

    
823
static int64_t cpu_ticks_prev;
824
static int64_t cpu_ticks_offset;
825
static int64_t cpu_clock_offset;
826
static int cpu_ticks_enabled;
827

    
828
/* return the host CPU cycle counter and handle stop/restart */
829
int64_t cpu_get_ticks(void)
830
{
831
    if (use_icount) {
832
        return cpu_get_icount();
833
    }
834
    if (!cpu_ticks_enabled) {
835
        return cpu_ticks_offset;
836
    } else {
837
        int64_t ticks;
838
        ticks = cpu_get_real_ticks();
839
        if (cpu_ticks_prev > ticks) {
840
            /* Note: non increasing ticks may happen if the host uses
841
               software suspend */
842
            cpu_ticks_offset += cpu_ticks_prev - ticks;
843
        }
844
        cpu_ticks_prev = ticks;
845
        return ticks + cpu_ticks_offset;
846
    }
847
}
848

    
849
/* return the host CPU monotonic timer and handle stop/restart */
850
static int64_t cpu_get_clock(void)
851
{
852
    int64_t ti;
853
    if (!cpu_ticks_enabled) {
854
        return cpu_clock_offset;
855
    } else {
856
        ti = get_clock();
857
        return ti + cpu_clock_offset;
858
    }
859
}
860

    
861
/* enable cpu_get_ticks() */
862
void cpu_enable_ticks(void)
863
{
864
    if (!cpu_ticks_enabled) {
865
        cpu_ticks_offset -= cpu_get_real_ticks();
866
        cpu_clock_offset -= get_clock();
867
        cpu_ticks_enabled = 1;
868
    }
869
}
870

    
871
/* disable cpu_get_ticks() : the clock is stopped. You must not call
872
   cpu_get_ticks() after that.  */
873
void cpu_disable_ticks(void)
874
{
875
    if (cpu_ticks_enabled) {
876
        cpu_ticks_offset = cpu_get_ticks();
877
        cpu_clock_offset = cpu_get_clock();
878
        cpu_ticks_enabled = 0;
879
    }
880
}
881

    
882
/***********************************************************/
883
/* timers */
884

    
885
#define QEMU_TIMER_REALTIME 0
886
#define QEMU_TIMER_VIRTUAL  1
887

    
888
struct QEMUClock {
889
    int type;
890
    /* XXX: add frequency */
891
};
892

    
893
struct QEMUTimer {
894
    QEMUClock *clock;
895
    int64_t expire_time;
896
    QEMUTimerCB *cb;
897
    void *opaque;
898
    struct QEMUTimer *next;
899
};
900

    
901
struct qemu_alarm_timer {
902
    char const *name;
903
    unsigned int flags;
904

    
905
    int (*start)(struct qemu_alarm_timer *t);
906
    void (*stop)(struct qemu_alarm_timer *t);
907
    void (*rearm)(struct qemu_alarm_timer *t);
908
    void *priv;
909
};
910

    
911
#define ALARM_FLAG_DYNTICKS  0x1
912
#define ALARM_FLAG_EXPIRED   0x2
913

    
914
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
915
{
916
    return t->flags & ALARM_FLAG_DYNTICKS;
917
}
918

    
919
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
920
{
921
    if (!alarm_has_dynticks(t))
922
        return;
923

    
924
    t->rearm(t);
925
}
926

    
927
/* TODO: MIN_TIMER_REARM_US should be optimized */
928
#define MIN_TIMER_REARM_US 250
929

    
930
static struct qemu_alarm_timer *alarm_timer;
931

    
932
#ifdef _WIN32
933

    
934
struct qemu_alarm_win32 {
935
    MMRESULT timerId;
936
    unsigned int period;
937
} alarm_win32_data = {0, -1};
938

    
939
static int win32_start_timer(struct qemu_alarm_timer *t);
940
static void win32_stop_timer(struct qemu_alarm_timer *t);
941
static void win32_rearm_timer(struct qemu_alarm_timer *t);
942

    
943
#else
944

    
945
static int unix_start_timer(struct qemu_alarm_timer *t);
946
static void unix_stop_timer(struct qemu_alarm_timer *t);
947

    
948
#ifdef __linux__
949

    
950
static int dynticks_start_timer(struct qemu_alarm_timer *t);
951
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
953

    
954
static int hpet_start_timer(struct qemu_alarm_timer *t);
955
static void hpet_stop_timer(struct qemu_alarm_timer *t);
956

    
957
static int rtc_start_timer(struct qemu_alarm_timer *t);
958
static void rtc_stop_timer(struct qemu_alarm_timer *t);
959

    
960
#endif /* __linux__ */
961

    
962
#endif /* _WIN32 */
963

    
964
/* Correlation between real and virtual time is always going to be
965
   fairly approximate, so ignore small variation.
966
   When the guest is idle real and virtual time will be aligned in
967
   the IO wait loop.  */
968
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
969

    
970
static void icount_adjust(void)
971
{
972
    int64_t cur_time;
973
    int64_t cur_icount;
974
    int64_t delta;
975
    static int64_t last_delta;
976
    /* If the VM is not running, then do nothing.  */
977
    if (!vm_running)
978
        return;
979

    
980
    cur_time = cpu_get_clock();
981
    cur_icount = qemu_get_clock(vm_clock);
982
    delta = cur_icount - cur_time;
983
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
984
    if (delta > 0
985
        && last_delta + ICOUNT_WOBBLE < delta * 2
986
        && icount_time_shift > 0) {
987
        /* The guest is getting too far ahead.  Slow time down.  */
988
        icount_time_shift--;
989
    }
990
    if (delta < 0
991
        && last_delta - ICOUNT_WOBBLE > delta * 2
992
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
993
        /* The guest is getting too far behind.  Speed time up.  */
994
        icount_time_shift++;
995
    }
996
    last_delta = delta;
997
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
998
}
999

    
1000
static void icount_adjust_rt(void * opaque)
1001
{
1002
    qemu_mod_timer(icount_rt_timer,
1003
                   qemu_get_clock(rt_clock) + 1000);
1004
    icount_adjust();
1005
}
1006

    
1007
static void icount_adjust_vm(void * opaque)
1008
{
1009
    qemu_mod_timer(icount_vm_timer,
1010
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011
    icount_adjust();
1012
}
1013

    
1014
static void init_icount_adjust(void)
1015
{
1016
    /* Have both realtime and virtual time triggers for speed adjustment.
1017
       The realtime trigger catches emulated time passing too slowly,
1018
       the virtual time trigger catches emulated time passing too fast.
1019
       Realtime triggers occur even when idle, so use them less frequently
1020
       than VM triggers.  */
1021
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022
    qemu_mod_timer(icount_rt_timer,
1023
                   qemu_get_clock(rt_clock) + 1000);
1024
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025
    qemu_mod_timer(icount_vm_timer,
1026
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1027
}
1028

    
1029
static struct qemu_alarm_timer alarm_timers[] = {
1030
#ifndef _WIN32
1031
#ifdef __linux__
1032
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034
    /* HPET - if available - is preferred */
1035
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036
    /* ...otherwise try RTC */
1037
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038
#endif
1039
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040
#else
1041
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043
    {"win32", 0, win32_start_timer,
1044
     win32_stop_timer, NULL, &alarm_win32_data},
1045
#endif
1046
    {NULL, }
1047
};
1048

    
1049
static void show_available_alarms(void)
1050
{
1051
    int i;
1052

    
1053
    printf("Available alarm timers, in order of precedence:\n");
1054
    for (i = 0; alarm_timers[i].name; i++)
1055
        printf("%s\n", alarm_timers[i].name);
1056
}
1057

    
1058
static void configure_alarms(char const *opt)
1059
{
1060
    int i;
1061
    int cur = 0;
1062
    int count = ARRAY_SIZE(alarm_timers) - 1;
1063
    char *arg;
1064
    char *name;
1065
    struct qemu_alarm_timer tmp;
1066

    
1067
    if (!strcmp(opt, "?")) {
1068
        show_available_alarms();
1069
        exit(0);
1070
    }
1071

    
1072
    arg = strdup(opt);
1073

    
1074
    /* Reorder the array */
1075
    name = strtok(arg, ",");
1076
    while (name) {
1077
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1078
            if (!strcmp(alarm_timers[i].name, name))
1079
                break;
1080
        }
1081

    
1082
        if (i == count) {
1083
            fprintf(stderr, "Unknown clock %s\n", name);
1084
            goto next;
1085
        }
1086

    
1087
        if (i < cur)
1088
            /* Ignore */
1089
            goto next;
1090

    
1091
        /* Swap */
1092
        tmp = alarm_timers[i];
1093
        alarm_timers[i] = alarm_timers[cur];
1094
        alarm_timers[cur] = tmp;
1095

    
1096
        cur++;
1097
next:
1098
        name = strtok(NULL, ",");
1099
    }
1100

    
1101
    free(arg);
1102

    
1103
    if (cur) {
1104
        /* Disable remaining timers */
1105
        for (i = cur; i < count; i++)
1106
            alarm_timers[i].name = NULL;
1107
    } else {
1108
        show_available_alarms();
1109
        exit(1);
1110
    }
1111
}
1112

    
1113
QEMUClock *rt_clock;
1114
QEMUClock *vm_clock;
1115

    
1116
static QEMUTimer *active_timers[2];
1117

    
1118
static QEMUClock *qemu_new_clock(int type)
1119
{
1120
    QEMUClock *clock;
1121
    clock = qemu_mallocz(sizeof(QEMUClock));
1122
    clock->type = type;
1123
    return clock;
1124
}
1125

    
1126
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1127
{
1128
    QEMUTimer *ts;
1129

    
1130
    ts = qemu_mallocz(sizeof(QEMUTimer));
1131
    ts->clock = clock;
1132
    ts->cb = cb;
1133
    ts->opaque = opaque;
1134
    return ts;
1135
}
1136

    
1137
void qemu_free_timer(QEMUTimer *ts)
1138
{
1139
    qemu_free(ts);
1140
}
1141

    
1142
/* stop a timer, but do not dealloc it */
1143
void qemu_del_timer(QEMUTimer *ts)
1144
{
1145
    QEMUTimer **pt, *t;
1146

    
1147
    /* NOTE: this code must be signal safe because
1148
       qemu_timer_expired() can be called from a signal. */
1149
    pt = &active_timers[ts->clock->type];
1150
    for(;;) {
1151
        t = *pt;
1152
        if (!t)
1153
            break;
1154
        if (t == ts) {
1155
            *pt = t->next;
1156
            break;
1157
        }
1158
        pt = &t->next;
1159
    }
1160
}
1161

    
1162
/* modify the current timer so that it will be fired when current_time
1163
   >= expire_time. The corresponding callback will be called. */
1164
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1165
{
1166
    QEMUTimer **pt, *t;
1167

    
1168
    qemu_del_timer(ts);
1169

    
1170
    /* add the timer in the sorted list */
1171
    /* NOTE: this code must be signal safe because
1172
       qemu_timer_expired() can be called from a signal. */
1173
    pt = &active_timers[ts->clock->type];
1174
    for(;;) {
1175
        t = *pt;
1176
        if (!t)
1177
            break;
1178
        if (t->expire_time > expire_time)
1179
            break;
1180
        pt = &t->next;
1181
    }
1182
    ts->expire_time = expire_time;
1183
    ts->next = *pt;
1184
    *pt = ts;
1185

    
1186
    /* Rearm if necessary  */
1187
    if (pt == &active_timers[ts->clock->type]) {
1188
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189
            qemu_rearm_alarm_timer(alarm_timer);
1190
        }
1191
        /* Interrupt execution to force deadline recalculation.  */
1192
        if (use_icount)
1193
            qemu_notify_event();
1194
    }
1195
}
1196

    
1197
int qemu_timer_pending(QEMUTimer *ts)
1198
{
1199
    QEMUTimer *t;
1200
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201
        if (t == ts)
1202
            return 1;
1203
    }
1204
    return 0;
1205
}
1206

    
1207
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1208
{
1209
    if (!timer_head)
1210
        return 0;
1211
    return (timer_head->expire_time <= current_time);
1212
}
1213

    
1214
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1215
{
1216
    QEMUTimer *ts;
1217

    
1218
    for(;;) {
1219
        ts = *ptimer_head;
1220
        if (!ts || ts->expire_time > current_time)
1221
            break;
1222
        /* remove timer from the list before calling the callback */
1223
        *ptimer_head = ts->next;
1224
        ts->next = NULL;
1225

    
1226
        /* run the callback (the timer list can be modified) */
1227
        ts->cb(ts->opaque);
1228
    }
1229
}
1230

    
1231
int64_t qemu_get_clock(QEMUClock *clock)
1232
{
1233
    switch(clock->type) {
1234
    case QEMU_TIMER_REALTIME:
1235
        return get_clock() / 1000000;
1236
    default:
1237
    case QEMU_TIMER_VIRTUAL:
1238
        if (use_icount) {
1239
            return cpu_get_icount();
1240
        } else {
1241
            return cpu_get_clock();
1242
        }
1243
    }
1244
}
1245

    
1246
static void init_timers(void)
1247
{
1248
    init_get_clock();
1249
    ticks_per_sec = QEMU_TIMER_BASE;
1250
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252
}
1253

    
1254
/* save a timer */
1255
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1256
{
1257
    uint64_t expire_time;
1258

    
1259
    if (qemu_timer_pending(ts)) {
1260
        expire_time = ts->expire_time;
1261
    } else {
1262
        expire_time = -1;
1263
    }
1264
    qemu_put_be64(f, expire_time);
1265
}
1266

    
1267
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1268
{
1269
    uint64_t expire_time;
1270

    
1271
    expire_time = qemu_get_be64(f);
1272
    if (expire_time != -1) {
1273
        qemu_mod_timer(ts, expire_time);
1274
    } else {
1275
        qemu_del_timer(ts);
1276
    }
1277
}
1278

    
1279
static void timer_save(QEMUFile *f, void *opaque)
1280
{
1281
    if (cpu_ticks_enabled) {
1282
        hw_error("cannot save state if virtual timers are running");
1283
    }
1284
    qemu_put_be64(f, cpu_ticks_offset);
1285
    qemu_put_be64(f, ticks_per_sec);
1286
    qemu_put_be64(f, cpu_clock_offset);
1287
}
1288

    
1289
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1290
{
1291
    if (version_id != 1 && version_id != 2)
1292
        return -EINVAL;
1293
    if (cpu_ticks_enabled) {
1294
        return -EINVAL;
1295
    }
1296
    cpu_ticks_offset=qemu_get_be64(f);
1297
    ticks_per_sec=qemu_get_be64(f);
1298
    if (version_id == 2) {
1299
        cpu_clock_offset=qemu_get_be64(f);
1300
    }
1301
    return 0;
1302
}
1303

    
1304
static void qemu_event_increment(void);
1305

    
1306
#ifdef _WIN32
1307
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
1309
                                        DWORD_PTR dw2)
1310
#else
1311
static void host_alarm_handler(int host_signum)
1312
#endif
1313
{
1314
#if 0
1315
#define DISP_FREQ 1000
1316
    {
1317
        static int64_t delta_min = INT64_MAX;
1318
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319
        static int count;
1320
        ti = qemu_get_clock(vm_clock);
1321
        if (last_clock != 0) {
1322
            delta = ti - last_clock;
1323
            if (delta < delta_min)
1324
                delta_min = delta;
1325
            if (delta > delta_max)
1326
                delta_max = delta;
1327
            delta_cum += delta;
1328
            if (++count == DISP_FREQ) {
1329
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1331
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1332
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334
                count = 0;
1335
                delta_min = INT64_MAX;
1336
                delta_max = 0;
1337
                delta_cum = 0;
1338
            }
1339
        }
1340
        last_clock = ti;
1341
    }
1342
#endif
1343
    if (alarm_has_dynticks(alarm_timer) ||
1344
        (!use_icount &&
1345
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346
                               qemu_get_clock(vm_clock))) ||
1347
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348
                           qemu_get_clock(rt_clock))) {
1349
        qemu_event_increment();
1350
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1351

    
1352
#ifndef CONFIG_IOTHREAD
1353
        if (next_cpu) {
1354
            /* stop the currently executing cpu because a timer occured */
1355
            cpu_exit(next_cpu);
1356
#ifdef CONFIG_KQEMU
1357
            if (next_cpu->kqemu_enabled) {
1358
                kqemu_cpu_interrupt(next_cpu);
1359
            }
1360
#endif
1361
        }
1362
#endif
1363
        timer_alarm_pending = 1;
1364
        qemu_notify_event();
1365
    }
1366
}
1367

    
1368
static int64_t qemu_next_deadline(void)
1369
{
1370
    int64_t delta;
1371

    
1372
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374
                     qemu_get_clock(vm_clock);
1375
    } else {
1376
        /* To avoid problems with overflow limit this to 2^32.  */
1377
        delta = INT32_MAX;
1378
    }
1379

    
1380
    if (delta < 0)
1381
        delta = 0;
1382

    
1383
    return delta;
1384
}
1385

    
1386
#if defined(__linux__) || defined(_WIN32)
1387
static uint64_t qemu_next_deadline_dyntick(void)
1388
{
1389
    int64_t delta;
1390
    int64_t rtdelta;
1391

    
1392
    if (use_icount)
1393
        delta = INT32_MAX;
1394
    else
1395
        delta = (qemu_next_deadline() + 999) / 1000;
1396

    
1397
    if (active_timers[QEMU_TIMER_REALTIME]) {
1398
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399
                 qemu_get_clock(rt_clock))*1000;
1400
        if (rtdelta < delta)
1401
            delta = rtdelta;
1402
    }
1403

    
1404
    if (delta < MIN_TIMER_REARM_US)
1405
        delta = MIN_TIMER_REARM_US;
1406

    
1407
    return delta;
1408
}
1409
#endif
1410

    
1411
#ifndef _WIN32
1412

    
1413
/* Sets a specific flag */
1414
static int fcntl_setfl(int fd, int flag)
1415
{
1416
    int flags;
1417

    
1418
    flags = fcntl(fd, F_GETFL);
1419
    if (flags == -1)
1420
        return -errno;
1421

    
1422
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423
        return -errno;
1424

    
1425
    return 0;
1426
}
1427

    
1428
#if defined(__linux__)
1429

    
1430
#define RTC_FREQ 1024
1431

    
1432
static void enable_sigio_timer(int fd)
1433
{
1434
    struct sigaction act;
1435

    
1436
    /* timer signal */
1437
    sigfillset(&act.sa_mask);
1438
    act.sa_flags = 0;
1439
    act.sa_handler = host_alarm_handler;
1440

    
1441
    sigaction(SIGIO, &act, NULL);
1442
    fcntl_setfl(fd, O_ASYNC);
1443
    fcntl(fd, F_SETOWN, getpid());
1444
}
1445

    
1446
static int hpet_start_timer(struct qemu_alarm_timer *t)
1447
{
1448
    struct hpet_info info;
1449
    int r, fd;
1450

    
1451
    fd = open("/dev/hpet", O_RDONLY);
1452
    if (fd < 0)
1453
        return -1;
1454

    
1455
    /* Set frequency */
1456
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457
    if (r < 0) {
1458
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459
                "error, but for better emulation accuracy type:\n"
1460
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461
        goto fail;
1462
    }
1463

    
1464
    /* Check capabilities */
1465
    r = ioctl(fd, HPET_INFO, &info);
1466
    if (r < 0)
1467
        goto fail;
1468

    
1469
    /* Enable periodic mode */
1470
    r = ioctl(fd, HPET_EPI, 0);
1471
    if (info.hi_flags && (r < 0))
1472
        goto fail;
1473

    
1474
    /* Enable interrupt */
1475
    r = ioctl(fd, HPET_IE_ON, 0);
1476
    if (r < 0)
1477
        goto fail;
1478

    
1479
    enable_sigio_timer(fd);
1480
    t->priv = (void *)(long)fd;
1481

    
1482
    return 0;
1483
fail:
1484
    close(fd);
1485
    return -1;
1486
}
1487

    
1488
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1489
{
1490
    int fd = (long)t->priv;
1491

    
1492
    close(fd);
1493
}
1494

    
1495
static int rtc_start_timer(struct qemu_alarm_timer *t)
1496
{
1497
    int rtc_fd;
1498
    unsigned long current_rtc_freq = 0;
1499

    
1500
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501
    if (rtc_fd < 0)
1502
        return -1;
1503
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504
    if (current_rtc_freq != RTC_FREQ &&
1505
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509
        goto fail;
1510
    }
1511
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512
    fail:
1513
        close(rtc_fd);
1514
        return -1;
1515
    }
1516

    
1517
    enable_sigio_timer(rtc_fd);
1518

    
1519
    t->priv = (void *)(long)rtc_fd;
1520

    
1521
    return 0;
1522
}
1523

    
1524
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1525
{
1526
    int rtc_fd = (long)t->priv;
1527

    
1528
    close(rtc_fd);
1529
}
1530

    
1531
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1532
{
1533
    struct sigevent ev;
1534
    timer_t host_timer;
1535
    struct sigaction act;
1536

    
1537
    sigfillset(&act.sa_mask);
1538
    act.sa_flags = 0;
1539
    act.sa_handler = host_alarm_handler;
1540

    
1541
    sigaction(SIGALRM, &act, NULL);
1542

    
1543
    ev.sigev_value.sival_int = 0;
1544
    ev.sigev_notify = SIGEV_SIGNAL;
1545
    ev.sigev_signo = SIGALRM;
1546

    
1547
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548
        perror("timer_create");
1549

    
1550
        /* disable dynticks */
1551
        fprintf(stderr, "Dynamic Ticks disabled\n");
1552

    
1553
        return -1;
1554
    }
1555

    
1556
    t->priv = (void *)(long)host_timer;
1557

    
1558
    return 0;
1559
}
1560

    
1561
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1562
{
1563
    timer_t host_timer = (timer_t)(long)t->priv;
1564

    
1565
    timer_delete(host_timer);
1566
}
1567

    
1568
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1569
{
1570
    timer_t host_timer = (timer_t)(long)t->priv;
1571
    struct itimerspec timeout;
1572
    int64_t nearest_delta_us = INT64_MAX;
1573
    int64_t current_us;
1574

    
1575
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1576
                !active_timers[QEMU_TIMER_VIRTUAL])
1577
        return;
1578

    
1579
    nearest_delta_us = qemu_next_deadline_dyntick();
1580

    
1581
    /* check whether a timer is already running */
1582
    if (timer_gettime(host_timer, &timeout)) {
1583
        perror("gettime");
1584
        fprintf(stderr, "Internal timer error: aborting\n");
1585
        exit(1);
1586
    }
1587
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588
    if (current_us && current_us <= nearest_delta_us)
1589
        return;
1590

    
1591
    timeout.it_interval.tv_sec = 0;
1592
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1594
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596
        perror("settime");
1597
        fprintf(stderr, "Internal timer error: aborting\n");
1598
        exit(1);
1599
    }
1600
}
1601

    
1602
#endif /* defined(__linux__) */
1603

    
1604
static int unix_start_timer(struct qemu_alarm_timer *t)
1605
{
1606
    struct sigaction act;
1607
    struct itimerval itv;
1608
    int err;
1609

    
1610
    /* timer signal */
1611
    sigfillset(&act.sa_mask);
1612
    act.sa_flags = 0;
1613
    act.sa_handler = host_alarm_handler;
1614

    
1615
    sigaction(SIGALRM, &act, NULL);
1616

    
1617
    itv.it_interval.tv_sec = 0;
1618
    /* for i386 kernel 2.6 to get 1 ms */
1619
    itv.it_interval.tv_usec = 999;
1620
    itv.it_value.tv_sec = 0;
1621
    itv.it_value.tv_usec = 10 * 1000;
1622

    
1623
    err = setitimer(ITIMER_REAL, &itv, NULL);
1624
    if (err)
1625
        return -1;
1626

    
1627
    return 0;
1628
}
1629

    
1630
static void unix_stop_timer(struct qemu_alarm_timer *t)
1631
{
1632
    struct itimerval itv;
1633

    
1634
    memset(&itv, 0, sizeof(itv));
1635
    setitimer(ITIMER_REAL, &itv, NULL);
1636
}
1637

    
1638
#endif /* !defined(_WIN32) */
1639

    
1640

    
1641
#ifdef _WIN32
1642

    
1643
static int win32_start_timer(struct qemu_alarm_timer *t)
1644
{
1645
    TIMECAPS tc;
1646
    struct qemu_alarm_win32 *data = t->priv;
1647
    UINT flags;
1648

    
1649
    memset(&tc, 0, sizeof(tc));
1650
    timeGetDevCaps(&tc, sizeof(tc));
1651

    
1652
    if (data->period < tc.wPeriodMin)
1653
        data->period = tc.wPeriodMin;
1654

    
1655
    timeBeginPeriod(data->period);
1656

    
1657
    flags = TIME_CALLBACK_FUNCTION;
1658
    if (alarm_has_dynticks(t))
1659
        flags |= TIME_ONESHOT;
1660
    else
1661
        flags |= TIME_PERIODIC;
1662

    
1663
    data->timerId = timeSetEvent(1,         // interval (ms)
1664
                        data->period,       // resolution
1665
                        host_alarm_handler, // function
1666
                        (DWORD)t,           // parameter
1667
                        flags);
1668

    
1669
    if (!data->timerId) {
1670
        perror("Failed to initialize win32 alarm timer");
1671
        timeEndPeriod(data->period);
1672
        return -1;
1673
    }
1674

    
1675
    return 0;
1676
}
1677

    
1678
static void win32_stop_timer(struct qemu_alarm_timer *t)
1679
{
1680
    struct qemu_alarm_win32 *data = t->priv;
1681

    
1682
    timeKillEvent(data->timerId);
1683
    timeEndPeriod(data->period);
1684
}
1685

    
1686
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1687
{
1688
    struct qemu_alarm_win32 *data = t->priv;
1689
    uint64_t nearest_delta_us;
1690

    
1691
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1692
                !active_timers[QEMU_TIMER_VIRTUAL])
1693
        return;
1694

    
1695
    nearest_delta_us = qemu_next_deadline_dyntick();
1696
    nearest_delta_us /= 1000;
1697

    
1698
    timeKillEvent(data->timerId);
1699

    
1700
    data->timerId = timeSetEvent(1,
1701
                        data->period,
1702
                        host_alarm_handler,
1703
                        (DWORD)t,
1704
                        TIME_ONESHOT | TIME_PERIODIC);
1705

    
1706
    if (!data->timerId) {
1707
        perror("Failed to re-arm win32 alarm timer");
1708

    
1709
        timeEndPeriod(data->period);
1710
        exit(1);
1711
    }
1712
}
1713

    
1714
#endif /* _WIN32 */
1715

    
1716
static int init_timer_alarm(void)
1717
{
1718
    struct qemu_alarm_timer *t = NULL;
1719
    int i, err = -1;
1720

    
1721
    for (i = 0; alarm_timers[i].name; i++) {
1722
        t = &alarm_timers[i];
1723

    
1724
        err = t->start(t);
1725
        if (!err)
1726
            break;
1727
    }
1728

    
1729
    if (err) {
1730
        err = -ENOENT;
1731
        goto fail;
1732
    }
1733

    
1734
    alarm_timer = t;
1735

    
1736
    return 0;
1737

    
1738
fail:
1739
    return err;
1740
}
1741

    
1742
static void quit_timers(void)
1743
{
1744
    alarm_timer->stop(alarm_timer);
1745
    alarm_timer = NULL;
1746
}
1747

    
1748
/***********************************************************/
1749
/* host time/date access */
1750
void qemu_get_timedate(struct tm *tm, int offset)
1751
{
1752
    time_t ti;
1753
    struct tm *ret;
1754

    
1755
    time(&ti);
1756
    ti += offset;
1757
    if (rtc_date_offset == -1) {
1758
        if (rtc_utc)
1759
            ret = gmtime(&ti);
1760
        else
1761
            ret = localtime(&ti);
1762
    } else {
1763
        ti -= rtc_date_offset;
1764
        ret = gmtime(&ti);
1765
    }
1766

    
1767
    memcpy(tm, ret, sizeof(struct tm));
1768
}
1769

    
1770
int qemu_timedate_diff(struct tm *tm)
1771
{
1772
    time_t seconds;
1773

    
1774
    if (rtc_date_offset == -1)
1775
        if (rtc_utc)
1776
            seconds = mktimegm(tm);
1777
        else
1778
            seconds = mktime(tm);
1779
    else
1780
        seconds = mktimegm(tm) + rtc_date_offset;
1781

    
1782
    return seconds - time(NULL);
1783
}
1784

    
1785
#ifdef _WIN32
1786
static void socket_cleanup(void)
1787
{
1788
    WSACleanup();
1789
}
1790

    
1791
static int socket_init(void)
1792
{
1793
    WSADATA Data;
1794
    int ret, err;
1795

    
1796
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1797
    if (ret != 0) {
1798
        err = WSAGetLastError();
1799
        fprintf(stderr, "WSAStartup: %d\n", err);
1800
        return -1;
1801
    }
1802
    atexit(socket_cleanup);
1803
    return 0;
1804
}
1805
#endif
1806

    
1807
const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1808
{
1809
    char *q;
1810

    
1811
    q = buf;
1812
    while (*p != '\0' && *p != delim) {
1813
        if (q && (q - buf) < buf_size - 1)
1814
            *q++ = *p;
1815
        p++;
1816
    }
1817
    if (q)
1818
        *q = '\0';
1819

    
1820
    return p;
1821
}
1822

    
1823
const char *get_opt_value(char *buf, int buf_size, const char *p)
1824
{
1825
    char *q;
1826

    
1827
    q = buf;
1828
    while (*p != '\0') {
1829
        if (*p == ',') {
1830
            if (*(p + 1) != ',')
1831
                break;
1832
            p++;
1833
        }
1834
        if (q && (q - buf) < buf_size - 1)
1835
            *q++ = *p;
1836
        p++;
1837
    }
1838
    if (q)
1839
        *q = '\0';
1840

    
1841
    return p;
1842
}
1843

    
1844
int get_param_value(char *buf, int buf_size,
1845
                    const char *tag, const char *str)
1846
{
1847
    const char *p;
1848
    char option[128];
1849

    
1850
    p = str;
1851
    for(;;) {
1852
        p = get_opt_name(option, sizeof(option), p, '=');
1853
        if (*p != '=')
1854
            break;
1855
        p++;
1856
        if (!strcmp(tag, option)) {
1857
            (void)get_opt_value(buf, buf_size, p);
1858
            return strlen(buf);
1859
        } else {
1860
            p = get_opt_value(NULL, 0, p);
1861
        }
1862
        if (*p != ',')
1863
            break;
1864
        p++;
1865
    }
1866
    return 0;
1867
}
1868

    
1869
int check_params(char *buf, int buf_size,
1870
                 const char * const *params, const char *str)
1871
{
1872
    const char *p;
1873
    int i;
1874

    
1875
    p = str;
1876
    while (*p != '\0') {
1877
        p = get_opt_name(buf, buf_size, p, '=');
1878
        if (*p != '=')
1879
            return -1;
1880
        p++;
1881
        for(i = 0; params[i] != NULL; i++)
1882
            if (!strcmp(params[i], buf))
1883
                break;
1884
        if (params[i] == NULL)
1885
            return -1;
1886
        p = get_opt_value(NULL, 0, p);
1887
        if (*p != ',')
1888
            break;
1889
        p++;
1890
    }
1891
    return 0;
1892
}
1893

    
1894
/***********************************************************/
1895
/* Bluetooth support */
1896
static int nb_hcis;
1897
static int cur_hci;
1898
static struct HCIInfo *hci_table[MAX_NICS];
1899

    
1900
static struct bt_vlan_s {
1901
    struct bt_scatternet_s net;
1902
    int id;
1903
    struct bt_vlan_s *next;
1904
} *first_bt_vlan;
1905

    
1906
/* find or alloc a new bluetooth "VLAN" */
1907
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1908
{
1909
    struct bt_vlan_s **pvlan, *vlan;
1910
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911
        if (vlan->id == id)
1912
            return &vlan->net;
1913
    }
1914
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915
    vlan->id = id;
1916
    pvlan = &first_bt_vlan;
1917
    while (*pvlan != NULL)
1918
        pvlan = &(*pvlan)->next;
1919
    *pvlan = vlan;
1920
    return &vlan->net;
1921
}
1922

    
1923
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1924
{
1925
}
1926

    
1927
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1928
{
1929
    return -ENOTSUP;
1930
}
1931

    
1932
static struct HCIInfo null_hci = {
1933
    .cmd_send = null_hci_send,
1934
    .sco_send = null_hci_send,
1935
    .acl_send = null_hci_send,
1936
    .bdaddr_set = null_hci_addr_set,
1937
};
1938

    
1939
struct HCIInfo *qemu_next_hci(void)
1940
{
1941
    if (cur_hci == nb_hcis)
1942
        return &null_hci;
1943

    
1944
    return hci_table[cur_hci++];
1945
}
1946

    
1947
static struct HCIInfo *hci_init(const char *str)
1948
{
1949
    char *endp;
1950
    struct bt_scatternet_s *vlan = 0;
1951

    
1952
    if (!strcmp(str, "null"))
1953
        /* null */
1954
        return &null_hci;
1955
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956
        /* host[:hciN] */
1957
        return bt_host_hci(str[4] ? str + 5 : "hci0");
1958
    else if (!strncmp(str, "hci", 3)) {
1959
        /* hci[,vlan=n] */
1960
        if (str[3]) {
1961
            if (!strncmp(str + 3, ",vlan=", 6)) {
1962
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963
                if (*endp)
1964
                    vlan = 0;
1965
            }
1966
        } else
1967
            vlan = qemu_find_bt_vlan(0);
1968
        if (vlan)
1969
           return bt_new_hci(vlan);
1970
    }
1971

    
1972
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1973

    
1974
    return 0;
1975
}
1976

    
1977
static int bt_hci_parse(const char *str)
1978
{
1979
    struct HCIInfo *hci;
1980
    bdaddr_t bdaddr;
1981

    
1982
    if (nb_hcis >= MAX_NICS) {
1983
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984
        return -1;
1985
    }
1986

    
1987
    hci = hci_init(str);
1988
    if (!hci)
1989
        return -1;
1990

    
1991
    bdaddr.b[0] = 0x52;
1992
    bdaddr.b[1] = 0x54;
1993
    bdaddr.b[2] = 0x00;
1994
    bdaddr.b[3] = 0x12;
1995
    bdaddr.b[4] = 0x34;
1996
    bdaddr.b[5] = 0x56 + nb_hcis;
1997
    hci->bdaddr_set(hci, bdaddr.b);
1998

    
1999
    hci_table[nb_hcis++] = hci;
2000

    
2001
    return 0;
2002
}
2003

    
2004
static void bt_vhci_add(int vlan_id)
2005
{
2006
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2007

    
2008
    if (!vlan->slave)
2009
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2010
                        "an empty scatternet %i\n", vlan_id);
2011

    
2012
    bt_vhci_init(bt_new_hci(vlan));
2013
}
2014

    
2015
static struct bt_device_s *bt_device_add(const char *opt)
2016
{
2017
    struct bt_scatternet_s *vlan;
2018
    int vlan_id = 0;
2019
    char *endp = strstr(opt, ",vlan=");
2020
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2021
    char devname[10];
2022

    
2023
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2024

    
2025
    if (endp) {
2026
        vlan_id = strtol(endp + 6, &endp, 0);
2027
        if (*endp) {
2028
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029
            return 0;
2030
        }
2031
    }
2032

    
2033
    vlan = qemu_find_bt_vlan(vlan_id);
2034

    
2035
    if (!vlan->slave)
2036
        fprintf(stderr, "qemu: warning: adding a slave device to "
2037
                        "an empty scatternet %i\n", vlan_id);
2038

    
2039
    if (!strcmp(devname, "keyboard"))
2040
        return bt_keyboard_init(vlan);
2041

    
2042
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043
    return 0;
2044
}
2045

    
2046
static int bt_parse(const char *opt)
2047
{
2048
    const char *endp, *p;
2049
    int vlan;
2050

    
2051
    if (strstart(opt, "hci", &endp)) {
2052
        if (!*endp || *endp == ',') {
2053
            if (*endp)
2054
                if (!strstart(endp, ",vlan=", 0))
2055
                    opt = endp + 1;
2056

    
2057
            return bt_hci_parse(opt);
2058
       }
2059
    } else if (strstart(opt, "vhci", &endp)) {
2060
        if (!*endp || *endp == ',') {
2061
            if (*endp) {
2062
                if (strstart(endp, ",vlan=", &p)) {
2063
                    vlan = strtol(p, (char **) &endp, 0);
2064
                    if (*endp) {
2065
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066
                        return 1;
2067
                    }
2068
                } else {
2069
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070
                    return 1;
2071
                }
2072
            } else
2073
                vlan = 0;
2074

    
2075
            bt_vhci_add(vlan);
2076
            return 0;
2077
        }
2078
    } else if (strstart(opt, "device:", &endp))
2079
        return !bt_device_add(endp);
2080

    
2081
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082
    return 1;
2083
}
2084

    
2085
/***********************************************************/
2086
/* QEMU Block devices */
2087

    
2088
#define HD_ALIAS "index=%d,media=disk"
2089
#define CDROM_ALIAS "index=2,media=cdrom"
2090
#define FD_ALIAS "index=%d,if=floppy"
2091
#define PFLASH_ALIAS "if=pflash"
2092
#define MTD_ALIAS "if=mtd"
2093
#define SD_ALIAS "index=0,if=sd"
2094

    
2095
static int drive_opt_get_free_idx(void)
2096
{
2097
    int index;
2098

    
2099
    for (index = 0; index < MAX_DRIVES; index++)
2100
        if (!drives_opt[index].used) {
2101
            drives_opt[index].used = 1;
2102
            return index;
2103
        }
2104

    
2105
    return -1;
2106
}
2107

    
2108
static int drive_get_free_idx(void)
2109
{
2110
    int index;
2111

    
2112
    for (index = 0; index < MAX_DRIVES; index++)
2113
        if (!drives_table[index].used) {
2114
            drives_table[index].used = 1;
2115
            return index;
2116
        }
2117

    
2118
    return -1;
2119
}
2120

    
2121
int drive_add(const char *file, const char *fmt, ...)
2122
{
2123
    va_list ap;
2124
    int index = drive_opt_get_free_idx();
2125

    
2126
    if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127
        fprintf(stderr, "qemu: too many drives\n");
2128
        return -1;
2129
    }
2130

    
2131
    drives_opt[index].file = file;
2132
    va_start(ap, fmt);
2133
    vsnprintf(drives_opt[index].opt,
2134
              sizeof(drives_opt[0].opt), fmt, ap);
2135
    va_end(ap);
2136

    
2137
    nb_drives_opt++;
2138
    return index;
2139
}
2140

    
2141
void drive_remove(int index)
2142
{
2143
    drives_opt[index].used = 0;
2144
    nb_drives_opt--;
2145
}
2146

    
2147
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2148
{
2149
    int index;
2150

    
2151
    /* seek interface, bus and unit */
2152

    
2153
    for (index = 0; index < MAX_DRIVES; index++)
2154
        if (drives_table[index].type == type &&
2155
            drives_table[index].bus == bus &&
2156
            drives_table[index].unit == unit &&
2157
            drives_table[index].used)
2158
        return index;
2159

    
2160
    return -1;
2161
}
2162

    
2163
int drive_get_max_bus(BlockInterfaceType type)
2164
{
2165
    int max_bus;
2166
    int index;
2167

    
2168
    max_bus = -1;
2169
    for (index = 0; index < nb_drives; index++) {
2170
        if(drives_table[index].type == type &&
2171
           drives_table[index].bus > max_bus)
2172
            max_bus = drives_table[index].bus;
2173
    }
2174
    return max_bus;
2175
}
2176

    
2177
const char *drive_get_serial(BlockDriverState *bdrv)
2178
{
2179
    int index;
2180

    
2181
    for (index = 0; index < nb_drives; index++)
2182
        if (drives_table[index].bdrv == bdrv)
2183
            return drives_table[index].serial;
2184

    
2185
    return "\0";
2186
}
2187

    
2188
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2189
{
2190
    int index;
2191

    
2192
    for (index = 0; index < nb_drives; index++)
2193
        if (drives_table[index].bdrv == bdrv)
2194
            return drives_table[index].onerror;
2195

    
2196
    return BLOCK_ERR_STOP_ENOSPC;
2197
}
2198

    
2199
static void bdrv_format_print(void *opaque, const char *name)
2200
{
2201
    fprintf(stderr, " %s", name);
2202
}
2203

    
2204
void drive_uninit(BlockDriverState *bdrv)
2205
{
2206
    int i;
2207

    
2208
    for (i = 0; i < MAX_DRIVES; i++)
2209
        if (drives_table[i].bdrv == bdrv) {
2210
            drives_table[i].bdrv = NULL;
2211
            drives_table[i].used = 0;
2212
            drive_remove(drives_table[i].drive_opt_idx);
2213
            nb_drives--;
2214
            break;
2215
        }
2216
}
2217

    
2218
int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2219
{
2220
    char buf[128];
2221
    char file[1024];
2222
    char devname[128];
2223
    char serial[21];
2224
    const char *mediastr = "";
2225
    BlockInterfaceType type;
2226
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2227
    int bus_id, unit_id;
2228
    int cyls, heads, secs, translation;
2229
    BlockDriverState *bdrv;
2230
    BlockDriver *drv = NULL;
2231
    QEMUMachine *machine = opaque;
2232
    int max_devs;
2233
    int index;
2234
    int cache;
2235
    int bdrv_flags, onerror;
2236
    int drives_table_idx;
2237
    char *str = arg->opt;
2238
    static const char * const params[] = { "bus", "unit", "if", "index",
2239
                                           "cyls", "heads", "secs", "trans",
2240
                                           "media", "snapshot", "file",
2241
                                           "cache", "format", "serial", "werror",
2242
                                           NULL };
2243

    
2244
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2245
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246
                         buf, str);
2247
         return -1;
2248
    }
2249

    
2250
    file[0] = 0;
2251
    cyls = heads = secs = 0;
2252
    bus_id = 0;
2253
    unit_id = -1;
2254
    translation = BIOS_ATA_TRANSLATION_AUTO;
2255
    index = -1;
2256
    cache = 3;
2257

    
2258
    if (machine->use_scsi) {
2259
        type = IF_SCSI;
2260
        max_devs = MAX_SCSI_DEVS;
2261
        pstrcpy(devname, sizeof(devname), "scsi");
2262
    } else {
2263
        type = IF_IDE;
2264
        max_devs = MAX_IDE_DEVS;
2265
        pstrcpy(devname, sizeof(devname), "ide");
2266
    }
2267
    media = MEDIA_DISK;
2268

    
2269
    /* extract parameters */
2270

    
2271
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272
        bus_id = strtol(buf, NULL, 0);
2273
        if (bus_id < 0) {
2274
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275
            return -1;
2276
        }
2277
    }
2278

    
2279
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280
        unit_id = strtol(buf, NULL, 0);
2281
        if (unit_id < 0) {
2282
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283
            return -1;
2284
        }
2285
    }
2286

    
2287
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2288
        pstrcpy(devname, sizeof(devname), buf);
2289
        if (!strcmp(buf, "ide")) {
2290
            type = IF_IDE;
2291
            max_devs = MAX_IDE_DEVS;
2292
        } else if (!strcmp(buf, "scsi")) {
2293
            type = IF_SCSI;
2294
            max_devs = MAX_SCSI_DEVS;
2295
        } else if (!strcmp(buf, "floppy")) {
2296
            type = IF_FLOPPY;
2297
            max_devs = 0;
2298
        } else if (!strcmp(buf, "pflash")) {
2299
            type = IF_PFLASH;
2300
            max_devs = 0;
2301
        } else if (!strcmp(buf, "mtd")) {
2302
            type = IF_MTD;
2303
            max_devs = 0;
2304
        } else if (!strcmp(buf, "sd")) {
2305
            type = IF_SD;
2306
            max_devs = 0;
2307
        } else if (!strcmp(buf, "virtio")) {
2308
            type = IF_VIRTIO;
2309
            max_devs = 0;
2310
        } else if (!strcmp(buf, "xen")) {
2311
            type = IF_XEN;
2312
            max_devs = 0;
2313
        } else {
2314
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315
            return -1;
2316
        }
2317
    }
2318

    
2319
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2320
        index = strtol(buf, NULL, 0);
2321
        if (index < 0) {
2322
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323
            return -1;
2324
        }
2325
    }
2326

    
2327
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328
        cyls = strtol(buf, NULL, 0);
2329
    }
2330

    
2331
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332
        heads = strtol(buf, NULL, 0);
2333
    }
2334

    
2335
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336
        secs = strtol(buf, NULL, 0);
2337
    }
2338

    
2339
    if (cyls || heads || secs) {
2340
        if (cyls < 1 || cyls > 16383) {
2341
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342
            return -1;
2343
        }
2344
        if (heads < 1 || heads > 16) {
2345
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346
            return -1;
2347
        }
2348
        if (secs < 1 || secs > 63) {
2349
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350
            return -1;
2351
        }
2352
    }
2353

    
2354
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355
        if (!cyls) {
2356
            fprintf(stderr,
2357
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358
                    str);
2359
            return -1;
2360
        }
2361
        if (!strcmp(buf, "none"))
2362
            translation = BIOS_ATA_TRANSLATION_NONE;
2363
        else if (!strcmp(buf, "lba"))
2364
            translation = BIOS_ATA_TRANSLATION_LBA;
2365
        else if (!strcmp(buf, "auto"))
2366
            translation = BIOS_ATA_TRANSLATION_AUTO;
2367
        else {
2368
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369
            return -1;
2370
        }
2371
    }
2372

    
2373
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2374
        if (!strcmp(buf, "disk")) {
2375
            media = MEDIA_DISK;
2376
        } else if (!strcmp(buf, "cdrom")) {
2377
            if (cyls || secs || heads) {
2378
                fprintf(stderr,
2379
                        "qemu: '%s' invalid physical CHS format\n", str);
2380
                return -1;
2381
            }
2382
            media = MEDIA_CDROM;
2383
        } else {
2384
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385
            return -1;
2386
        }
2387
    }
2388

    
2389
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390
        if (!strcmp(buf, "on"))
2391
            snapshot = 1;
2392
        else if (!strcmp(buf, "off"))
2393
            snapshot = 0;
2394
        else {
2395
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396
            return -1;
2397
        }
2398
    }
2399

    
2400
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402
            cache = 0;
2403
        else if (!strcmp(buf, "writethrough"))
2404
            cache = 1;
2405
        else if (!strcmp(buf, "writeback"))
2406
            cache = 2;
2407
        else {
2408
           fprintf(stderr, "qemu: invalid cache option\n");
2409
           return -1;
2410
        }
2411
    }
2412

    
2413
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2414
       if (strcmp(buf, "?") == 0) {
2415
            fprintf(stderr, "qemu: Supported formats:");
2416
            bdrv_iterate_format(bdrv_format_print, NULL);
2417
            fprintf(stderr, "\n");
2418
            return -1;
2419
        }
2420
        drv = bdrv_find_format(buf);
2421
        if (!drv) {
2422
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423
            return -1;
2424
        }
2425
    }
2426

    
2427
    if (arg->file == NULL)
2428
        get_param_value(file, sizeof(file), "file", str);
2429
    else
2430
        pstrcpy(file, sizeof(file), arg->file);
2431

    
2432
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2433
            memset(serial, 0,  sizeof(serial));
2434

    
2435
    onerror = BLOCK_ERR_STOP_ENOSPC;
2436
    if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438
            fprintf(stderr, "werror is no supported by this format\n");
2439
            return -1;
2440
        }
2441
        if (!strcmp(buf, "ignore"))
2442
            onerror = BLOCK_ERR_IGNORE;
2443
        else if (!strcmp(buf, "enospc"))
2444
            onerror = BLOCK_ERR_STOP_ENOSPC;
2445
        else if (!strcmp(buf, "stop"))
2446
            onerror = BLOCK_ERR_STOP_ANY;
2447
        else if (!strcmp(buf, "report"))
2448
            onerror = BLOCK_ERR_REPORT;
2449
        else {
2450
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451
            return -1;
2452
        }
2453
    }
2454

    
2455
    /* compute bus and unit according index */
2456

    
2457
    if (index != -1) {
2458
        if (bus_id != 0 || unit_id != -1) {
2459
            fprintf(stderr,
2460
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2461
            return -1;
2462
        }
2463
        if (max_devs == 0)
2464
        {
2465
            unit_id = index;
2466
            bus_id = 0;
2467
        } else {
2468
            unit_id = index % max_devs;
2469
            bus_id = index / max_devs;
2470
        }
2471
    }
2472

    
2473
    /* if user doesn't specify a unit_id,
2474
     * try to find the first free
2475
     */
2476

    
2477
    if (unit_id == -1) {
2478
       unit_id = 0;
2479
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2480
           unit_id++;
2481
           if (max_devs && unit_id >= max_devs) {
2482
               unit_id -= max_devs;
2483
               bus_id++;
2484
           }
2485
       }
2486
    }
2487

    
2488
    /* check unit id */
2489

    
2490
    if (max_devs && unit_id >= max_devs) {
2491
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492
                        str, unit_id, max_devs - 1);
2493
        return -1;
2494
    }
2495

    
2496
    /*
2497
     * ignore multiple definitions
2498
     */
2499

    
2500
    if (drive_get_index(type, bus_id, unit_id) != -1)
2501
        return -2;
2502

    
2503
    /* init */
2504

    
2505
    if (type == IF_IDE || type == IF_SCSI)
2506
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507
    if (max_devs)
2508
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2509
                 devname, bus_id, mediastr, unit_id);
2510
    else
2511
        snprintf(buf, sizeof(buf), "%s%s%i",
2512
                 devname, mediastr, unit_id);
2513
    bdrv = bdrv_new(buf);
2514
    drives_table_idx = drive_get_free_idx();
2515
    drives_table[drives_table_idx].bdrv = bdrv;
2516
    drives_table[drives_table_idx].type = type;
2517
    drives_table[drives_table_idx].bus = bus_id;
2518
    drives_table[drives_table_idx].unit = unit_id;
2519
    drives_table[drives_table_idx].onerror = onerror;
2520
    drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522
    nb_drives++;
2523

    
2524
    switch(type) {
2525
    case IF_IDE:
2526
    case IF_SCSI:
2527
    case IF_XEN:
2528
        switch(media) {
2529
        case MEDIA_DISK:
2530
            if (cyls != 0) {
2531
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532
                bdrv_set_translation_hint(bdrv, translation);
2533
            }
2534
            break;
2535
        case MEDIA_CDROM:
2536
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537
            break;
2538
        }
2539
        break;
2540
    case IF_SD:
2541
        /* FIXME: This isn't really a floppy, but it's a reasonable
2542
           approximation.  */
2543
    case IF_FLOPPY:
2544
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545
        break;
2546
    case IF_PFLASH:
2547
    case IF_MTD:
2548
    case IF_VIRTIO:
2549
        break;
2550
    }
2551
    if (!file[0])
2552
        return -2;
2553
    bdrv_flags = 0;
2554
    if (snapshot) {
2555
        bdrv_flags |= BDRV_O_SNAPSHOT;
2556
        cache = 2; /* always use write-back with snapshot */
2557
    }
2558
    if (cache == 0) /* no caching */
2559
        bdrv_flags |= BDRV_O_NOCACHE;
2560
    else if (cache == 2) /* write-back */
2561
        bdrv_flags |= BDRV_O_CACHE_WB;
2562
    else if (cache == 3) /* not specified */
2563
        bdrv_flags |= BDRV_O_CACHE_DEF;
2564
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565
        fprintf(stderr, "qemu: could not open disk image %s\n",
2566
                        file);
2567
        return -1;
2568
    }
2569
    if (bdrv_key_required(bdrv))
2570
        autostart = 0;
2571
    return drives_table_idx;
2572
}
2573

    
2574
static void numa_add(const char *optarg)
2575
{
2576
    char option[128];
2577
    char *endptr;
2578
    unsigned long long value, endvalue;
2579
    int nodenr;
2580

    
2581
    optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582
    if (!strcmp(option, "node")) {
2583
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584
            nodenr = nb_numa_nodes;
2585
        } else {
2586
            nodenr = strtoull(option, NULL, 10);
2587
        }
2588

    
2589
        if (get_param_value(option, 128, "mem", optarg) == 0) {
2590
            node_mem[nodenr] = 0;
2591
        } else {
2592
            value = strtoull(option, &endptr, 0);
2593
            switch (*endptr) {
2594
            case 0: case 'M': case 'm':
2595
                value <<= 20;
2596
                break;
2597
            case 'G': case 'g':
2598
                value <<= 30;
2599
                break;
2600
            }
2601
            node_mem[nodenr] = value;
2602
        }
2603
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604
            node_cpumask[nodenr] = 0;
2605
        } else {
2606
            value = strtoull(option, &endptr, 10);
2607
            if (value >= 64) {
2608
                value = 63;
2609
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610
            } else {
2611
                if (*endptr == '-') {
2612
                    endvalue = strtoull(endptr+1, &endptr, 10);
2613
                    if (endvalue >= 63) {
2614
                        endvalue = 62;
2615
                        fprintf(stderr,
2616
                            "only 63 CPUs in NUMA mode supported.\n");
2617
                    }
2618
                    value = (1 << (endvalue + 1)) - (1 << value);
2619
                } else {
2620
                    value = 1 << value;
2621
                }
2622
            }
2623
            node_cpumask[nodenr] = value;
2624
        }
2625
        nb_numa_nodes++;
2626
    }
2627
    return;
2628
}
2629

    
2630
/***********************************************************/
2631
/* USB devices */
2632

    
2633
static USBPort *used_usb_ports;
2634
static USBPort *free_usb_ports;
2635

    
2636
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2637
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638
                            usb_attachfn attach)
2639
{
2640
    port->opaque = opaque;
2641
    port->index = index;
2642
    port->attach = attach;
2643
    port->next = free_usb_ports;
2644
    free_usb_ports = port;
2645
}
2646

    
2647
int usb_device_add_dev(USBDevice *dev)
2648
{
2649
    USBPort *port;
2650

    
2651
    /* Find a USB port to add the device to.  */
2652
    port = free_usb_ports;
2653
    if (!port->next) {
2654
        USBDevice *hub;
2655

    
2656
        /* Create a new hub and chain it on.  */
2657
        free_usb_ports = NULL;
2658
        port->next = used_usb_ports;
2659
        used_usb_ports = port;
2660

    
2661
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2662
        usb_attach(port, hub);
2663
        port = free_usb_ports;
2664
    }
2665

    
2666
    free_usb_ports = port->next;
2667
    port->next = used_usb_ports;
2668
    used_usb_ports = port;
2669
    usb_attach(port, dev);
2670
    return 0;
2671
}
2672

    
2673
static void usb_msd_password_cb(void *opaque, int err)
2674
{
2675
    USBDevice *dev = opaque;
2676

    
2677
    if (!err)
2678
        usb_device_add_dev(dev);
2679
    else
2680
        dev->handle_destroy(dev);
2681
}
2682

    
2683
static int usb_device_add(const char *devname, int is_hotplug)
2684
{
2685
    const char *p;
2686
    USBDevice *dev;
2687

    
2688
    if (!free_usb_ports)
2689
        return -1;
2690

    
2691
    if (strstart(devname, "host:", &p)) {
2692
        dev = usb_host_device_open(p);
2693
    } else if (!strcmp(devname, "mouse")) {
2694
        dev = usb_mouse_init();
2695
    } else if (!strcmp(devname, "tablet")) {
2696
        dev = usb_tablet_init();
2697
    } else if (!strcmp(devname, "keyboard")) {
2698
        dev = usb_keyboard_init();
2699
    } else if (strstart(devname, "disk:", &p)) {
2700
        BlockDriverState *bs;
2701

    
2702
        dev = usb_msd_init(p);
2703
        if (!dev)
2704
            return -1;
2705
        bs = usb_msd_get_bdrv(dev);
2706
        if (bdrv_key_required(bs)) {
2707
            autostart = 0;
2708
            if (is_hotplug) {
2709
                monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710
                                            dev);
2711
                return 0;
2712
            }
2713
        }
2714
    } else if (!strcmp(devname, "wacom-tablet")) {
2715
        dev = usb_wacom_init();
2716
    } else if (strstart(devname, "serial:", &p)) {
2717
        dev = usb_serial_init(p);
2718
#ifdef CONFIG_BRLAPI
2719
    } else if (!strcmp(devname, "braille")) {
2720
        dev = usb_baum_init();
2721
#endif
2722
    } else if (strstart(devname, "net:", &p)) {
2723
        int nic = nb_nics;
2724

    
2725
        if (net_client_init("nic", p) < 0)
2726
            return -1;
2727
        nd_table[nic].model = "usb";
2728
        dev = usb_net_init(&nd_table[nic]);
2729
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2731
                        bt_new_hci(qemu_find_bt_vlan(0)));
2732
    } else {
2733
        return -1;
2734
    }
2735
    if (!dev)
2736
        return -1;
2737

    
2738
    return usb_device_add_dev(dev);
2739
}
2740

    
2741
int usb_device_del_addr(int bus_num, int addr)
2742
{
2743
    USBPort *port;
2744
    USBPort **lastp;
2745
    USBDevice *dev;
2746

    
2747
    if (!used_usb_ports)
2748
        return -1;
2749

    
2750
    if (bus_num != 0)
2751
        return -1;
2752

    
2753
    lastp = &used_usb_ports;
2754
    port = used_usb_ports;
2755
    while (port && port->dev->addr != addr) {
2756
        lastp = &port->next;
2757
        port = port->next;
2758
    }
2759

    
2760
    if (!port)
2761
        return -1;
2762

    
2763
    dev = port->dev;
2764
    *lastp = port->next;
2765
    usb_attach(port, NULL);
2766
    dev->handle_destroy(dev);
2767
    port->next = free_usb_ports;
2768
    free_usb_ports = port;
2769
    return 0;
2770
}
2771

    
2772
static int usb_device_del(const char *devname)
2773
{
2774
    int bus_num, addr;
2775
    const char *p;
2776

    
2777
    if (strstart(devname, "host:", &p))
2778
        return usb_host_device_close(p);
2779

    
2780
    if (!used_usb_ports)
2781
        return -1;
2782

    
2783
    p = strchr(devname, '.');
2784
    if (!p)
2785
        return -1;
2786
    bus_num = strtoul(devname, NULL, 0);
2787
    addr = strtoul(p + 1, NULL, 0);
2788

    
2789
    return usb_device_del_addr(bus_num, addr);
2790
}
2791

    
2792
void do_usb_add(Monitor *mon, const char *devname)
2793
{
2794
    usb_device_add(devname, 1);
2795
}
2796

    
2797
void do_usb_del(Monitor *mon, const char *devname)
2798
{
2799
    usb_device_del(devname);
2800
}
2801

    
2802
void usb_info(Monitor *mon)
2803
{
2804
    USBDevice *dev;
2805
    USBPort *port;
2806
    const char *speed_str;
2807

    
2808
    if (!usb_enabled) {
2809
        monitor_printf(mon, "USB support not enabled\n");
2810
        return;
2811
    }
2812

    
2813
    for (port = used_usb_ports; port; port = port->next) {
2814
        dev = port->dev;
2815
        if (!dev)
2816
            continue;
2817
        switch(dev->speed) {
2818
        case USB_SPEED_LOW:
2819
            speed_str = "1.5";
2820
            break;
2821
        case USB_SPEED_FULL:
2822
            speed_str = "12";
2823
            break;
2824
        case USB_SPEED_HIGH:
2825
            speed_str = "480";
2826
            break;
2827
        default:
2828
            speed_str = "?";
2829
            break;
2830
        }
2831
        monitor_printf(mon, "  Device %d.%d, Speed %s Mb/s, Product %s\n",
2832
                       0, dev->addr, speed_str, dev->devname);
2833
    }
2834
}
2835

    
2836
/***********************************************************/
2837
/* PCMCIA/Cardbus */
2838

    
2839
static struct pcmcia_socket_entry_s {
2840
    struct pcmcia_socket_s *socket;
2841
    struct pcmcia_socket_entry_s *next;
2842
} *pcmcia_sockets = 0;
2843

    
2844
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2845
{
2846
    struct pcmcia_socket_entry_s *entry;
2847

    
2848
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849
    entry->socket = socket;
2850
    entry->next = pcmcia_sockets;
2851
    pcmcia_sockets = entry;
2852
}
2853

    
2854
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2855
{
2856
    struct pcmcia_socket_entry_s *entry, **ptr;
2857

    
2858
    ptr = &pcmcia_sockets;
2859
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860
        if (entry->socket == socket) {
2861
            *ptr = entry->next;
2862
            qemu_free(entry);
2863
        }
2864
}
2865

    
2866
void pcmcia_info(Monitor *mon)
2867
{
2868
    struct pcmcia_socket_entry_s *iter;
2869

    
2870
    if (!pcmcia_sockets)
2871
        monitor_printf(mon, "No PCMCIA sockets\n");
2872

    
2873
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2874
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875
                       iter->socket->attached ? iter->socket->card_string :
2876
                       "Empty");
2877
}
2878

    
2879
/***********************************************************/
2880
/* register display */
2881

    
2882
struct DisplayAllocator default_allocator = {
2883
    defaultallocator_create_displaysurface,
2884
    defaultallocator_resize_displaysurface,
2885
    defaultallocator_free_displaysurface
2886
};
2887

    
2888
void register_displaystate(DisplayState *ds)
2889
{
2890
    DisplayState **s;
2891
    s = &display_state;
2892
    while (*s != NULL)
2893
        s = &(*s)->next;
2894
    ds->next = NULL;
2895
    *s = ds;
2896
}
2897

    
2898
DisplayState *get_displaystate(void)
2899
{
2900
    return display_state;
2901
}
2902

    
2903
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2904
{
2905
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
2906
    return ds->allocator;
2907
}
2908

    
2909
/* dumb display */
2910

    
2911
static void dumb_display_init(void)
2912
{
2913
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914
    ds->allocator = &default_allocator;
2915
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916
    register_displaystate(ds);
2917
}
2918

    
2919
/***********************************************************/
2920
/* I/O handling */
2921

    
2922
typedef struct IOHandlerRecord {
2923
    int fd;
2924
    IOCanRWHandler *fd_read_poll;
2925
    IOHandler *fd_read;
2926
    IOHandler *fd_write;
2927
    int deleted;
2928
    void *opaque;
2929
    /* temporary data */
2930
    struct pollfd *ufd;
2931
    struct IOHandlerRecord *next;
2932
} IOHandlerRecord;
2933

    
2934
static IOHandlerRecord *first_io_handler;
2935

    
2936
/* XXX: fd_read_poll should be suppressed, but an API change is
2937
   necessary in the character devices to suppress fd_can_read(). */
2938
int qemu_set_fd_handler2(int fd,
2939
                         IOCanRWHandler *fd_read_poll,
2940
                         IOHandler *fd_read,
2941
                         IOHandler *fd_write,
2942
                         void *opaque)
2943
{
2944
    IOHandlerRecord **pioh, *ioh;
2945

    
2946
    if (!fd_read && !fd_write) {
2947
        pioh = &first_io_handler;
2948
        for(;;) {
2949
            ioh = *pioh;
2950
            if (ioh == NULL)
2951
                break;
2952
            if (ioh->fd == fd) {
2953
                ioh->deleted = 1;
2954
                break;
2955
            }
2956
            pioh = &ioh->next;
2957
        }
2958
    } else {
2959
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960
            if (ioh->fd == fd)
2961
                goto found;
2962
        }
2963
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964
        ioh->next = first_io_handler;
2965
        first_io_handler = ioh;
2966
    found:
2967
        ioh->fd = fd;
2968
        ioh->fd_read_poll = fd_read_poll;
2969
        ioh->fd_read = fd_read;
2970
        ioh->fd_write = fd_write;
2971
        ioh->opaque = opaque;
2972
        ioh->deleted = 0;
2973
    }
2974
    return 0;
2975
}
2976

    
2977
int qemu_set_fd_handler(int fd,
2978
                        IOHandler *fd_read,
2979
                        IOHandler *fd_write,
2980
                        void *opaque)
2981
{
2982
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2983
}
2984

    
2985
#ifdef _WIN32
2986
/***********************************************************/
2987
/* Polling handling */
2988

    
2989
typedef struct PollingEntry {
2990
    PollingFunc *func;
2991
    void *opaque;
2992
    struct PollingEntry *next;
2993
} PollingEntry;
2994

    
2995
static PollingEntry *first_polling_entry;
2996

    
2997
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2998
{
2999
    PollingEntry **ppe, *pe;
3000
    pe = qemu_mallocz(sizeof(PollingEntry));
3001
    pe->func = func;
3002
    pe->opaque = opaque;
3003
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004
    *ppe = pe;
3005
    return 0;
3006
}
3007

    
3008
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3009
{
3010
    PollingEntry **ppe, *pe;
3011
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012
        pe = *ppe;
3013
        if (pe->func == func && pe->opaque == opaque) {
3014
            *ppe = pe->next;
3015
            qemu_free(pe);
3016
            break;
3017
        }
3018
    }
3019
}
3020

    
3021
/***********************************************************/
3022
/* Wait objects support */
3023
typedef struct WaitObjects {
3024
    int num;
3025
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028
} WaitObjects;
3029

    
3030
static WaitObjects wait_objects = {0};
3031

    
3032
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033
{
3034
    WaitObjects *w = &wait_objects;
3035

    
3036
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037
        return -1;
3038
    w->events[w->num] = handle;
3039
    w->func[w->num] = func;
3040
    w->opaque[w->num] = opaque;
3041
    w->num++;
3042
    return 0;
3043
}
3044

    
3045
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3046
{
3047
    int i, found;
3048
    WaitObjects *w = &wait_objects;
3049

    
3050
    found = 0;
3051
    for (i = 0; i < w->num; i++) {
3052
        if (w->events[i] == handle)
3053
            found = 1;
3054
        if (found) {
3055
            w->events[i] = w->events[i + 1];
3056
            w->func[i] = w->func[i + 1];
3057
            w->opaque[i] = w->opaque[i + 1];
3058
        }
3059
    }
3060
    if (found)
3061
        w->num--;
3062
}
3063
#endif
3064

    
3065
/***********************************************************/
3066
/* ram save/restore */
3067

    
3068
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3069
{
3070
    int v;
3071

    
3072
    v = qemu_get_byte(f);
3073
    switch(v) {
3074
    case 0:
3075
        if (qemu_get_buffer(f, buf, len) != len)
3076
            return -EIO;
3077
        break;
3078
    case 1:
3079
        v = qemu_get_byte(f);
3080
        memset(buf, v, len);
3081
        break;
3082
    default:
3083
        return -EINVAL;
3084
    }
3085

    
3086
    if (qemu_file_has_error(f))
3087
        return -EIO;
3088

    
3089
    return 0;
3090
}
3091

    
3092
static int ram_load_v1(QEMUFile *f, void *opaque)
3093
{
3094
    int ret;
3095
    ram_addr_t i;
3096

    
3097
    if (qemu_get_be32(f) != last_ram_offset)
3098
        return -EINVAL;
3099
    for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100
        ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101
        if (ret)
3102
            return ret;
3103
    }
3104
    return 0;
3105
}
3106

    
3107
#define BDRV_HASH_BLOCK_SIZE 1024
3108
#define IOBUF_SIZE 4096
3109
#define RAM_CBLOCK_MAGIC 0xfabe
3110

    
3111
typedef struct RamDecompressState {
3112
    z_stream zstream;
3113
    QEMUFile *f;
3114
    uint8_t buf[IOBUF_SIZE];
3115
} RamDecompressState;
3116

    
3117
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3118
{
3119
    int ret;
3120
    memset(s, 0, sizeof(*s));
3121
    s->f = f;
3122
    ret = inflateInit(&s->zstream);
3123
    if (ret != Z_OK)
3124
        return -1;
3125
    return 0;
3126
}
3127

    
3128
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3129
{
3130
    int ret, clen;
3131

    
3132
    s->zstream.avail_out = len;
3133
    s->zstream.next_out = buf;
3134
    while (s->zstream.avail_out > 0) {
3135
        if (s->zstream.avail_in == 0) {
3136
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137
                return -1;
3138
            clen = qemu_get_be16(s->f);
3139
            if (clen > IOBUF_SIZE)
3140
                return -1;
3141
            qemu_get_buffer(s->f, s->buf, clen);
3142
            s->zstream.avail_in = clen;
3143
            s->zstream.next_in = s->buf;
3144
        }
3145
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146
        if (ret != Z_OK && ret != Z_STREAM_END) {
3147
            return -1;
3148
        }
3149
    }
3150
    return 0;
3151
}
3152

    
3153
static void ram_decompress_close(RamDecompressState *s)
3154
{
3155
    inflateEnd(&s->zstream);
3156
}
3157

    
3158
#define RAM_SAVE_FLAG_FULL        0x01
3159
#define RAM_SAVE_FLAG_COMPRESS        0x02
3160
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3161
#define RAM_SAVE_FLAG_PAGE        0x08
3162
#define RAM_SAVE_FLAG_EOS        0x10
3163

    
3164
static int is_dup_page(uint8_t *page, uint8_t ch)
3165
{
3166
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167
    uint32_t *array = (uint32_t *)page;
3168
    int i;
3169

    
3170
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171
        if (array[i] != val)
3172
            return 0;
3173
    }
3174

    
3175
    return 1;
3176
}
3177

    
3178
static int ram_save_block(QEMUFile *f)
3179
{
3180
    static ram_addr_t current_addr = 0;
3181
    ram_addr_t saved_addr = current_addr;
3182
    ram_addr_t addr = 0;
3183
    int found = 0;
3184

    
3185
    while (addr < last_ram_offset) {
3186
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187
            uint8_t *p;
3188

    
3189
            cpu_physical_memory_reset_dirty(current_addr,
3190
                                            current_addr + TARGET_PAGE_SIZE,
3191
                                            MIGRATION_DIRTY_FLAG);
3192

    
3193
            p = qemu_get_ram_ptr(current_addr);
3194

    
3195
            if (is_dup_page(p, *p)) {
3196
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197
                qemu_put_byte(f, *p);
3198
            } else {
3199
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3201
            }
3202

    
3203
            found = 1;
3204
            break;
3205
        }
3206
        addr += TARGET_PAGE_SIZE;
3207
        current_addr = (saved_addr + addr) % last_ram_offset;
3208
    }
3209

    
3210
    return found;
3211
}
3212

    
3213
static ram_addr_t ram_save_threshold = 10;
3214

    
3215
static ram_addr_t ram_save_remaining(void)
3216
{
3217
    ram_addr_t addr;
3218
    ram_addr_t count = 0;
3219

    
3220
    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222
            count++;
3223
    }
3224

    
3225
    return count;
3226
}
3227

    
3228
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3229
{
3230
    ram_addr_t addr;
3231

    
3232
    if (stage == 1) {
3233
        /* Make sure all dirty bits are set */
3234
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236
                cpu_physical_memory_set_dirty(addr);
3237
        }
3238
        
3239
        /* Enable dirty memory tracking */
3240
        cpu_physical_memory_set_dirty_tracking(1);
3241

    
3242
        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3243
    }
3244

    
3245
    while (!qemu_file_rate_limit(f)) {
3246
        int ret;
3247

    
3248
        ret = ram_save_block(f);
3249
        if (ret == 0) /* no more blocks */
3250
            break;
3251
    }
3252

    
3253
    /* try transferring iterative blocks of memory */
3254

    
3255
    if (stage == 3) {
3256

    
3257
        /* flush all remaining blocks regardless of rate limiting */
3258
        while (ram_save_block(f) != 0);
3259
        cpu_physical_memory_set_dirty_tracking(0);
3260
    }
3261

    
3262
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3263

    
3264
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3265
}
3266

    
3267
static int ram_load_dead(QEMUFile *f, void *opaque)
3268
{
3269
    RamDecompressState s1, *s = &s1;
3270
    uint8_t buf[10];
3271
    ram_addr_t i;
3272

    
3273
    if (ram_decompress_open(s, f) < 0)
3274
        return -EINVAL;
3275
    for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276
        if (ram_decompress_buf(s, buf, 1) < 0) {
3277
            fprintf(stderr, "Error while reading ram block header\n");
3278
            goto error;
3279
        }
3280
        if (buf[0] == 0) {
3281
            if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282
                                   BDRV_HASH_BLOCK_SIZE) < 0) {
3283
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284
                goto error;
3285
            }
3286
        } else {
3287
        error:
3288
            printf("Error block header\n");
3289
            return -EINVAL;
3290
        }
3291
    }
3292
    ram_decompress_close(s);
3293

    
3294
    return 0;
3295
}
3296

    
3297
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3298
{
3299
    ram_addr_t addr;
3300
    int flags;
3301

    
3302
    if (version_id == 1)
3303
        return ram_load_v1(f, opaque);
3304

    
3305
    if (version_id == 2) {
3306
        if (qemu_get_be32(f) != last_ram_offset)
3307
            return -EINVAL;
3308
        return ram_load_dead(f, opaque);
3309
    }
3310

    
3311
    if (version_id != 3)
3312
        return -EINVAL;
3313

    
3314
    do {
3315
        addr = qemu_get_be64(f);
3316

    
3317
        flags = addr & ~TARGET_PAGE_MASK;
3318
        addr &= TARGET_PAGE_MASK;
3319

    
3320
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321
            if (addr != last_ram_offset)
3322
                return -EINVAL;
3323
        }
3324

    
3325
        if (flags & RAM_SAVE_FLAG_FULL) {
3326
            if (ram_load_dead(f, opaque) < 0)
3327
                return -EINVAL;
3328
        }
3329
        
3330
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331
            uint8_t ch = qemu_get_byte(f);
3332
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3334
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3336

    
3337
    return 0;
3338
}
3339

    
3340
void qemu_service_io(void)
3341
{
3342
    qemu_notify_event();
3343
}
3344

    
3345
/***********************************************************/
3346
/* bottom halves (can be seen as timers which expire ASAP) */
3347

    
3348
struct QEMUBH {
3349
    QEMUBHFunc *cb;
3350
    void *opaque;
3351
    int scheduled;
3352
    int idle;
3353
    int deleted;
3354
    QEMUBH *next;
3355
};
3356

    
3357
static QEMUBH *first_bh = NULL;
3358

    
3359
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3360
{
3361
    QEMUBH *bh;
3362
    bh = qemu_mallocz(sizeof(QEMUBH));
3363
    bh->cb = cb;
3364
    bh->opaque = opaque;
3365
    bh->next = first_bh;
3366
    first_bh = bh;
3367
    return bh;
3368
}
3369

    
3370
int qemu_bh_poll(void)
3371
{
3372
    QEMUBH *bh, **bhp;
3373
    int ret;
3374

    
3375
    ret = 0;
3376
    for (bh = first_bh; bh; bh = bh->next) {
3377
        if (!bh->deleted && bh->scheduled) {
3378
            bh->scheduled = 0;
3379
            if (!bh->idle)
3380
                ret = 1;
3381
            bh->idle = 0;
3382
            bh->cb(bh->opaque);
3383
        }
3384
    }
3385

    
3386
    /* remove deleted bhs */
3387
    bhp = &first_bh;
3388
    while (*bhp) {
3389
        bh = *bhp;
3390
        if (bh->deleted) {
3391
            *bhp = bh->next;
3392
            qemu_free(bh);
3393
        } else
3394
            bhp = &bh->next;
3395
    }
3396

    
3397
    return ret;
3398
}
3399

    
3400
void qemu_bh_schedule_idle(QEMUBH *bh)
3401
{
3402
    if (bh->scheduled)
3403
        return;
3404
    bh->scheduled = 1;
3405
    bh->idle = 1;
3406
}
3407

    
3408
void qemu_bh_schedule(QEMUBH *bh)
3409
{
3410
    if (bh->scheduled)
3411
        return;
3412
    bh->scheduled = 1;
3413
    bh->idle = 0;
3414
    /* stop the currently executing CPU to execute the BH ASAP */
3415
    qemu_notify_event();
3416
}
3417

    
3418
void qemu_bh_cancel(QEMUBH *bh)
3419
{
3420
    bh->scheduled = 0;
3421
}
3422

    
3423
void qemu_bh_delete(QEMUBH *bh)
3424
{
3425
    bh->scheduled = 0;
3426
    bh->deleted = 1;
3427
}
3428

    
3429
static void qemu_bh_update_timeout(int *timeout)
3430
{
3431
    QEMUBH *bh;
3432

    
3433
    for (bh = first_bh; bh; bh = bh->next) {
3434
        if (!bh->deleted && bh->scheduled) {
3435
            if (bh->idle) {
3436
                /* idle bottom halves will be polled at least
3437
                 * every 10ms */
3438
                *timeout = MIN(10, *timeout);
3439
            } else {
3440
                /* non-idle bottom halves will be executed
3441
                 * immediately */
3442
                *timeout = 0;
3443
                break;
3444
            }
3445
        }
3446
    }
3447
}
3448

    
3449
/***********************************************************/
3450
/* machine registration */
3451

    
3452
static QEMUMachine *first_machine = NULL;
3453
QEMUMachine *current_machine = NULL;
3454

    
3455
int qemu_register_machine(QEMUMachine *m)
3456
{
3457
    QEMUMachine **pm;
3458
    pm = &first_machine;
3459
    while (*pm != NULL)
3460
        pm = &(*pm)->next;
3461
    m->next = NULL;
3462
    *pm = m;
3463
    return 0;
3464
}
3465

    
3466
static QEMUMachine *find_machine(const char *name)
3467
{
3468
    QEMUMachine *m;
3469

    
3470
    for(m = first_machine; m != NULL; m = m->next) {
3471
        if (!strcmp(m->name, name))
3472
            return m;
3473
    }
3474
    return NULL;
3475
}
3476

    
3477
/***********************************************************/
3478
/* main execution loop */
3479

    
3480
static void gui_update(void *opaque)
3481
{
3482
    uint64_t interval = GUI_REFRESH_INTERVAL;
3483
    DisplayState *ds = opaque;
3484
    DisplayChangeListener *dcl = ds->listeners;
3485

    
3486
    dpy_refresh(ds);
3487

    
3488
    while (dcl != NULL) {
3489
        if (dcl->gui_timer_interval &&
3490
            dcl->gui_timer_interval < interval)
3491
            interval = dcl->gui_timer_interval;
3492
        dcl = dcl->next;
3493
    }
3494
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3495
}
3496

    
3497
static void nographic_update(void *opaque)
3498
{
3499
    uint64_t interval = GUI_REFRESH_INTERVAL;
3500

    
3501
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3502
}
3503

    
3504
struct vm_change_state_entry {
3505
    VMChangeStateHandler *cb;
3506
    void *opaque;
3507
    LIST_ENTRY (vm_change_state_entry) entries;
3508
};
3509

    
3510
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3511

    
3512
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513
                                                     void *opaque)
3514
{
3515
    VMChangeStateEntry *e;
3516

    
3517
    e = qemu_mallocz(sizeof (*e));
3518

    
3519
    e->cb = cb;
3520
    e->opaque = opaque;
3521
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522
    return e;
3523
}
3524

    
3525
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3526
{
3527
    LIST_REMOVE (e, entries);
3528
    qemu_free (e);
3529
}
3530

    
3531
static void vm_state_notify(int running, int reason)
3532
{
3533
    VMChangeStateEntry *e;
3534

    
3535
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536
        e->cb(e->opaque, running, reason);
3537
    }
3538
}
3539

    
3540
static void resume_all_vcpus(void);
3541
static void pause_all_vcpus(void);
3542

    
3543
void vm_start(void)
3544
{
3545
    if (!vm_running) {
3546
        cpu_enable_ticks();
3547
        vm_running = 1;
3548
        vm_state_notify(1, 0);
3549
        qemu_rearm_alarm_timer(alarm_timer);
3550
        resume_all_vcpus();
3551
    }
3552
}
3553

    
3554
/* reset/shutdown handler */
3555

    
3556
typedef struct QEMUResetEntry {
3557
    QEMUResetHandler *func;
3558
    void *opaque;
3559
    struct QEMUResetEntry *next;
3560
} QEMUResetEntry;
3561

    
3562
static QEMUResetEntry *first_reset_entry;
3563
static int reset_requested;
3564
static int shutdown_requested;
3565
static int powerdown_requested;
3566
static int debug_requested;
3567
static int vmstop_requested;
3568

    
3569
int qemu_shutdown_requested(void)
3570
{
3571
    int r = shutdown_requested;
3572
    shutdown_requested = 0;
3573
    return r;
3574
}
3575

    
3576
int qemu_reset_requested(void)
3577
{
3578
    int r = reset_requested;
3579
    reset_requested = 0;
3580
    return r;
3581
}
3582

    
3583
int qemu_powerdown_requested(void)
3584
{
3585
    int r = powerdown_requested;
3586
    powerdown_requested = 0;
3587
    return r;
3588
}
3589

    
3590
static int qemu_debug_requested(void)
3591
{
3592
    int r = debug_requested;
3593
    debug_requested = 0;
3594
    return r;
3595
}
3596

    
3597
static int qemu_vmstop_requested(void)
3598
{
3599
    int r = vmstop_requested;
3600
    vmstop_requested = 0;
3601
    return r;
3602
}
3603

    
3604
static void do_vm_stop(int reason)
3605
{
3606
    if (vm_running) {
3607
        cpu_disable_ticks();
3608
        vm_running = 0;
3609
        pause_all_vcpus();
3610
        vm_state_notify(0, reason);
3611
    }
3612
}
3613

    
3614
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3615
{
3616
    QEMUResetEntry **pre, *re;
3617

    
3618
    pre = &first_reset_entry;
3619
    while (*pre != NULL)
3620
        pre = &(*pre)->next;
3621
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3622
    re->func = func;
3623
    re->opaque = opaque;
3624
    re->next = NULL;
3625
    *pre = re;
3626
}
3627

    
3628
void qemu_system_reset(void)
3629
{
3630
    QEMUResetEntry *re;
3631

    
3632
    /* reset all devices */
3633
    for(re = first_reset_entry; re != NULL; re = re->next) {
3634
        re->func(re->opaque);
3635
    }
3636
    if (kvm_enabled())
3637
        kvm_sync_vcpus();
3638
}
3639

    
3640
void qemu_system_reset_request(void)
3641
{
3642
    if (no_reboot) {
3643
        shutdown_requested = 1;
3644
    } else {
3645
        reset_requested = 1;
3646
    }
3647
    qemu_notify_event();
3648
}
3649

    
3650
void qemu_system_shutdown_request(void)
3651
{
3652
    shutdown_requested = 1;
3653
    qemu_notify_event();
3654
}
3655

    
3656
void qemu_system_powerdown_request(void)
3657
{
3658
    powerdown_requested = 1;
3659
    qemu_notify_event();
3660
}
3661

    
3662
#ifdef CONFIG_IOTHREAD
3663
static void qemu_system_vmstop_request(int reason)
3664
{
3665
    vmstop_requested = reason;
3666
    qemu_notify_event();
3667
}
3668
#endif
3669

    
3670
#ifndef _WIN32
3671
static int io_thread_fd = -1;
3672

    
3673
static void qemu_event_increment(void)
3674
{
3675
    static const char byte = 0;
3676

    
3677
    if (io_thread_fd == -1)
3678
        return;
3679

    
3680
    write(io_thread_fd, &byte, sizeof(byte));
3681
}
3682

    
3683
static void qemu_event_read(void *opaque)
3684
{
3685
    int fd = (unsigned long)opaque;
3686
    ssize_t len;
3687

    
3688
    /* Drain the notify pipe */
3689
    do {
3690
        char buffer[512];
3691
        len = read(fd, buffer, sizeof(buffer));
3692
    } while ((len == -1 && errno == EINTR) || len > 0);
3693
}
3694

    
3695
static int qemu_event_init(void)
3696
{
3697
    int err;
3698
    int fds[2];
3699

    
3700
    err = pipe(fds);
3701
    if (err == -1)
3702
        return -errno;
3703

    
3704
    err = fcntl_setfl(fds[0], O_NONBLOCK);
3705
    if (err < 0)
3706
        goto fail;
3707

    
3708
    err = fcntl_setfl(fds[1], O_NONBLOCK);
3709
    if (err < 0)
3710
        goto fail;
3711

    
3712
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3713
                         (void *)(unsigned long)fds[0]);
3714

    
3715
    io_thread_fd = fds[1];
3716
    return 0;
3717

    
3718
fail:
3719
    close(fds[0]);
3720
    close(fds[1]);
3721
    return err;
3722
}
3723
#else
3724
HANDLE qemu_event_handle;
3725

    
3726
static void dummy_event_handler(void *opaque)
3727
{
3728
}
3729

    
3730
static int qemu_event_init(void)
3731
{
3732
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3733
    if (!qemu_event_handle) {
3734
        perror("Failed CreateEvent");
3735
        return -1;
3736
    }
3737
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3738
    return 0;
3739
}
3740

    
3741
static void qemu_event_increment(void)
3742
{
3743
    SetEvent(qemu_event_handle);
3744
}
3745
#endif
3746

    
3747
static int cpu_can_run(CPUState *env)
3748
{
3749
    if (env->stop)
3750
        return 0;
3751
    if (env->stopped)
3752
        return 0;
3753
    return 1;
3754
}
3755

    
3756
#ifndef CONFIG_IOTHREAD
3757
static int qemu_init_main_loop(void)
3758
{
3759
    return qemu_event_init();
3760
}
3761

    
3762
void qemu_init_vcpu(void *_env)
3763
{
3764
    CPUState *env = _env;
3765

    
3766
    if (kvm_enabled())
3767
        kvm_init_vcpu(env);
3768
    return;
3769
}
3770

    
3771
int qemu_cpu_self(void *env)
3772
{
3773
    return 1;
3774
}
3775

    
3776
static void resume_all_vcpus(void)
3777
{
3778
}
3779

    
3780
static void pause_all_vcpus(void)
3781
{
3782
}
3783

    
3784
void qemu_cpu_kick(void *env)
3785
{
3786
    return;
3787
}
3788

    
3789
void qemu_notify_event(void)
3790
{
3791
    CPUState *env = cpu_single_env;
3792

    
3793
    if (env) {
3794
        cpu_exit(env);
3795
#ifdef USE_KQEMU
3796
        if (env->kqemu_enabled)
3797
            kqemu_cpu_interrupt(env);
3798
#endif
3799
     }
3800
}
3801

    
3802
#define qemu_mutex_lock_iothread() do { } while (0)
3803
#define qemu_mutex_unlock_iothread() do { } while (0)
3804

    
3805
void vm_stop(int reason)
3806
{
3807
    do_vm_stop(reason);
3808
}
3809

    
3810
#else /* CONFIG_IOTHREAD */
3811

    
3812
#include "qemu-thread.h"
3813

    
3814
QemuMutex qemu_global_mutex;
3815
static QemuMutex qemu_fair_mutex;
3816

    
3817
static QemuThread io_thread;
3818

    
3819
static QemuThread *tcg_cpu_thread;
3820
static QemuCond *tcg_halt_cond;
3821

    
3822
static int qemu_system_ready;
3823
/* cpu creation */
3824
static QemuCond qemu_cpu_cond;
3825
/* system init */
3826
static QemuCond qemu_system_cond;
3827
static QemuCond qemu_pause_cond;
3828

    
3829
static void block_io_signals(void);
3830
static void unblock_io_signals(void);
3831
static int tcg_has_work(void);
3832

    
3833
static int qemu_init_main_loop(void)
3834
{
3835
    int ret;
3836

    
3837
    ret = qemu_event_init();
3838
    if (ret)
3839
        return ret;
3840

    
3841
    qemu_cond_init(&qemu_pause_cond);
3842
    qemu_mutex_init(&qemu_fair_mutex);
3843
    qemu_mutex_init(&qemu_global_mutex);
3844
    qemu_mutex_lock(&qemu_global_mutex);
3845

    
3846
    unblock_io_signals();
3847
    qemu_thread_self(&io_thread);
3848

    
3849
    return 0;
3850
}
3851

    
3852
static void qemu_wait_io_event(CPUState *env)
3853
{
3854
    while (!tcg_has_work())
3855
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3856

    
3857
    qemu_mutex_unlock(&qemu_global_mutex);
3858

    
3859
    /*
3860
     * Users of qemu_global_mutex can be starved, having no chance
3861
     * to acquire it since this path will get to it first.
3862
     * So use another lock to provide fairness.
3863
     */
3864
    qemu_mutex_lock(&qemu_fair_mutex);
3865
    qemu_mutex_unlock(&qemu_fair_mutex);
3866

    
3867
    qemu_mutex_lock(&qemu_global_mutex);
3868
    if (env->stop) {
3869
        env->stop = 0;
3870
        env->stopped = 1;
3871
        qemu_cond_signal(&qemu_pause_cond);
3872
    }
3873
}
3874

    
3875
static int qemu_cpu_exec(CPUState *env);
3876

    
3877
static void *kvm_cpu_thread_fn(void *arg)
3878
{
3879
    CPUState *env = arg;
3880

    
3881
    block_io_signals();
3882
    qemu_thread_self(env->thread);
3883

    
3884
    /* signal CPU creation */
3885
    qemu_mutex_lock(&qemu_global_mutex);
3886
    env->created = 1;
3887
    qemu_cond_signal(&qemu_cpu_cond);
3888

    
3889
    /* and wait for machine initialization */
3890
    while (!qemu_system_ready)
3891
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3892

    
3893
    while (1) {
3894
        if (cpu_can_run(env))
3895
            qemu_cpu_exec(env);
3896
        qemu_wait_io_event(env);
3897
    }
3898

    
3899
    return NULL;
3900
}
3901

    
3902
static void tcg_cpu_exec(void);
3903

    
3904
static void *tcg_cpu_thread_fn(void *arg)
3905
{
3906
    CPUState *env = arg;
3907

    
3908
    block_io_signals();
3909
    qemu_thread_self(env->thread);
3910

    
3911
    /* signal CPU creation */
3912
    qemu_mutex_lock(&qemu_global_mutex);
3913
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3914
        env->created = 1;
3915
    qemu_cond_signal(&qemu_cpu_cond);
3916

    
3917
    /* and wait for machine initialization */
3918
    while (!qemu_system_ready)
3919
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3920

    
3921
    while (1) {
3922
        tcg_cpu_exec();
3923
        qemu_wait_io_event(cur_cpu);
3924
    }
3925

    
3926
    return NULL;
3927
}
3928

    
3929
void qemu_cpu_kick(void *_env)
3930
{
3931
    CPUState *env = _env;
3932
    qemu_cond_broadcast(env->halt_cond);
3933
    if (kvm_enabled())
3934
        qemu_thread_signal(env->thread, SIGUSR1);
3935
}
3936

    
3937
int qemu_cpu_self(void *env)
3938
{
3939
    return (cpu_single_env != NULL);
3940
}
3941

    
3942
static void cpu_signal(int sig)
3943
{
3944
    if (cpu_single_env)
3945
        cpu_exit(cpu_single_env);
3946
}
3947

    
3948
static void block_io_signals(void)
3949
{
3950
    sigset_t set;
3951
    struct sigaction sigact;
3952

    
3953
    sigemptyset(&set);
3954
    sigaddset(&set, SIGUSR2);
3955
    sigaddset(&set, SIGIO);
3956
    sigaddset(&set, SIGALRM);
3957
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3958

    
3959
    sigemptyset(&set);
3960
    sigaddset(&set, SIGUSR1);
3961
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3962

    
3963
    memset(&sigact, 0, sizeof(sigact));
3964
    sigact.sa_handler = cpu_signal;
3965
    sigaction(SIGUSR1, &sigact, NULL);
3966
}
3967

    
3968
static void unblock_io_signals(void)
3969
{
3970
    sigset_t set;
3971

    
3972
    sigemptyset(&set);
3973
    sigaddset(&set, SIGUSR2);
3974
    sigaddset(&set, SIGIO);
3975
    sigaddset(&set, SIGALRM);
3976
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3977

    
3978
    sigemptyset(&set);
3979
    sigaddset(&set, SIGUSR1);
3980
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3981
}
3982

    
3983
static void qemu_signal_lock(unsigned int msecs)
3984
{
3985
    qemu_mutex_lock(&qemu_fair_mutex);
3986

    
3987
    while (qemu_mutex_trylock(&qemu_global_mutex)) {
3988
        qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3989
        if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3990
            break;
3991
    }
3992
    qemu_mutex_unlock(&qemu_fair_mutex);
3993
}
3994

    
3995
static void qemu_mutex_lock_iothread(void)
3996
{
3997
    if (kvm_enabled()) {
3998
        qemu_mutex_lock(&qemu_fair_mutex);
3999
        qemu_mutex_lock(&qemu_global_mutex);
4000
        qemu_mutex_unlock(&qemu_fair_mutex);
4001
    } else
4002
        qemu_signal_lock(100);
4003
}
4004

    
4005
static void qemu_mutex_unlock_iothread(void)
4006
{
4007
    qemu_mutex_unlock(&qemu_global_mutex);
4008
}
4009

    
4010
static int all_vcpus_paused(void)
4011
{
4012
    CPUState *penv = first_cpu;
4013

    
4014
    while (penv) {
4015
        if (!penv->stopped)
4016
            return 0;
4017
        penv = (CPUState *)penv->next_cpu;
4018
    }
4019

    
4020
    return 1;
4021
}
4022

    
4023
static void pause_all_vcpus(void)
4024
{
4025
    CPUState *penv = first_cpu;
4026

    
4027
    while (penv) {
4028
        penv->stop = 1;
4029
        qemu_thread_signal(penv->thread, SIGUSR1);
4030
        qemu_cpu_kick(penv);
4031
        penv = (CPUState *)penv->next_cpu;
4032
    }
4033

    
4034
    while (!all_vcpus_paused()) {
4035
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4036
        penv = first_cpu;
4037
        while (penv) {
4038
            qemu_thread_signal(penv->thread, SIGUSR1);
4039
            penv = (CPUState *)penv->next_cpu;
4040
        }
4041
    }
4042
}
4043

    
4044
static void resume_all_vcpus(void)
4045
{
4046
    CPUState *penv = first_cpu;
4047

    
4048
    while (penv) {
4049
        penv->stop = 0;
4050
        penv->stopped = 0;
4051
        qemu_thread_signal(penv->thread, SIGUSR1);
4052
        qemu_cpu_kick(penv);
4053
        penv = (CPUState *)penv->next_cpu;
4054
    }
4055
}
4056

    
4057
static void tcg_init_vcpu(void *_env)
4058
{
4059
    CPUState *env = _env;
4060
    /* share a single thread for all cpus with TCG */
4061
    if (!tcg_cpu_thread) {
4062
        env->thread = qemu_mallocz(sizeof(QemuThread));
4063
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4064
        qemu_cond_init(env->halt_cond);
4065
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4066
        while (env->created == 0)
4067
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4068
        tcg_cpu_thread = env->thread;
4069
        tcg_halt_cond = env->halt_cond;
4070
    } else {
4071
        env->thread = tcg_cpu_thread;
4072
        env->halt_cond = tcg_halt_cond;
4073
    }
4074
}
4075

    
4076
static void kvm_start_vcpu(CPUState *env)
4077
{
4078
    kvm_init_vcpu(env);
4079
    env->thread = qemu_mallocz(sizeof(QemuThread));
4080
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4081
    qemu_cond_init(env->halt_cond);
4082
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4083
    while (env->created == 0)
4084
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4085
}
4086

    
4087
void qemu_init_vcpu(void *_env)
4088
{
4089
    CPUState *env = _env;
4090

    
4091
    if (kvm_enabled())
4092
        kvm_start_vcpu(env);
4093
    else
4094
        tcg_init_vcpu(env);
4095
}
4096

    
4097
void qemu_notify_event(void)
4098
{
4099
    qemu_event_increment();
4100
}
4101

    
4102
void vm_stop(int reason)
4103
{
4104
    QemuThread me;
4105
    qemu_thread_self(&me);
4106

    
4107
    if (!qemu_thread_equal(&me, &io_thread)) {
4108
        qemu_system_vmstop_request(reason);
4109
        /*
4110
         * FIXME: should not return to device code in case
4111
         * vm_stop() has been requested.
4112
         */
4113
        if (cpu_single_env) {
4114
            cpu_exit(cpu_single_env);
4115
            cpu_single_env->stop = 1;
4116
        }
4117
        return;
4118
    }
4119
    do_vm_stop(reason);
4120
}
4121

    
4122
#endif
4123

    
4124

    
4125
#ifdef _WIN32
4126
static void host_main_loop_wait(int *timeout)
4127
{
4128
    int ret, ret2, i;
4129
    PollingEntry *pe;
4130

    
4131

    
4132
    /* XXX: need to suppress polling by better using win32 events */
4133
    ret = 0;
4134
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4135
        ret |= pe->func(pe->opaque);
4136
    }
4137
    if (ret == 0) {
4138
        int err;
4139
        WaitObjects *w = &wait_objects;
4140

    
4141
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4142
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4143
            if (w->func[ret - WAIT_OBJECT_0])
4144
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4145

    
4146
            /* Check for additional signaled events */
4147
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4148

    
4149
                /* Check if event is signaled */
4150
                ret2 = WaitForSingleObject(w->events[i], 0);
4151
                if(ret2 == WAIT_OBJECT_0) {
4152
                    if (w->func[i])
4153
                        w->func[i](w->opaque[i]);
4154
                } else if (ret2 == WAIT_TIMEOUT) {
4155
                } else {
4156
                    err = GetLastError();
4157
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4158
                }
4159
            }
4160
        } else if (ret == WAIT_TIMEOUT) {
4161
        } else {
4162
            err = GetLastError();
4163
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4164
        }
4165
    }
4166

    
4167
    *timeout = 0;
4168
}
4169
#else
4170
static void host_main_loop_wait(int *timeout)
4171
{
4172
}
4173
#endif
4174

    
4175
void main_loop_wait(int timeout)
4176
{
4177
    IOHandlerRecord *ioh;
4178
    fd_set rfds, wfds, xfds;
4179
    int ret, nfds;
4180
    struct timeval tv;
4181

    
4182
    qemu_bh_update_timeout(&timeout);
4183

    
4184
    host_main_loop_wait(&timeout);
4185

    
4186
    /* poll any events */
4187
    /* XXX: separate device handlers from system ones */
4188
    nfds = -1;
4189
    FD_ZERO(&rfds);
4190
    FD_ZERO(&wfds);
4191
    FD_ZERO(&xfds);
4192
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4193
        if (ioh->deleted)
4194
            continue;
4195
        if (ioh->fd_read &&
4196
            (!ioh->fd_read_poll ||
4197
             ioh->fd_read_poll(ioh->opaque) != 0)) {
4198
            FD_SET(ioh->fd, &rfds);
4199
            if (ioh->fd > nfds)
4200
                nfds = ioh->fd;
4201
        }
4202
        if (ioh->fd_write) {
4203
            FD_SET(ioh->fd, &wfds);
4204
            if (ioh->fd > nfds)
4205
                nfds = ioh->fd;
4206
        }
4207
    }
4208

    
4209
    tv.tv_sec = timeout / 1000;
4210
    tv.tv_usec = (timeout % 1000) * 1000;
4211

    
4212
#if defined(CONFIG_SLIRP)
4213
    if (slirp_is_inited()) {
4214
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4215
    }
4216
#endif
4217
    qemu_mutex_unlock_iothread();
4218
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4219
    qemu_mutex_lock_iothread();
4220
    if (ret > 0) {
4221
        IOHandlerRecord **pioh;
4222

    
4223
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4224
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4225
                ioh->fd_read(ioh->opaque);
4226
            }
4227
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4228
                ioh->fd_write(ioh->opaque);
4229
            }
4230
        }
4231

    
4232
        /* remove deleted IO handlers */
4233
        pioh = &first_io_handler;
4234
        while (*pioh) {
4235
            ioh = *pioh;
4236
            if (ioh->deleted) {
4237
                *pioh = ioh->next;
4238
                qemu_free(ioh);
4239
            } else
4240
                pioh = &ioh->next;
4241
        }
4242
    }
4243
#if defined(CONFIG_SLIRP)
4244
    if (slirp_is_inited()) {
4245
        if (ret < 0) {
4246
            FD_ZERO(&rfds);
4247
            FD_ZERO(&wfds);
4248
            FD_ZERO(&xfds);
4249
        }
4250
        slirp_select_poll(&rfds, &wfds, &xfds);
4251
    }
4252
#endif
4253

    
4254
    /* rearm timer, if not periodic */
4255
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4256
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4257
        qemu_rearm_alarm_timer(alarm_timer);
4258
    }
4259

    
4260
    /* vm time timers */
4261
    if (vm_running) {
4262
        if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4263
            qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4264
                qemu_get_clock(vm_clock));
4265
    }
4266

    
4267
    /* real time timers */
4268
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4269
                    qemu_get_clock(rt_clock));
4270

    
4271
    /* Check bottom-halves last in case any of the earlier events triggered
4272
       them.  */
4273
    qemu_bh_poll();
4274

    
4275
}
4276

    
4277
static int qemu_cpu_exec(CPUState *env)
4278
{
4279
    int ret;
4280
#ifdef CONFIG_PROFILER
4281
    int64_t ti;
4282
#endif
4283

    
4284
#ifdef CONFIG_PROFILER
4285
    ti = profile_getclock();
4286
#endif
4287
    if (use_icount) {
4288
        int64_t count;
4289
        int decr;
4290
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4291
        env->icount_decr.u16.low = 0;
4292
        env->icount_extra = 0;
4293
        count = qemu_next_deadline();
4294
        count = (count + (1 << icount_time_shift) - 1)
4295
                >> icount_time_shift;
4296
        qemu_icount += count;
4297
        decr = (count > 0xffff) ? 0xffff : count;
4298
        count -= decr;
4299
        env->icount_decr.u16.low = decr;
4300
        env->icount_extra = count;
4301
    }
4302
    ret = cpu_exec(env);
4303
#ifdef CONFIG_PROFILER
4304
    qemu_time += profile_getclock() - ti;
4305
#endif
4306
    if (use_icount) {
4307
        /* Fold pending instructions back into the
4308
           instruction counter, and clear the interrupt flag.  */
4309
        qemu_icount -= (env->icount_decr.u16.low
4310
                        + env->icount_extra);
4311
        env->icount_decr.u32 = 0;
4312
        env->icount_extra = 0;
4313
    }
4314
    return ret;
4315
}
4316

    
4317
static void tcg_cpu_exec(void)
4318
{
4319
    int ret = 0;
4320

    
4321
    if (next_cpu == NULL)
4322
        next_cpu = first_cpu;
4323
    for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4324
        CPUState *env = cur_cpu = next_cpu;
4325

    
4326
        if (!vm_running)
4327
            break;
4328
        if (timer_alarm_pending) {
4329
            timer_alarm_pending = 0;
4330
            break;
4331
        }
4332
        if (cpu_can_run(env))
4333
            ret = qemu_cpu_exec(env);
4334
        if (ret == EXCP_DEBUG) {
4335
            gdb_set_stop_cpu(env);
4336
            debug_requested = 1;
4337
            break;
4338
        }
4339
    }
4340
}
4341

    
4342
static int cpu_has_work(CPUState *env)
4343
{
4344
    if (env->stop)
4345
        return 1;
4346
    if (env->stopped)
4347
        return 0;
4348
    if (!env->halted)
4349
        return 1;
4350
    if (qemu_cpu_has_work(env))
4351
        return 1;
4352
    return 0;
4353
}
4354

    
4355
static int tcg_has_work(void)
4356
{
4357
    CPUState *env;
4358

    
4359
    for (env = first_cpu; env != NULL; env = env->next_cpu)
4360
        if (cpu_has_work(env))
4361
            return 1;
4362
    return 0;
4363
}
4364

    
4365
static int qemu_calculate_timeout(void)
4366
{
4367
    int timeout;
4368

    
4369
    if (!vm_running)
4370
        timeout = 5000;
4371
    else if (tcg_has_work())
4372
        timeout = 0;
4373
    else if (!use_icount)
4374
        timeout = 5000;
4375
    else {
4376
     /* XXX: use timeout computed from timers */
4377
        int64_t add;
4378
        int64_t delta;
4379
        /* Advance virtual time to the next event.  */
4380
        if (use_icount == 1) {
4381
            /* When not using an adaptive execution frequency
4382
               we tend to get badly out of sync with real time,
4383
               so just delay for a reasonable amount of time.  */
4384
            delta = 0;
4385
        } else {
4386
            delta = cpu_get_icount() - cpu_get_clock();
4387
        }
4388
        if (delta > 0) {
4389
            /* If virtual time is ahead of real time then just
4390
               wait for IO.  */
4391
            timeout = (delta / 1000000) + 1;
4392
        } else {
4393
            /* Wait for either IO to occur or the next
4394
               timer event.  */
4395
            add = qemu_next_deadline();
4396
            /* We advance the timer before checking for IO.
4397
               Limit the amount we advance so that early IO
4398
               activity won't get the guest too far ahead.  */
4399
            if (add > 10000000)
4400
                add = 10000000;
4401
            delta += add;
4402
            add = (add + (1 << icount_time_shift) - 1)
4403
                  >> icount_time_shift;
4404
            qemu_icount += add;
4405
            timeout = delta / 1000000;
4406
            if (timeout < 0)
4407
                timeout = 0;
4408
        }
4409
    }
4410

    
4411
    return timeout;
4412
}
4413

    
4414
static int vm_can_run(void)
4415
{
4416
    if (powerdown_requested)
4417
        return 0;
4418
    if (reset_requested)
4419
        return 0;
4420
    if (shutdown_requested)
4421
        return 0;
4422
    if (debug_requested)
4423
        return 0;
4424
    return 1;
4425
}
4426

    
4427
static void main_loop(void)
4428
{
4429
    int r;
4430

    
4431
#ifdef CONFIG_IOTHREAD
4432
    qemu_system_ready = 1;
4433
    qemu_cond_broadcast(&qemu_system_cond);
4434
#endif
4435

    
4436
    for (;;) {
4437
        do {
4438
#ifdef CONFIG_PROFILER
4439
            int64_t ti;
4440
#endif
4441
#ifndef CONFIG_IOTHREAD
4442
            tcg_cpu_exec();
4443
#endif
4444
#ifdef CONFIG_PROFILER
4445
            ti = profile_getclock();
4446
#endif
4447
#ifdef CONFIG_IOTHREAD
4448
            main_loop_wait(1000);
4449
#else
4450
            main_loop_wait(qemu_calculate_timeout());
4451
#endif
4452
#ifdef CONFIG_PROFILER
4453
            dev_time += profile_getclock() - ti;
4454
#endif
4455
        } while (vm_can_run());
4456

    
4457
        if (qemu_debug_requested())
4458
            vm_stop(EXCP_DEBUG);
4459
        if (qemu_shutdown_requested()) {
4460
            if (no_shutdown) {
4461
                vm_stop(0);
4462
                no_shutdown = 0;
4463
            } else
4464
                break;
4465
        }
4466
        if (qemu_reset_requested()) {
4467
            pause_all_vcpus();
4468
            qemu_system_reset();
4469
            resume_all_vcpus();
4470
        }
4471
        if (qemu_powerdown_requested())
4472
            qemu_system_powerdown();
4473
        if ((r = qemu_vmstop_requested()))
4474
            vm_stop(r);
4475
    }
4476
    pause_all_vcpus();
4477
}
4478

    
4479
static void version(void)
4480
{
4481
    printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4482
}
4483

    
4484
static void help(int exitcode)
4485
{
4486
    version();
4487
    printf("usage: %s [options] [disk_image]\n"
4488
           "\n"
4489
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4490
           "\n"
4491
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4492
           opt_help
4493
#define DEFHEADING(text) stringify(text) "\n"
4494
#include "qemu-options.h"
4495
#undef DEF
4496
#undef DEFHEADING
4497
#undef GEN_DOCS
4498
           "\n"
4499
           "During emulation, the following keys are useful:\n"
4500
           "ctrl-alt-f      toggle full screen\n"
4501
           "ctrl-alt-n      switch to virtual console 'n'\n"
4502
           "ctrl-alt        toggle mouse and keyboard grab\n"
4503
           "\n"
4504
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4505
           ,
4506
           "qemu",
4507
           DEFAULT_RAM_SIZE,
4508
#ifndef _WIN32
4509
           DEFAULT_NETWORK_SCRIPT,
4510
           DEFAULT_NETWORK_DOWN_SCRIPT,
4511
#endif
4512
           DEFAULT_GDBSTUB_PORT,
4513
           "/tmp/qemu.log");
4514
    exit(exitcode);
4515
}
4516

    
4517
#define HAS_ARG 0x0001
4518

    
4519
enum {
4520
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4521
    opt_enum,
4522
#define DEFHEADING(text)
4523
#include "qemu-options.h"
4524
#undef DEF
4525
#undef DEFHEADING
4526
#undef GEN_DOCS
4527
};
4528

    
4529
typedef struct QEMUOption {
4530
    const char *name;
4531
    int flags;
4532
    int index;
4533
} QEMUOption;
4534

    
4535
static const QEMUOption qemu_options[] = {
4536
    { "h", 0, QEMU_OPTION_h },
4537
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4538
    { option, opt_arg, opt_enum },
4539
#define DEFHEADING(text)
4540
#include "qemu-options.h"
4541
#undef DEF
4542
#undef DEFHEADING
4543
#undef GEN_DOCS
4544
    { NULL },
4545
};
4546

    
4547
#ifdef HAS_AUDIO
4548
struct soundhw soundhw[] = {
4549
#ifdef HAS_AUDIO_CHOICE
4550
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4551
    {
4552
        "pcspk",
4553
        "PC speaker",
4554
        0,
4555
        1,
4556
        { .init_isa = pcspk_audio_init }
4557
    },
4558
#endif
4559

    
4560
#ifdef CONFIG_SB16
4561
    {
4562
        "sb16",
4563
        "Creative Sound Blaster 16",
4564
        0,
4565
        1,
4566
        { .init_isa = SB16_init }
4567
    },
4568
#endif
4569

    
4570
#ifdef CONFIG_CS4231A
4571
    {
4572
        "cs4231a",
4573
        "CS4231A",
4574
        0,
4575
        1,
4576
        { .init_isa = cs4231a_init }
4577
    },
4578
#endif
4579

    
4580
#ifdef CONFIG_ADLIB
4581
    {
4582
        "adlib",
4583
#ifdef HAS_YMF262
4584
        "Yamaha YMF262 (OPL3)",
4585
#else
4586
        "Yamaha YM3812 (OPL2)",
4587
#endif
4588
        0,
4589
        1,
4590
        { .init_isa = Adlib_init }
4591
    },
4592
#endif
4593

    
4594
#ifdef CONFIG_GUS
4595
    {
4596
        "gus",
4597
        "Gravis Ultrasound GF1",
4598
        0,
4599
        1,
4600
        { .init_isa = GUS_init }
4601
    },
4602
#endif
4603

    
4604
#ifdef CONFIG_AC97
4605
    {
4606
        "ac97",
4607
        "Intel 82801AA AC97 Audio",
4608
        0,
4609
        0,
4610
        { .init_pci = ac97_init }
4611
    },
4612
#endif
4613

    
4614
#ifdef CONFIG_ES1370
4615
    {
4616
        "es1370",
4617
        "ENSONIQ AudioPCI ES1370",
4618
        0,
4619
        0,
4620
        { .init_pci = es1370_init }
4621
    },
4622
#endif
4623

    
4624
#endif /* HAS_AUDIO_CHOICE */
4625

    
4626
    { NULL, NULL, 0, 0, { NULL } }
4627
};
4628

    
4629
static void select_soundhw (const char *optarg)
4630
{
4631
    struct soundhw *c;
4632

    
4633
    if (*optarg == '?') {
4634
    show_valid_cards:
4635

    
4636
        printf ("Valid sound card names (comma separated):\n");
4637
        for (c = soundhw; c->name; ++c) {
4638
            printf ("%-11s %s\n", c->name, c->descr);
4639
        }
4640
        printf ("\n-soundhw all will enable all of the above\n");
4641
        exit (*optarg != '?');
4642
    }
4643
    else {
4644
        size_t l;
4645
        const char *p;
4646
        char *e;
4647
        int bad_card = 0;
4648

    
4649
        if (!strcmp (optarg, "all")) {
4650
            for (c = soundhw; c->name; ++c) {
4651
                c->enabled = 1;
4652
            }
4653
            return;
4654
        }
4655

    
4656
        p = optarg;
4657
        while (*p) {
4658
            e = strchr (p, ',');
4659
            l = !e ? strlen (p) : (size_t) (e - p);
4660

    
4661
            for (c = soundhw; c->name; ++c) {
4662
                if (!strncmp (c->name, p, l)) {
4663
                    c->enabled = 1;
4664
                    break;
4665
                }
4666
            }
4667

    
4668
            if (!c->name) {
4669
                if (l > 80) {
4670
                    fprintf (stderr,
4671
                             "Unknown sound card name (too big to show)\n");
4672
                }
4673
                else {
4674
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4675
                             (int) l, p);
4676
                }
4677
                bad_card = 1;
4678
            }
4679
            p += l + (e != NULL);
4680
        }
4681

    
4682
        if (bad_card)
4683
            goto show_valid_cards;
4684
    }
4685
}
4686
#endif
4687

    
4688
static void select_vgahw (const char *p)
4689
{
4690
    const char *opts;
4691

    
4692
    cirrus_vga_enabled = 0;
4693
    std_vga_enabled = 0;
4694
    vmsvga_enabled = 0;
4695
    xenfb_enabled = 0;
4696
    if (strstart(p, "std", &opts)) {
4697
        std_vga_enabled = 1;
4698
    } else if (strstart(p, "cirrus", &opts)) {
4699
        cirrus_vga_enabled = 1;
4700
    } else if (strstart(p, "vmware", &opts)) {
4701
        vmsvga_enabled = 1;
4702
    } else if (strstart(p, "xenfb", &opts)) {
4703
        xenfb_enabled = 1;
4704
    } else if (!strstart(p, "none", &opts)) {
4705
    invalid_vga:
4706
        fprintf(stderr, "Unknown vga type: %s\n", p);
4707
        exit(1);
4708
    }
4709
    while (*opts) {
4710
        const char *nextopt;
4711

    
4712
        if (strstart(opts, ",retrace=", &nextopt)) {
4713
            opts = nextopt;
4714
            if (strstart(opts, "dumb", &nextopt))
4715
                vga_retrace_method = VGA_RETRACE_DUMB;
4716
            else if (strstart(opts, "precise", &nextopt))
4717
                vga_retrace_method = VGA_RETRACE_PRECISE;
4718
            else goto invalid_vga;
4719
        } else goto invalid_vga;
4720
        opts = nextopt;
4721
    }
4722
}
4723

    
4724
#ifdef _WIN32
4725
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4726
{
4727
    exit(STATUS_CONTROL_C_EXIT);
4728
    return TRUE;
4729
}
4730
#endif
4731

    
4732
int qemu_uuid_parse(const char *str, uint8_t *uuid)
4733
{
4734
    int ret;
4735

    
4736
    if(strlen(str) != 36)
4737
        return -1;
4738

    
4739
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4740
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4741
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4742

    
4743
    if(ret != 16)
4744
        return -1;
4745

    
4746
#ifdef TARGET_I386
4747
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4748
#endif
4749

    
4750
    return 0;
4751
}
4752

    
4753
#define MAX_NET_CLIENTS 32
4754

    
4755
#ifndef _WIN32
4756

    
4757
static void termsig_handler(int signal)
4758
{
4759
    qemu_system_shutdown_request();
4760
}
4761

    
4762
static void termsig_setup(void)
4763
{
4764
    struct sigaction act;
4765

    
4766
    memset(&act, 0, sizeof(act));
4767
    act.sa_handler = termsig_handler;
4768
    sigaction(SIGINT,  &act, NULL);
4769
    sigaction(SIGHUP,  &act, NULL);
4770
    sigaction(SIGTERM, &act, NULL);
4771
}
4772

    
4773
#endif
4774

    
4775
int main(int argc, char **argv, char **envp)
4776
{
4777
#ifdef CONFIG_GDBSTUB
4778
    const char *gdbstub_dev = NULL;
4779
#endif
4780
    uint32_t boot_devices_bitmap = 0;
4781
    int i;
4782
    int snapshot, linux_boot, net_boot;
4783
    const char *initrd_filename;
4784
    const char *kernel_filename, *kernel_cmdline;
4785
    const char *boot_devices = "";
4786
    DisplayState *ds;
4787
    DisplayChangeListener *dcl;
4788
    int cyls, heads, secs, translation;
4789
    const char *net_clients[MAX_NET_CLIENTS];
4790
    int nb_net_clients;
4791
    const char *bt_opts[MAX_BT_CMDLINE];
4792
    int nb_bt_opts;
4793
    int hda_index;
4794
    int optind;
4795
    const char *r, *optarg;
4796
    CharDriverState *monitor_hd = NULL;
4797
    const char *monitor_device;
4798
    const char *serial_devices[MAX_SERIAL_PORTS];
4799
    int serial_device_index;
4800
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4801
    int parallel_device_index;
4802
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4803
    int virtio_console_index;
4804
    const char *loadvm = NULL;
4805
    QEMUMachine *machine;
4806
    const char *cpu_model;
4807
    const char *usb_devices[MAX_USB_CMDLINE];
4808
    int usb_devices_index;
4809
#ifndef _WIN32
4810
    int fds[2];
4811
#endif
4812
    int tb_size;
4813
    const char *pid_file = NULL;
4814
    const char *incoming = NULL;
4815
#ifndef _WIN32
4816
    int fd = 0;
4817
    struct passwd *pwd = NULL;
4818
    const char *chroot_dir = NULL;
4819
    const char *run_as = NULL;
4820
#endif
4821
    CPUState *env;
4822

    
4823
    qemu_cache_utils_init(envp);
4824

    
4825
    LIST_INIT (&vm_change_state_head);
4826
#ifndef _WIN32
4827
    {
4828
        struct sigaction act;
4829
        sigfillset(&act.sa_mask);
4830
        act.sa_flags = 0;
4831
        act.sa_handler = SIG_IGN;
4832
        sigaction(SIGPIPE, &act, NULL);
4833
    }
4834
#else
4835
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4836
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4837
       QEMU to run on a single CPU */
4838
    {
4839
        HANDLE h;
4840
        DWORD mask, smask;
4841
        int i;
4842
        h = GetCurrentProcess();
4843
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4844
            for(i = 0; i < 32; i++) {
4845
                if (mask & (1 << i))
4846
                    break;
4847
            }
4848
            if (i != 32) {
4849
                mask = 1 << i;
4850
                SetProcessAffinityMask(h, mask);
4851
            }
4852
        }
4853
    }
4854
#endif
4855

    
4856
    register_machines();
4857
    machine = first_machine;
4858
    cpu_model = NULL;
4859
    initrd_filename = NULL;
4860
    ram_size = 0;
4861
    vga_ram_size = VGA_RAM_SIZE;
4862
    snapshot = 0;
4863
    nographic = 0;
4864
    curses = 0;
4865
    kernel_filename = NULL;
4866
    kernel_cmdline = "";
4867
    cyls = heads = secs = 0;
4868
    translation = BIOS_ATA_TRANSLATION_AUTO;
4869
    monitor_device = "vc:80Cx24C";
4870

    
4871
    serial_devices[0] = "vc:80Cx24C";
4872
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4873
        serial_devices[i] = NULL;
4874
    serial_device_index = 0;
4875

    
4876
    parallel_devices[0] = "vc:80Cx24C";
4877
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4878
        parallel_devices[i] = NULL;
4879
    parallel_device_index = 0;
4880

    
4881
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4882
        virtio_consoles[i] = NULL;
4883
    virtio_console_index = 0;
4884

    
4885
    for (i = 0; i < MAX_NODES; i++) {
4886
        node_mem[i] = 0;
4887
        node_cpumask[i] = 0;
4888
    }
4889

    
4890
    usb_devices_index = 0;
4891

    
4892
    nb_net_clients = 0;
4893
    nb_bt_opts = 0;
4894
    nb_drives = 0;
4895
    nb_drives_opt = 0;
4896
    nb_numa_nodes = 0;
4897
    hda_index = -1;
4898

    
4899
    nb_nics = 0;
4900

    
4901
    tb_size = 0;
4902
    autostart= 1;
4903

    
4904
    optind = 1;
4905
    for(;;) {
4906
        if (optind >= argc)
4907
            break;
4908
        r = argv[optind];
4909
        if (r[0] != '-') {
4910
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4911
        } else {
4912
            const QEMUOption *popt;
4913

    
4914
            optind++;
4915
            /* Treat --foo the same as -foo.  */
4916
            if (r[1] == '-')
4917
                r++;
4918
            popt = qemu_options;
4919
            for(;;) {
4920
                if (!popt->name) {
4921
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4922
                            argv[0], r);
4923
                    exit(1);
4924
                }
4925
                if (!strcmp(popt->name, r + 1))
4926
                    break;
4927
                popt++;
4928
            }
4929
            if (popt->flags & HAS_ARG) {
4930
                if (optind >= argc) {
4931
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4932
                            argv[0], r);
4933
                    exit(1);
4934
                }
4935
                optarg = argv[optind++];
4936
            } else {
4937
                optarg = NULL;
4938
            }
4939

    
4940
            switch(popt->index) {
4941
            case QEMU_OPTION_M:
4942
                machine = find_machine(optarg);
4943
                if (!machine) {
4944
                    QEMUMachine *m;
4945
                    printf("Supported machines are:\n");
4946
                    for(m = first_machine; m != NULL; m = m->next) {
4947
                        printf("%-10s %s%s\n",
4948
                               m->name, m->desc,
4949
                               m == first_machine ? " (default)" : "");
4950
                    }
4951
                    exit(*optarg != '?');
4952
                }
4953
                break;
4954
            case QEMU_OPTION_cpu:
4955
                /* hw initialization will check this */
4956
                if (*optarg == '?') {
4957
/* XXX: implement xxx_cpu_list for targets that still miss it */
4958
#if defined(cpu_list)
4959
                    cpu_list(stdout, &fprintf);
4960
#endif
4961
                    exit(0);
4962
                } else {
4963
                    cpu_model = optarg;
4964
                }
4965
                break;
4966
            case QEMU_OPTION_initrd:
4967
                initrd_filename = optarg;
4968
                break;
4969
            case QEMU_OPTION_hda:
4970
                if (cyls == 0)
4971
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4972
                else
4973
                    hda_index = drive_add(optarg, HD_ALIAS
4974
                             ",cyls=%d,heads=%d,secs=%d%s",
4975
                             0, cyls, heads, secs,
4976
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4977
                                 ",trans=lba" :
4978
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4979
                                 ",trans=none" : "");
4980
                 break;
4981
            case QEMU_OPTION_hdb:
4982
            case QEMU_OPTION_hdc:
4983
            case QEMU_OPTION_hdd:
4984
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4985
                break;
4986
            case QEMU_OPTION_drive:
4987
                drive_add(NULL, "%s", optarg);
4988
                break;
4989
            case QEMU_OPTION_mtdblock:
4990
                drive_add(optarg, MTD_ALIAS);
4991
                break;
4992
            case QEMU_OPTION_sd:
4993
                drive_add(optarg, SD_ALIAS);
4994
                break;
4995
            case QEMU_OPTION_pflash:
4996
                drive_add(optarg, PFLASH_ALIAS);
4997
                break;
4998
            case QEMU_OPTION_snapshot:
4999
                snapshot = 1;
5000
                break;
5001
            case QEMU_OPTION_hdachs:
5002
                {
5003
                    const char *p;
5004
                    p = optarg;
5005
                    cyls = strtol(p, (char **)&p, 0);
5006
                    if (cyls < 1 || cyls > 16383)
5007
                        goto chs_fail;
5008
                    if (*p != ',')
5009
                        goto chs_fail;
5010
                    p++;
5011
                    heads = strtol(p, (char **)&p, 0);
5012
                    if (heads < 1 || heads > 16)
5013
                        goto chs_fail;
5014
                    if (*p != ',')
5015
                        goto chs_fail;
5016
                    p++;
5017
                    secs = strtol(p, (char **)&p, 0);
5018
                    if (secs < 1 || secs > 63)
5019
                        goto chs_fail;
5020
                    if (*p == ',') {
5021
                        p++;
5022
                        if (!strcmp(p, "none"))
5023
                            translation = BIOS_ATA_TRANSLATION_NONE;
5024
                        else if (!strcmp(p, "lba"))
5025
                            translation = BIOS_ATA_TRANSLATION_LBA;
5026
                        else if (!strcmp(p, "auto"))
5027
                            translation = BIOS_ATA_TRANSLATION_AUTO;
5028
                        else
5029
                            goto chs_fail;
5030
                    } else if (*p != '\0') {
5031
                    chs_fail:
5032
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
5033
                        exit(1);
5034
                    }
5035
                    if (hda_index != -1)
5036
                        snprintf(drives_opt[hda_index].opt,
5037
                                 sizeof(drives_opt[hda_index].opt),
5038
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5039
                                 0, cyls, heads, secs,
5040
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
5041
                                         ",trans=lba" :
5042
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
5043
                                     ",trans=none" : "");
5044
                }
5045
                break;
5046
            case QEMU_OPTION_numa:
5047
                if (nb_numa_nodes >= MAX_NODES) {
5048
                    fprintf(stderr, "qemu: too many NUMA nodes\n");
5049
                    exit(1);
5050
                }
5051
                numa_add(optarg);
5052
                break;
5053
            case QEMU_OPTION_nographic:
5054
                nographic = 1;
5055
                break;
5056
#ifdef CONFIG_CURSES
5057
            case QEMU_OPTION_curses:
5058
                curses = 1;
5059
                break;
5060
#endif
5061
            case QEMU_OPTION_portrait:
5062
                graphic_rotate = 1;
5063
                break;
5064
            case QEMU_OPTION_kernel:
5065
                kernel_filename = optarg;
5066
                break;
5067
            case QEMU_OPTION_append:
5068
                kernel_cmdline = optarg;
5069
                break;
5070
            case QEMU_OPTION_cdrom:
5071
                drive_add(optarg, CDROM_ALIAS);
5072
                break;
5073
            case QEMU_OPTION_boot:
5074
                boot_devices = optarg;
5075
                /* We just do some generic consistency checks */
5076
                {
5077
                    /* Could easily be extended to 64 devices if needed */
5078
                    const char *p;
5079
                    
5080
                    boot_devices_bitmap = 0;
5081
                    for (p = boot_devices; *p != '\0'; p++) {
5082
                        /* Allowed boot devices are:
5083
                         * a b     : floppy disk drives
5084
                         * c ... f : IDE disk drives
5085
                         * g ... m : machine implementation dependant drives
5086
                         * n ... p : network devices
5087
                         * It's up to each machine implementation to check
5088
                         * if the given boot devices match the actual hardware
5089
                         * implementation and firmware features.
5090
                         */
5091
                        if (*p < 'a' || *p > 'q') {
5092
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
5093
                            exit(1);
5094
                        }
5095
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5096
                            fprintf(stderr,
5097
                                    "Boot device '%c' was given twice\n",*p);
5098
                            exit(1);
5099
                        }
5100
                        boot_devices_bitmap |= 1 << (*p - 'a');
5101
                    }
5102
                }
5103
                break;
5104
            case QEMU_OPTION_fda:
5105
            case QEMU_OPTION_fdb:
5106
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5107
                break;
5108
#ifdef TARGET_I386
5109
            case QEMU_OPTION_no_fd_bootchk:
5110
                fd_bootchk = 0;
5111
                break;
5112
#endif
5113
            case QEMU_OPTION_net:
5114
                if (nb_net_clients >= MAX_NET_CLIENTS) {
5115
                    fprintf(stderr, "qemu: too many network clients\n");
5116
                    exit(1);
5117
                }
5118
                net_clients[nb_net_clients] = optarg;
5119
                nb_net_clients++;
5120
                break;
5121
#ifdef CONFIG_SLIRP
5122
            case QEMU_OPTION_tftp:
5123
                tftp_prefix = optarg;
5124
                break;
5125
            case QEMU_OPTION_bootp:
5126
                bootp_filename = optarg;
5127
                break;
5128
#ifndef _WIN32
5129
            case QEMU_OPTION_smb:
5130
                net_slirp_smb(optarg);
5131
                break;
5132
#endif
5133
            case QEMU_OPTION_redir:
5134
                net_slirp_redir(NULL, optarg);
5135
                break;
5136
#endif
5137
            case QEMU_OPTION_bt:
5138
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
5139
                    fprintf(stderr, "qemu: too many bluetooth options\n");
5140
                    exit(1);
5141
                }
5142
                bt_opts[nb_bt_opts++] = optarg;
5143
                break;
5144
#ifdef HAS_AUDIO
5145
            case QEMU_OPTION_audio_help:
5146
                AUD_help ();
5147
                exit (0);
5148
                break;
5149
            case QEMU_OPTION_soundhw:
5150
                select_soundhw (optarg);
5151
                break;
5152
#endif
5153
            case QEMU_OPTION_h:
5154
                help(0);
5155
                break;
5156
            case QEMU_OPTION_version:
5157
                version();
5158
                exit(0);
5159
                break;
5160
            case QEMU_OPTION_m: {
5161
                uint64_t value;
5162
                char *ptr;
5163

    
5164
                value = strtoul(optarg, &ptr, 10);
5165
                switch (*ptr) {
5166
                case 0: case 'M': case 'm':
5167
                    value <<= 20;
5168
                    break;
5169
                case 'G': case 'g':
5170
                    value <<= 30;
5171
                    break;
5172
                default:
5173
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5174
                    exit(1);
5175
                }
5176

    
5177
                /* On 32-bit hosts, QEMU is limited by virtual address space */
5178
                if (value > (2047 << 20)
5179
#ifndef CONFIG_KQEMU
5180
                    && HOST_LONG_BITS == 32
5181
#endif
5182
                    ) {
5183
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5184
                    exit(1);
5185
                }
5186
                if (value != (uint64_t)(ram_addr_t)value) {
5187
                    fprintf(stderr, "qemu: ram size too large\n");
5188
                    exit(1);
5189
                }
5190
                ram_size = value;
5191
                break;
5192
            }
5193
            case QEMU_OPTION_d:
5194
                {
5195
                    int mask;
5196
                    const CPULogItem *item;
5197

    
5198
                    mask = cpu_str_to_log_mask(optarg);
5199
                    if (!mask) {
5200
                        printf("Log items (comma separated):\n");
5201
                    for(item = cpu_log_items; item->mask != 0; item++) {
5202
                        printf("%-10s %s\n", item->name, item->help);
5203
                    }
5204
                    exit(1);
5205
                    }
5206
                    cpu_set_log(mask);
5207
                }
5208
                break;
5209
#ifdef CONFIG_GDBSTUB
5210
            case QEMU_OPTION_s:
5211
                gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5212
                break;
5213
            case QEMU_OPTION_gdb:
5214
                gdbstub_dev = optarg;
5215
                break;
5216
#endif
5217
            case QEMU_OPTION_L:
5218
                bios_dir = optarg;
5219
                break;
5220
            case QEMU_OPTION_bios:
5221
                bios_name = optarg;
5222
                break;
5223
            case QEMU_OPTION_singlestep:
5224
                singlestep = 1;
5225
                break;
5226
            case QEMU_OPTION_S:
5227
                autostart = 0;
5228
                break;
5229
#ifndef _WIN32
5230
            case QEMU_OPTION_k:
5231
                keyboard_layout = optarg;
5232
                break;
5233
#endif
5234
            case QEMU_OPTION_localtime:
5235
                rtc_utc = 0;
5236
                break;
5237
            case QEMU_OPTION_vga:
5238
                select_vgahw (optarg);
5239
                break;
5240
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5241
            case QEMU_OPTION_g:
5242
                {
5243
                    const char *p;
5244
                    int w, h, depth;
5245
                    p = optarg;
5246
                    w = strtol(p, (char **)&p, 10);
5247
                    if (w <= 0) {
5248
                    graphic_error:
5249
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
5250
                        exit(1);
5251
                    }
5252
                    if (*p != 'x')
5253
                        goto graphic_error;
5254
                    p++;
5255
                    h = strtol(p, (char **)&p, 10);
5256
                    if (h <= 0)
5257
                        goto graphic_error;
5258
                    if (*p == 'x') {
5259
                        p++;
5260
                        depth = strtol(p, (char **)&p, 10);
5261
                        if (depth != 8 && depth != 15 && depth != 16 &&
5262
                            depth != 24 && depth != 32)
5263
                            goto graphic_error;
5264
                    } else if (*p == '\0') {
5265
                        depth = graphic_depth;
5266
                    } else {
5267
                        goto graphic_error;
5268
                    }
5269

    
5270
                    graphic_width = w;
5271
                    graphic_height = h;
5272
                    graphic_depth = depth;
5273
                }
5274
                break;
5275
#endif
5276
            case QEMU_OPTION_echr:
5277
                {
5278
                    char *r;
5279
                    term_escape_char = strtol(optarg, &r, 0);
5280
                    if (r == optarg)
5281
                        printf("Bad argument to echr\n");
5282
                    break;
5283
                }
5284
            case QEMU_OPTION_monitor:
5285
                monitor_device = optarg;
5286
                break;
5287
            case QEMU_OPTION_serial:
5288
                if (serial_device_index >= MAX_SERIAL_PORTS) {
5289
                    fprintf(stderr, "qemu: too many serial ports\n");
5290
                    exit(1);
5291
                }
5292
                serial_devices[serial_device_index] = optarg;
5293
                serial_device_index++;
5294
                break;
5295
            case QEMU_OPTION_virtiocon:
5296
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5297
                    fprintf(stderr, "qemu: too many virtio consoles\n");
5298
                    exit(1);
5299
                }
5300
                virtio_consoles[virtio_console_index] = optarg;
5301
                virtio_console_index++;
5302
                break;
5303
            case QEMU_OPTION_parallel:
5304
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5305
                    fprintf(stderr, "qemu: too many parallel ports\n");
5306
                    exit(1);
5307
                }
5308
                parallel_devices[parallel_device_index] = optarg;
5309
                parallel_device_index++;
5310
                break;
5311
            case QEMU_OPTION_loadvm:
5312
                loadvm = optarg;
5313
                break;
5314
            case QEMU_OPTION_full_screen:
5315
                full_screen = 1;
5316
                break;
5317
#ifdef CONFIG_SDL
5318
            case QEMU_OPTION_no_frame:
5319
                no_frame = 1;
5320
                break;
5321
            case QEMU_OPTION_alt_grab:
5322
                alt_grab = 1;
5323
                break;
5324
            case QEMU_OPTION_no_quit:
5325
                no_quit = 1;
5326
                break;
5327
            case QEMU_OPTION_sdl:
5328
                sdl = 1;
5329
                break;
5330
#endif
5331
            case QEMU_OPTION_pidfile:
5332
                pid_file = optarg;
5333
                break;
5334
#ifdef TARGET_I386
5335
            case QEMU_OPTION_win2k_hack:
5336
                win2k_install_hack = 1;
5337
                break;
5338
            case QEMU_OPTION_rtc_td_hack:
5339
                rtc_td_hack = 1;
5340
                break;
5341
            case QEMU_OPTION_acpitable:
5342
                if(acpi_table_add(optarg) < 0) {
5343
                    fprintf(stderr, "Wrong acpi table provided\n");
5344
                    exit(1);
5345
                }
5346
                break;
5347
            case QEMU_OPTION_smbios:
5348
                if(smbios_entry_add(optarg) < 0) {
5349
                    fprintf(stderr, "Wrong smbios provided\n");
5350
                    exit(1);
5351
                }
5352
                break;
5353
#endif
5354
#ifdef CONFIG_KQEMU
5355
            case QEMU_OPTION_no_kqemu:
5356
                kqemu_allowed = 0;
5357
                break;
5358
            case QEMU_OPTION_kernel_kqemu:
5359
                kqemu_allowed = 2;
5360
                break;
5361
#endif
5362
#ifdef CONFIG_KVM
5363
            case QEMU_OPTION_enable_kvm:
5364
                kvm_allowed = 1;
5365
#ifdef CONFIG_KQEMU
5366
                kqemu_allowed = 0;
5367
#endif
5368
                break;
5369
#endif
5370
            case QEMU_OPTION_usb:
5371
                usb_enabled = 1;
5372
                break;
5373
            case QEMU_OPTION_usbdevice:
5374
                usb_enabled = 1;
5375
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5376
                    fprintf(stderr, "Too many USB devices\n");
5377
                    exit(1);
5378
                }
5379
                usb_devices[usb_devices_index] = optarg;
5380
                usb_devices_index++;
5381
                break;
5382
            case QEMU_OPTION_smp:
5383
                smp_cpus = atoi(optarg);
5384
                if (smp_cpus < 1) {
5385
                    fprintf(stderr, "Invalid number of CPUs\n");
5386
                    exit(1);
5387
                }
5388
                break;
5389
            case QEMU_OPTION_vnc:
5390
                vnc_display = optarg;
5391
                break;
5392
#ifdef TARGET_I386
5393
            case QEMU_OPTION_no_acpi:
5394
                acpi_enabled = 0;
5395
                break;
5396
            case QEMU_OPTION_no_hpet:
5397
                no_hpet = 1;
5398
                break;
5399
#endif
5400
            case QEMU_OPTION_no_reboot:
5401
                no_reboot = 1;
5402
                break;
5403
            case QEMU_OPTION_no_shutdown:
5404
                no_shutdown = 1;
5405
                break;
5406
            case QEMU_OPTION_show_cursor:
5407
                cursor_hide = 0;
5408
                break;
5409
            case QEMU_OPTION_uuid:
5410
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5411
                    fprintf(stderr, "Fail to parse UUID string."
5412
                            " Wrong format.\n");
5413
                    exit(1);
5414
                }
5415
                break;
5416
#ifndef _WIN32
5417
            case QEMU_OPTION_daemonize:
5418
                daemonize = 1;
5419
                break;
5420
#endif
5421
            case QEMU_OPTION_option_rom:
5422
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5423
                    fprintf(stderr, "Too many option ROMs\n");
5424
                    exit(1);
5425
                }
5426
                option_rom[nb_option_roms] = optarg;
5427
                nb_option_roms++;
5428
                break;
5429
#if defined(TARGET_ARM) || defined(TARGET_M68K)
5430
            case QEMU_OPTION_semihosting:
5431
                semihosting_enabled = 1;
5432
                break;
5433
#endif
5434
            case QEMU_OPTION_name:
5435
                qemu_name = optarg;
5436
                break;
5437
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5438
            case QEMU_OPTION_prom_env:
5439
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5440
                    fprintf(stderr, "Too many prom variables\n");
5441
                    exit(1);
5442
                }
5443
                prom_envs[nb_prom_envs] = optarg;
5444
                nb_prom_envs++;
5445
                break;
5446
#endif
5447
#ifdef TARGET_ARM
5448
            case QEMU_OPTION_old_param:
5449
                old_param = 1;
5450
                break;
5451
#endif
5452
            case QEMU_OPTION_clock:
5453
                configure_alarms(optarg);
5454
                break;
5455
            case QEMU_OPTION_startdate:
5456
                {
5457
                    struct tm tm;
5458
                    time_t rtc_start_date;
5459
                    if (!strcmp(optarg, "now")) {
5460
                        rtc_date_offset = -1;
5461
                    } else {
5462
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5463
                               &tm.tm_year,
5464
                               &tm.tm_mon,
5465
                               &tm.tm_mday,
5466
                               &tm.tm_hour,
5467
                               &tm.tm_min,
5468
                               &tm.tm_sec) == 6) {
5469
                            /* OK */
5470
                        } else if (sscanf(optarg, "%d-%d-%d",
5471
                                          &tm.tm_year,
5472
                                          &tm.tm_mon,
5473
                                          &tm.tm_mday) == 3) {
5474
                            tm.tm_hour = 0;
5475
                            tm.tm_min = 0;
5476
                            tm.tm_sec = 0;
5477
                        } else {
5478
                            goto date_fail;
5479
                        }
5480
                        tm.tm_year -= 1900;
5481
                        tm.tm_mon--;
5482
                        rtc_start_date = mktimegm(&tm);
5483
                        if (rtc_start_date == -1) {
5484
                        date_fail:
5485
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5486
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5487
                            exit(1);
5488
                        }
5489
                        rtc_date_offset = time(NULL) - rtc_start_date;
5490
                    }
5491
                }
5492
                break;
5493
            case QEMU_OPTION_tb_size:
5494
                tb_size = strtol(optarg, NULL, 0);
5495
                if (tb_size < 0)
5496
                    tb_size = 0;
5497
                break;
5498
            case QEMU_OPTION_icount:
5499
                use_icount = 1;
5500
                if (strcmp(optarg, "auto") == 0) {
5501
                    icount_time_shift = -1;
5502
                } else {
5503
                    icount_time_shift = strtol(optarg, NULL, 0);
5504
                }
5505
                break;
5506
            case QEMU_OPTION_incoming:
5507
                incoming = optarg;
5508
                break;
5509
#ifndef _WIN32
5510
            case QEMU_OPTION_chroot:
5511
                chroot_dir = optarg;
5512
                break;
5513
            case QEMU_OPTION_runas:
5514
                run_as = optarg;
5515
                break;
5516
#endif
5517
#ifdef CONFIG_XEN
5518
            case QEMU_OPTION_xen_domid:
5519
                xen_domid = atoi(optarg);
5520
                break;
5521
            case QEMU_OPTION_xen_create:
5522
                xen_mode = XEN_CREATE;
5523
                break;
5524
            case QEMU_OPTION_xen_attach:
5525
                xen_mode = XEN_ATTACH;
5526
                break;
5527
#endif
5528
            }
5529
        }
5530
    }
5531

    
5532
#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5533
    if (kvm_allowed && kqemu_allowed) {
5534
        fprintf(stderr,
5535
                "You can not enable both KVM and kqemu at the same time\n");
5536
        exit(1);
5537
    }
5538
#endif
5539

    
5540
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5541
    if (smp_cpus > machine->max_cpus) {
5542
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5543
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5544
                machine->max_cpus);
5545
        exit(1);
5546
    }
5547

    
5548
    if (nographic) {
5549
       if (serial_device_index == 0)
5550
           serial_devices[0] = "stdio";
5551
       if (parallel_device_index == 0)
5552
           parallel_devices[0] = "null";
5553
       if (strncmp(monitor_device, "vc", 2) == 0)
5554
           monitor_device = "stdio";
5555
    }
5556

    
5557
#ifndef _WIN32
5558
    if (daemonize) {
5559
        pid_t pid;
5560

    
5561
        if (pipe(fds) == -1)
5562
            exit(1);
5563

    
5564
        pid = fork();
5565
        if (pid > 0) {
5566
            uint8_t status;
5567
            ssize_t len;
5568

    
5569
            close(fds[1]);
5570

    
5571
        again:
5572
            len = read(fds[0], &status, 1);
5573
            if (len == -1 && (errno == EINTR))
5574
                goto again;
5575

    
5576
            if (len != 1)
5577
                exit(1);
5578
            else if (status == 1) {
5579
                fprintf(stderr, "Could not acquire pidfile\n");
5580
                exit(1);
5581
            } else
5582
                exit(0);
5583
        } else if (pid < 0)
5584
            exit(1);
5585

    
5586
        setsid();
5587

    
5588
        pid = fork();
5589
        if (pid > 0)
5590
            exit(0);
5591
        else if (pid < 0)
5592
            exit(1);
5593

    
5594
        umask(027);
5595

    
5596
        signal(SIGTSTP, SIG_IGN);
5597
        signal(SIGTTOU, SIG_IGN);
5598
        signal(SIGTTIN, SIG_IGN);
5599
    }
5600

    
5601
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5602
        if (daemonize) {
5603
            uint8_t status = 1;
5604
            write(fds[1], &status, 1);
5605
        } else
5606
            fprintf(stderr, "Could not acquire pid file\n");
5607
        exit(1);
5608
    }
5609
#endif
5610

    
5611
#ifdef CONFIG_KQEMU
5612
    if (smp_cpus > 1)
5613
        kqemu_allowed = 0;
5614
#endif
5615
    if (qemu_init_main_loop()) {
5616
        fprintf(stderr, "qemu_init_main_loop failed\n");
5617
        exit(1);
5618
    }
5619
    linux_boot = (kernel_filename != NULL);
5620
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5621

    
5622
    if (!linux_boot && *kernel_cmdline != '\0') {
5623
        fprintf(stderr, "-append only allowed with -kernel option\n");
5624
        exit(1);
5625
    }
5626

    
5627
    if (!linux_boot && initrd_filename != NULL) {
5628
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5629
        exit(1);
5630
    }
5631

    
5632
    /* boot to floppy or the default cd if no hard disk defined yet */
5633
    if (!boot_devices[0]) {
5634
        boot_devices = "cad";
5635
    }
5636
    setvbuf(stdout, NULL, _IOLBF, 0);
5637

    
5638
    init_timers();
5639
    if (init_timer_alarm() < 0) {
5640
        fprintf(stderr, "could not initialize alarm timer\n");
5641
        exit(1);
5642
    }
5643
    if (use_icount && icount_time_shift < 0) {
5644
        use_icount = 2;
5645
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5646
           It will be corrected fairly quickly anyway.  */
5647
        icount_time_shift = 3;
5648
        init_icount_adjust();
5649
    }
5650

    
5651
#ifdef _WIN32
5652
    socket_init();
5653
#endif
5654

    
5655
    /* init network clients */
5656
    if (nb_net_clients == 0) {
5657
        /* if no clients, we use a default config */
5658
        net_clients[nb_net_clients++] = "nic";
5659
#ifdef CONFIG_SLIRP
5660
        net_clients[nb_net_clients++] = "user";
5661
#endif
5662
    }
5663

    
5664
    for(i = 0;i < nb_net_clients; i++) {
5665
        if (net_client_parse(net_clients[i]) < 0)
5666
            exit(1);
5667
    }
5668
    net_client_check();
5669

    
5670
#ifdef TARGET_I386
5671
    /* XXX: this should be moved in the PC machine instantiation code */
5672
    if (net_boot != 0) {
5673
        int netroms = 0;
5674
        for (i = 0; i < nb_nics && i < 4; i++) {
5675
            const char *model = nd_table[i].model;
5676
            char buf[1024];
5677
            if (net_boot & (1 << i)) {
5678
                if (model == NULL)
5679
                    model = "ne2k_pci";
5680
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5681
                if (get_image_size(buf) > 0) {
5682
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5683
                        fprintf(stderr, "Too many option ROMs\n");
5684
                        exit(1);
5685
                    }
5686
                    option_rom[nb_option_roms] = strdup(buf);
5687
                    nb_option_roms++;
5688
                    netroms++;
5689
                }
5690
            }
5691
        }
5692
        if (netroms == 0) {
5693
            fprintf(stderr, "No valid PXE rom found for network device\n");
5694
            exit(1);
5695
        }
5696
    }
5697
#endif
5698

    
5699
    /* init the bluetooth world */
5700
    for (i = 0; i < nb_bt_opts; i++)
5701
        if (bt_parse(bt_opts[i]))
5702
            exit(1);
5703

    
5704
    /* init the memory */
5705
    if (ram_size == 0)
5706
        ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5707

    
5708
#ifdef CONFIG_KQEMU
5709
    /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5710
       guest ram allocation.  It needs to go away.  */
5711
    if (kqemu_allowed) {
5712
        kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5713
        kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5714
        if (!kqemu_phys_ram_base) {
5715
            fprintf(stderr, "Could not allocate physical memory\n");
5716
            exit(1);
5717
        }
5718
    }
5719
#endif
5720

    
5721
    /* init the dynamic translator */
5722
    cpu_exec_init_all(tb_size * 1024 * 1024);
5723

    
5724
    bdrv_init();
5725
    dma_helper_init();
5726

    
5727
    /* we always create the cdrom drive, even if no disk is there */
5728

    
5729
    if (nb_drives_opt < MAX_DRIVES)
5730
        drive_add(NULL, CDROM_ALIAS);
5731

    
5732
    /* we always create at least one floppy */
5733

    
5734
    if (nb_drives_opt < MAX_DRIVES)
5735
        drive_add(NULL, FD_ALIAS, 0);
5736

    
5737
    /* we always create one sd slot, even if no card is in it */
5738

    
5739
    if (nb_drives_opt < MAX_DRIVES)
5740
        drive_add(NULL, SD_ALIAS);
5741

    
5742
    /* open the virtual block devices */
5743

    
5744
    for(i = 0; i < nb_drives_opt; i++)
5745
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5746
            exit(1);
5747

    
5748
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5749
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5750

    
5751
#ifndef _WIN32
5752
    /* must be after terminal init, SDL library changes signal handlers */
5753
    termsig_setup();
5754
#endif
5755

    
5756
    /* Maintain compatibility with multiple stdio monitors */
5757
    if (!strcmp(monitor_device,"stdio")) {
5758
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5759
            const char *devname = serial_devices[i];
5760
            if (devname && !strcmp(devname,"mon:stdio")) {
5761
                monitor_device = NULL;
5762
                break;
5763
            } else if (devname && !strcmp(devname,"stdio")) {
5764
                monitor_device = NULL;
5765
                serial_devices[i] = "mon:stdio";
5766
                break;
5767
            }
5768
        }
5769
    }
5770

    
5771
    if (nb_numa_nodes > 0) {
5772
        int i;
5773

    
5774
        if (nb_numa_nodes > smp_cpus) {
5775
            nb_numa_nodes = smp_cpus;
5776
        }
5777

    
5778
        /* If no memory size if given for any node, assume the default case
5779
         * and distribute the available memory equally across all nodes
5780
         */
5781
        for (i = 0; i < nb_numa_nodes; i++) {
5782
            if (node_mem[i] != 0)
5783
                break;
5784
        }
5785
        if (i == nb_numa_nodes) {
5786
            uint64_t usedmem = 0;
5787

    
5788
            /* On Linux, the each node's border has to be 8MB aligned,
5789
             * the final node gets the rest.
5790
             */
5791
            for (i = 0; i < nb_numa_nodes - 1; i++) {
5792
                node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5793
                usedmem += node_mem[i];
5794
            }
5795
            node_mem[i] = ram_size - usedmem;
5796
        }
5797

    
5798
        for (i = 0; i < nb_numa_nodes; i++) {
5799
            if (node_cpumask[i] != 0)
5800
                break;
5801
        }
5802
        /* assigning the VCPUs round-robin is easier to implement, guest OSes
5803
         * must cope with this anyway, because there are BIOSes out there in
5804
         * real machines which also use this scheme.
5805
         */
5806
        if (i == nb_numa_nodes) {
5807
            for (i = 0; i < smp_cpus; i++) {
5808
                node_cpumask[i % nb_numa_nodes] |= 1 << i;
5809
            }
5810
        }
5811
    }
5812

    
5813
    if (kvm_enabled()) {
5814
        int ret;
5815

    
5816
        ret = kvm_init(smp_cpus);
5817
        if (ret < 0) {
5818
            fprintf(stderr, "failed to initialize KVM\n");
5819
            exit(1);
5820
        }
5821
    }
5822

    
5823
    if (monitor_device) {
5824
        monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5825
        if (!monitor_hd) {
5826
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5827
            exit(1);
5828
        }
5829
    }
5830

    
5831
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5832
        const char *devname = serial_devices[i];
5833
        if (devname && strcmp(devname, "none")) {
5834
            char label[32];
5835
            snprintf(label, sizeof(label), "serial%d", i);
5836
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5837
            if (!serial_hds[i]) {
5838
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5839
                        devname);
5840
                exit(1);
5841
            }
5842
        }
5843
    }
5844

    
5845
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5846
        const char *devname = parallel_devices[i];
5847
        if (devname && strcmp(devname, "none")) {
5848
            char label[32];
5849
            snprintf(label, sizeof(label), "parallel%d", i);
5850
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5851
            if (!parallel_hds[i]) {
5852
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5853
                        devname);
5854
                exit(1);
5855
            }
5856
        }
5857
    }
5858

    
5859
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5860
        const char *devname = virtio_consoles[i];
5861
        if (devname && strcmp(devname, "none")) {
5862
            char label[32];
5863
            snprintf(label, sizeof(label), "virtcon%d", i);
5864
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5865
            if (!virtcon_hds[i]) {
5866
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5867
                        devname);
5868
                exit(1);
5869
            }
5870
        }
5871
    }
5872

    
5873
    machine->init(ram_size, vga_ram_size, boot_devices,
5874
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5875

    
5876

    
5877
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
5878
        for (i = 0; i < nb_numa_nodes; i++) {
5879
            if (node_cpumask[i] & (1 << env->cpu_index)) {
5880
                env->numa_node = i;
5881
            }
5882
        }
5883
    }
5884

    
5885
    current_machine = machine;
5886

    
5887
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5888
    if (kvm_enabled()) {
5889
        int ret;
5890

    
5891
        ret = kvm_sync_vcpus();
5892
        if (ret < 0) {
5893
            fprintf(stderr, "failed to initialize vcpus\n");
5894
            exit(1);
5895
        }
5896
    }
5897

    
5898
    /* init USB devices */
5899
    if (usb_enabled) {
5900
        for(i = 0; i < usb_devices_index; i++) {
5901
            if (usb_device_add(usb_devices[i], 0) < 0) {
5902
                fprintf(stderr, "Warning: could not add USB device %s\n",
5903
                        usb_devices[i]);
5904
            }
5905
        }
5906
    }
5907

    
5908
    if (!display_state)
5909
        dumb_display_init();
5910
    /* just use the first displaystate for the moment */
5911
    ds = display_state;
5912
    /* terminal init */
5913
    if (nographic) {
5914
        if (curses) {
5915
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5916
            exit(1);
5917
        }
5918
    } else { 
5919
#if defined(CONFIG_CURSES)
5920
            if (curses) {
5921
                /* At the moment curses cannot be used with other displays */
5922
                curses_display_init(ds, full_screen);
5923
            } else
5924
#endif
5925
            {
5926
                if (vnc_display != NULL) {
5927
                    vnc_display_init(ds);
5928
                    if (vnc_display_open(ds, vnc_display) < 0)
5929
                        exit(1);
5930
                }
5931
#if defined(CONFIG_SDL)
5932
                if (sdl || !vnc_display)
5933
                    sdl_display_init(ds, full_screen, no_frame);
5934
#elif defined(CONFIG_COCOA)
5935
                if (sdl || !vnc_display)
5936
                    cocoa_display_init(ds, full_screen);
5937
#endif
5938
            }
5939
    }
5940
    dpy_resize(ds);
5941

    
5942
    dcl = ds->listeners;
5943
    while (dcl != NULL) {
5944
        if (dcl->dpy_refresh != NULL) {
5945
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5946
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5947
        }
5948
        dcl = dcl->next;
5949
    }
5950

    
5951
    if (nographic || (vnc_display && !sdl)) {
5952
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5953
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5954
    }
5955

    
5956
    text_consoles_set_display(display_state);
5957
    qemu_chr_initial_reset();
5958

    
5959
    if (monitor_device && monitor_hd)
5960
        monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5961

    
5962
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5963
        const char *devname = serial_devices[i];
5964
        if (devname && strcmp(devname, "none")) {
5965
            char label[32];
5966
            snprintf(label, sizeof(label), "serial%d", i);
5967
            if (strstart(devname, "vc", 0))
5968
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5969
        }
5970
    }
5971

    
5972
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5973
        const char *devname = parallel_devices[i];
5974
        if (devname && strcmp(devname, "none")) {
5975
            char label[32];
5976
            snprintf(label, sizeof(label), "parallel%d", i);
5977
            if (strstart(devname, "vc", 0))
5978
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5979
        }
5980
    }
5981

    
5982
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5983
        const char *devname = virtio_consoles[i];
5984
        if (virtcon_hds[i] && devname) {
5985
            char label[32];
5986
            snprintf(label, sizeof(label), "virtcon%d", i);
5987
            if (strstart(devname, "vc", 0))
5988
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5989
        }
5990
    }
5991

    
5992
#ifdef CONFIG_GDBSTUB
5993
    if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5994
        fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5995
                gdbstub_dev);
5996
        exit(1);
5997
    }
5998
#endif
5999

    
6000
    if (loadvm)
6001
        do_loadvm(cur_mon, loadvm);
6002

    
6003
    if (incoming) {
6004
        autostart = 0; /* fixme how to deal with -daemonize */
6005
        qemu_start_incoming_migration(incoming);
6006
    }
6007

    
6008
    if (autostart)
6009
        vm_start();
6010

    
6011
#ifndef _WIN32
6012
    if (daemonize) {
6013
        uint8_t status = 0;
6014
        ssize_t len;
6015

    
6016
    again1:
6017
        len = write(fds[1], &status, 1);
6018
        if (len == -1 && (errno == EINTR))
6019
            goto again1;
6020

    
6021
        if (len != 1)
6022
            exit(1);
6023

    
6024
        chdir("/");
6025
        TFR(fd = open("/dev/null", O_RDWR));
6026
        if (fd == -1)
6027
            exit(1);
6028
    }
6029

    
6030
    if (run_as) {
6031
        pwd = getpwnam(run_as);
6032
        if (!pwd) {
6033
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6034
            exit(1);
6035
        }
6036
    }
6037

    
6038
    if (chroot_dir) {
6039
        if (chroot(chroot_dir) < 0) {
6040
            fprintf(stderr, "chroot failed\n");
6041
            exit(1);
6042
        }
6043
        chdir("/");
6044
    }
6045

    
6046
    if (run_as) {
6047
        if (setgid(pwd->pw_gid) < 0) {
6048
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6049
            exit(1);
6050
        }
6051
        if (setuid(pwd->pw_uid) < 0) {
6052
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6053
            exit(1);
6054
        }
6055
        if (setuid(0) != -1) {
6056
            fprintf(stderr, "Dropping privileges failed\n");
6057
            exit(1);
6058
        }
6059
    }
6060

    
6061
    if (daemonize) {
6062
        dup2(fd, 0);
6063
        dup2(fd, 1);
6064
        dup2(fd, 2);
6065

    
6066
        close(fd);
6067
    }
6068
#endif
6069

    
6070
    main_loop();
6071
    quit_timers();
6072
    net_cleanup();
6073

    
6074
    return 0;
6075
}